Field of Invention
This invention relates generally to account activations. The invention is more particularly related to activation of wireless accounts, particularly for hand held computers, mobile phones, and Personal Digital Assistants (PDAs) each having wireless capabilities.
Discussion of Background
Personal computer systems and their applications have become common tools in modern society. As organizational aids, many personal computer users use personal information management applications such as an address book and a daily organizer on their personal computers. Although such applications have proven useful for personal information management, their utility is limited by the fact that the person must be sitting at their personal computer system to access the information.
To remedy this limitation, palmtop computers, electronic organizers and other handheld devices, commonly known as Personal Digital Assistants (PDA's), have been introduced. The PDA is a computer that is small enough to be handheld or placed in a pocket, and allows a user and run various applications including personal information management applications such as address books, daily organizers, etc. These applications make people's lives easier.
A popular brand of PDA is the Palm™. However, the Palm™ is much more than a simple PDA. A basic configuration of the Palm™ 100 is shown in
The front of the Palm™ 100 is a large LCD screen 110 which is touch-sensitive and allows a user to enter and manipulate data. A stylus (not shown) is provided with the Palm™ to help in making touch screen inputs. By using the stylus (or another handheld pointer) to interact with a touch-sensitive screen, a palmtop user can easily navigate through a host of built-in programs, software, and other applications.
Today, the Palm™, PDA and other handheld computing devices (Palm tops) offer Internet connectivity capabilities, as well as a vast array of hardware and software choices. Palmtops have evolved from simple organizers into a new kind of handheld that people use to instantly manage all kinds of information, from email, to medical data, to stock reports.
Mobile telephones (cell phones, PCS, satellite phones, etc) are also common tools in today's world. Many cell phones include rudimentary functionality for maintaining telephone numbers and other functionality to help alleviate the burdens associated with making calls and tracking phone numbers. In addition, the modern cell phone also has options for personalizing the style of various phone operations.
One trend in the PDA marketplace is the integration of radio based services into the PDA. One pioneering example is the Palm VIIx which includes RF capabilities to access a wireless network (palm.net) to provide email and web-clipping internet access to users.
However, the networks that service the PDA marketplace have seen significant demand and increased traffic. Generally, costs are incurred for each of the messages transmitted or received. During activation of the PDA, significant amounts of traffic are produced to register the radio device within the PDA, collect billing information, and other data needed to activate a wireless account.
Additional problems also occur when user's attempt to activate, but, for example might not have the needed information on hand, or incorrectly enter information. Resulting error messages and transactions tie up valuable air time and could result in unintended actions (system hangups, etc.).
A system and method for registering a mobile computing device for a data service on a wireless network is described. The method comprises receiving a request from a user to initiate a program on the mobile computing device which requires a network connection for a data service. The method comprises checking if a wireless account for the data service has been activated for the mobile computing device, and, if a wireless account for the data service has not been activated, transmitting to a network node a serial number of the mobile computing device and a key which is based on an encryption of the serial number. The method further comprises receiving a message indicating a wireless network connection is granted.
A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
Referring again to the drawings, wherein like reference numerals designate identical or corresponding parts, and more particularly to
A display screen 230 is provided (preferably a touch sensitive screen) for display of Operating System prompts, buttons, icons, application screens, and other data, and for providing user inputs via tapping or touching (or drawing in the Graffiti™ area 120) via a stylus or other touch mechanism. Hardware interface 235 connects to physical hard buttons and switches located on a body of the computer 200 and provides signals to applications running on the processing unit 210.
An RF capable device 240 provides connectivity to a cellular telephone network (not shown) or other RF network. The RF capable device 240 may, for example, be a cellular telephone or a Palm.net™ enabled radio device for wireless web-clipping, email, and other wireless connectivity communications. The RF capable device may also be a wireless Internet enabled radio device, such as Ricochet™, etc., pager, wireless e-mail device, Family Radio System (FRS), or any of different mobile telephones, including cellular, satellite, PCS, TDMA, GSM, etc. Although the RF capable device is shown as an internal component to the computer 200, the RF device may be contained in sled or other configuration that attaches to an exterior of the computer 200, or may be a separate device connected to the computer via a cable or other connection (wireless, IR, RS232, USB, Firewire, network connection, etc., for example). Preferrably, the RF device is a Mobitrex enabled radio device.
A system bus 255 carries data and commands to/from the processing unit 210 from/to other devices within or attached to the computer 200. For example, user applications running on the computer 200 send application screens and other data outputs to display screen 230 for display via the system bus 255. User inputs (Graffiti™ area drawing, or tap selection, for example) are detected by the screen 230 and sent to the processing unit 210 via the system bus 255.
In addition to the operating system and user selected applications, an RF application, which may be a phone or other device that uses the RF device 240, having instructions stored in memory 220, executes on the processing unit 210. Alternatively, another hardware device may be included in computer 200 that utilizes RF device 240.
In one embodiment, the RF application is a phone device and the RF device is a wireless telephone. Phone calls from a network and directed toward the RF device 240 are detected by the RF device and sent, in the form of an incoming call notification, to the phone device executing on the processing unit 210. The phone device processes the incoming call notification by notifying the user by an audio output such as ringing (not shown).
The phone device also includes a method for the user to answer the incoming call. For example, tapping on a phone icon, or pressing a hard button designated or preprogrammed for answering a call signals the phone device to send instructions (via system bus 255) to the RF device 240 to answer the call.
Outgoing calls are placed by a user by entering digits of the number to be dialed and pressing a call icon, for example. The dialed digits are sent to the RF device 240 along with instructions needed to configure the RF device 240 for an outgoing call. Alternatively, the RF application is a web, palm.net, e-mail, or other RF communication device, appropriate instructions are sent to the RF device 240 to instruct or otherwise administer the communication. The Administration of the communication may include, for example, communication of content and a destination address to send the content to the RF device 240, or receiving an email and storing it in memory (memory 220, for example) and/or displaying it to a user. Several examples of a configuration and details of devices for connecting or integrating voice function devices to a PDA are described in Maes et al., U.S application Ser. No. 09/709,225, entitled, “INTEGRATING VOICE FUNCTION INTO A PDA,” filed Sep. 29, 2000, the contents of which are incorporated herein by reference in their entirety.
In another embodiment, the RF device is a mobitex enabled radio device. The software programs stored in memory include a Mobitex protocol stack. Messages sent from the computer 200 are directed toward the Mobitex protocol stack which formats the messages and prepares them for transmission by the radio device. The messages may be, for example, any of e-mails, instant messages, voice over IP (or other protocol), web clippings, web clipping requests, HTTP, HTTP/IP, FTP, SNMP, general packet traffic, or other data message types.
Preferably, the computer 200 is a PDA device having interactive hardware and software that perform functions such as maintaining calendars, phone lists, voice or audio related functions integrated or attachably integrated (via a connector device or sled, for example, not shown), and at least one of these configured for use with the RF capabilities of the PDA.
The software, including a phone or other RF applications, operating system, and other general applications (word processors, spreadsheets, games, databases, etc.) 223 are stored in memory device 220 along with program data, graphics, and other data and executed on the processing unit 210.
Processing unit 210 executes the software, including the operating system (OS, including a User Interface (UI) of the OS), and other user applications as directed by user inputs. The user applications display outputs on the display screen 230 and receive inputs from taps, tap & hold, and writing operations on the display screen and from programmed hard buttons attached to the hardware interface 235.
Memory device 220 is constructed of RAM memory or ROM memory, or a combination of both ROM and RAM, and may include flash memory components. In one embodiment, an operating system 222 resides on a ROM portion of the memory 220 and provides executable instructions to perform operating system functions of the handheld computer 200. User applications 223 generally reside in a RAM portion of the memory 220. The present invention is contained in a program stored on ROM. However, the invention may also be programmed within the operating system 222, or may be a separate program contained in RAM or any other storage device (program 280, for example). When the present invention is invoked, computer instructions from the operating system 222 or program 280 are executed on processing unit 210 which issue commands that control the RF device 240 (e.g., enable/disable), or save or implement a schedule for enabling/disabling the RF device 240.
The above describes a basic environment in which the present invention is practiced. However, it should be understood that many different electronic devices, including cell phones, PDA's of different configurations and various integrated or attached devices and/or RF capabilities are also suitable environments in which the present invention may also be practiced.
The registration and activation procedures include initial connection to the network (generally initiated by raising antenna 302), identification of the device (transmitting an HSN number of the RF device, for example), Querying the user for additional information including identification, billing information, etc., and, if an account is already established, determination of an account associated with the device. The communication are sent to/from the wireless device 300 via a wireless network 310. The wireless network is built and maintained by a carrier (e.g. Mobitex).
A number of nodes 320 (one node shown for simplicity), each pass the wireless communication until it reaches either the wireless device or a service provider 330. The service provider 330 is responsible for registering a user, setting up accounts and verifying that the wireless network should carry communications originating from or provided to the wireless device 300. Generally, the wireless network carrier bills the service provider for airtime and/or amount of message traffic carried for devices communicating with the service provider. The service provider then charges each wireless user on a flat rate, monthly charge+airtime, by the amount of data bytes transferred to/from the user's wireless device, or any combination of these or other billing techniques.
In the registration process, a service provider contacts a billing entity 340 (e.g., any of a credit agency, credit card, bank, etc.) to arrange for automatic payment or determine the credit worthiness or financial ability of a user to pay his/her bill. If the user does not meet criteria required for setting up an account the user is notified by way of return message to the wireless device.
If the service provider favorably evaluates the potential user, an account is set up for the user and activated. The account is set up using the user provided identification, billing information, and radio identification. The user is notified of successful account activation on the wireless device 300 and the user is logged on to the network and then able to access other devices coupled to the wireless network 310.
However, the process illustrated in
In one embodiment, the transfer of information about the user and the user's wireless device is performed by web page interaction where the user fills out one or more web pages having input areas for collecting the user's information including an identification of the wireless device (the RF device HSN number, for example). However, preferably, at least part of the information collected by the service provider web site is transferred to the service provider web site via a Hotsync™ operation between the user's wireless device 400 and the service provider web server 450 (combined flows 415, 425, and 445). The Hotsync™ operation is facilitated, for example, via a cradle 410 connected to the user's computer 420, which is in turn coupled to the internet and the service provider's web server 450. In yet another embodiment, all the necessary data is exchanged via a telephone call between the user and service provider, the data being exchanged via voice between the user for operator input, or by punching corresponding telephone dial pad digits in a touch pad automated entry system.
After the user's information has been collected by the service provider (450, for example), the service provider forwards required information to a billing entity (340, for example) to determine creditworthiness of the user. If the user has acceptable credit, the service provider 450 registers an account in the users name and forwards an activation key to the user.
At step 465, the user is queried for personal information, name, etc., or other information needed to establish an account. One example of a set of information needed to establish account is shown in Table 1 below:
The personal and radio information may be collected by fill in boxes on the web registration web site, or, in the case of a telephone call activation procedure, the user may be prompted by a voice response, or telephone keypad response system. In another alternative, the user's information may be provided via snail mail or an e-mail to the service provider.
Once collected, the user's information is forwarded to a billing agency, credit card company, or other credit institution for evaluation as the user's qualifications or financial ability to maintain an account in good standing (step 470). If the user is favorably evaluated, the process continues, if not, the user is sent a rejection message (step 475). The rejection message may take the form of a rejection page on the web registration site, an email, or a voice message, depending on how the user's information was collected, or via a standard rejection procedure (i.e., rejections always mailed, while acceptance may notified immediately if the evaluation also occurs while the user is online (web or telephone registrations, for example)).
If the user is favorably evaluated for an account, an account is registered in the user's name and an activation key is assigned to the user (step 480). Preferably, the user's acceptance notification includes the activation key. In one embodiment, the user retains the activation key and uses it in an activation procedure. In another embodiment, the activation key is hotsynced to a file in the users handheld computer 400.
The device/program sends a message to a Mobitex protocol stack requesting network services. The protocol stack checks to see if the wireless account has been activated. If not activated, the protocol stack initiates an activation subroutine to collect the activation key. In one embodiment, the activation subroutine reads a file (e.g. activation key file) that was used to store the activation key. As discussed above, the activation key file may have been downloaded by the computer 420 and placed on the handheld computer 400, or directly hotsynced from the service provider web site to the handheld.
In another embodiment, the activation subroutine displays a display screen that prompts the user to input the activation key.
The activation key provides a one-to-one code that identifies the users pre-registered account (billing information, etc.) and the Radio Identification (HSN, for example) of the RF device used in the handheld computer. Preferably, this activation key can be generated on the device to check validity before transmission. If the registration key is improperly entered and doesn't equal the key generated on the device, the registration is rejected without invoking any network traffic.
The present inventors have used a hash of the HSN number to generate the activation key at both the pre-registration and for checking the activation key entered on the handheld. However, any algorithm that produces a unique value based on the HSN or other radio identifier may be utilized to generate the activation key.
Once the activation key is read from the file or properly entered by the user, the activation key and a network connection request is forwarded to the network 500. The network passes the activation key and connection request (including radio ID) to a network node (node 510, for example) that evaluates the activation key and radio ID by searching a table of radio IDs (as entered by the web-based process), and matches the table retrieved radio ID to the user's handheld computer radio ID. If the radio IDs match, the connection is granted, and the user's handheld computer begins communicating with the service provider (520, for example) over the wireless network 500 (and billing to the user's pre-registered account).
The network accesses the user's account to verify the account pre-registration (step 560). After verification, the network issues a grant providing the handheld device with a wireless network connection (step 570), and the handheld device begins communicating with the network as messages are sent or received (messages, e-mails, connection maintenance messages, etc., step 580).
Although the present invention has been fully described with reference to a handheld computer, it is intended that the same processes and devices discussed herein may be applied to device other than handheld, including desktop devices/computers, vehicle mounted systems (automobile dash board, airplane instrument panel, for example). In addition, while the present invention has great advantages in RF based wireless devices, these same advantages will be realized in wireless systems of other mediums, including wireless IR. Furthermore, the present invention should not be limited to wireless systems as advantages will also be realized when practiced in landline or other wire-based systems (copper, twisted pair, cable, etc.).
The present invention may be conveniently implemented using a conventional general purpose or a specialized digital computer or microprocessor programmed according to the teachings of the present disclosure, as will be apparent to those skilled in the computer art.
Appropriate software coding can readily be prepared by skilled programmers based on the teachings of the present disclosure, as will be apparent to those skilled in the software art. The invention may also be implemented by the preparation of application specific integrated circuits or by interconnecting an appropriate network of conventional component circuits, as will be readily apparent to those skilled in the art.
The present invention includes a computer program product which is a storage medium (media) having instructions stored thereon/in which can be used to control, or cause, a computer to perform any of the processes of the present invention. The storage medium can include, but is not limited to, any type of disk including floppy disks, mini disks (MD's), optical discs, DVD, CD-ROMS, micro-drive, and magneto-optical disks, ROMs, RAMs, EPROMs, EEPROMs, DRAMs, VRAMs, flash memory devices (including flash cards), magnetic or optical cards, nanosystems (including molecular memory ICs), RAID devices, remote data storage/archive/warehousing, or any type of media or device suitable for storing instructions and/or data.
Stored on any one of the computer readable medium (media), the present invention includes software for controlling both the hardware of the general purpose/specialized computer or microprocessor, and for enabling the computer or microprocessor to interact with a human user or other mechanism utilizing the results of the present invention. Such software may include, but is not limited to, device drivers, operating systems, and user applications. Ultimately, such computer readable media further includes software for performing the present invention, as described above.
Included in the programming (software) of the general/specialized computer or microprocessor are software modules for implementing the teachings of the present invention, including, but not limited to, collecting user information, approving accounts, generating (e.g., hashing) account information to produce an activation key, retrieving activation keys from users, requesting, approving, and maintaining wireless network connections, and the display, storage, or communication of results according to the processes of the present invention.
Obviously, numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein.
This application is a divisional of prior application Ser. No. 11/646,182, filed Dec. 27, 2006, which is a continuation of prior application Ser. No. 09/850,940, filed May 8, 2001, both of which applications are incorporated by reference herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4779081 | Nakayama et al. | Oct 1988 | A |
4788675 | Jones et al. | Nov 1988 | A |
5010547 | Johnson et al. | Apr 1991 | A |
5012219 | Henry | Apr 1991 | A |
5075684 | DeLuca | Dec 1991 | A |
5134719 | Mankovitz | Jul 1992 | A |
5303393 | Noreen et al. | Apr 1994 | A |
5359317 | Gomez et al. | Oct 1994 | A |
5394140 | Wong et al. | Feb 1995 | A |
5430436 | Fennell | Jul 1995 | A |
5485505 | Norman et al. | Jan 1996 | A |
5612682 | DeLuca et al. | Mar 1997 | A |
5621784 | Tiedemann, Jr. et al. | Apr 1997 | A |
5650776 | Mitchell et al. | Jul 1997 | A |
5705995 | Laflin et al. | Jan 1998 | A |
5758069 | Olsen | May 1998 | A |
5787365 | Rivero et al. | Jul 1998 | A |
5819173 | Lawrence et al. | Oct 1998 | A |
5839054 | Wright et al. | Nov 1998 | A |
5850599 | Seiderman | Dec 1998 | A |
5859419 | Wynn | Jan 1999 | A |
5892900 | Ginter et al. | Apr 1999 | A |
5903852 | Schaupp, Jr. et al. | May 1999 | A |
5956636 | Lipsit | Sep 1999 | A |
5958006 | Eggleston et al. | Sep 1999 | A |
6000000 | Hawkins et al. | Dec 1999 | A |
6009409 | Adler et al. | Dec 1999 | A |
6035212 | Rostoker et al. | Mar 2000 | A |
6044403 | Gerszberg et al. | Mar 2000 | A |
6047066 | Brown et al. | Apr 2000 | A |
6081597 | Hoffstein et al. | Jun 2000 | A |
6108727 | Boals et al. | Aug 2000 | A |
6124799 | Parker | Sep 2000 | A |
6141010 | Hoyle | Oct 2000 | A |
6157630 | Adler et al. | Dec 2000 | A |
6157814 | Hymel et al. | Dec 2000 | A |
6175860 | Gaucher | Jan 2001 | B1 |
6208853 | LoVasco et al. | Mar 2001 | B1 |
6216112 | Fuller et al. | Apr 2001 | B1 |
6223030 | Van Den Heuvel et al. | Apr 2001 | B1 |
6240185 | Van Wie et al. | May 2001 | B1 |
6253326 | Lincke et al. | Jun 2001 | B1 |
6259405 | Stewart et al. | Jul 2001 | B1 |
6282421 | Chatterjee et al. | Aug 2001 | B1 |
6292833 | Liao et al. | Sep 2001 | B1 |
6300946 | Lincke et al. | Oct 2001 | B1 |
6301666 | Rive | Oct 2001 | B1 |
6343318 | Hawkins et al. | Jan 2002 | B1 |
6360272 | Lincke et al. | Mar 2002 | B1 |
6397246 | Wolfe | May 2002 | B1 |
6397259 | Lincke et al. | May 2002 | B1 |
6425087 | Osborn et al. | Jul 2002 | B1 |
6430603 | Hunter | Aug 2002 | B2 |
6453371 | Hampson et al. | Sep 2002 | B1 |
6457134 | Lemke et al. | Sep 2002 | B1 |
6480762 | Uchikubo et al. | Nov 2002 | B1 |
6490445 | Holmes | Dec 2002 | B1 |
6493327 | Fingerhut | Dec 2002 | B1 |
6519470 | Rydbeck | Feb 2003 | B1 |
6523124 | Lunsford et al. | Feb 2003 | B1 |
6526275 | Calvert | Feb 2003 | B1 |
6539101 | Black | Mar 2003 | B1 |
6549773 | Linden et al. | Apr 2003 | B1 |
6550010 | Link et al. | Apr 2003 | B1 |
6560640 | Smethers | May 2003 | B2 |
6564056 | Fitzgerald | May 2003 | B1 |
6564104 | Nelson et al. | May 2003 | B2 |
6581025 | Lehman | Jun 2003 | B2 |
6587684 | Hsu et al. | Jul 2003 | B1 |
6590588 | Lincke et al. | Jul 2003 | B2 |
6591098 | Shieh et al. | Jul 2003 | B1 |
6591288 | Edwards et al. | Jul 2003 | B1 |
6594482 | Findikli et al. | Jul 2003 | B1 |
6594484 | Hitchings, Jr. | Jul 2003 | B1 |
6600743 | Lee et al. | Jul 2003 | B1 |
6603969 | Vuoristo et al. | Aug 2003 | B1 |
6622017 | Hoffman | Sep 2003 | B1 |
6628928 | Crosby et al. | Sep 2003 | B1 |
6628934 | Rosenberg et al. | Sep 2003 | B2 |
6636489 | Fingerhut | Oct 2003 | B1 |
6636502 | Lager et al. | Oct 2003 | B1 |
6675008 | Paik et al. | Jan 2004 | B1 |
6675165 | Rothschild | Jan 2004 | B1 |
6675202 | Perttunen | Jan 2004 | B1 |
6675204 | De Boor et al. | Jan 2004 | B2 |
6681259 | Lemiläinen et al. | Jan 2004 | B1 |
6686838 | Rezvani et al. | Feb 2004 | B1 |
6694428 | Lemke et al. | Feb 2004 | B2 |
6697948 | Rabin et al. | Feb 2004 | B1 |
6701521 | McLiroy et al. | Mar 2004 | B1 |
6704295 | Tari et al. | Mar 2004 | B1 |
6732176 | Stewart et al. | May 2004 | B1 |
6745011 | Hendrickson et al. | Jun 2004 | B1 |
6745029 | Lahtinen et al. | Jun 2004 | B2 |
6795710 | Creemer | Sep 2004 | B1 |
6816725 | Lemke et al. | Nov 2004 | B1 |
6829560 | Lehman | Dec 2004 | B2 |
6829596 | Frazee | Dec 2004 | B1 |
6829704 | Zhang et al. | Dec 2004 | B2 |
6874017 | Inoue et al. | Mar 2005 | B1 |
6880048 | Lemke | Apr 2005 | B1 |
6885877 | Ozaki et al. | Apr 2005 | B1 |
6961567 | Kuhn | Nov 2005 | B1 |
6983375 | Zhang et al. | Jan 2006 | B2 |
6996407 | Taniguchi | Feb 2006 | B2 |
7010296 | Sakai et al. | Mar 2006 | B2 |
7010603 | Martin, Jr. et al. | Mar 2006 | B2 |
7024464 | Lusher et al. | Apr 2006 | B1 |
7089036 | Prise | Aug 2006 | B2 |
7103370 | Creemer | Sep 2006 | B1 |
7173651 | Knowles | Feb 2007 | B1 |
7266369 | Moles et al. | Sep 2007 | B2 |
7266379 | Blight et al. | Sep 2007 | B2 |
7286251 | Tomida et al. | Oct 2007 | B2 |
7359516 | Skinner et al. | Apr 2008 | B1 |
7366702 | David | Apr 2008 | B2 |
7378771 | Leblanc et al. | May 2008 | B2 |
7387771 | Kratz | Jun 2008 | B1 |
7536190 | Creemer | May 2009 | B1 |
7538771 | Nakamura et al. | May 2009 | B2 |
7555571 | Skinner | Jun 2009 | B1 |
7603139 | Tom | Oct 2009 | B1 |
7861009 | Skinner | Dec 2010 | B2 |
20010044310 | Lincke | Nov 2001 | A1 |
20010047272 | Frietas et al. | Nov 2001 | A1 |
20020082049 | Prise | Jun 2002 | A1 |
20020085577 | Kim | Jul 2002 | A1 |
20020177438 | Sakai et al. | Nov 2002 | A1 |
20030050046 | Conneely et al. | Mar 2003 | A1 |
20040254827 | Hind et al. | Dec 2004 | A1 |
20050009514 | Mathews et al. | Jan 2005 | A1 |
20050021458 | Rowe | Jan 2005 | A1 |
20060030306 | Kuhn | Feb 2006 | A1 |
20060116507 | Oppermann et al. | Jun 2006 | A1 |
20070169084 | Frank et al. | Jul 2007 | A1 |
20070178899 | Kuhn | Aug 2007 | A1 |
20070203844 | Kuhn et al. | Aug 2007 | A1 |
20080003994 | Skinner et al. | Jan 2008 | A1 |
20090005039 | Kuhn | Jan 2009 | A1 |
20090076906 | Kansal et al. | Mar 2009 | A1 |
20100022240 | Skinner | Jan 2010 | A1 |
20100120407 | Kuhn | May 2010 | A1 |
20100120428 | Kuhn | May 2010 | A1 |
20100165938 | Kuhn et al. | Jul 2010 | A1 |
20100169217 | Kuhn et al. | Jul 2010 | A1 |
Number | Date | Country |
---|---|---|
0464988 | Jan 1992 | EP |
0825791 | Feb 1998 | EP |
0862104 | Sep 1998 | EP |
0820206 | Mar 2005 | EP |
1551193 | Jul 2005 | EP |
WO 9955066 | Oct 1999 | WO |
WO 0165411 | Sep 2001 | WO |
WO 2005022375 | Mar 2005 | WO |
WO 2006055716 | May 2006 | WO |
WO 2007070510 | Jun 2007 | WO |
Entry |
---|
Initial Provisioning of a Cellular Device over the Air, IBM Tecnical Bulletin, Jun. 1, 1995, pp. 201-202, vol. 38, No. 6, United States of America. |
International Search Report and Written Opinion for the International Application No. PCT/US2006/047358, dated Jan. 10, 2007, 15 pages. |
Notification of Identification of Prior Art in Late Protest Under 37 CFR 1.201(a), filed Oct. 13, 2004, 1 page. |
Protest for U.S. Appl. No. 09/794,082, filed Feb. 24, 2004, 4 pages. |
Office Action for U.S. Appl. No. 09/850,940, date mailed Jul. 16, 2007, 9 pages. |
Office Action for U.S. Appl. No. 09/850,940, date mailed Mar. 18, 2008, 11 pages. |
Office Action for U.S. Appl. No. 12/133,281, date mailed Mar. 2, 2009, 9 pages. |
Office Action for U.S. Appl. No. 12/133,281, mail date Sep. 17, 2009, 9 pages. |
Office Action for U.S. Appl. No. 11/646,177, mail date Nov. 20, 2009, 10 pages. |
Office Action for U.S. Appl. No. 11/218,346, mail date Jan. 15, 2010, 8 pages. |
Office Action for U.S. Appl. No. 11/646,182, mail date Mar. 10, 2010, 14 pages. |
Office Action for U.S. Appl. No. 12/133,281, mail date Mar. 16, 2010, 8 pages. |
Office Action for U.S. Appl. No. 11/774,508, mail date Mar. 19, 2010, 11 pages. |
Office Action for U.S. Appl. No. 09/850,940, mail date Apr. 12, 2010, 17 pages. |
Office Action for U.S. Appl. No. 12/691,470, mail date Apr. 26, 2010, 9 pages. |
Office Action for U.S. Appl. No. 12/473,177, mail date May 11, 2010, 7 pages. |
Office Action for U.S. Appl. No. 11/646,177, mail date Jun. 22, 2010, 8 pages. |
Office Action for U.S. Appl. No. 12/691,930, mail date Jun. 23, 2010, 9 pages. |
Office Action for U.S. Appl. No. 11/218,346, mail date Jul. 9, 2010, 9 pages. |
Office Action for U.S. Appl. No. 11/774,508, mail date Jul. 19, 2010 10 pages. |
Office Action for U.S. Appl. No. 12/133,281, mail date Aug. 12, 2010, 14 pages. |
Office Action for U.S. Appl. No. 11/646,182, mail date Aug. 31, 2010, 14 pages. |
Office Action for U.S. Appl. No. 12/646,750, mail date Sep. 20, 2010, 12 pages. |
Office Action for U.S. Appl. No. 11/774,508, mail date Sep. 27, 2010, 11 pages. |
Notice of Allowance for U.S. Appl. No. 12/473,177, mail date Oct. 29, 2010, 7 pages. |
Office Action for U.S. Appl. No. 12/691,470, mail date Oct. 18, 2010, 8 pages. |
Office Action for U.S. Appl. No. 09/850,940, mail date Nov. 5, 2010, 18 pages. |
Notice of Allowance for U.S. Appl. No. 11/218,346, mail date Dec. 13, 2010, 7 pages. |
Office Action for U.S. Appl. No. 12/691,930, mail date Dec. 16, 2010, 9 pages. |
Office Action for U.S. Appl. No. 11/646,177, mail date Jan. 5, 2011, 9 pages. |
U.S. Appl. No. 09/850,940, filed May 8, 2001, Kuhn. |
U.S. Appl. No. 60/954,022, filed Aug. 6, 2007, Swift et al. |
Number | Date | Country | |
---|---|---|---|
20100165938 A1 | Jul 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11646182 | Dec 2006 | US |
Child | 12646742 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09850940 | May 2001 | US |
Child | 11646182 | US |