Heavy duty mechanical equipment used throughout the world typically includes a unique combination of work pieces, related power supplies and robust components specifically configured to withstand harsh operating environments. In many situations, this equipment includes specially designed mechanical components (i.e. levers, working surfaces, housings, shields, brackets, etc.) and related power actuators (e.g. hydraulic cylinders). In practice, the mechanical systems are all uniquely designed to carry out the desired motions/functions, meet the specific needs of the device, or provide appropriate protection.
As mentioned, one application where mechanical systems are used in such harsh conditions is the refuse truck. These trucks include systems to accommodate the collection, packing and transport of refuse. The collection and packing (i.e. compaction) systems often require the use of mechanical components and/or systems such as those highlighted above.
Although many refuse trucks share common design features, variations do exist depending on the way they are used, and many other factors. For example, collection companies typically dictate the type of containers used by their customers use to ensure that they properly cooperate with pick-up mechanisms or “tippers”. For rear load collection trucks, the tippers are mounted to a load edge of the collection compartment, and generally configured so that an operator can roll a collection container to the load edge, and then actuate the tipper. Upon actuation of the tipper, the container is then slightly lifted and dumped into the collection compartment of the truck. The tipper will then reverse its operation and place the container on the ground. As can be appreciated, the design and the configuration of the tipper mechanisms can vary. Also, some trucks are equipped with two tippers to provide more effective collection operations. Based upon the variations outlined above, the configuration of the truck must be able to accommodate these variations in the collection mechanisms. In many cases, this has required customization or modification to meet the needs of the collection company.
In addition to the interaction with tippers, certain refuse operators may prefer load heights at a specific level. Often these load heights will accommodate manual loading, thus it is desired to have lower load edges.
To provide a refuse truck with improved durability, flexibility and efficiency several aspects of the truck design are improved in the embodiments of a refuse truck as described below. Further, several details are modified to improve the manufacturability of the refuse truck.
Further advantages of the systems, devices and embodiments for improved operations of a refuse truck will be better understood from reading the description set forth below in conjunction with the drawings, in which:
Existing refuse collection trucks generally come in one of many different configurations, including a front loader version, side loader version, and rear loader version. As the names suggest, variations in operation and layout drive the way these refuse vehicles operate. Turning now to
Also illustrated in
In operation, a sweep and scoop mechanism is used to pull refuse from the collection hopper 34 into main collection compartment 42. In addition, compaction equipment is included so refuse is compacted as collection operations occur, thereby more efficiently utilizing the space and main collection compartment 42. Further, it is typical for collection mechanism 30 to be hingably mounted to main collection body 40 at an upper hinge point 32. Based upon this connection methodology, the collection mechanism 30 can be swung upward and out of the way, thus allowing main collection compartment 40 to be easily emptied when full.
As suggested above, collection mechanism 30 includes several components which are specifically designed and configured to accommodate the collection of refuse. As one example,
One of the operative components included as part of collection mechanism 30 is a slide and sweep mechanism 50, along with associated hydraulic cylinders and related controls. As will be further discussed below, slide and sweep mechanism 50 includes a slide panel 60 and a sweep plate 70. Those skilled in the art will recognize that slide panel 60 and sweep plate 70 are configured to slide downward into collection hopper 34 which is positioned at a lower portion of collection mechanism 30. As is well known, refuse handlers or truck operators typically place or dump refuse into collection chamber 34, either by hand or using appropriate automated mechanisms. When collection hopper 34 is relatively full actuation of slide and sweep mechanism 50 will cause the refuse contained in collection hopper 34 to be scooped inward and into main collection compartment 42. As illustrated, the collection chamber 34 is formed and defined by portions of a main housing or main body 36 which also provides support for all other components such as slide and sweep mechanism 50. Also, several controls 38 and related hydraulic tubing 39 is attached to main body 36 to accommodate operation of the various systems contained or attached thereto. In addition, a tipper mechanism 90 can be attached at a rear portion of collection mechanism 30, and includes a tipping bar 92, a hinge mechanism 94 and related hydraulic cylinders 96. This tipper system 90 allows large containers to be positioned adjacent a load edge for collection hopper 34 and can accommodate the automated tipping of these large refuse containers or collection containers (which generally are too large for physical lifting by operators). In this embodiment, it is anticipated that the large refuse container would have bars or extension that could be captured in openings 98 in the side of a rear load bracket 200. Once those bars are retained, hydraulic cylinders 96 can be activated, thus causes related movement of tipping bar 92, which would thus cause the large refuse container to be tipped so that refuse can be dumped into collection area 34. There are also accommodations for the attachment of individual tipper mechanisms (not shown) which are designed to handle smaller refuse containers, such as those maintained by residential and small commercial customers. Further details and structures related to collection mechanism 30 are discussed in detail below.
As generally discussed above in relation to
In the embodiments disclosed herein, various rear load edge characteristics are achieved by providing a separate detachable rear load edge bracket.
In the embodiment illustrated in
Alternatively, a third rear load edge bracket 220 is presented in
Various embodiments of the invention have been described above for purposes of illustrating the details thereof and to enable one of ordinary skill in the art to make and use the invention. The details and features of the disclosed embodiment[s] are not intended to be limiting, as many variations and modifications will be readily apparent to those of skill in the art. Accordingly, the scope of the present disclosure is intended to be interpreted broadly and to include all variations and modifications coming within the scope and spirit of the appended claims and their legal equivalents.
Number | Name | Date | Kind |
---|---|---|---|
5447405 | Bayne et al. | Sep 1995 | A |
9561904 | Osborn | Feb 2017 | B1 |
20050169734 | Arrez | Aug 2005 | A1 |
20200198888 | Steimel | Jun 2020 | A1 |
Number | Date | Country |
---|---|---|
0612674 | Aug 1994 | EP |
0690014 | Jan 1996 | EP |
1167242 | Jan 2002 | EP |
1166318 | Nov 1958 | FR |
2078196 | Jan 1982 | GB |
2404178 | Jan 2005 | GB |
100963567 | Jun 2010 | KR |
9202005 | Jun 1994 | NL |
WO-9529111 | Nov 1995 | WO |
Number | Date | Country | |
---|---|---|---|
20220219895 A1 | Jul 2022 | US |