The subject matter disclosed herein relates to an atmosphere control system for a refrigerated container, and specifically to a system for regulating the atmosphere (e.g., amounts of nitrogen, oxygen, and/or carbon dioxide) inside a refrigerated container resulting in an atmospheric composition that extends post-harvest shelf life or quality of perishables, such as fruits, vegetables, pharmaceuticals, etc.
A typical refrigerated cargo container, such as those utilized to transport cargo via sea, rail or road, is a container modified to include a refrigeration unit located at one end of the container. The refrigeration unit includes a compressor, condenser, expansion valve and evaporator. A volume of refrigerant circulates throughout the refrigeration unit, and one or more evaporator fans of the refrigeration unit blow a flow of supply air across the evaporator thereby cooling the supply air and forcing it out into the container.
An atmosphere control system controls the amount of oxygen and carbon dioxide inside the refrigerated container to, for example, change the rate of ripening of produce stored in the container. The atmosphere control system may control the amount of oxygen (O2) and carbon dioxide (CO2) in the container.
In one embodiment, a refrigeration unit for use with a container includes a compressor, a condenser, an expansion device and an evaporator configured to circulate a refrigerant; a condenser section housing the condenser; an evaporator section housing the evaporator; a removable access panel mounted to the evaporator section, the removable access panel serving as a mounting location for at least one component of an atmosphere control system.
In addition to one or more of the features described herein, or as an alternative, further embodiments may include wherein the at least one component of the atmosphere control system comprises a water separator.
In addition to one or more of the features described herein, or as an alternative, further embodiments may include wherein the at least one component of the atmosphere control system comprises a valve, the valve, in an open position, directs compressed air to the container.
In addition to one or more of the features described herein, or as an alternative, further embodiments may include wherein the at least one component of the atmosphere control system comprises at least one filter.
In addition to one or more of the features described herein, or as an alternative, further embodiments may include wherein the at least one filter comprises a first filter and a second filter.
In addition to one or more of the features described herein, or as an alternative, further embodiments may include wherein the at least one component of the atmosphere control system comprises a sensor configured to measure a level of a gas in the container.
In addition to one or more of the features described herein, or as an alternative, further embodiments may include wherein the sensor comprises an oxygen sensor.
In addition to one or more of the features described herein, or as an alternative, further embodiments may include wherein the sensor comprises a carbon dioxide sensor.
In addition to one or more of the features described herein, or as an alternative, further embodiments may include wherein the removable access panel includes a return air opening configured to allow at least a portion of return air from the container to pass through the return air opening.
In addition to one or more of the features described herein, or as an alternative, further embodiments may include wherein the at least one component of the atmosphere control system is maintained at a temperature of an interior of the container.
In addition to one or more of the features described herein, or as an alternative, further embodiments may include wherein the removable access panel includes a supply air opening configured to supply compressed air to the container.
In another embodiment, an atmosphere control system for use with a refrigeration unit of a container includes a condenser section housing a condenser and an evaporator section housing an evaporator, the atmosphere control system including a removable access panel mounted to the evaporator section, the removable access panel serving as a mounting location for at least one component of the atmosphere control system.
In addition to one or more of the features described herein, or as an alternative, further embodiments may include wherein the at least one component of the atmosphere control system comprises a water separator.
In addition to one or more of the features described herein, or as an alternative, further embodiments may include wherein the at least one component of the atmosphere control system comprises a valve, the valve, in an open position, configured to direct compressed air to the container.
In addition to one or more of the features described herein, or as an alternative, further embodiments may include wherein the at least one component of the atmosphere control system comprises at least one filter.
In addition to one or more of the features described herein, or as an alternative, further embodiments may include wherein the at least one filter comprises a first filter and a second filter.
In addition to one or more of the features described herein, or as an alternative, further embodiments may include wherein the at least one component of the atmosphere control system comprises a sensor configured to measure a level of a gas in the container.
In addition to one or more of the features described herein, or as an alternative, further embodiments may include wherein the sensor comprises an oxygen sensor.
In addition to one or more of the features described herein, or as an alternative, further embodiments may include wherein the sensor comprises a carbon dioxide sensor.
In addition to one or more of the features described herein, or as an alternative, further embodiments may include wherein the removable access panel includes a return air opening configured to allow at least a portion of return air from the container to pass through the return air opening.
In addition to one or more of the features described herein, or as an alternative, further embodiments may include wherein the removable access panel includes a supply air opening configured to supply compressed air to the container.
Technical effects of embodiments of the present disclosure include the ability to easily access components of an atmosphere control system mounted on a removable access panel. The components on the access panel are maintained at a uniform temperature to improve moisture removal of compressed air used in the atmosphere control system.
The foregoing features and elements may be combined in various combinations without exclusivity, unless expressly indicated otherwise. These features and elements as well as the operation thereof will become more apparent in light of the following description and the accompanying drawings. It should be understood, however, that the following description and drawings are intended to be illustrative and explanatory in nature and non-limiting.
The present disclosure is illustrated by way of example and not limited in the accompanying figures in which like reference numerals indicate similar elements.
The detailed description explains embodiments of the invention, together with advantages and features, by way of example with reference to the drawing.
Shown in
Referring to
The refrigeration unit 24 is separated into an evaporator section 54 containing the evaporator 32, the evaporator fan 34 and an evaporator fan motor 56 and a condenser section 58 containing the compressor 26, the condenser 28 and the expansion device 30. The evaporator section 54, located above the condenser section 58 in some embodiments, is separated from the condenser section 58 by a panel 50 that extends across the refrigeration unit 24. The condenser section 58 is exposed to ambient air and may be covered by panels having openings formed therein. In operation, refrigerant is circulated in serial fashion through the compressor 26, the condenser 28, the expansion device 30, the evaporator 32 and back to the compressor 26. It is understood that the refrigeration unit 24 may include additional components (e.g., economizer, receiver, SMV, etc.) that are not shown.
Referring now to
From the second filter 88 and the third filter 89, the compressed air flows to a first valve, V1. The first valve V1 has two outlets, which can be controlled by controller 70. When the first valve V1 is in a first position (e.g., an open position when energized), the compressed air is output from the first valve V1 to the interior of the container 10. The first valve V1 may be located to provide the air upstream of the evaporator 32. When the first valve V1 is in a second position (e.g., a closed position when not energized), the compressed air is directed to a separator 90. The separator 90 may be a membrane separator that generates an output of highly pure, separated nitrogen. Other atmospheric gases, including oxygen, argon and carbon dioxide, are vented to the condenser section 58 and outside of the refrigeration unit 24. The nitrogen from separator 90 is directed to a second valve V2. The second valve V2 may be located to provide the nitrogen upstream of the evaporator 32. The second valve V2 is a bleeder port that allows a small portion of the nitrogen from the separator 90 to be sent to a nitrogen sensor 96 to measure the purity of the nitrogen. The second valve V2 may be controlled by the controller 70.
When nitrogen is provided upstream of the evaporator 32, the nitrogen enters the interior of the container 10 and forces oxygen and carbon dioxide out of the interior of the container 10. Reducing the oxygen level in the container 10 reduces ripening of produce. Reducing the carbon dioxide level in the container 10 prevents damage to cargo 22 in the container 10 due to high carbon dioxide levels.
In operation, the controller 70 monitors levels of at least one gas inside the container 10, using oxygen sensor 92 and/or carbon dioxide sensor 94 in communication with the controller 70. The oxygen sensor 92 and/or carbon dioxide sensor 94 may be located in the evaporator section 54, upstream of the evaporator 32. To add outside air to the container 10, the controller 70 sends a signal to turn on the air compressor 80 and sends a signal to the first valve V1 to set the first valve V1 to the open position. This directs the compressed air from the air compressor 80 to the interior of the container 10. To add nitrogen to the container 10 to control the levels of other gasses, the controller 70 sends a signal to turn on the air compressor 80 and closes valve V1. This directs the compressed air from the air compressor 80 to the separator 90, which produces nitrogen that is directed to the interior of the container 10 (e.g., upstream or downstream of the evaporator 32). To measure purity of the nitrogen generated by the separator 90, the controller 70 opens the bleeder port of the second valve V2 to direct a portion of the nitrogen to the nitrogen sensor 96 in communication with the controller 70. In some embodiments, a separate nitrogen sensor 96 is not used, as the measurements from the oxygen sensor 92 provides an indication of the nitrogen level in the container 10.
Positioning the air compressor 80 in the condenser section 58 allows use of an air compressor not requiring an enclosed motor and enclosed crankcase, thereby allowing some acceptable amount of air blow (i.e., air leakage due to pressure and movement of the cylinders) from compressor crankcase. If a non-enclosed compressor was placed inside in the evaporator section 54, air blow from the compressor crankcase would directly impact system performance by not allowing proper control of oxygen. Positioning the air compressor 80 in the condenser section 58 also provides easier access for maintenance on the air compressor 80. A removable shield or plate can be used to protect the air compressor 80 from outside elements such as water and dirt, since the air compressor 80 is located in the condenser section 58 and not inside the container 10. The atmosphere control system 74 is controlled by the same controller 70 used to control the refrigeration unit 24, or by a separate controller.
The access panel 110 includes a return air opening 112 configured such that a portion of return air from the container 10 passes through the return air opening 112. The oxygen sensor 92 and/or carbon dioxide sensor 94 may be mounted on the interior surface of the access panel 110 to sense gas levels in the return air. The access panel 110 also includes a supply air opening 114 so that compressed, fresh air from first valve V1 may be directed to the container 10. The supply air opening 114 may be located upstream or downstream of the evaporator 32.
The removable access panel 110 also facilitates maintenance of the water separator 86, the second filter 88 and the third filter 89. The access panel 110 may be removed to drain the water separator 86 and/or to change the second filter 88 and the third filter 89. Preassembling components to the access panel 110 facilitates manufacturing and streamlines installation of the atmosphere control system 74 to the refrigeration unit 24.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
This application claims the benefit of U.S. Application No. 62/868,068, filed on Jun. 28, 2019, which is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2020/037914 | 6/16/2020 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62868068 | Jun 2019 | US |