The subject matter disclosed herein relates to electrophysiologic catheters, particularly those capable of ablating cardiac tissue via electrodes disposed on a balloon surface.
Ablation of cardiac tissue has been used to treat cardiac arrhythmias. Ablative energies are typically provided to cardiac tissue by a tip portion, which can deliver ablative energy alongside the tissue to be ablated. Some of these catheters administer ablative energy from various electrodes disposed on or incorporated into three-dimensional structures, e.g., wire baskets and balloons.
Solutions for improving the robustness of a catheter balloon, embodied in assembly techniques, are disclosed. The catheter balloon includes a membrane having a proximal end and a distal end. A plurality of substrates, e.g., ten substrates, are disposed about the membrane. In a first solution, each of the plurality of substrates includes a respective tail terminating at a respective distal tip disposed proximal to the distal end of the membrane. Each of the plurality of substrates may include a plurality of irrigation pores including a distal irrigation pore, such that a distance between each respective distal tip and each respective distal irrigation pore is between about 1 millimeter and about 3 millimeters. An adhesive may be disposed between each of the plurality of substrates and the membrane to bond each substrate to the membrane. The plurality of substrates each include side edges and an adhesive margin is disposed atop the side edges and the membrane. Further, a reinforcement is disposed atop each of the respective distal tips and the membrane. The reinforcement may comprise a portion of an unassembled membrane. Alternatively, the reinforcement may comprise an adhesive-margin tip. For example, a portion of the adhesive-margin tip that contacts the membrane extends from the respective distal tip by between about 0.3 millimeters and about 0.6 millimeters.
This balloon may be incorporated into a catheter comprising a probe and a shaft. Specifically, the balloon may be attached to a distal end of the shaft that may be passed through the probe. The probe may have a lumen having an inner diameter of about 13.5 french. The shaft may include a first shaft portion and a second shaft portion partially disposed within the first shaft portion in a telescoping relationship with the first shaft portion. As such the catheter balloon may be disposed in the lumen such that a proximal end of its membrane is connected to the first shaft portion and a distal end of its membrane is connected to the second shaft portion.
A thickness of the balloon as measured from an inner surface of the membrane, through one of the respective distal tips, and to an outer surface of the reinforcement may be about 0.0075 inches. Such permits the maximum force required to move the shaft in the lumen being less than about 6 lbf.
In a second solution, the substrates may be provided with a stress-relief portion. Specifically, each of the plurality of substrates may include a distal tail. The distal tail may include a portion having a serpentine form. The serpentine form may comprise a square wave or a curved wave. Further the serpentine form may comprise between about three periods and ten periods. Additionally, the width of the serpentine form may be between about 1/10 to about ½ of a width of the distal tail.
While the specification concludes with claims, which particularly point out and distinctly claim the subject matter described herein, it is believed the subject matter will be better understood from the following description of certain examples taken in conjunction with the accompanying drawings, in which like reference numerals identify the same elements and in which:
The following detailed description should be read with reference to the drawings, in which like elements in different drawings are similarly numbered. The drawings, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of the invention. The detailed description illustrates by way of example, not by way of limitation, the principles of the invention. This description will clearly enable one skilled in the art to make and use the invention, and describes several embodiments, adaptations, variations, alternatives and uses of the invention, including what is presently believed to be the best mode of carrying out the invention.
As used herein, the terms “about” or “approximately” for any numerical values or ranges indicate a suitable dimensional tolerance that allows the part or collection of components to function for its intended purpose as described herein. More specifically, “about” or “approximately” may refer to the range of values±10% of the recited value, e.g. “about 90%” may refer to the range of values from 81% to 99%. In addition, as used herein, the terms “patient,” “host,” “user,” and “subject” refer to any human or animal subject and are not intended to limit the systems or methods to human use, although use of the subject invention in a human patient represents a preferred embodiment.
Ablation of cardiac tissue to correct a malfunctioning heart is a well-known procedure. Typically, to successfully ablate, cardiac electropotentials need to be measured at various locations of the myocardium. In addition, temperature measurements during ablation provide data enabling the efficacy of the ablation to be measured. Typically, for an ablation procedure, the electropotentials and the temperatures are measured before, during, and after the actual ablation.
An ablation catheter may include a lumen, and a balloon may be deployed through the catheter lumen. A multi-layer flexible metal structure is attached to an exterior wall or membrane of the balloon. The structure comprises a plurality of electrode groups arranged circumferentially about the longitudinal axis, where each electrode group comprises multiple ablation electrodes, typically arranged longitudinally.
Each electrode group may also include at least one micro-electrode that is insulated physically and electrically from the ablation electrodes in its group. Each electrode group may also include at least a thermocouple. In some embodiments, each electrode group includes a micro-electrode and a thermocouple formed at a common location. Using a single catheter, with the three functionalities of ability to perform ablation, electropotential measurement, and temperature measurement, simplifies cardiac ablation procedures.
To perform the ablation, medical professional 14 inserts a probe 20 into a sheath 21 that has been pre-positioned in a lumen of the patient. Sheath 21 is positioned so that a distal end 22 of probe 20 enters the heart of the patient. A diagnostic/therapeutic catheter 24 (e.g., a balloon catheter), reflected in
As shown in
The software for the processor 46 may be downloaded to the processor in electronic form, over a network, for example. Alternatively, or additionally, the software may be provided on non-transitory tangible media, such as optical, magnetic, or electronic storage media. The tracking of the distal end 22 is may be displayed on a three-dimensional representation 60 of the heart of the patient 18 on a screen 62. However, it may be displayed two-dimensionally, e.g., by fluoroscopy or MRI.
To operate apparatus 12, the processor 46 communicates with a memory 50, which has many modules used by the processor to operate the apparatus. Thus, the memory 50 comprises a temperature module 52, an ablation module 54, and an electrocardiograph (ECG) module 56, the functions of which are described below. The memory 50 typically comprises other modules, such as a force module for measuring the force on the distal end 22, a tracking module for operating the tracking method used by the processor 46, and an irrigation module allowing the processor to control irrigation provided for the distal end 22. For simplicity, such other modules are not illustrated in
With further reference to
The shaft 70 and the distal shaft end 88 define a longitudinal axis 78 of the balloon 80. The balloon 80 is deployed, in a collapsed configuration, via the lumen 23 of the probe 20. A proximal end of membrane 26 of balloon 80 is attached to first or proximal shaft portion 82P and a distal end of membrane 26 of balloon 80 is attached to second or distal shaft portion 82D, proximate to distal shaft end 88. Balloon 80 may be expanded to an expanded configuration after exiting from the distal end 22 by moving distal shaft end 88 proximally to shorten the distance between the distal end 89 of balloon 80 and proximal end 87 of balloon 80, and thus increase the width of balloon 80, i.e., by telescoping distal shaft portion 82D proximally in the proximal shaft portion 82P. Passing irrigation fluid into balloon 80 may further expand balloon 80. Balloon 80 may be returned to its collapsed configuration by ceasing the irrigation and then moving distal shaft end 88 away from proximal end 87 to decrease the width of and extend the length of balloon 80, i.e., by telescoping distal shaft portion 82D distally in proximal shaft portion 82P. This telescopic motion between the first shaft portion and the second shaft portion may be controlled by knob 85 of control handle 83, shown in
The membrane 26 supports and carries a combined electrode and temperature sensing member which is constructed as a multi-layer flexible circuit electrode assembly 84. The “flex circuit electrode assembly” 84 may have many different geometric configurations. In the illustrated embodiment, the flex circuit electrode assembly 84 has a plurality of radiating substrates or strips 30. The substrates 30 are evenly distributed about outer membrane surface 26o of balloon 80. Each substrate has wider proximal portion that gradually tapers to a narrower distal portion.
Each substrate 30 has a proximal tail 31P proximal to the wider proximal portion and a distal tail 31D distal of the narrower distal portion. As described below, distal tail portion 31D may terminate at distal tip 31T, proximal of distal shaft end 88, or may extend up to distal shaft end 88 to be secured thereunder. Substrate 30 may be bonded to membrane 26 with an adhesive, such as an epoxy. Some adhesive may be disposed between inner surface 37 of substrate 30 and membrane 26. Additionally, an adhesive margin 32 may be overlaid about edges of substrate 30, such as side edges 30S, to help further minimize the likelihood delamination of substrate 30 from membrane 26. A portion of adhesive margin 32 adheres directly to the top of membrane 26 while the rest of the adhesive of adhesive margin 32 adheres directly to outer surface 36 of substrate 30. Adhesive margin 32 may be applied as beads, two or more discrete linear segments, or as a single linear segment that extends over most or all of each side edge 30S. Preferably, the overlap portion 32O of adhesive margin 32 that adheres directly to the top of membrane 26 extends outwardly form side edges 30S by a distance D1 of between about 0.3 millimeters and about 0.6 millimeters, e.g., about 0.45 millimeters. Such is reflected in
The flex circuit electrode assembly 84 is described with respect to one of its substrates 30 as shown in
The substrate 34 is formed with one or more irrigation pores or apertures 35 that are in alignment with the irrigation apertures 27 of the balloon member 26 so that fluid passing through the irrigation apertures 27 and 35 can pass to the ablation site on the ostium. Substrate 34 may be cut to shape by, and the irrigation pores 35 formed by, any suitable manufacturing technique, such as laser cutting.
The substrate 34 has a first or outer surface 36 facing away from the balloon membrane 26, and a second or inner surface 37 facing the balloon membrane 26. On its outer surface 36, the substrate 34 supports and carries the contact electrodes 33 adapted for tissue contact with the ostium. On its inner surface 37, the substrate 34 supports and carries a wiring electrode 38. The contact electrode 33 delivers RF energy to the ostium during ablation or is connected to a thermocouple junction for temperature sensing of the ostium. In the illustrated embodiment, the contact electrode 33 has a longitudinally elongated portion 40 and a plurality of thin transversal linear portions or fingers 41 extending generally perpendicularly from each lateral side of the elongated portion 40 between enlarged proximal and distal ends 42P and 42D, generally evenly spaced therebetween. The elongated portion 40 has a greater width and each of the fingers has a generally uniform lesser width. Accordingly, the configuration or trace of the contact electrode 33 may resemble a “fishbone” but it should be noted that the invention is not limited to such configuration. In contrast to an area or “patch” ablation electrode, the fingers 41 of the contact electrode 33 advantageously increase the circumferential or equatorial contact surface of the contact electrode 33 with the ostium while void regions 43 between adjacent fingers 41 advantageously allow the balloon 80 to collapse inwardly or expand radially as needed at locations along its equator. In the illustrated embodiment, the fingers 41 have different lengths, some being longer, others being shorter. For example, the plurality of fingers includes a distal finger, a proximal finger and fingers therebetween, where each of the fingers in between has a shorter adjacent finger. For example, each finger has a length different from its distal or proximal immediately adjacent neighboring finger(s) such that the length of each finger generally follows the tapered configuration of each substrate 30. In the illustrated embodiment, there are 22 fingers extending across (past each lateral side of) the elongated portion 40, with the longest finger being the third finger from the enlarged proximal end 42P. In some embodiments, the contact electrode 33 includes gold with a seed layer between the gold and the membrane 26. The seed layer may include titanium, tungsten, palladium, silver, or combinations thereof.
Formed within the contact electrode 33 are one or more exclusion zones 47, each surrounding an irrigation aperture 35 formed in the substrate 34. The exclusion zones 47 are voids purposefully formed in the contact electrode 33, as explained in detail further below, so as to avoid damage to the contact electrode 33 during construction of the electrode assembly 84 in accommodating the irrigation apertures 35 at their locations and in their function.
Also formed in the contact electrode 33 are one or more conductive blind vias 48 which are conductive or metallic formations that extend through through-holes in the substrate 34 and are configured as electrical conduits connecting the contact electrode 33 on the outer surface 36 and the wiring electrode 38 on the inner surface 37. It is understood that “conductive” is used herein interchangeably with “metallic” in all relevant instances.
In the illustrated embodiment, the contact electrode 33 measures longitudinally between about 0.1 inch and 1.0 inch, and preferably between about 0.5 inch and 0.7 inch, and more preferably about 0.57 inch, and has four exclusion zones 47 and nine blind vias 48.
On the inner surface 37 of the substrate 34, the wiring electrode 38 is generally configured as an elongated body generally similar in shape and size to the elongated portion 40 of the contact electrode 33. The wiring electrode 38 loosely resembles a “spine” and also functions as a spine in terms of providing a predetermined degree of longitudinal rigidity to each substrate 30 of the electrode assembly 84. The wiring electrode 38 is positioned such that each of the blind vias 48 is in conductive contact with both the contact electrode 33 and the wiring electrode 38. In the illustrated embodiment, the two electrodes 33 and 38 are in longitudinal alignment with other, with all nine blind vias 48 in conductive contact with both electrodes 33 and 38. In some embodiments, the wiring electrode 38 has an inner portion of copper and an outer portion of gold.
The wiring electrode 38 is also formed with its exclusion zones 59 around the irrigation apertures 35 in the substrate 34. The wiring electrode 38 is further formed with solder pad portions, at least one active 61A, and there may be one or more inactive solder pad portions 61B. The solder pad portions 61A and 61B are extensions from a lateral side of the elongated body of the wiring electrode 38. In the illustrated embodiment, an active solder pad portion 61A is formed at about a mid-location along the elongated body, and a respective inactive solder pad portion 61B is provided at each of the enlarged distal end 42D and the enlarged proximal end 42P.
Attached, e.g., by a solder weld 63, to the active solder pad portion 61A are the wire pair, e.g., a constantan wire 51 and a copper wire 53. The copper wire 53 provides a lead wire to the wiring electrode 33, and the copper wire 53 and the constantan wire 51 provide a thermocouple whose junction is at solder weld 63. The wire pair 51/53 are passed through a through-hole 29 formed in the membrane 26. It is understood that, in other embodiments in the absence of the through-hole 29, the wire pair 51/53 may run between the membrane 26 and the substrate 34 and further proximally between the membrane 26 and the proximal tail 31P until the wire pair 51/53 enters the tubular shaft 70 via another through-hole (not shown) formed in the tubular shaft sidewall closer to the proximal ring 28P.
The flex circuit electrode assembly 84, including the substrates 30 and the tails 31P and 31D, is affixed to the balloon membrane 26 such that the outer surface 36 of the substrate 34 is exposed and the inner surface 37 of the substrate 34 is affixed to the balloon membrane 26, with the wiring electrode 38 and wire pair 51/53 sandwiched between the substrate 34 and the balloon membrane 26. The irrigation apertures 35 in the substrate 34 are aligned with the irrigation apertures 27 in the balloon membrane 26. The exclusion zones 59 in the wiring electrode 38 and the exclusion zones 47 in the contact electrode 33 are concentrically aligned with each other, as well as with the irrigation apertures 27 and 35 in balloon 26 and substrate 34, respectively.
Further details on constructing a diagnostic/therapeutic catheter in accordance with the foregoing disclosure may be found in U.S. patent application Ser. No. 15/360,966, published as U.S. Patent Application Publication No. 2017/0312022. The entire content of this application is incorporated by reference herein in its entirety.
Through ongoing research and product development efforts concerning the subject matter described above, Applicant has determined that balloon 80 must be able to withstand multiple cycles of being deployed from lumen 23 of probe 20 in a collapsed configuration, expanded to an expanded configuration, returned to the collapsed configuration, and withdrawn into lumen 23 of probe 20. The number of cycles may be from about five to about twenty. Thus, the connection between substrate 30 and membrane 26 of balloon 80, and the overall integrity of the assembled balloon, must withstand at least five to twenty fatigue cycles.
Applicant has observed that users of prior iterations of diagnostic/therapeutic catheter 24 sometimes do not lock knob 85 after returning balloon 80 to its collapsed configuration and before attempting to withdraw it into lumen 23 of probe 20. When knob 85 is locked and balloon 80 is in the collapsed configuration, balloon 80 is taut and the width of balloon 80 is less than the inner diameter of lumen 23. However, when knob 85 is not locked, balloon 80 may not be fully taut such that it may expand somewhat, causing the width of balloon 80 to approach or surpass the internal diameter of lumen 23. This can cause balloon 80 to bunch up on itself as it is withdrawn into lumen 23. In turn, this can cause balloon 80 to stick in lumen 23, which increases the load necessary to move balloon 80 in lumen 23 and the resulting shear stresses on distal tails 31D. These increased forces and stresses increase the likelihood of device malfunction. Applicant has thus been seeking solutions.
Applicant has identified some solutions, embodiments for two of which are described herein. An exemplary embodiment of the first solution is reflected in
Reinforcement component 100 conforms to a distal portion of membrane 26. For example, reinforcement component 100 may include a portion of an unassembled membrane 26, i.e., a membrane 26 that has not been assembled to any other components of catheter 24, such as substrates 30. That is, an unassembled instance of membrane 26 may have a portion separated therefrom by cutting it along one of the lines 86 as seen in
Reinforcement component 100 may be adhered to membrane 26 via e.g., epoxy, or mechanical or thermal fusion. In this configuration reinforcement component 100 may absorb stresses caused by expanding and collapsing balloon 80 while also maintaining tip 31T against membrane 26, thereby reducing shear stresses on distal tail 31D. Moreover, the number of components and overall thickness of the assembly is minimized in the region between tip 31T and distal shaft end 88 as compared to prior iterations of catheter 24, e.g., as set forth in U.S. patent application Ser. No. 16/432,392, published as U.S. Patent Application Publication No. 2020/0001054, where distal tails 31D extended to distal shaft end 88 and were attached thereto by being tucked under distal cap 28D. With that design for a diagnostic/therapeutic catheter 24 having a balloon 80 that is to be provided in its collapsed configuration through a probe 20 having a 13.5 french internal diameter (e.g., the DESTINO™ Twist Guiding Sheath by Oscor, Inc), the overall thickness in the distal region of balloon 80 is about 0.012 inches. However, in the current design, where the only balloon materials between distal tip 31T and cap 28D are membrane 26, reinforcement component 100, and adhesive, the overall thickness t in a region of balloon 80 as measured from inner membrane surface 26i, through a distal tip 31T, and to an outer surface of reinforcement component 100 is about 0.0075 inches. Such is reflected in
To further assist in minimizing prospective delamination of substrates 30, a reinforcement filament 102 (
Preferably, each reinforcement filament 102 may have a form of a yarn, and when assembled take the shape of a roughly rectangular cross section having a thickness between about 0.0005 inches and 0.005 inches. The yarn may be fabricated from an ultra-high molecular weight polymer or a liquid-crystal polymer, e.g., VECTRAN™, manufactured by Kuraray. So long as the thickness of the yarn is less than the thickness of electrode 33, it may be disposed on a top surface of substrate 30, i.e., adjacent to electrode 33, such that it would not contact exterior surface 26 of balloon 80. However, if the thickness of the yarn is greater than the thickness of electrode 33, such that the yarn might interfere with the electrode's ability to conform to patient tissue, the yarn should be disposed on a bottom surface of the substrate, such that it would also be disposed directly against exterior surface 26 of balloon 80. Such is the embodiment reflected in
In an alternative embodiment of the first solution, reinforcement component 100 may be excluded. Instead, distal tip 31T is adhered directly to membrane 26. Such may be accomplished by providing the adhesive on inner surface 37 in the region of distal tip 31T, and also extending adhesive margin 32 around distal tip 31T, reflected in
An exemplary embodiment of a second solution is reflected in
Reinforcement filament 102, described above, may also be included as a feature of substrate 30 when substrate 30 includes serpentine form 106. Filament 102 may extend from a proximal position on substrate 30 up to the proximal end of serpentine form 106. Alternatively, reinforcement filament 102 may also be provided as having a serpentine form, such that it can extend to distal shaft end 88 commensurate with the entirety of distal tail 31D, as seen in
Serpentine form 106 may be optimized based on the forces it is subject to as balloon 80 is transitioned from the collapsed configuration to the expanded configuration and back to the collapsed configuration again, as well as the number of such cycles it is subject to. For example, as reflected in
The choice of which of the various embodiments of the two solutions described above to improve the robustness of balloon 80, particularly in its distal region, depend on various factors, such as the overall size of balloon 80, the size of the lumen 23 through which balloon 80 travels, and the number of fatigue cycles to which balloon 80 will be subject.
Any of the examples or embodiments described herein may include various other features in addition to or in lieu of those described above. The teachings, expressions, embodiments, examples, etc., described herein should not be viewed in isolation relative to each other. Various suitable ways in which the teachings herein may be combined should be clear to those skilled in the art in view of the teachings herein.
Having shown and described exemplary embodiments of the subject matter contained herein, further adaptations of the methods and systems described herein may be accomplished by appropriate modifications without departing from the scope of the claims. In addition, where methods and steps described above indicate certain events occurring in certain order, it is intended that certain steps do not have to be performed in the order described but in any order as long as the steps allow the embodiments to function for their intended purposes. Therefore, to the extent there are variations of the invention, which are within the spirit of the disclosure or equivalent to the inventions found in the claims, it is the intent that this patent will cover those variations as well. Some such modifications should be apparent to those skilled in the art. For instance, the examples, embodiments, geometrics, materials, dimensions, ratios, steps, and the like discussed above are illustrative. Accordingly, the claims should not be limited to the specific details of structure and operation set forth in the written description and drawings.
Number | Name | Date | Kind |
---|---|---|---|
D123782 | Lux | Dec 1940 | S |
3316896 | Thomasset | May 1967 | A |
4232676 | Herczog | Nov 1980 | A |
4276874 | Wolvek et al. | Jul 1981 | A |
4587975 | Salo et al. | May 1986 | A |
4709698 | Johnston et al. | Dec 1987 | A |
4805621 | Heinze et al. | Feb 1989 | A |
5178957 | Kolpe et al. | Jan 1993 | A |
5391199 | Ben-Haim | Feb 1995 | A |
5429617 | Hammersmark et al. | Jul 1995 | A |
5582609 | Swanson et al. | Dec 1996 | A |
5584830 | Ladd et al. | Dec 1996 | A |
5702386 | Stern et al. | Dec 1997 | A |
5797903 | Swanson et al. | Aug 1998 | A |
5860974 | Abele | Jan 1999 | A |
5971983 | Lesh | Oct 1999 | A |
6012457 | Lesh | Jan 2000 | A |
6024740 | Lesh et al. | Feb 2000 | A |
6042580 | Simpson | Mar 2000 | A |
6123718 | Tu et al. | Sep 2000 | A |
6142993 | Whayne et al. | Nov 2000 | A |
6164283 | Lesh | Dec 2000 | A |
6171275 | Webster, Jr. | Jan 2001 | B1 |
6176832 | Habu et al. | Jan 2001 | B1 |
6226542 | Reisfeld | May 2001 | B1 |
6239724 | Doron et al. | May 2001 | B1 |
6301496 | Reisfeld | Oct 2001 | B1 |
6325777 | Zadno-Azizi et al. | Dec 2001 | B1 |
6332089 | Acker et al. | Dec 2001 | B1 |
6380957 | Banning | Apr 2002 | B1 |
6402740 | Ellis et al. | Jun 2002 | B1 |
D462389 | Provence et al. | Sep 2002 | S |
6471693 | Carroll et al. | Oct 2002 | B1 |
6484118 | Govari | Nov 2002 | B1 |
6522930 | Schaer et al. | Feb 2003 | B1 |
6618612 | Acker et al. | Sep 2003 | B1 |
6656174 | Hegde et al. | Dec 2003 | B1 |
6690963 | Ben-Haim et al. | Feb 2004 | B2 |
6814733 | Schwartz et al. | Nov 2004 | B2 |
6892091 | Ben-Haim et al. | May 2005 | B1 |
6893433 | Lentz | May 2005 | B2 |
6986744 | Krivitski | Jan 2006 | B1 |
6997924 | Schwartz et al. | Feb 2006 | B2 |
7156816 | Schwartz et al. | Jan 2007 | B2 |
7340307 | Maguire et al. | Mar 2008 | B2 |
7442190 | Abboud et al. | Oct 2008 | B2 |
7536218 | Govari et al. | May 2009 | B2 |
7756576 | Levin | Jul 2010 | B2 |
7842031 | Abboud et al. | Nov 2010 | B2 |
8048032 | Root et al. | Nov 2011 | B2 |
8231617 | Satake | Jul 2012 | B2 |
8267932 | Baxter et al. | Sep 2012 | B2 |
8357152 | Govari et al. | Jan 2013 | B2 |
D682289 | Dijulio et al. | May 2013 | S |
D682291 | Baek et al. | May 2013 | S |
D690318 | Kluttz et al. | Sep 2013 | S |
D694652 | Tompkin | Dec 2013 | S |
8641709 | Sauvageau et al. | Feb 2014 | B2 |
8721590 | Seward et al. | May 2014 | B2 |
8777161 | Pollock et al. | Jul 2014 | B2 |
D716340 | Bresin et al. | Oct 2014 | S |
8852181 | Malecki et al. | Oct 2014 | B2 |
D720766 | Mandal et al. | Jan 2015 | S |
D721379 | Moon et al. | Jan 2015 | S |
D724618 | Shin | Mar 2015 | S |
8974450 | Brannan | Mar 2015 | B2 |
8998893 | Avitall | Apr 2015 | B2 |
D729263 | Ahn et al. | May 2015 | S |
9089350 | Willard | Jul 2015 | B2 |
D736780 | Wang | Aug 2015 | S |
9126023 | Sahatjian et al. | Sep 2015 | B1 |
D740308 | Kim et al. | Oct 2015 | S |
D743424 | Danielyan et al. | Nov 2015 | S |
D744000 | Villamor et al. | Nov 2015 | S |
9173758 | Brister et al. | Nov 2015 | B2 |
D747742 | Fan et al. | Jan 2016 | S |
D750644 | Bhutani et al. | Mar 2016 | S |
9283034 | Katoh et al. | Mar 2016 | B2 |
9289141 | Lowery et al. | Mar 2016 | B2 |
D753690 | Vazquez et al. | Apr 2016 | S |
9320631 | Moore et al. | Apr 2016 | B2 |
9345540 | Mallin et al. | May 2016 | B2 |
D759673 | Looney et al. | Jun 2016 | S |
D759675 | Looney et al. | Jun 2016 | S |
D764500 | Wang | Aug 2016 | S |
D765709 | Gagnier | Sep 2016 | S |
D767616 | Jones et al. | Sep 2016 | S |
D768696 | Gagnier | Oct 2016 | S |
D783037 | Hariharan et al. | Apr 2017 | S |
9655677 | Salahieh et al. | May 2017 | B2 |
D791805 | Segars | Jul 2017 | S |
9795442 | Salahieh et al. | Oct 2017 | B2 |
D861717 | Brekke et al. | Oct 2019 | S |
10688278 | Beeckler et al. | Jun 2020 | B2 |
20010031961 | Hooven | Oct 2001 | A1 |
20020002369 | Hood | Jan 2002 | A1 |
20020065455 | Ben-Haim et al. | May 2002 | A1 |
20020077627 | Johnson et al. | Jun 2002 | A1 |
20020160134 | Ogushi et al. | Oct 2002 | A1 |
20030018327 | Truckai et al. | Jan 2003 | A1 |
20030050637 | Maguire et al. | Mar 2003 | A1 |
20030060820 | Maguire et al. | Mar 2003 | A1 |
20030120150 | Govari | Jun 2003 | A1 |
20040068178 | Govari | Apr 2004 | A1 |
20040122445 | Butler | Jun 2004 | A1 |
20040225285 | Gibson | Nov 2004 | A1 |
20050059862 | Phan | Mar 2005 | A1 |
20050070887 | Taimisto et al. | Mar 2005 | A1 |
20050119686 | Clubb | Jun 2005 | A1 |
20060013595 | Trezza et al. | Jan 2006 | A1 |
20060135953 | Kania et al. | Jun 2006 | A1 |
20070071792 | Varner et al. | Mar 2007 | A1 |
20070080322 | Walba | Apr 2007 | A1 |
20070083194 | Kunis et al. | Apr 2007 | A1 |
20070276212 | Fuimaono et al. | Nov 2007 | A1 |
20070287994 | Patel | Dec 2007 | A1 |
20080018891 | Hell et al. | Jan 2008 | A1 |
20080021313 | Eidenschink et al. | Jan 2008 | A1 |
20080051707 | Phan et al. | Feb 2008 | A1 |
20080140072 | Stangenes et al. | Jun 2008 | A1 |
20080183132 | Davies et al. | Jul 2008 | A1 |
20080188912 | Stone et al. | Aug 2008 | A1 |
20080202637 | Hector et al. | Aug 2008 | A1 |
20080249463 | Pappone et al. | Oct 2008 | A1 |
20080262489 | Steinke | Oct 2008 | A1 |
20090163890 | Clifford et al. | Jun 2009 | A1 |
20090171274 | Harlev et al. | Jul 2009 | A1 |
20090182318 | Abboud et al. | Jul 2009 | A1 |
20090270850 | Zhou et al. | Oct 2009 | A1 |
20100069836 | Satake | Mar 2010 | A1 |
20100114269 | Wittenberger et al. | May 2010 | A1 |
20100160906 | Jarrard | Jun 2010 | A1 |
20100204560 | Salahieh et al. | Aug 2010 | A1 |
20100256629 | Wylie et al. | Oct 2010 | A1 |
20100324552 | Kauphusman et al. | Dec 2010 | A1 |
20110118632 | Sinelnikov et al. | May 2011 | A1 |
20110130648 | Beeckler et al. | Jun 2011 | A1 |
20110282338 | Fojtik | Nov 2011 | A1 |
20110295248 | Wallace et al. | Dec 2011 | A1 |
20110301587 | Deem et al. | Dec 2011 | A1 |
20110313286 | Whayne et al. | Dec 2011 | A1 |
20120019107 | Gabl et al. | Jan 2012 | A1 |
20120029511 | Smith et al. | Feb 2012 | A1 |
20120065503 | Rogers et al. | Mar 2012 | A1 |
20120071870 | Salahieh | Mar 2012 | A1 |
20120079427 | Carmichael et al. | Mar 2012 | A1 |
20120101413 | Beetel et al. | Apr 2012 | A1 |
20120143177 | Avitall | Jun 2012 | A1 |
20120191079 | Moll et al. | Jul 2012 | A1 |
20130085360 | Grunewald | Apr 2013 | A1 |
20130090649 | Smith et al. | Apr 2013 | A1 |
20130109982 | Sato et al. | May 2013 | A1 |
20130150693 | D'Angelo et al. | Jun 2013 | A1 |
20130165916 | Mathur et al. | Jun 2013 | A1 |
20130165925 | Mathur | Jun 2013 | A1 |
20130165941 | Murphy | Jun 2013 | A1 |
20130165990 | Mathur et al. | Jun 2013 | A1 |
20130261692 | Cardinal et al. | Oct 2013 | A1 |
20130274562 | Ghaffari et al. | Oct 2013 | A1 |
20130274658 | Steinke et al. | Oct 2013 | A1 |
20130282084 | Mathur et al. | Oct 2013 | A1 |
20130318439 | Landis et al. | Nov 2013 | A1 |
20140018788 | Engelman et al. | Jan 2014 | A1 |
20140031813 | Tellio et al. | Jan 2014 | A1 |
20140058197 | Salahieh et al. | Feb 2014 | A1 |
20140121470 | Scharf et al. | May 2014 | A1 |
20140148805 | Stewart et al. | May 2014 | A1 |
20140227437 | Deboer et al. | Aug 2014 | A1 |
20140243821 | Salahieh et al. | Aug 2014 | A1 |
20140276756 | Hill | Sep 2014 | A1 |
20140276811 | Koblish et al. | Sep 2014 | A1 |
20140288546 | Sherman et al. | Sep 2014 | A1 |
20140330266 | Thompson et al. | Nov 2014 | A1 |
20140357956 | Salahieh | Dec 2014 | A1 |
20140378803 | Geistert et al. | Dec 2014 | A1 |
20150005799 | Lindquist | Jan 2015 | A1 |
20150018818 | Willard et al. | Jan 2015 | A1 |
20150025532 | Hanson et al. | Jan 2015 | A1 |
20150025533 | Groff et al. | Jan 2015 | A1 |
20150057655 | Osypka | Feb 2015 | A1 |
20150067512 | Roswell | Mar 2015 | A1 |
20150080883 | Haverkost et al. | Mar 2015 | A1 |
20150105774 | Lindquist et al. | Apr 2015 | A1 |
20150112256 | Byrne et al. | Apr 2015 | A1 |
20150119875 | Fischell et al. | Apr 2015 | A1 |
20150141982 | Lee | May 2015 | A1 |
20150157382 | Avitall et al. | Jun 2015 | A1 |
20150216591 | Cao et al. | Aug 2015 | A1 |
20150216650 | Shaltis | Aug 2015 | A1 |
20150265329 | Lalonde et al. | Sep 2015 | A1 |
20150265339 | Lindquist et al. | Sep 2015 | A1 |
20150265812 | Lalonde | Sep 2015 | A1 |
20150272667 | Govari et al. | Oct 2015 | A1 |
20150341752 | Flynn | Nov 2015 | A1 |
20160000499 | Lennox et al. | Jan 2016 | A1 |
20160051321 | Salahieh et al. | Feb 2016 | A1 |
20160085431 | Kim et al. | Mar 2016 | A1 |
20160106499 | Ogata et al. | Apr 2016 | A1 |
20160166306 | Pageard | Jun 2016 | A1 |
20160175041 | Govari et al. | Jun 2016 | A1 |
20160183877 | Williams et al. | Jun 2016 | A1 |
20160196635 | Cho et al. | Jul 2016 | A1 |
20160256305 | Longo et al. | Sep 2016 | A1 |
20160374748 | Salahieh et al. | Dec 2016 | A9 |
20170042614 | Salahieh et al. | Feb 2017 | A1 |
20170042615 | Salahieh et al. | Feb 2017 | A1 |
20170080192 | Giasolli et al. | Mar 2017 | A1 |
20170143359 | Nguyen et al. | May 2017 | A1 |
20170164464 | Weinkam et al. | Jun 2017 | A1 |
20170311829 | Beeckler | Nov 2017 | A1 |
20170311893 | Beeckler et al. | Nov 2017 | A1 |
20170312022 | Beeckler et al. | Nov 2017 | A1 |
20170347896 | Keyes et al. | Dec 2017 | A1 |
20170348049 | Vrba | Dec 2017 | A1 |
20180074693 | Jones et al. | Mar 2018 | A1 |
20180092688 | Tegg | Apr 2018 | A1 |
20180110562 | Govari et al. | Apr 2018 | A1 |
20180161093 | Basu et al. | Jun 2018 | A1 |
20180256247 | Govari et al. | Sep 2018 | A1 |
20180333162 | Saab | Nov 2018 | A1 |
20180368927 | Lyons et al. | Dec 2018 | A1 |
20190297441 | Dehe et al. | Sep 2019 | A1 |
20190298441 | Clark et al. | Oct 2019 | A1 |
20200001054 | Jimenez | Jan 2020 | A1 |
20200008869 | Byrd | Jan 2020 | A1 |
20200015693 | Beeckler et al. | Jan 2020 | A1 |
20200085497 | Zhang | Mar 2020 | A1 |
20200155226 | Valls et al. | May 2020 | A1 |
20210169567 | Govari et al. | Jun 2021 | A1 |
Number | Date | Country |
---|---|---|
101422637 | May 2009 | CN |
102271607 | Dec 2011 | CN |
102458566 | May 2012 | CN |
203539434 | Apr 2014 | CN |
104244856 | Dec 2014 | CN |
104546117 | Apr 2015 | CN |
105105844 | Dec 2015 | CN |
105473091 | Apr 2016 | CN |
105473093 | Apr 2016 | CN |
0779059 | Jun 1997 | EP |
1790304 | May 2007 | EP |
2865350 | Apr 2015 | EP |
2875790 | May 2015 | EP |
3238646 | Nov 2017 | EP |
3238648 | Nov 2017 | EP |
3251622 | Dec 2017 | EP |
3300680 | Apr 2018 | EP |
3315087 | May 2018 | EP |
3332727 | Jun 2018 | EP |
3571983 | Nov 2019 | EP |
3586778 | Jan 2020 | EP |
3653153 | May 2020 | EP |
H06261951 | Sep 1994 | JP |
H1176233 | Mar 1999 | JP |
2000504242 | Apr 2000 | JP |
2004504314 | Feb 2004 | JP |
2005052424 | Mar 2005 | JP |
2008538986 | Nov 2008 | JP |
2009261609 | Nov 2009 | JP |
2010507404 | Mar 2010 | JP |
2010088697 | Apr 2010 | JP |
2012024156 | Feb 2012 | JP |
2012508083 | Apr 2012 | JP |
2013013726 | Jan 2013 | JP |
2013078587 | May 2013 | JP |
2013529109 | Jul 2013 | JP |
2014509218 | Apr 2014 | JP |
2014529419 | Nov 2014 | JP |
2015503365 | Feb 2015 | JP |
2015100706 | Jun 2015 | JP |
2015112113 | Jun 2015 | JP |
2015112114 | Jun 2015 | JP |
2015518776 | Jul 2015 | JP |
2016093502 | May 2016 | JP |
2016515442 | May 2016 | JP |
2016116863 | Jun 2016 | JP |
2016534842 | Nov 2016 | JP |
2017202305 | Nov 2017 | JP |
2017202306 | Nov 2017 | JP |
2018075365 | May 2018 | JP |
9605768 | Feb 1996 | WO |
0056237 | Sep 2000 | WO |
02102231 | Dec 2002 | WO |
2005041748 | May 2005 | WO |
2006055654 | May 2006 | WO |
2008049087 | Apr 2008 | WO |
2011143468 | Nov 2011 | WO |
2013049601 | Apr 2013 | WO |
2013052919 | Apr 2013 | WO |
2013154776 | Oct 2013 | WO |
2014123983 | Aug 2014 | WO |
2014168987 | Oct 2014 | WO |
2015049784 | Apr 2015 | WO |
2015200518 | Dec 2015 | WO |
2016084215 | Jun 2016 | WO |
2016183337 | Nov 2016 | WO |
2016210437 | Dec 2016 | WO |
2017024306 | Feb 2017 | WO |
2017087549 | May 2017 | WO |
2017163400 | Sep 2017 | WO |
2018106569 | Jun 2018 | WO |
2019095020 | May 2019 | WO |
Entry |
---|
European Search Report for European Application No. 19183327, dated Nov. 21, 2019, 8 pages. |
Extended European Search Report for Application No. EP17168393.1, dated Dec. 15, 2017, 12 pages. |
Extended European Search Report for Application No. EP17168513.4, dated Sep. 18, 2017, 11 pages. |
Extended European Search Report for European Application No. 17201434.2, dated Feb. 1, 2018, 9 pages. |
Extended European Search Report for European Application No. EP15201723.2, dated May 11, 2016, 7 pages. |
Extended European Search Report for European Application No. EP17168518.3, dated Sep. 20, 2017, 9 pages. |
Extended European Search Report for European Application No. EP17173893.3, dated Nov. 6, 2017, 8 pages. |
Extended European Search Report for European Application No. EP17205876.0, dated Jun. 1, 2018, 13 pages. |
Extended European Search Report for European Application No. EP20153872.5, dated May 7, 2020, 8 pages. |
Extended European Search Report for European Application No. EP20195648.9, dated Feb. 12, 2021, 8 pages. |
International Search Report and Written Opinion for Application No. PCT/IB2019/056381, dated Dec. 17, 2019, 10 pages. |
International Search Report and Written Opinion for Application No. PCT/IB2019/052313, dated Jul. 22, 2019, 08 pages. |
Partial European Search Report for Application No. EP17168393.1, dated Sep. 13, 2017, 13 pages. |
Partial European Search Report for European Application No. EP17205876.0, dated Feb. 22, 2018, 10 pages. |
YouTube, “Intensity™ CX4 Professional E-Stim/Ultrasound Combo” Dec. 22, 2015, Retrieved from internet [https://www.youtube.com/watch?v=76s1QKMWJME], retrieved from the internet on Nov. 19, 2020, 1 page. |
YouTube, “New Interface TactiCath Contact Force Ablation Catheter”, Nov. 26, 2013, retrieved from internet [https://www.youtube.com/watch?v=aYvYO8Hpylg], retrieved on Nov. 19, 2020, 1 page. |
Extended European Search Report for European Application No. EP19177365.4, dated Nov. 8, 2019, 7 pages. |
Haines, D.E., et al., “The Promise of Pulsed Field Ablation,” Dec. 2019, vol. 19 (12), pp. 10. |
Number | Date | Country | |
---|---|---|---|
20230061561 A1 | Mar 2023 | US |