The present invention generally relates to refrigeration systems and control methods for such systems. More particularly, the present invention relates to refrigeration systems and methods that determine the refrigerant charge level and/or refills the refrigerant when the refrigerant charge level is below a predetermined level.
The refrigerant level in a refrigeration system depends on a number of factors, including the configuration of the refrigeration system, the initial refrigerant level in the refrigeration system, any sub-cooling or super-heating that occurs during the operation of the refrigeration system, and the temperature and humidity of the environment where the refrigeration system is used. To ensure that a refrigeration system is operating efficiently and safely, it is essential to maintain the refrigerant in the refrigeration system at a proper level during operation.
Conventional refrigeration systems and methods focus on determination of whether the refrigerant in the systems is below or above an acceptable refrigerant charge level. Some of them focus on development of algorithms to more accurately determine the refrigerant charge level. Such conventional refrigeration systems and methods do not provide solutions to resolve the problems after it is determined that the refrigerant charge level is below an acceptable level.
The information disclosed in this Background section is provided solely to provide a general background of the embodiments described herein and is not an acknowledgement or suggestion that this information forms part of the prior art already known to a person skilled in the art.
Various aspects of the present invention provide refrigeration systems and control methods that can not only determine the refrigerant charge level, but can also predict when the refrigerant charge level is getting low, and, in some embodiments, refill the refrigerant when the refrigerant charge level is below a proper refrigerant charge level.
In one embodiment, a refrigeration system includes a compressor, a condenser, an evaporator, an assembly, and refrigerant lines fluidly connecting the compressor, the condenser, the evaporator and the assembly to form a refrigerant circuit for circulating the refrigerant. The compressor compresses a refrigerant. The condenser, disposed downstream of the compressor, condenses the refrigerant. The evaporator, disposed downstream of the condenser, vaporizes the refrigerant. The assembly includes a receiver drier unit disposed between the condenser and the evaporator, or an accumulator unit disposed between the evaporator and the compressor, or both the receiver drier unit and the accumulator unit. The receiver drier unit includes a receiver drier and a first sensor. The receiver drier is configured to temporarily store the refrigerant or absorb moisture from the refrigerant or both. The first sensor is installed at the receiver drier to measure temperature and pressure of the refrigerant after it has passed through the condenser. The accumulator unit includes an accumulator and a second sensor. The accumulator is configured to restrict liquid refrigerant from entering the compressor. The second sensor is installed at the accumulator to measure temperature and pressure of the refrigerant after it has passed through the evaporator. The refrigeration system further includes a controller electrically connected to the assembly. The controller is configured to perform one or more of the following: determine a sub-cooling level based on the temperature and pressure measured by the first sensor, determine a super-heating level based on the temperature and pressure measured by the second sensor, and determine a refrigerant charge level based at least in part on the determined sub-cooling level or the determined super-heating level.
In some embodiments, the assembly further includes an electronic valve fluidly connected to a refrigerant reservoir. The electronic valve is installed at the receiver drier or at the accumulator or fluidly connected to the refrigerant circuit at a location other than the receiver drier unit or the accumulator unit. The electronic valve is selectively operated to allow flow of the refrigerant from the refrigerant reservoir to the refrigerant circuit. The flow of the refrigerant from the refrigerant reservoir to the refrigerant circuit is driven by pressure difference between the refrigerant reservoir and where the electronic valve is installed. As such, the refrigerant charge level is maintained above a predetermined refrigerant charge level.
In some embodiments, the refrigerant system further includes one or more of the following: a first air blower electrically coupled to the controller, positioned proximate the condenser and configured to blow ambient air or air from an air intake of the engine over the condenser; a metering device disposed upstream of the evaporator and configured for controlling flow of the refrigerant into the evaporator; and a flow control valve disposed upstream of the compressor and configured to selectively restrict or permit flow of the refrigerant to the compressor.
In some embodiments, the sub-cooling level is determined using a look-up table in accordance with the temperature and pressure measured by the first sensor. The super-heating level is determined using a look-up table in accordance with the temperature and pressure measured by the second sensor. The refrigerant charge level is calculated based at least in part on the determined sub-cooling level or the determined super-heating level.
In some embodiments, the controller performs other additional or optional functions. In one case, the controller predicts whether and when a failure, in which the refrigerant charge level is below a predetermined refrigerant level, is likely to occur by extrapolating the determined refrigerant charge levels over time or by considering one or more of the following: a trend of the determined refrigerant charge levels over time, exterior temperature, interior temperature and humidity. In other embodiments, the controller predicts how long the refrigerant will last based on one or more of the determined sub-cooling levels over time and the determined super-heating levels over time. In yet other embodiments, the controller calculates a compression ratio of the compressor, determines whether a blockage occurs in the refrigerant circuit based on the calculated compression ratio, and determines a location of the blockage, if a blockage has occurred, based at least in part on the determined sub-cooling level and the determined super-heating level. In yet other embodiments, the controller is electrically connected to the compressor, counts clutch cycles of the compressor and predicts clutch life of the compressor based on one or more of the following: the clutch cycles, clutch temperature and current.
In some embodiments, the controller is electrically or wirelessly coupled to an electronic device and outputs one or more signals to the electronic device, such as determined sub-cooling, super-heating and/or refrigerant charge levels, warning signals and maintenance request.
Another embodiment provides a first method for controlling a refrigeration system. The first method includes: (a) obtaining a refrigerant sub-cooling level based on the temperature and pressure of the refrigerant measured by the first sensor, and a refrigerant super-heating level based on the temperature and pressure of the refrigerant measured by the second sensor; (b) calculating a refrigerant charge level based at least in part on the refrigerant sub-cooling level and the refrigerant super-heating level; (c) determining whether the refrigerant charge level is below a predetermined refrigerant charge level; and (d) selectively controlling the electronic valve, if it is determined that the refrigerant charge level is below the predetermined refrigerant charge level, to allow flow of the refrigerant from the refrigerant reservoir to the refrigerant circuit of the refrigeration system, thereby raising the refrigerant charge level to above the predetermined refrigerant charge level.
In some embodiments, the first method further includes one or more additional or optional processes. In one case, prior to obtaining a refrigerant sub-cooling level, the first method further includes one or more of the following: installing a first sensor at the receiver drier to measure temperature and pressure of the refrigerant after it has passed through the condenser; installing a second sensor at the accumulator to measure temperature and pressure of the refrigerant after it has passed through the evaporator; and installing an electronic valve in the refrigerant circuit, wherein the electronic valve is fluidly connected to a refrigerant reservoir. In another case, the first method further includes one or more of the following: predicting whether and when a failure (e.g., the refrigerant charge level is below a predetermined refrigerant level) is likely to occur; predicting how long the refrigerant will last; determining where a blockage occurs in the refrigerant circuit and a location of the blockage; predicting clutch life of the compressor; and output a signal or signals to an electronic device.
Other embodiments provide a second method for controlling a refrigeration system. The second method includes: (a) installing a receiver drier unit in the refrigerant circuit between the condenser and the evaporator, wherein the receiver drier unit comprises a receiver drier and a first sensor installed at the receiver drier to measure temperature and pressure of the refrigerant after it has passed through the condenser; (b) installing an accumulator unit in the refrigerant circuit between the evaporator and the compressor, wherein the accumulator unit comprises an accumulator and a second sensor installed at the accumulator to measure temperature and pressure of the refrigerant after it has passed through the evaporator; (c) obtaining a refrigerant sub-cooling level based on the temperature and pressure of the refrigerant measured by the first sensor, and a refrigerant super-heating level based on the temperature and pressure of the refrigerant measured by the second sensor; (d) calculating a refrigerant charge level based at least in part on the refrigerant sub-cooling level and the refrigerant super-heating level; and (e) determining one or more of the following: whether the refrigerant sub-cooling level is within a predetermined refrigerant sub-cooling range; whether the refrigerant super-heating level is within a predetermined refrigerant super-heating range; and whether the refrigerant charge level is below a predetermined refrigerant charge level.
The refrigeration systems and methods of the present invention have other features and advantages that will be apparent from or are set forth in more detail in the accompanying drawings, which are incorporated herein, and the following Detailed Description, which together serve to explain certain principles of the present invention.
The accompanying drawings, which are incorporated into and constitute a part of this specification, illustrate one or more embodiments of the present application and, together with the detailed description, serve to explain the principles and implementations of the application.
Reference will now be made in detail to implementations of the present application as illustrated in the accompanying drawings. The same reference indicators will be used throughout the drawings and the following detailed description to refer to the same or like parts. Those of ordinary skill in the art will realize that the following detailed description of the present application is illustrative only and is not intended to be in any way limiting. Other embodiments of the present application will readily suggest themselves to such skilled persons having benefit of this disclosure.
In the interest of clarity, not all of the routine features of the implementations described herein are shown and described. It will, of course, be appreciated that in the development of any such actual implementations, numerous implementation-specific decisions must be made in order to achieve the developer's specific goals, such as compliance with application- and business-related constraints, and that these specific goals will vary from one implementation to another and from one developer to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking of engineering for those of ordinary skill in the art having the benefit of this disclosure.
Many modifications and variations of this disclosure can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. The specific embodiments described herein are offered by way of example only, and the disclosure is to be limited only by the terms of the appended claims, along with the full scope of equivalents to which such claims are entitled.
Embodiments of the present invention are described in the context of refrigeration systems and methods for controlling the refrigeration systems. A refrigeration system of the present invention in general includes a compressor, a condenser, an evaporator and refrigerant lines fluidly connecting the compressor, condenser and evaporator to form a refrigerant circuit. In many cases, the refrigeration system also includes a receiver drier unit and/or an accumulator unit disposed in the refrigerant circuit and integrated with a transducer to measure the temperature and pressure of the refrigerant. In some cases, a controller is included in the refrigeration system and a novel method is used to (i) monitor the sub-cooling, super-heating and/or refrigerant charge levels, and (ii) inform an operator whether and/or when a failure (e.g., the refrigerant charge level is below a predetermined refrigerant level) is likely to occur. In some cases, the refrigeration system further includes an electronic valve fluidly connected to a refrigerant reservoir, which the controller (or another controller) selectively opens or closes so that the refrigerant in the refrigeration system is maintained above a predetermined refrigerant charge level.
The refrigeration systems of the present invention can be used in various applications such as in a vehicle for cooling a compartment of the vehicle. The vehicle includes, but is not limited to, cars, vans, trucks, buses, and trailers. In some cases, the refrigeration systems are used in conjunction with or integrated with existing A/C refrigeration systems. In some embodiments, the refrigeration systems share some common components, for instance, compressors, condensers or evaporators, with existing A/C refrigeration system(s). In some cases, the refrigeration systems are constructed by modifying existing A/C refrigeration systems, for instance, by installing a receiver drier unit and/or an accumulator unit of the present invention into the existing A/C refrigeration system(s).
By way of illustration,
The first and second sensors (112, 118) can be any type of sensors suitable to measure temperature and pressure of the refrigerant, including but not limited to combined pressure and temperature transducers. In some cases, the first sensor (112) includes a first temperature sensor and a first pressure sensor; the second sensor (118) includes a second temperature sensor and a second pressure sensor. The first sensor (112) is disposed on the high pressure side of the refrigerant circuit, and preferably installed at the receiver drier (110) such as at the inlet, outlet, interior or other suitable location of the receiver drier (110). The second sensor (118) is disposed on the low pressure side of the refrigerant circuit, and preferably installed at the accumulator (116) such as at the inlet, outlet, interior or other suitable location of the accumulator (116). Having the first sensor (112) installed at the receiver drier (110) and/or the second sensor (118) at the accumulator (116) provides several advantages, including packaging and installation convenience, original equipment time saving, and easier leakage testing.
During operation of the refrigeration system, the compressor (102) compresses a refrigerant into a compressed refrigerant. The compressor (102) can be any type of compressor including but not limited to a reciprocating compressor or rotary compressor. The compressor (102) is driven by a power source (138) such as a solar cell, an electrical battery, an alternator, or may be belt driven from an internal combustion engine if the refrigeration system is used in a vehicle. The condenser (104) condenses the refrigerant that has been compressed by the compressor (102). The receiver drier (110) of the receiver drier unit (108) temporarily stores the refrigerant and/or absorbs moisture, debris or other undesirable substances from the refrigerant that has been condensed by the condenser (104). The first sensor (112) measures temperature and pressure of the refrigerant that has been condensed by the condenser (104). The evaporator (106) vaporizes or evaporates the refrigerant that has been condensed by the condenser (104), providing cooling for desired use. The accumulator (116) restricts liquid refrigerant from entering the compressor (102), for example by temporarily storing excess liquid refrigerant at the accumulator (116), to prevent damage to the compressor (102). The second sensor (118) measures temperature and pressure of the refrigerant that has been vaporized/evaporated by the evaporator (106). It should be noted that depending on the operation and performance of the refrigeration system, the condensed refrigerant at the receiver drier (110) and the vaporized/evaporated refrigerant at the accumulator (116) can be in the form of a liquid, a vapor, or a mixture of liquid and vapor.
In many embodiments, the refrigeration system (100) also includes a controller (124) electrically coupled to one or more components of the refrigeration system and configured to monitor and control the amount of the refrigerant entering into the evaporator (106), the amount of the refrigerant entering the compressor (102), the refrigerant level in the refrigeration system, and/or other operations. For instance, in the illustrated embodiment, the controller (124) is electrically connected to the assembly, in particular, connected to the first sensor (112) of the receiver drier unit (108) and the second sensor (118) of the accumulator unit (114). The controller (124) determines a sub-cooling level based on the temperature and pressure measured by the first sensor (112), a super-heating level based on the temperature and pressure measured by the second sensor (118), and/or a refrigerant charge level based at least in part on the determined sub-cooling level or the determined super-heating level. In some cases, the controller (124) is mounted on or integrated with the receiver drier (110) or the accumulator (116).
As used herein, “sub-cooling” refers to a condition where the temperature of a liquid refrigerant is lower than the saturation temperature required to keep the liquid refrigerant from changing into a gas phase, or a liquid existing at a temperature below its normal saturation temperature. As used herein, “sub-cooling level” refers to an amount of sub-cooling at a given condition (e.g., at a particular pressure), and in some cases, it is the difference between the saturation temperature at the given condition and the actual liquid refrigerant temperature measured by the first sensor. In some embodiments, sub-cooling level is determined by converting the pressure measured by the first sensor to a temperature using a pressure-temperature (PT) chart or table and then subtracting that temperature from the temperature measured by the first sensor. In some embodiments, the sub-cooling level is determined using a look-up table in accordance with the temperature and pressure measured by the first sensor. In some cases, the look-up table is stored in a memory associated with the controller.
As used herein, “super-heating” refers to a condition where the temperature of a vapor refrigerant is higher than the saturation temperature at a particular pressure, or heating a liquid under pressure above its boiling point without vaporization. As used herein, “super-heating level” refers to an amount of super-heating at a given condition, and in some cases, it is the difference between the saturation temperature at the given condition and the actual vapor refrigerant temperature measured by the second sensor. In some embodiments, super-heating level is determined by converting the pressure measured by the second sensor to a temperature using a PT chart or table and then subtracting that temperature from the temperature measured by the second sensor. In some embodiments, the super-heating level is determined using a look-up table in accordance with the temperature and pressure measured by the second sensor. In some cases, the look-up table is stored in a memory associated with the controller.
As used herein, “refrigerant charge level” refers to an amount of refrigerant contained in the refrigeration system, and “predetermined refrigerant charge level” refers to a predetermined amount of refrigerant for the refrigeration system to operate efficiently and safely. In most cases, the predetermined refrigerant charge level depends on the design and configuration of the refrigeration system and can be determined prior to the use of the refrigeration system. Maintaining the refrigerant at or above the predetermined refrigerant charge level during the operation of refrigeration system is essential for the refrigeration system to operate efficiently and safely.
In some embodiments, the refrigeration system further includes an electronic valve (126) to inject refrigerant from a refrigerant reservoir (128) into the refrigeration system when the refrigerant charge level is below a predetermined refrigerant charge level. IN some embodiments, control of the electronic valve is controlled by the controller. As such, the refrigeration system can continue functioning properly for some additional period of time, allowing an operator to schedule a maintenance appointment or take other appropriate actions. The electronic valve (126) can be integrated with the assembly, e.g., installed at the receiver drier (110) or at the accumulator (116), or fluidly connected to the refrigerant circuit at a location other than the receiver drier unit (108) or the accumulator unit (114). As an example,
The electronic valve (126) is selectively operated to allow flow of the refrigerant from the refrigerant reservoir (128) to the refrigerant circuit. Operation of the electronic valve (126) can be automatic or manual. For example, in some cases, the controller (124) is electrically connected to the electronic valve (126) and controls the electronic valve (126) to be selectively opened when the refrigerant charge level is low (e.g., below a predetermined refrigerant charge level) or closed when the refrigerant charge level is normal (e.g., above the predetermined refrigerant charge level). In an embodiment where the electronic valve is installed at the receiver drier, when the electronic valve is opened, the refrigerant flows from the refrigerant reservoir to the refrigerant circuit, driven by the pressure difference between the refrigerant reservoir and the receiver drier. In an embodiment where the electronic valve is installed at the accumulator, when the electronic valve is opened, the refrigerant flows from the refrigerant reservoir to the refrigerant circuit, driven by the pressure difference between the refrigerant reservoir and the accumulator. In an embodiment where the electronic valve is directly connected to the refrigerant circuit, when the electronic valve is opened, the refrigerant flows from the refrigerant reservoir to the refrigerant circuit, driven by the pressure difference between the refrigerant reservoir and the refrigerant circuit at the location where the electronic valve is fluidly connected. As such, the refrigerant charge level in the refrigeration system is maintained above a predetermined refrigerant charge level, allowing the refrigeration system to operate safely and efficiently and allowing time for an operator or others to schedule a maintenance appointment or take other proper actions.
In some embodiments, the controller (124) performs additional or optional functions. For instance, in an embodiment, the controller (124) is configured to predict how long the refrigerant will last based on the sub-cooling level over time, the super-heating level over time, the refrigerant charge level, and/or other factors such as temperature and humidity inside and outside of the place where the refrigeration system is used (e.g., a vehicle). Sub-cooling and super-heating levels depend on ambient conditions and thermal load on the refrigeration system, and are unique for each set of given conditions including ambient conditions and thermal load on the refrigeration system. By monitoring the sub-cooling level and/or super-heating over time, the system is able to predict a refrigerant leakage rate severity (if any) and how long the system can run before service is required.
In another embodiment, the controller (124) is configured to predict whether a failure, in which the refrigerant charge level is below a predetermined refrigerant charge level, is likely to occur. Generally, a refrigeration system has an initial charge level, and learns how the refrigeration system operates and then is able to tell whether a charge level is low over time. In some cases, the controller uses the obtained super-heating level and sub-cooling in conjunction with power and ambient conditions to determine whether the refrigeration system is performing correctly. Then based on the normal operation “learned” over time, the controller determines whether the refrigerant charge level is low, e.g., below a predetermined refrigerant charge level. In some cases, the controller examines the trend of the refrigerant charge level over time and extrapolates the refrigerant charge level to predict how long the refrigerant will last and/or when the refrigerant charge level is likely to be below the predetermined refrigerant level.
In still another embodiment, the controller (124) is configured to calculate a compression ratio of the compressor (102). If the calculated compression ratio exceeds a specific compression ratio for a given condition, the controller (124) determines that a blockage occurs in the refrigerant circuit. The controller (124) then examines the sub-cooling level, the super-heating level and/or other factors to determine the location of the blockage. For instance, abnormal sub-cooling level indicates a blockage in the condenser (104) and abnormal super-cooling indicates a blockage in the evaporator (106).
In a further embodiment, the controller (124) is electrically connected to the compressor (102). The controller (124) is configured to count clutch cycles of the compressor (102) and predict clutch life of the compressor (102) based on the clutch cycles, clutch temperature, current and/or other factors.
In some embodiments, the controller (124) is electrically or wirelessly coupled to an electronic device (136) including but not limited to a display, a receiver, a smartphone or a computer. The electronic device (136) can be located in the same place as the refrigeration system. For instance, the refrigeration system is installed in a vehicle and the electronic device (136) is a display on the dashboard of the vehicle. The electronic device (136) can also be located remotely from the refrigeration system. For instance, the refrigeration system is installed in a vehicle whereas the electronic device (136) is a device not directly associated with the vehicle such as a personal smartphone or a computer at a dealer.
The controller (124) outputs one or more signals to the electronic device (136). The signals can be audio such as a beep or visual such a text or graphic displayed on a screen. The signals include but are not limited to data (e.g., the cooling level, the super-heating level and the refrigerant charge level), warning signals (e.g., the refrigerant charge level is below a predetermined refrigerant charge level), maintenance request or the like.
In some cases, the controller (124) outputs a warning signal if one or more of the following occur: when one or more of the following occurs: the sub-cooling level is outside of a predetermined sub-cooling range, the super-heating level is outside of a predetermined super-heating range, the refrigerant charge level is below a predetermined refrigerant charge level, the compression ratio is above a specific level for a given condition, a blockage has occurred, or a cooling efficiency of the refrigeration system is below a predetermined cooling efficiency. In some cases, the controller (124) outputs a warning signal if one or more of the following occur: the determined sub-cooling level is outside of a predetermined sub-cooling range for a first predetermined period of time, the determined super-heating level is outside of a predetermined super-heating range for a second predetermined period of time, the refrigerant charge level is below a predetermined refrigerant charge level for a third predetermined period of time. It should be noted that the predetermined sub-cooling range, the predetermined super-heating range, the predetermined refrigerant charge level, the specific level for the compression level and other parameters depend on refrigeration system's configuration and design, and can be determined prior to the use of the refrigeration system.
In some embodiments, the refrigeration system includes one or more additional or optional components such as air blowers, metering devices, flow control valves, or the like. By way of illustration,
The refrigeration system as illustrated in
In some embodiments, the control (124) includes a control board (202), such as a screen, a key board or a user interface. The control board can be used for displaying data (e.g., the cooling level, the super-heating level and the refrigerant charge level), for communication (e.g., sending warning signals, maintenance request), for setting operation criteria (e.g., predetermined refrigerant charge level) or the like.
Similarly, an accumulator unit (114) can be configured to include an accumulator (116) and one or more of the following: a second sensor (118), a controller (124), an electronic valve (126), and a refrigerant reservoir (128). It should be noted that in an embodiment with both a receiver drier unit (108) and an accumulator unit (114), it is unnecessary to install a controller (124) at each of the receiver drier (110) and the accumulator (116). Likewise, it is unnecessary to install an electronic valve (126) or a refrigerant reservoir (128) at each of the receiver drier (110) and the accumulator (116).
The refrigeration system of the present invention illustrated in
Turning now to
In some embodiments, the first method is governed by instructions that are stored in and executed by a controller such as the controller illustrated in
In some embodiments, the first method includes: obtaining a refrigerant sub-cooling level based on the temperature and pressure of the refrigerant measured by the first sensor (112), and a refrigerant super-heating level based on the temperature and pressure of the refrigerant measured by the second sensor (S408); calculating a refrigerant charge level based at least in part on the refrigerant sub-cooling level and the refrigerant super-heating level (S410); determining whether the refrigerant charge level is below a predetermined refrigerant charge level (S412); and selectively controlling the electronic valve, if it is determined that the refrigerant charge level is below the predetermined refrigerant charge level, to allow flow of the refrigerant from the refrigerant reservoir to the refrigerant circuit of the refrigeration system, thereby raising the refrigerant charge level to above the predetermined refrigerant charge level (S414).
In some embodiments, the sub-cooling level is determined using a look-up table in accordance with the temperature and pressure measured by the first sensor. The super-heating level is determined using a look-up table in accordance with the temperature and pressure measured by the second sensor. The look-up tables for determining the sub-cooling level and the super-heating level can be separate tables or combined into one table. In some cases, the look-up table(s) is stored in a memory associated with the controller.
In some embodiments, prior to obtaining the refrigerant sub-cooling and/or super-heating levels (S408), the first method further includes one or more of the following: installing a first sensor at the receiver drier to measure temperature and pressure of the refrigerant after it has passed through the condenser (S402); installing a second sensor at the accumulator to measure temperature and pressure of the refrigerant after it has passed through the evaporator (S404); and installing an electronic valve in the refrigerant circuit, wherein the electronic valve is fluidly connected to a refrigerant reservoir (S406).
It should be noted that the processes illustrated in
Also, it should be noted that some processes illustrated in
Further, the first method illustrated in
Generally, a refrigeration system has an initial charge level. The controller learns how the refrigeration system operates and determines whether a charge level is low over time. In some cases, the controller uses the obtained super-heating level and sub-cooling in conjunction with power and ambient conditions to determine whether the refrigeration system is performing correctly. Then based on the normal operation “learned” over time, the controller determines whether the refrigerant charge level is low, e.g., below a predetermined refrigerant charge level. In some cases, the controller examines the trend of the refrigerant charge level over time and extrapolates the refrigerant charge level to predict how long the refrigerant will last and/or when the refrigerant charge level is likely to be below the predetermined refrigerant level.
In some embodiments, the first method includes one of more of the following additional processes: calculating a compression ratio of the compressor (102) and comparing the compression ratio of the compressor (102) with a specific compression ratio for a given condition (S420); determining that a blockage occurs in the refrigerant circuit if the calculated compression ratio of the compressor (102) exceeds the specific compression ratio (S422); determining a location of the blockage based on the sub-cooling level and the super-heating level if a blockage has occurred (S424); and outputting a signal to request maintenance if it is determined that a blockage has occurred (S426).
In some embodiments, the compression ratio is the ratio of the absolute discharge pressure of the compressor to the absolute suction pressure of the compressor, i.e., a value of the absolute discharge pressure of the compressor divided by the absolute suction pressure of the compressor. If it is determined that a blockage occurs in the refrigerant circuit, abnormal sub-cooling level indicates a blockage in the condenser and abnormal super-cooling indicates a blockage in the evaporator.
In some embodiments, the first method includes one of more of the following additional processes: counting clutch cycles of a compressor of the refrigeration system (S428); and predicting clutch life of the compressor based on one or more of the following: the clutch cycles, clutch temperature and current (S430).
In some embodiments, the first method includes one of more of the following additional processes: determining one or more of the following: whether the refrigerant sub-cooling level is outside of a predetermined refrigerant sub-cooling range, and whether the refrigerant super-heating level is outside of a predetermined refrigerant super-heating range (S432); and outputs a warning signal if one or more of the following occur: the determined sub-cooling level is outside of the predetermined sub-cooling range, the determined super-heating level is outside of the predetermined super-heating range, the determined refrigerant charge level is below the predetermined refrigerant charge level (S434). Alternatively, in some embodiments, the first method includes one of more of the following additional processes: determining one or more of the following: whether the refrigerant sub-cooling level is outside of a predetermined refrigerant sub-cooling range, whether the refrigerant super-heating level is outside of a predetermined refrigerant super-heating range, and whether the determined refrigerant charge level is below the predetermined refrigerant charge level for a third predetermined period of time (S436); and outputs a warning signal if one or more of the following occur: the refrigerant sub-cooling level is outside of the predetermined refrigerant sub-cooling range for a first predetermined period of time, the refrigerant super-heating level is outside of the predetermined refrigerant super-heating range for a second predetermined period of time, and the determined refrigerant charge level is below the predetermined refrigerant charge level for a third predetermined period of time (S438).
It should be noted that the first method can include any number of the alternative, additional or optional processes such as those illustrated in
Referring now to
Like the first method, in some embodiments, the second method is governed by instructions that are stored in and executed by a controller such as the controller illustrated in
In some embodiments, the second method includes: installing a receiver drier unit in the refrigerant circuit between the condenser and the evaporator, wherein the receiver drier unit comprises a receiver drier and a first sensor installed at the receiver drier to measure temperature and pressure of the refrigerant after it has passed through the condenser (S502); installing an accumulator unit in the refrigerant circuit between the evaporator and the compressor, wherein the accumulator unit comprises an accumulator and a second sensor installed at the accumulator to measure temperature and pressure of the refrigerant after it has passed through the evaporator (S504); obtaining a refrigerant sub-cooling level based on the temperature and pressure of the refrigerant measured by the first sensor, and a refrigerant super-heating level based on the temperature and pressure of the refrigerant measured by the second sensor (S408); calculating a refrigerant charge level based at least in part on the refrigerant sub-cooling level and the refrigerant super-heating level (S410); and determining one or more of the following: whether the refrigerant sub-cooling level is within a predetermined refrigerant sub-cooling range; whether the refrigerant super-heating level is within a predetermined refrigerant super-heating range; and whether the refrigerant charge level is below a predetermined refrigerant charge level (S506).
Like the first method, the processes illustrated in
Also, like the first method, some processes illustrated in
Further, like the first method, the second method can have alternative, additional or optional processes, including those illustrated in
The refrigeration systems and control methods of the present invention are advantageous in many ways. For instance, with the sensor(s) installed at the receiver drier and/or the accumulator, the present invention provides a smaller and more space efficient system, which requires less maintenance, and makes leak testing easier. Moreover, with an electronic valve connected to a refrigerant reservoir and integrated to the receiver drier, the accumulator or the refrigerant circuit, the refrigeration system of the present invention can continue functioning properly for some additional period of time, allowing an operator to schedule a maintenance appointment to avoid costly unscheduled maintenance or take other appropriate actions. Further, the controller helps predict whether a failure is likely to occur and can notify an operator, dealer or others if a failure occurs or is likely to occur.
The terminology used herein is for the purpose of describing particular implementations only and is not intended to be limiting of the claims. As used in the description of the implementations and the appended claims, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be understood that, although the terms “first,” “second,” etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first sensor could be termed a second sensor, and, similarly, a second sensor could be termed a first sensor, without changing the meaning of the description, so long as all occurrences of the “first sensor” are renamed consistently and all occurrences of the “second sensor” are renamed consistently.
This application is a continuation of U.S. application Ser. No. 14/995,119, filed Jan. 13, 2016, entitled “Refrigeration System with Superheating, Sub-Cooling and Refrigerant Charge Level Control,” which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2722050 | Shank | Nov 1955 | A |
2789234 | Lambert et al. | Jun 1956 | A |
3176502 | Cizek et al. | Apr 1965 | A |
3225819 | Stevens | Dec 1965 | A |
3590910 | Lorenz | Jul 1971 | A |
3627030 | Lorenz | Dec 1971 | A |
3807087 | Staats | Apr 1974 | A |
3844130 | Wahnish | Oct 1974 | A |
3880224 | Weil | Apr 1975 | A |
3885398 | Dawkins | May 1975 | A |
3948060 | Gaspard | Apr 1976 | A |
3995443 | Iversen | Dec 1976 | A |
4015182 | Erdman | Mar 1977 | A |
4034801 | Bermstein | Jul 1977 | A |
4071080 | Bridgers | Jan 1978 | A |
4217764 | Armbruster | Aug 1980 | A |
4271677 | Harr | Jun 1981 | A |
4280330 | Harris et al. | Jul 1981 | A |
4324286 | Brett | Apr 1982 | A |
4359875 | Ohtani | Nov 1982 | A |
4391321 | Thunberg | Jul 1983 | A |
4412425 | Fukami et al. | Nov 1983 | A |
4448157 | Eckstein et al. | May 1984 | A |
4459519 | Erdman | Jul 1984 | A |
4577679 | Hibshman | Mar 1986 | A |
4604036 | Sutou et al. | Aug 1986 | A |
4617472 | Slavik | Oct 1986 | A |
4641502 | Aldrich et al. | Feb 1987 | A |
4658593 | Stenvinkel | Apr 1987 | A |
4667480 | Bessler | May 1987 | A |
4694798 | Kato et al. | Sep 1987 | A |
4748825 | King | Jun 1988 | A |
4825663 | Nijar et al. | May 1989 | A |
4841733 | Dussault et al. | Jun 1989 | A |
4856078 | Konopka | Aug 1989 | A |
4893479 | Gillett et al. | Jan 1990 | A |
4905478 | Matsuda et al. | Mar 1990 | A |
4945977 | D'Agaro | Aug 1990 | A |
4947657 | Kalmbach | Aug 1990 | A |
4952283 | Besik | Aug 1990 | A |
4982576 | Proctor et al. | Jan 1991 | A |
5025634 | Dressler | Jun 1991 | A |
5046327 | Walker | Sep 1991 | A |
5067652 | Enander | Nov 1991 | A |
5095308 | Hewitt | Mar 1992 | A |
5125236 | Clancey et al. | Jun 1992 | A |
5170639 | Datta | Dec 1992 | A |
5205781 | Kanno | Apr 1993 | A |
5230719 | Berner et al. | Jul 1993 | A |
5275012 | Dage et al. | Jan 1994 | A |
5307645 | Pannell | May 1994 | A |
5316074 | Isaji et al. | May 1994 | A |
5324229 | Weisbecker | Jun 1994 | A |
5333678 | Mellum et al. | Aug 1994 | A |
5361593 | Dauvergne | Nov 1994 | A |
5376866 | Erdman | Dec 1994 | A |
5396779 | Voss | Mar 1995 | A |
5402844 | Elluin | Apr 1995 | A |
5404730 | Westermeyer | Apr 1995 | A |
5426953 | Meckler | Jun 1995 | A |
5465589 | Bender et al. | Nov 1995 | A |
5497941 | Numazawa et al. | Mar 1996 | A |
5501267 | Iritani et al. | Mar 1996 | A |
5502365 | Nanbu et al. | Mar 1996 | A |
5524442 | Bergmen, Jr. et al. | Jun 1996 | A |
5528901 | Willis | Jun 1996 | A |
5562538 | Suyama | Oct 1996 | A |
5586613 | Ehsani | Dec 1996 | A |
5647534 | Kelz et al. | Jul 1997 | A |
5657638 | Erdman et al. | Aug 1997 | A |
5682757 | Peterson | Nov 1997 | A |
5720181 | Karl et al. | Feb 1998 | A |
5752391 | Ozaki | May 1998 | A |
5761918 | Jackson et al. | Jun 1998 | A |
5775415 | Yoshini et al. | Jul 1998 | A |
5782610 | Ikeda | Jul 1998 | A |
5819549 | Sherwood | Oct 1998 | A |
5896750 | Karl | Apr 1999 | A |
5898995 | Ghodbane | May 1999 | A |
5899081 | Evans et al. | May 1999 | A |
5901572 | Peiffer et al. | May 1999 | A |
5901780 | Zeigler et al. | May 1999 | A |
5921092 | Behr et al. | Jul 1999 | A |
5934089 | Magakawa et al. | Aug 1999 | A |
5982643 | Phlipot | Nov 1999 | A |
5996363 | Kurachi et al. | Dec 1999 | A |
6016662 | Tanaka et al. | Jan 2000 | A |
6021043 | Horng | Feb 2000 | A |
6028406 | Birk | Feb 2000 | A |
6029465 | Bascobert | Feb 2000 | A |
6038877 | Peiffer et al. | Mar 2000 | A |
6038879 | Turcotte | Mar 2000 | A |
6059016 | Rafalovich et al. | May 2000 | A |
6072261 | Lin | Jun 2000 | A |
6073456 | Kawai et al. | Jun 2000 | A |
6111731 | Cepynsky | Aug 2000 | A |
6112535 | Hollenbeck | Sep 2000 | A |
6125642 | Seener et al. | Oct 2000 | A |
6134901 | Harvest et al. | Oct 2000 | A |
6152217 | Ito et al. | Nov 2000 | A |
6185959 | Zajac | Feb 2001 | B1 |
6193475 | Rozek | Feb 2001 | B1 |
6205795 | Backman et al. | Mar 2001 | B1 |
6205802 | Drucker et al. | Mar 2001 | B1 |
6209333 | Bascobert | Apr 2001 | B1 |
6209622 | Lagace et al. | Apr 2001 | B1 |
6213867 | Yazici | Apr 2001 | B1 |
6230507 | Ban et al. | May 2001 | B1 |
6232687 | Hollenbeck et al. | May 2001 | B1 |
6253563 | Ewert et al. | Jul 2001 | B1 |
6265692 | Umebayahi et al. | Jul 2001 | B1 |
6276161 | Peiffer et al. | Aug 2001 | B1 |
6282919 | Rockenfeller | Sep 2001 | B1 |
6351957 | Hara | Mar 2002 | B2 |
6405793 | Ghodbane et al. | Jun 2002 | B1 |
6411059 | Frugier et al. | Jun 2002 | B2 |
6453678 | Sundhar | Sep 2002 | B1 |
6457324 | Zeigler et al. | Oct 2002 | B2 |
6467279 | Backman et al. | Oct 2002 | B1 |
6474081 | Feuerecker | Nov 2002 | B1 |
6530426 | Kishita et al. | Mar 2003 | B1 |
6543245 | Waldschmidt | Apr 2003 | B1 |
6571566 | Temple et al. | Jun 2003 | B1 |
6575228 | Ragland et al. | Jun 2003 | B1 |
6626003 | Kortüm et al. | Sep 2003 | B1 |
6675601 | Ebara | Jan 2004 | B2 |
6684863 | Dixon et al. | Feb 2004 | B2 |
6725134 | Dillen et al. | Apr 2004 | B2 |
6745585 | Kelm et al. | Jun 2004 | B2 |
6748750 | Choi | Jun 2004 | B2 |
6758049 | Adachi et al. | Jul 2004 | B2 |
6889762 | Zeigler et al. | May 2005 | B2 |
6932148 | Brummett et al. | Aug 2005 | B1 |
6939114 | Iwanami et al. | Sep 2005 | B2 |
6965818 | Koenig et al. | Nov 2005 | B2 |
6981544 | Iwanami et al. | Jan 2006 | B2 |
6992419 | Kim et al. | Jan 2006 | B2 |
7135799 | Rittmeyer | Nov 2006 | B2 |
7150159 | Brummett et al. | Dec 2006 | B1 |
7246502 | Hammonds et al. | Jul 2007 | B2 |
7316119 | Allen | Jan 2008 | B2 |
7350368 | Heberle et al. | Apr 2008 | B2 |
7385323 | Takahashi et al. | Jun 2008 | B2 |
7591143 | Zeigler et al. | Sep 2009 | B2 |
7591303 | Ziegler et al. | Sep 2009 | B2 |
7614242 | Quesada Saborio | Nov 2009 | B1 |
7637031 | Salim et al. | Dec 2009 | B2 |
7765824 | Wong et al. | Aug 2010 | B2 |
7821175 | Ionel et al. | Oct 2010 | B2 |
7932658 | Ionel | Apr 2011 | B2 |
8001799 | Obayashi et al. | Aug 2011 | B2 |
8141377 | Connell | Mar 2012 | B2 |
8156754 | Hong et al. | Apr 2012 | B2 |
8276892 | Narikawa et al. | Oct 2012 | B2 |
8492948 | Wang et al. | Jul 2013 | B2 |
8517087 | Zeigler et al. | Aug 2013 | B2 |
8821092 | Nambara et al. | Sep 2014 | B2 |
8841813 | Junak et al. | Sep 2014 | B2 |
8905071 | Coombs et al. | Dec 2014 | B2 |
8919140 | Johnson et al. | Dec 2014 | B2 |
8947531 | Fischer et al. | Feb 2015 | B2 |
9157670 | Kreeley et al. | Oct 2015 | B2 |
9216628 | Self et al. | Dec 2015 | B2 |
9221409 | Gauthier | Dec 2015 | B1 |
9783024 | Connell et al. | Oct 2017 | B2 |
9878591 | Taniguchi et al. | Jan 2018 | B2 |
20010010261 | Oomura et al. | Aug 2001 | A1 |
20020020183 | Hayashi | Feb 2002 | A1 |
20020026801 | Yamashita | Mar 2002 | A1 |
20020036081 | Ito et al. | Mar 2002 | A1 |
20020042248 | Vincent et al. | Apr 2002 | A1 |
20020078700 | Kelm et al. | Jun 2002 | A1 |
20020084769 | Iritani et al. | Jul 2002 | A1 |
20020108384 | Higashiyama | Aug 2002 | A1 |
20020112489 | Egawa et al. | Aug 2002 | A1 |
20020157412 | Iwanami et al. | Oct 2002 | A1 |
20020157413 | Iwanami et al. | Oct 2002 | A1 |
20030041603 | Tada et al. | Mar 2003 | A1 |
20030105567 | Koenig et al. | Jun 2003 | A1 |
20030106332 | Okamoto | Jun 2003 | A1 |
20040060312 | Horn et al. | Apr 2004 | A1 |
20040168449 | Homan et al. | Sep 2004 | A1 |
20040216477 | Yamasaki et al. | Nov 2004 | A1 |
20040221599 | Hille et al. | Nov 2004 | A1 |
20040250560 | Ikura | Dec 2004 | A1 |
20040256082 | Bracciano | Dec 2004 | A1 |
20050016196 | Kadle et al. | Jan 2005 | A1 |
20050109499 | Iwanami et al. | May 2005 | A1 |
20050161211 | Zeigler et al. | Jul 2005 | A1 |
20050230096 | Yamaoka | Oct 2005 | A1 |
20050235660 | Pham | Oct 2005 | A1 |
20050257545 | Ziehr et al. | Nov 2005 | A1 |
20060042284 | Heberle et al. | Mar 2006 | A1 |
20060080980 | Lee et al. | Apr 2006 | A1 |
20060102333 | Zeigler et al. | May 2006 | A1 |
20060118290 | Klassen et al. | Jun 2006 | A1 |
20060151163 | Zeigler et al. | Jul 2006 | A1 |
20060151164 | Zeigler et al. | Jul 2006 | A1 |
20060254309 | Takeuchi et al. | Nov 2006 | A1 |
20070070605 | Straznicky et al. | Mar 2007 | A1 |
20070101760 | Bergander | May 2007 | A1 |
20070103014 | Sumiya et al. | May 2007 | A1 |
20070131408 | Zeigler et al. | Jun 2007 | A1 |
20070144723 | Aubertin et al. | Jun 2007 | A1 |
20070144728 | Kinmartin et al. | Jun 2007 | A1 |
20070163276 | Braun et al. | Jul 2007 | A1 |
20070227167 | Shapiro | Oct 2007 | A1 |
20070295017 | Pannell | Dec 2007 | A1 |
20080017347 | Chung et al. | Jan 2008 | A1 |
20080110185 | Veettil et al. | May 2008 | A1 |
20080156887 | Stanimirovic | Jul 2008 | A1 |
20080196436 | Connell | Aug 2008 | A1 |
20080196877 | Zeigler et al. | Aug 2008 | A1 |
20080209924 | Yoon et al. | Sep 2008 | A1 |
20090140590 | Hung | Jun 2009 | A1 |
20090211280 | Alston | Aug 2009 | A1 |
20090229288 | Alston et al. | Sep 2009 | A1 |
20090241592 | Stover | Oct 2009 | A1 |
20090249802 | Nemesh et al. | Oct 2009 | A1 |
20090301702 | Zeigler et al. | Dec 2009 | A1 |
20100009620 | Kawato et al. | Jan 2010 | A1 |
20100019047 | Flick | Jan 2010 | A1 |
20100127591 | Court et al. | May 2010 | A1 |
20100218530 | Melbostad et al. | Sep 2010 | A1 |
20100263395 | Adachi et al. | Oct 2010 | A1 |
20100293966 | Yokomachi et al. | Nov 2010 | A1 |
20110088417 | Kayser | Apr 2011 | A1 |
20110120146 | Ota et al. | May 2011 | A1 |
20110126566 | Jones et al. | Jun 2011 | A1 |
20110174014 | Scarcella et al. | Jul 2011 | A1 |
20110308265 | Phannavong | Dec 2011 | A1 |
20120023982 | Berson et al. | Feb 2012 | A1 |
20120102779 | Beers et al. | May 2012 | A1 |
20120118532 | Jentzsch et al. | May 2012 | A1 |
20120133176 | Ramberg | May 2012 | A1 |
20120247135 | Fakieh | Oct 2012 | A1 |
20120297805 | Kamada et al. | Nov 2012 | A1 |
20120318014 | Huff et al. | Dec 2012 | A1 |
20130040549 | Douglas et al. | Feb 2013 | A1 |
20130091867 | Campbell et al. | Apr 2013 | A1 |
20130145781 | Liu | Jun 2013 | A1 |
20130167577 | Street | Jul 2013 | A1 |
20130181556 | Li et al. | Jul 2013 | A1 |
20130319630 | Yamamoto | Dec 2013 | A1 |
20140066572 | Corveleyn | Mar 2014 | A1 |
20140075973 | Graaf et al. | Mar 2014 | A1 |
20140102679 | Matsudaira et al. | Apr 2014 | A1 |
20140241926 | Fraser | Aug 2014 | A1 |
20140260358 | Leete et al. | Sep 2014 | A1 |
20140290299 | Nakaya | Oct 2014 | A1 |
20150059367 | Emo | Mar 2015 | A1 |
20150158368 | Herr-Rathke et al. | Jun 2015 | A1 |
20150210287 | Penilla et al. | Jul 2015 | A1 |
20150236525 | Aridome | Aug 2015 | A1 |
20150239365 | Hyde et al. | Aug 2015 | A1 |
20150306937 | Kitamura et al. | Oct 2015 | A1 |
20160089958 | Powell | Mar 2016 | A1 |
20160144685 | Ochiai et al. | May 2016 | A1 |
20160146554 | Bhatia et al. | May 2016 | A1 |
20160229266 | Maeda et al. | Aug 2016 | A1 |
20170211855 | Fraser et al. | Jul 2017 | A1 |
20170350632 | Hirao | Dec 2017 | A1 |
Number | Date | Country |
---|---|---|
1468409 | Jan 2004 | CN |
2883071 | Mar 2007 | CN |
201872573 | Jun 2011 | CN |
102398496 | Apr 2012 | CN |
103547466 | Jan 2014 | CN |
104105610 | Oct 2014 | CN |
105071563 | Nov 2015 | CN |
105186726 | Nov 2015 | CN |
4440044 | May 1996 | DE |
197 45 028 | Apr 1999 | DE |
10014483 | Nov 2000 | DE |
199 42 029 | Mar 2001 | DE |
199 54 308 | Jul 2001 | DE |
102005004950 | Aug 2006 | DE |
10 2007 028851 | Dec 2008 | DE |
102010054965 | Jun 2012 | DE |
10 2012 022564 | May 2014 | DE |
11 2015 000552 | Nov 2016 | DE |
0516413 | Dec 1992 | EP |
0958952 | Nov 1999 | EP |
1024038 | Aug 2000 | EP |
1 400 764 | Mar 2004 | EP |
1 477 748 | Nov 2004 | EP |
1 700 725 | Sep 2006 | EP |
1 703 231 | Sep 2006 | EP |
1 970 651 | Sep 2008 | EP |
2048011 | Apr 2009 | EP |
2196748 | Jun 2010 | EP |
2320160 | May 2011 | EP |
2894420 | Jul 2015 | EP |
0963895 | Dec 2015 | EP |
3118035 | Jan 2017 | EP |
2966391 | Apr 2012 | FR |
H02-128915 | May 1990 | JP |
5032121 | Feb 1993 | JP |
H07186711 | Jul 1995 | JP |
H97-76740 | Mar 1997 | JP |
H09318177 | Dec 1997 | JP |
H10281595 | Oct 1998 | JP |
2000108651 | Apr 2000 | JP |
2005044551 | Apr 2000 | JP |
2002081823 | Mar 2002 | JP |
2005-033941 | Feb 2005 | JP |
2005-081960 | Mar 2005 | JP |
2006-264568 | Oct 2006 | JP |
2008220043 | Sep 2008 | JP |
2012017029 | Jan 2012 | JP |
2014226979 | Dec 2014 | JP |
20090068136 | Jun 2009 | KR |
WO 8909143 | Oct 1989 | WO |
WO 9961269 | Dec 1999 | WO |
WO 0000361 | Jan 2000 | WO |
WO 2004011288 | Feb 2004 | WO |
WO 2006082082 | Aug 2006 | WO |
WO 2012158326 | Nov 2012 | WO |
WO 2013113308 | Aug 2013 | WO |
WO 2014112320 | Jul 2014 | WO |
WO 2014180749 | Nov 2014 | WO |
WO 2014209780 | Dec 2014 | WO |
WO 2015076872 | May 2015 | WO |
Entry |
---|
Alfa Laval Website http://www.alfalaval.com/ecore-Java/WebObjects/ecoreJava.woa/wa/shoNode?siteNodelID-1668&cont . . . ; date last visited May 18, 2007; 1 page. |
Anonymous: “NITE Connected Climate Controlled Transport Monitoring/Mobile Internet of Things UI Design/Mobil UI: Progress/Printeres/Internet of Things, User Inter . . . ,” Oct. 19, 2016 retrieved from: URL:htps://za.pinterest.com/pin/192810427773981541/, 1 pg. |
Bergstrom, Inc. Communication Pursuant to Article 94(3), EP14722438.0, Jan. 24, 2018, 5 pgs. |
Bergstrom, Inc. Corrected Extended European Search Report, EP16204259.2, dated Nov. 24, 2017, 15 pgs. |
Bergstrom, Inc. Extended European Search Report, EP16204254.3, dated Jul. 25, 2017, 8 pgs. |
Bergstrom, Inc. Extended European Search Report, EP16204256.8, dated Dec. 1, 2017, 13 pgs. |
Bergstrom, Inc. Extended European Search Report, EP16204256.8, dated Jan. 12, 2018, 11 pgs. |
Bergstrom, Inc. Extended European Search Report, EP16204259.2, dated Oct. 25, 2017, 15 pgs. |
Bergstrom, Inc. Extended European Search Report, EP16204267.5, dated Jul. 11, 2017, 8 pgs. |
Bergstrom, Inc. Extended European Search Report, EP18177850.7, dated Nov. 28, 2018. 8 pgs. |
Bergstrom, Inc. Partial European Search Report, EP16204256.8, dated Jul. 13, 2017, 14 pgs. |
Bergstrom, Inc. Partial European Search Report, EP16204259.2, dated May 30, 2017, 14 pgs. |
Bergstrom, Inc., 2nd Office Action, CN201380081940.1, dated Jan. 17, 2018, 13 pgs. |
Bergstrom, Inc., 2nd Office Action, CN201480027137.4, dated Jul. 13, 2017, 10 pgs. |
Bergstrom, Inc., 3rd Office Action, CN201380081940.1, dated Jul. 30, 2018, 7 pgs. |
Bergstrom, Inc., 3rd Office Action, CN201480027137.4, dated Jan. 17, 2018, 19 pgs. |
Bergstrom, Inc., 4th Office Action, CN201480027137.4, dated Jul. 26, 2018, 8 pgs. |
Bergstrom, Inc., 1st Office Action, CN201680002224.3, dated Dec. 11, 2018, 5 pgs. |
Bergstrom, Inc., Communication Pursuant to Article 94(3), EP14717604.4, dated Jun. 2, 2017, 12 pgs. |
Bergstrom, Inc., Communication Pursuant to Article 94(3), EP14717604.4, dated Feb. 4, 2019, 5 pgs. |
Bergstrom, Inc., Communication Pursuant to Rules 161(2) and 162 EPC, EP13795064.8, dated Jun. 22, 2016, 2 pgs. |
Bergstrom, Inc., Communication Pursuant to Rules 161(2) and 162 EPC, EP14717604.4, dated Oct. 23, 2015, 2 pgs. |
Bergstrom, Inc., Communication Pursuant to Rules 161(2) and 162 EPC, EP14722438.0, dated Nov. 2, 2015. 2 pgs. |
Bergstrom, Inc., International Preliminary Report on Patentability, PCT/US2013/068331, dated May 10, 2016, 6 pgs. |
Bergstrom, Inc., International Preliminary Report on Patentability, PCT/US2014/026683, dated Sep. 15, 2015, 6 pgs. |
Bergstrom, Inc., International Preliminary Report on Patentability, PCT/US2014/026687, 7 pgs. |
Bergstrom, Inc., International Preliminary Report on Patentability, PCT/US2016/021602, dated Sep. 12, 2017 , 11 pgs. |
Bergstrom, Inc., International Preliminary Report on Patentability, PCT/US2016/065812, dated Jun. 12, 2018, 8 pgs. |
Bergstrom, Inc., International Search Report and Written Opinion, PCT/US2013/068331, dated Nov. 7, 2014, 9 pgs. |
Bergstrom, Inc., International Search Report and Written Opinion, PCT/US2014/026683, dated Jul. 3, 2014 12 pgs. |
Bergstrom, Inc., International Search Report and Written Opinion, PCT/US2014/026687, dated Jul. 28, 2014, 12 pgs. |
Bergstrom, Inc., International Search Report and Written Opinion, PCT/US2016/021602, dated Nov. 3, 2016, 7 pgs. |
Bergstrom, Inc., International Search Report and Written Opinion, PCT/US2016/065812, dated Mar. 22, 2017, 12 pgs. |
Bergstrom, Inc., International Search Report and Written Opinion, PCT/US2017/021346, dated Jul. 25, 2017, 11 pgs. |
Bergstrom, Inc., International Search Report and Written Opinion, PCT/US2018/044093, dated Oct. 25, 2018, 13 pgs. |
Bergstrom, Inc., Office Action, CN201480027117.7, received Mar. 9, 2017, 8 pgs. |
Bergstrom, Inc., Office Action, CN201480027137.4, received Mar. 3, 2017, 15 pgs. |
Bergstrom, Inc., Patent Certificate, CN201480027117.7, Nov. 21, 2017, 3 pgs. |
Connell, Final Office Action, U.S. Appl. No. 14/209,877, dated Jun. 22, 2016, 17 pgs. |
Connell, Final Office Action, U.S. Appl. No. 14/209,877, dated Dec. 29, 2016, 21 pgs. |
Connell, Final Office Action, U.S. Appl. No. 14/209,961, dated Jul. 25, 2016, 15 pgs. |
Connell, Final Office Action, U.S. Appl. No. 15/064,552, dated Jun. 1, 2017, 9 pgs. |
Connell, Final Office Action, U.S. Appl. No. 15/065,745, dated Dec. 17, 2018, 27 pgs. |
Connell, Notice of Allowance, U.S. Appl. No. 14/209,877, dated Aug. 4, 2017, 7 pgs. |
Connell, Notice of Allowance, U.S. Appl. No. 14/209,877, dated May 16, 2017, 5 pgs. |
Connell, Notice of Allowance, U.S. Appl. No. 14/209,961, dated Jun. 15, 2017, 10 pgs. |
Connell, Notice of Allowance, U.S. Appl. No. 14/965,142, dated Feb. 26, 2018, 8 pgs. |
Connell, Notice of Allowance, U.S. Appl. No. 14/995,119, dated Aug. 31, 2017, 7 pgs. |
Connell, Notice of Allowance, U.S. Appl. No. 15/280,876, dated Jun. 21, 2018, 8 pgs. |
Connell, Notice of Allowance, U.S. Appl. No. 15/791,243, dated Jan. 24, 2019, 7 pgs. |
Connell, Office Action, dated Oct. 19, 2018, U.S. Appl. No. 15/722,860, 7 pgs. |
Connell, Office Action, U.S. Appl. No. 15/283,150, dated Sep. 27, 2018, 21pgs. |
Connell, Notice of Allowance, U.S. Appl. No. 15/283,150, dated Mar. 22, 2019, 8 pgs. |
Connell, Office Action, U.S. Appl. No. 14/209,877, dated Nov. 27, 2015, 19 pgs. |
Connell, Office Action, U.S. Appl. No. 14/209,961, dated Dec. 2, 2015, 14 pgs. |
Connell, Office Action, U.S. Appl. No. 14/965,142, dated Aug. 29, 2017, 12 pgs. |
Connell, Office Action, U.S. Appl. No. 15/065,745, dated May 31, 2018 44 pgs. |
Connell, Office Action, U.S. Appl. No. 15/280,876, dated Dec. 14, 2017, 23 pgs. |
Connell, Office Action, U.S. Appl. No. 15/791,243, dated May 8, 2018, 12 pgs. |
FlatPlate Heat Exchangers; GEA FlatPiate Inc.; website—http://www.flatplate.com/profile.html; date last visited Aug. 9, 2007; 3 pages. |
Frank Stodolsky, Linda Gaines, and Anant Vyas; Analysis of Technology Options to Reduce the Fuel Consumption of Idling Trucks; Paper-Center for Transportation Research, Energy Systems Division, Argonne National Laboratory,9700 South Cass Avenue, Argonne, Illinois 60439;Jun. 2000; 30 pages. |
Glacier Bay Inc., Company History, pages printed from a website, httg://web.archive.org/web/20000301153828/www .g!acierbay.corn/History:.htrn, apparent archive date: Mar. 1, 2000; 2 pages. |
Glacier Bay Inc., Contact, page printed from a website, httQ://web.archive.orq/web/19990508104511/W \″′I !V .qlacierba:t.com/Contact.htm, apparent archive date: May 8, 1999; 1 page. |
Glacier Bay Inc., Darpa/Glacier Bay ECS, pages printed from a website, httir//web.archive.org/web/19991104132941/wvvw .glacierbay.com/darQatxt. htm, apparent archive date: Nov. 4, 1999, 2 pages. |
Glacier Bay Inc., Glacier Bay ECS DARPA Project—Final Report, pages printed from a website, httn://web.archive.or_gjweb/19991103001512/v⋅vww g.Jacierbay.com/Darnhtm.htm, apparent archive date: Nov. 3, 1999, 9 pages. |
Glacier Bay Inc., Glacier Bay ECS DARPA Project—Operational Video, page printed from a website, httQ://web.archive.orq/web/19991022221040/wvvw .qlacierbay.com/DarQvid.htm, apparent archive date Oct. 22, 1999; 1 page. |
Glacier Bay Inc., Glacier Bay ECS DARPA Project—Project Photos, pages printed from a website, httg://web.archive.org/web/1999 ″1103012854/www .glacierbay.com/Dargghotos.htm, apparent archive date: Nov. 3, 1999, 2 pages. |
Glacier Bay Inc., Glacier Bay's Home Page, page printed from a website, htt(?:i/web.archive.org/web/19990417062255/htt[2://www.glacierbay.com/, apparent archive date: Apr. 17, 1999, 1 page. |
Glacier Bay Inc., R & D, pages printed from a website, htt ://web.archive.org/web/20000121130306/www.glacierbay.com/R&D.htm, apparent archive date: Jan. 21, 2000, 2 pages. |
Hansson, Office Action dated Oct. 5, 2018, U.S. Appl. No. 15/256,109, 14 pgs. |
Mahmoud Ghodbane; On Vehicle Performance of a Secondary Loop A/C System; SAE Technical Paper Series 2000-01-1270; SAE 2000 World Congress, Detroit, Michigan; Mar. 6-9, 2000; 6 pages. |
Masami Konaka and Hiroki Matsuo; SAE Technical Paper Series 2000-01-1271; SAE 2000 World Congress, Detroit, Michigan; Mar. 6-9, 2000; 6 pages. |
Mayo Mayo, Final Office Action, U.S. Appl. No. 15/034,517, dated Aug. 28, 2018, 9pgs. |
Mayo Mayo, Final Office Action, U.S. Appl. No. 15/034,517, dated Nov. 30, 2018, 7 pgs. |
Mayo Mayo, Office Action, U.S. Appl. No. 15/034,517, dated Feb. 21, 2018, 22 pgs. |
Michael Löhle, Günther Feuerecker and Ulrich Salzer; Non Idling HVAC-modufe tor Long Distance Trucks;SAE TechnicalPaper Series 1999-01-1193; International Congress and Exposition, Detroit, Michigan; Mar. 1-4, 1999; 8 pages. |
Packless Industries, the leader in refrigerant to water coaxial heat exchangers, flexible hoses and sucti . . . ; website—http://www.packless.com/profile.htmle: date last visited Aug. 9, 2007; 1 page. |
Paper No. 26 in IPR2012-00027, Jun. 11, 2013, 12 pgs. (U.S. Pat. No. 7,591,303). |
Patricia Gardie and Vincent Goetz; Thermal Energy Storage System by Solid Absorption for Electric Automobile Heating and Air-Conditioning; Paper; 5 pages. |
TropiCool No-idle Heating & Cooling, 110V/12V High-efficiency, Self-contained, Electrified Heating/AC System; ACC Climate Control Brochure, Elkhart, Indiana; 205, 1 page. |
TropiCool Power Plus, More comfort. More efficiency. More options.; ACC Climate Control Brochure, Elkhart, Indiana; 2006, 3 pages. |
Zeigler, Final Office Action, U.S. Appl. No. 13/661,519, dated Sep. 18, 2013, 15 pgs. |
Zeigler, Final Office Action, U.S. Appl. No. 13/661,519, dated Sep. 26, 2014, 23 pgs. |
Zeigler, Notice of Allowance, U.S. Appl. No. 13/661,519, dated Jun. 17, 2016, 8 pgs. |
Zeigler, Office Action, U.S. Appl. No. 13/661,519, dated Apr. 9, 2014, 20 pgs. |
Zeigler, Office Action, U.S. Appl. No. 13/661,519, dated Mar. 11, 2013, 8 pgs. |
Zeigler, Office Action, U.S. Appl. No. 13/661,519, dated Oct. 28, 2015, 20 pgs. |
Bergstrom, Inc., International Search Report and Written Opinion, PCT/US2017049859, dated Nov. 12, 2017, 4 pgs. |
Bergstrom, Inc., International Preliminary Report on Patentability, PCT/US2017049859, dated Mar. 5, 2019, 6 pgs. |
Bergstrom, Inc., International Search Report and Written Opinion PCT/US2017053196, dated Sep. 3, 2018, 17 pgs. |
Bergstrom, Inc., International Preliminary Report on Patentability, PCT/US2017053196, dated Apr. 2, 2019, 11 pgs. |
Bergstrom, Inc., International Search Report and Written Opinion PCT/US2016/423326, dated Sep. 27, 2016, 8 pgs. |
Bergstrom, Inc., International Preliminary Report on Patentability PCT/US2016/423326, dated Jan. 16, 2018, 7 pgs. |
Bergstrom, Inc., International Search Report and Written Opinion PCT/US2016/42307, dated Oct. 7, 2016, 8 pgs. |
Bergstrom, Inc., International Preliminary Report on Patentability PCT/US2016/42307, dated Jan. 16, 2018, 7 pgs. |
Bergstrom, Inc., International Search Report and Written Opinion PCT/US2016/42314, dated Sep. 30, 2016, 7 pgs. |
Bergstrom, Inc., International Preliminary Report on Patentability, PCT/US2016/42314, dated Jan. 16, 2018, 6 pgs. |
Bergstrom, Inc., International Search Report and Written Opinion PCT/US2016/42329, dated Sep. 30, 2016, 6 pgs. |
Bergstrom, Inc., International Preliminary Report on Patentability PCT/US2016/42329, dated Jan. 16, 2018, 5 pgs. |
Bergstrom, Inc., Communication Pursuant to Article 94(3), EP16820096.2, dated Aug. 12, 2019, 7 pgs. |
Bergstrom, Inc., Communication Pursuant to Rules 161(1) and 162, EP17780954.8, dated May 10, 2019, 3 pgs. |
Bergstrom, Inc., Extended European Search Report, EP19166779.9, dated Aug. 30, 2019, 8 pgs. |
Bergstrom, Inc., Patent Certificate CN201480027137.4, May 31, 2019, 4 pgs. |
Connell, Office Action, U.S. Appl. No. 15/065,745, dated May 9, 2019, 28 pgs. |
Connell, Notice of Allowance, dated Feb. 7, 2019, U.S. Appl. No. 15/722,860, 5 pgs. |
Connell, Notice of Allowance, dated May 20, 2019, U.S. Appl. No. 15/722,860, 5 pgs. |
Connell, Notice of Allowance, U.S. Appl. No. 15/791,243, dated May 15, 2019, 7 pgs. |
Hansson, Final Office Action, U.S. Appl. No. 15/256,109, dated May 2, 2019, 14 pgs. |
TYCO Electronics Corporation, “MAG-MATE Connector with Multispring Pin,” Datasheet, 2013, pp. 1-2 from <URL: http://datasheet.octopart.com/1247003-2-TE-Connectivity-datasheet-14918754.pdf>. |
Number | Date | Country | |
---|---|---|---|
20180073789 A1 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14995119 | Jan 2016 | US |
Child | 15816993 | US |