The present disclosure relates to a release mechanism for a seat recliner assembly.
This section provides background information related to the present disclosure and is not necessarily prior art.
Vehicle seats often include a recliner heart that can rotate a seatback relative to a seat bottom. Some vehicle seats can also include a release mechanism (or dump mechanism) to enable the seatback to be moved from a relatively upright position to a forward dump position (e.g., to enable a passenger to ingress into and egress out of a space behind the seat such as a rear seating row). A release lever (or actuation lever) can be mounted on an upper, outboard portion of the seatback and can be connected to the release mechanism by a cable and/or link. The release lever can be manually moved by a user to actuate the release mechanism. The release mechanism may not be easily adaptable to both power and manual recliners. The release mechanism may also not allow the seatback to be moved from any seating position (e.g., a rearward-reclined position, an upright position, and/or a forward-tilt position) to the forward dump position.
This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features.
In one form, the present disclosure provides a seatback adjustment assembly that includes a first bracket plate, a recliner heart, an attachment plate, and a lever. The first bracket plate is adapted to be rotationally fixed to a seatback. The recliner heart is mounted to the first bracket plate and includes a first plate and a second plate. The recliner heart is operable in an unlocked state in which the second plate is rotatable relative to the first plate and a locked state in which the second plate is fixed relative to the first plate. The attachment plate is rotationally fixed to the second plate and includes first teeth. The lever is rotatably coupled to the first bracket plate and includes second teeth. The lever is rotatable between a first state in which the second teeth are meshingly engaged with the first teeth and a second state in which the second teeth are disengaged from the first teeth. When the recliner heart is in the unlocked state and the lever is in the first state, rotation of the second plate and the attachment plate causes corresponding rotation of the seatback relative to a seat bottom. The first bracket plate is configured to rotate to move the seatback relative to the seat bottom without causing corresponding rotation of the second plate and the attachment plate when the lever is in the second state.
In some configurations of the seatback adjustment assembly of the above paragraph, a cam is rotatably coupled to the first bracket plate and includes a locking surface. The cam is rotatable between a first position in which the locking surface engages an outer surface of the lever to prevent the lever from rotating from the first state toward the second state, and a second position in which the locking surface is disengaged from the outer surface of the lever to allow the lever to rotate from the first state toward the second state.
In some configurations of the seatback adjustment assembly of any one or more of the above paragraphs, a biasing member rotationally biases the cam toward the first position.
In some configurations of the seatback adjustment assembly of any one or more of the above paragraphs, an actuation lever is mounted on the seatback and is operatively connected to the cam such that movement of the actuation lever causes corresponding rotation of the cam into the second position.
In some configurations of the seatback adjustment assembly of any one or more of the above paragraphs, the seatback adjustment assembly further includes a motor and a control switch. The motor is operable between an ON mode in which the motor is allowed to operate the recliner heart and an OFF mode in which the motor is prevented from operating the recliner heart. The control switch is electrically coupled to the motor and includes a tab moveable between a first position in which the motor is in the ON mode and a second position in which the motor is in the OFF mode. When the lever is in the second state, the lever moves the tab from the first position to the second position.
In some configurations of the seatback adjustment assembly of any one or more of the above paragraphs, the motor and the recliner heart are adjacent to each other. The control switch is located remotely relative to the recliner heart and the motor.
In some configurations of the seatback adjustment assembly of any one or more of the above paragraphs, the seatback adjustment assembly further includes a cam, a connecting member, a pin, and a biasing member. The cam is rotatably coupled to the first bracket plate and includes a locking surface. The connecting member is coupled to the cam and includes an aperture. The mounting plate is coupled to the first bracket plate and includes an arcuate slot. The pin extends through the aperture and the slot. The biasing member biases the pin toward an end of the slot such that the locking surface of the cam engages an outer surface of the lever to prevent the lever from rotating from the first state toward the second state.
In some configurations of the seatback adjustment assembly of any one or more of the above paragraphs, an actuation lever is mounted on the seatback and is operably connected to the pin such that movement of the actuation lever causes the pin to traverse the slot and the cam to rotate. When the pin traverses the slot and the cam rotates, the locking surface of the cam is disengaged from the outer surface of the lever thereby allowing the lever to rotate from the first state toward the second state.
In some configurations of the seatback adjustment assembly of any one or more of the above paragraphs, the actuation lever is connected to the pin via a cable.
In some configurations of the seatback adjustment assembly of any one or more of the above paragraphs, the recliner heart is a round recliner heart. The first plate is rotationally fixed to the seat bottom.
In some configurations of the seatback adjustment assembly of any one or more of the above paragraphs, the seatback adjustment assembly further includes a second bracket plate and a stop member. The second bracket plate is rotationally fixed to the seat bottom. The stop member is fixed to the second bracket plate and includes first and second end portions. When the recliner heart is in the unlocked state and the lever is in the first state, the attachment plate is configured to contact one of the first and second end portions to limit further rotation of the seatback relative to the seat bottom.
In some configurations of the seatback adjustment assembly of any one or more of the above paragraphs, the seatback adjustment assembly further includes a second bracket plate and a stop member. The second bracket plate is rotationally fixed to the seat bottom and includes a lip. The stop member is fixed to the first bracket plate. When the lever is in the second state, the stop member is configured to contact the lip to limit further rotation of the seatback relative to the seat bottom.
In another form, the present disclosure provides a seatback adjustment assembly that includes a bracket plate, a recliner heart, an attachment plate, a lever, and an actuation lever. The bracket plate is adapted to be rotationally fixed to a seatback. The recliner heart is mounted to the bracket plate and includes a first plate and a second plate. The recliner heart is operable in an unlocked state in which the second plate is rotatable relative to the first plate and a locked state in which the second plate is fixed relative to the first plate. The attachment plate is rotationally fixed to the second plate and includes first teeth. The lever is rotatably coupled to the bracket plate and includes second teeth. The lever is rotatable between a first state in which the second teeth are meshingly engaged with the first teeth and a second state in which the second teeth are disengaged from the first teeth. The actuation lever is operatively connected to the lever and moveable between a secure position in which the lever is in the first state and a release position in which the lever is in the second state. Movement of the actuation lever from the secure position to the release position allows rotation of the bracket plate to move the seatback relative to a seat bottom without causing corresponding rotation of the second plate and the attachment plate.
In some configurations of the seatback adjustment assembly of the above paragraph, a cam is rotatably coupled to the bracket plate and includes a locking surface. When the actuation lever is in the first state, the locking surface engages an outer surface of the lever to prevent the lever from rotating from the first state toward the second state.
In some configurations of the seatback adjustment assembly of any one or more of the above paragraphs, a biasing member rotationally biases the cam such that the locking surface of the cam engages the outer surface of the lever.
In some configurations of the seatback adjustment assembly of any one or more of the above paragraphs, movement of the actuation lever from the secure position to the release position overcomes a biasing force of the biasing member.
In some configurations of the seatback adjustment assembly of any one or more of the above paragraphs, the seatback adjustment assembly further includes a cam, a connecting member, a mounting plate, a pin and a biasing member. The cam is rotatably coupled to the bracket plate and includes a locking surface. The connecting member is fixed to the cam and includes an aperture. The mounting plate is coupled to the bracket plate and includes an arcuate slot. The pin is operatively connected to the actuation lever and engages the arcuate slot and the aperture. The biasing member biases the pin toward an end of the slot such that the locking surface of the cam engages an outer surface of the lever to prevent the lever from rotating from the first state toward the second state.
In some configurations of the seatback adjustment assembly of any one or more of the above paragraphs, when the actuation lever is moved from the secure position to the release position, the pin traverses the slot and the cam rotates such that the locking surface is disengaged from the outer surface of the lever thereby allowing the lever to rotate from the first state toward the second state.
In some configurations of the seatback adjustment assembly of any one or more of the above paragraphs, the seatback adjustment assembly further includes a motor and a control switch. The motor is operable between an ON mode in which the motor is allowed to operate the recliner heart and an OFF mode in which the motor is prevented from operating the recliner heart. The control switch is electrically coupled to the motor and includes a tab moveable between a first position in which the motor is in the ON mode and a second position in which the motor is in the OFF mode. When the lever is in the second state, the lever moves the tab from the first position to the second position.
In some configurations of the seatback adjustment assembly of any one or more of the above paragraphs, the motor and the recliner heart are adjacent to each other. The control switch is located remotely relative to the recliner heart and the motor.
In some configurations of the seatback adjustment assembly of any one or more of the above paragraphs, the recliner heart is a round recliner heart. The first plate is rotationally fixed to the seat bottom.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
Example embodiments will now be described more fully with reference to the accompanying drawings.
Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
When an element or layer is referred to as being “on,” “engaged to,” “connected to,” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
Spatially relative terms, such as “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
With reference to
As shown in
Each recliner mechanism 20a, 20b may be operable in a locked state preventing relative rotation between the seatback 14 and the seat bottom 12, and an unlocked state permitting relative rotation between the seatback 14 and the seat bottom 12. As shown in
The recliner heart 29 may be mounted to the first and second bracket plates 27, 28 and may selectively permit relative rotation between the seatback 14 and the seat bottom 12. The recliner heart 29 may be a round recliner heart, for example, or any other suitable type recliner heart. The recliner heart 29 may include a first plate (not shown), a second plate 42 (
As shown in
An attachment plate 44 may be rotationally fixed to the second plate 42 and may be selectively engaged with the second bracket plate 28 via a respective forward-dump mechanism 22. As shown in
The tab 50 may protrude outwardly from the outer diametrical surface 52 of the attachment plate 44 and may be received in a slot 54 defined between the first and second end portions 43a, 43b of the stop member 43 (
The second plate 42 may be a generally circular shape and may be rotationally fixed to the attachment plate 44. In this way, when the attachment plate 44 is engaged with the second bracket plate 28 (via the respective forward-dump mechanism 22), rotation of the second plate 42 causes corresponding rotation of the seatback 14 (via the bracket plate 28). The second plate 42 may also cooperate with the first plate to define a cavity (not shown) in which the locking mechanism is disposed.
As shown in
The locking assembly (not shown) may include, inter alia, a hub (not shown), a cam (not shown), a bushing ring (not shown), wedges (not shown), and a spring (not shown). The hub may engage a cross member 62 and may be rotationally fixed to the cam. The wedges may be positioned between the bushing ring and the cam. The spring may bias the wedges outwardly such that the wedges are wedged between the cam and the bushing ring, and the recliner mechanism 20a is in the locked state (the seatback 14 is prevented from rotating relative to the seat bottom 12). When a user actuates a switch (not shown), a motor 63 drives the cross member 62 which causes the hub and the cam to rotate. Rotation of the hub and the cam causes rotation of the second plate 42. A portion of teeth (not shown) of the second plate 42 are meshingly engaged with a portion of teeth (not shown) of the first plate at different points in the rotational path as the second plate 42 rotates about the first plate. The recliner heart 29 can be similar or identical to that disclosed in Assignee's U.S. Patent Application Publication No. 2020/0331367, the disclosure of which is incorporated herein by reference.
The structure and function of the recliner mechanism 20b may be similar or identical to that of the recliner mechanism 20a, and therefore, will not be described again in detail.
The recliner mechanisms 20a, 20b shown in the figures are constantly engaged, powered round-recliner mechanisms. While the recliner mechanisms 20a, 20b are shown as being constantly engaged round-recliner mechanisms, the recliner mechanisms 20a, 20b could alternatively be discontinuous round-recliner mechanisms. Further, while the recliner mechanisms 20a, 20b are described as being powered (i.e., motor-driven) round-recliner mechanisms, the recliner mechanisms 20a, 20b could alternatively be manually actuated round-recliner mechanisms.
The forward-dump mechanisms 22 are quick-release mechanisms that are operable to allow the seatback 14 to be manually moved from a seating position (i.e., any of the rearward-recline, upright, and forward-tilt positions) to the forward-dump position (e.g., to allow ingress into and egress out of a seating row behind the seat assembly 10 in a vehicle) and from the forward-dump position back to the same previous seating position without operating the recliner mechanisms 20a, 20b.
As shown in
The connecting member 66 is coupled to the cam 64 such that movement of the connecting member 66 causes the cam 64 to rotate about the sleeve 74. The connecting member 66 includes a plurality of first apertures 84a and a second aperture 84b. Fasteners (not shown) may extend through the plurality of first apertures 84a and apertures 86 of the cam 64 to couple the connecting member 66 and the cam 64 to each other. A pin 88 extends between and couples the connecting member 66 and the mounting plate 69. The pin 88 includes a cylindrical first end 88a received in an arcuate slot 90 formed in the mounting plate 69 and a cylindrical second end 88b retained in the similarly-shaped second aperture 84b of the connecting member 66. The first end 88a of the pin 88 traverses the slot 90 (moves relative to the slot 90) as the seatback 14 is manually moved from the seating position (i.e., any of the rearward-recline, upright, and forward-tilt positions) to the forward-dump position and from the forward-dump position back to the same previous seating position.
The lever 68 is pivotably mounted to the second bracket plate 28 and the mounting plate 69 between a first state (
As shown in
The biasing member (e.g., a torsional spring) 70 biases the pin 88 towards a first end 106 of the slot 90 of the mounting plate 69, which causes a locking surface 108 of the cam 64 to engage an outer surface 109 of the lever 68, thereby urging the lever 68 into engagement with the attachment plate 44 (i.e., the teeth 94 of the lever 68 are meshingly engaged with the teeth 49 of the attachment plate 44). The biasing member 70 includes a first end 110, a second end 112, and a body 114. The first end 110 extends from a first end of the body 114 and is engaged with the second bracket plate 28 (
Each cable 24 extends from the actuation assembly 26 to a respective forward-dump mechanism 22. That is, a first end 116 of the cable 24 is engaged with the actuation assembly 26 (
As shown in
With reference to
Movement of the actuation lever 120 from the secure position to the release position causes the pin 88 to move from the first end 106 of the slot 90 toward a second end 124 of the slot 90 via the cable 24 (compare
As shown in
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
This application claims the benefit of U.S. Provisional Application No. 63/149,799 filed on Feb. 16, 2021. The entire disclosure of the above application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3736026 | Ziegler et al. | May 1973 | A |
3953069 | Tamura et al. | Apr 1976 | A |
4219234 | Bell | Aug 1980 | A |
4243264 | Bell | Jan 1981 | A |
4279442 | Bell | Jul 1981 | A |
4372610 | Fisher, III et al. | Feb 1983 | A |
4457557 | Une | Jul 1984 | A |
4484779 | Suzuki | Nov 1984 | A |
4579387 | Bell | Apr 1986 | A |
4634182 | Tanaka | Jan 1987 | A |
4684174 | Bell | Aug 1987 | A |
4705319 | Bell | Nov 1987 | A |
4720145 | Bell | Jan 1988 | A |
4733912 | Secord | Mar 1988 | A |
4747641 | Bell | May 1988 | A |
4795213 | Bell | Jan 1989 | A |
4822100 | Bell | Apr 1989 | A |
4919482 | Landis et al. | Apr 1990 | A |
4928374 | Allen | May 1990 | A |
5007680 | Miyauchi et al. | Apr 1991 | A |
5044647 | Patterson | Sep 1991 | A |
5154476 | Haider et al. | Oct 1992 | A |
5240309 | Kojer | Aug 1993 | A |
5248184 | Morris | Sep 1993 | A |
5265937 | Allen | Nov 1993 | A |
5393116 | Bolsworth et al. | Feb 1995 | A |
5419616 | Paetzold | May 1995 | A |
5435624 | Bray et al. | Jul 1995 | A |
5460429 | Whalen | Oct 1995 | A |
5489141 | Strausbaugh et al. | Feb 1996 | A |
5577805 | Glinter et al. | Nov 1996 | A |
5590932 | Olivieri | Jan 1997 | A |
5622410 | Robinson | Apr 1997 | A |
5628215 | Brown | May 1997 | A |
5660440 | Pejathaya | Aug 1997 | A |
5718481 | Robinson | Feb 1998 | A |
5769493 | Pejathaya | Jun 1998 | A |
5788330 | Ryan | Aug 1998 | A |
5813724 | Matsuura et al. | Sep 1998 | A |
5823622 | Fisher, IV et al. | Oct 1998 | A |
5857659 | Kato et al. | Jan 1999 | A |
5918939 | Magadanz | Jul 1999 | A |
5927809 | Tame | Jul 1999 | A |
5941591 | Tsuge et al. | Aug 1999 | A |
5947560 | Chen | Sep 1999 | A |
5979986 | Pejathaya | Nov 1999 | A |
6007152 | Kojima et al. | Dec 1999 | A |
6023994 | Yoshida | Feb 2000 | A |
6047444 | Braun | Apr 2000 | A |
6068341 | Rink | May 2000 | A |
6074009 | Farino | Jun 2000 | A |
6095609 | Magadanz | Aug 2000 | A |
6106067 | Zhuang et al. | Aug 2000 | A |
6123380 | Sturt et al. | Sep 2000 | A |
6139104 | Brewer | Oct 2000 | A |
6158800 | Tsuge et al. | Dec 2000 | A |
6161899 | Yu | Dec 2000 | A |
6199953 | Chen | Mar 2001 | B1 |
6250704 | Garrido | Jun 2001 | B1 |
6290297 | Yu | Sep 2001 | B1 |
6328381 | Smuk | Dec 2001 | B1 |
6345867 | Hellrung et al. | Feb 2002 | B1 |
6447066 | Chabanne et al. | Sep 2002 | B1 |
6511129 | Minor et al. | Jan 2003 | B1 |
6533357 | Pospeshil et al. | Mar 2003 | B2 |
6550864 | Zarna et al. | Apr 2003 | B1 |
6554362 | Pospeshil | Apr 2003 | B1 |
6634713 | Nonomiya et al. | Oct 2003 | B2 |
6669296 | Moriyama et al. | Dec 2003 | B2 |
6669299 | Carlson et al. | Dec 2003 | B2 |
6698837 | Pejathaya et al. | Mar 2004 | B2 |
6709053 | Humer et al. | Mar 2004 | B1 |
6740845 | Stol et al. | May 2004 | B2 |
6758525 | Uramichi | Jul 2004 | B2 |
6854802 | Matsuura et al. | Feb 2005 | B2 |
6857703 | Bonk | Feb 2005 | B2 |
6860562 | Bonk | Mar 2005 | B2 |
6869143 | Secord | Mar 2005 | B2 |
6908156 | Park et al. | Jun 2005 | B1 |
7025422 | Fast | Apr 2006 | B2 |
7093901 | Yamada | Aug 2006 | B2 |
7097253 | Coughlin et al. | Aug 2006 | B2 |
7100987 | Volker et al. | Sep 2006 | B2 |
7121624 | Pejathaya et al. | Oct 2006 | B2 |
7152924 | Nemoto et al. | Dec 2006 | B1 |
7154065 | Martukanitz et al. | Dec 2006 | B2 |
7172253 | Haverkamp | Feb 2007 | B2 |
7198330 | Wahlen et al. | Apr 2007 | B2 |
7293838 | Sugama et al. | Nov 2007 | B2 |
7296857 | Shinozaki et al. | Nov 2007 | B2 |
7300109 | Hofmann et al. | Nov 2007 | B2 |
7306286 | Syrowik et al. | Dec 2007 | B2 |
7328954 | Sasaki et al. | Feb 2008 | B2 |
7360838 | Smuk | Apr 2008 | B2 |
7419217 | Ishizuka | Sep 2008 | B2 |
7458639 | Thiel et al. | Dec 2008 | B2 |
7490907 | Nagura et al. | Feb 2009 | B2 |
7500719 | Kojima | Mar 2009 | B2 |
7503099 | Pejathaya | Mar 2009 | B2 |
7527336 | Kienke et al. | May 2009 | B2 |
7578556 | Ohba et al. | Aug 2009 | B2 |
7604297 | Weber | Oct 2009 | B2 |
7695068 | Maeda | Apr 2010 | B2 |
7775591 | Hahn et al. | Aug 2010 | B2 |
7775594 | Bruck et al. | Aug 2010 | B2 |
7976103 | Gamache et al. | Jul 2011 | B2 |
8052215 | Ito | Nov 2011 | B2 |
8128169 | Narita et al. | Mar 2012 | B2 |
8360527 | Lehmann | Jan 2013 | B2 |
8430454 | Tanguy et al. | Apr 2013 | B2 |
8449034 | Tame et al. | May 2013 | B2 |
8845019 | Sawada | Sep 2014 | B2 |
8985690 | Yamada et al. | Mar 2015 | B2 |
9102248 | Matt | Aug 2015 | B2 |
9108541 | Assmann et al. | Aug 2015 | B2 |
9221364 | Nock et al. | Dec 2015 | B2 |
9227532 | Balzar et al. | Jan 2016 | B2 |
9296315 | Hellrung | Mar 2016 | B2 |
9475409 | Jiang et al. | Oct 2016 | B2 |
9527410 | Leconte | Dec 2016 | B2 |
9527419 | Hosbach et al. | Dec 2016 | B2 |
9555725 | Rothstein et al. | Jan 2017 | B2 |
9573493 | Nagura et al. | Feb 2017 | B2 |
9616779 | Barzen et al. | Apr 2017 | B2 |
9623774 | Yamada et al. | Apr 2017 | B2 |
9701222 | Kitou | Jul 2017 | B2 |
9751432 | Assmann | Sep 2017 | B2 |
9873357 | McCulloch et al. | Jan 2018 | B1 |
9889774 | Espinosa et al. | Feb 2018 | B2 |
10065538 | Desquesne et al. | Sep 2018 | B2 |
10150387 | Hiemstra et al. | Dec 2018 | B2 |
10279709 | Suzuki et al. | May 2019 | B2 |
10399466 | Chang | Sep 2019 | B2 |
10610018 | Madhu | Apr 2020 | B1 |
10787098 | Smuk | Sep 2020 | B2 |
10800296 | Schmitz et al. | Oct 2020 | B2 |
10864830 | Schmitz et al. | Dec 2020 | B2 |
11052797 | Poptani et al. | Jul 2021 | B2 |
20020043852 | Uramichi | Apr 2002 | A1 |
20030127898 | Niimi et al. | Jul 2003 | A1 |
20030178879 | Uramichi | Sep 2003 | A1 |
20030230923 | Uramichi | Dec 2003 | A1 |
20040134055 | Aizaki | Jul 2004 | A1 |
20040145226 | Bonk | Jul 2004 | A1 |
20040195889 | Secord | Oct 2004 | A1 |
20050029806 | Yamanashi et al. | Feb 2005 | A1 |
20050253439 | Sasaki et al. | Nov 2005 | A1 |
20060006718 | Umezaki | Jan 2006 | A1 |
20060012232 | Coughlin et al. | Jan 2006 | A1 |
20060055223 | Thiel et al. | Mar 2006 | A1 |
20060170269 | Oki | Aug 2006 | A1 |
20070138854 | Paing et al. | Jun 2007 | A1 |
20070145800 | Thiel et al. | Jun 2007 | A1 |
20070200408 | Ohta et al. | Aug 2007 | A1 |
20080001458 | Hoshihara et al. | Jan 2008 | A1 |
20080164741 | Sakamoto | Jul 2008 | A1 |
20090001797 | Neumann | Jan 2009 | A1 |
20090056124 | Krebs et al. | Mar 2009 | A1 |
20090072602 | Schuler | Mar 2009 | A1 |
20100072802 | Smith et al. | Mar 2010 | A1 |
20100096892 | Meghira et al. | Apr 2010 | A1 |
20100096896 | Nonomiya | Apr 2010 | A1 |
20100176621 | Aufrere et al. | Jul 2010 | A1 |
20100231021 | Myers et al. | Sep 2010 | A1 |
20100283304 | Thiel | Nov 2010 | A1 |
20100308634 | Narita et al. | Dec 2010 | A1 |
20100308635 | Tame et al. | Dec 2010 | A1 |
20100320823 | Thiel | Dec 2010 | A1 |
20110068612 | Thiel | Mar 2011 | A1 |
20110127814 | Thiel | Jun 2011 | A1 |
20110169314 | Tanguy et al. | Jul 2011 | A1 |
20110227386 | Berndtson et al. | Sep 2011 | A1 |
20110309665 | Leighton et al. | Dec 2011 | A1 |
20120086253 | Nock et al. | Apr 2012 | A1 |
20120169102 | Hiemstra et al. | Jul 2012 | A1 |
20120248841 | Hellrung | Oct 2012 | A1 |
20120313415 | Nonomiya et al. | Dec 2012 | A1 |
20130161995 | Yamada et al. | Jun 2013 | A1 |
20130207434 | Stilleke et al. | Aug 2013 | A1 |
20130270884 | Espinosa et al. | Oct 2013 | A1 |
20140001806 | Golarz | Jan 2014 | A1 |
20140008956 | Golarz et al. | Jan 2014 | A1 |
20140008958 | Ito | Jan 2014 | A1 |
20140091607 | Maeda | Apr 2014 | A1 |
20140138998 | Christoffel et al. | May 2014 | A1 |
20140159458 | Lu et al. | Jun 2014 | A1 |
20140225411 | Matt | Aug 2014 | A1 |
20140239691 | Hellrung | Aug 2014 | A1 |
20140301682 | Leppla | Oct 2014 | A1 |
20150015044 | Teufel et al. | Jan 2015 | A1 |
20150042133 | Munemura et al. | Feb 2015 | A1 |
20150069809 | Matt | Mar 2015 | A1 |
20150091346 | Kitou | Apr 2015 | A1 |
20150091354 | Enokijima et al. | Apr 2015 | A1 |
20150123444 | Assmann | May 2015 | A1 |
20150266398 | Higashi et al. | Sep 2015 | A1 |
20150306986 | Jarry et al. | Oct 2015 | A1 |
20150321585 | McCulloch et al. | Nov 2015 | A1 |
20160023577 | Yamada et al. | Jan 2016 | A1 |
20160107546 | Barzen et al. | Apr 2016 | A1 |
20160272089 | Kim et al. | Sep 2016 | A1 |
20160339810 | Pluta et al. | Nov 2016 | A1 |
20170021743 | Hiemstra et al. | Jan 2017 | A1 |
20170037945 | Maeda et al. | Feb 2017 | A1 |
20170080828 | Aktas | Mar 2017 | A1 |
20170088021 | Noguchi et al. | Mar 2017 | A1 |
20170136921 | Dill et al. | May 2017 | A1 |
20170253152 | Maeda et al. | Sep 2017 | A1 |
20180043800 | Maeda et al. | Feb 2018 | A1 |
20180056819 | Schmitz et al. | Mar 2018 | A1 |
20180103760 | Fujita et al. | Apr 2018 | A1 |
20180154802 | Ito | Jun 2018 | A1 |
20180208087 | Baba et al. | Jul 2018 | A1 |
20180339613 | Mizobata | Nov 2018 | A1 |
20190255979 | Zahn et al. | Aug 2019 | A1 |
20190299821 | Maeda et al. | Oct 2019 | A1 |
20190329674 | Schmitz et al. | Oct 2019 | A1 |
20190337424 | Chang | Nov 2019 | A1 |
20190358694 | Yamakita | Nov 2019 | A1 |
20200047644 | Schmitz et al. | Feb 2020 | A1 |
20200070689 | Naik et al. | Mar 2020 | A1 |
20200164775 | Chang | May 2020 | A1 |
20200253380 | Schmitz et al. | Aug 2020 | A1 |
20200282879 | Schmitz | Sep 2020 | A1 |
20200331367 | Schmitz | Oct 2020 | A1 |
20210039528 | Poptani | Feb 2021 | A1 |
20210061139 | Schmitz | Mar 2021 | A1 |
20210276461 | Schmitz | Sep 2021 | A1 |
Number | Date | Country |
---|---|---|
2369034 | Jul 2002 | CA |
2759299 | Dec 2011 | CA |
2869816 | Oct 2013 | CA |
1291566 | Apr 2001 | CN |
1457306 | Nov 2003 | CN |
1840382 | Oct 2006 | CN |
101148152 | Mar 2008 | CN |
101616820 | Dec 2009 | CN |
101925485 | Dec 2010 | CN |
102126451 | Jul 2011 | CN |
102131673 | Jul 2011 | CN |
202086037 | Dec 2011 | CN |
102442228 | May 2012 | CN |
103025568 | Apr 2013 | CN |
103298652 | Sep 2013 | CN |
203228664 | Oct 2013 | CN |
203381519 | Jan 2014 | CN |
103702860 | Apr 2014 | CN |
103857314 | Jun 2014 | CN |
203974603 | Dec 2014 | CN |
105189196 | Dec 2015 | CN |
205097989 | Mar 2016 | CN |
205130981 | Apr 2016 | CN |
106799978 | Jun 2017 | CN |
107364369 | Nov 2017 | CN |
107428269 | Dec 2017 | CN |
107972542 | May 2018 | CN |
207291755 | May 2018 | CN |
108263253 | Jul 2018 | CN |
109515263 | Mar 2019 | CN |
109562707 | Apr 2019 | CN |
112339625 | Feb 2021 | CN |
907608 | Mar 1954 | DE |
1098292 | Jan 1961 | DE |
4324734 | Jan 1995 | DE |
20220200 | Feb 2004 | DE |
102007002366 | Jul 2008 | DE |
102008026176 | Dec 2009 | DE |
102008029438 | Dec 2009 | DE |
102010038795 | Feb 2012 | DE |
102011013163 | Sep 2012 | DE |
102012009159 | Nov 2012 | DE |
102011108976 | Jan 2013 | DE |
102012008940 | Nov 2013 | DE |
112014000343 | Sep 2015 | DE |
102017100374 | Jul 2017 | DE |
202018107311 | Feb 2019 | DE |
1074426 | Feb 2001 | EP |
1136097 | Dec 1968 | GB |
1546104 | May 1979 | GB |
2441871 | Mar 2008 | GB |
2000084684 | Mar 2000 | JP |
2000153327 | Jun 2000 | JP |
2001186957 | Jul 2001 | JP |
2002119349 | Apr 2002 | JP |
5290789 | Sep 2013 | JP |
5555969 | Jul 2014 | JP |
20030092869 | Dec 2003 | KR |
100601809 | Jul 2006 | KR |
20070119332 | Dec 2007 | KR |
100817000 | Mar 2008 | KR |
20090035633 | Apr 2009 | KR |
20140001651 | Jan 2014 | KR |
101420164 | Jul 2014 | KR |
101655777 | Sep 2016 | KR |
WO-9620848 | Jul 1996 | WO |
2006069630 | Jul 2006 | WO |
WO-2011069107 | Jun 2011 | WO |
WO-2013133245 | Sep 2013 | WO |
2013152433 | Oct 2013 | WO |
WO-2013167240 | Nov 2013 | WO |
2015012287 | Jan 2015 | WO |
WO-2016115986 | Jul 2016 | WO |
WO-2017118496 | Jul 2017 | WO |
2021020580 | Feb 2021 | WO |
Entry |
---|
Office Action regarding Chinese Patent Application No. 202010305091.5, dated Jan. 27, 2022. Translation provided by Unitalen Attorneys at Law. |
U.S. Appl. No. 17/720,609, filed Apr. 14, 2022, Ralph L. Schmitz. |
Non-Final Office Action regarding U.S. Appl. No. 17/181,189 dated May 19, 2022. |
Office Action regarding German Patent Application 10 2020 204 814.2 dated Jun. 8, 2022. |
Office Action regarding U.S. Appl. No. 17/720,609 dated May 17, 2023. |
Office Action regarding Chinese Patent Application No. 2020103050915, dated Jun. 23, 2022. |
Office Action regarding Chinese Patent Application No. 020107827129, dated Jun. 1, 2022. |
Office Action regarding Chinese Patent Application No. 2021102452677, dated Oct. 28, 2022. |
Office Action regarding Chinese Patent Application No. 202010885551.6, dated Jul. 21, 2022. |
German Office Action regarding Patent Application No. 102022201243.7, dated May 12, 2023. |
Office Action regarding Canadian Patent Application No. 2,812,408, dated Jun. 17, 2016. |
Office Action regarding German Patent Application No. 102016114406.1, dated Apr. 27, 2020. Translation provided by Witte, Weller & Partner Patentanwälte mbB. |
International Search Report regarding International Application No. PCT/US2020/021377, dated Jun. 30, 2020. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2020/021377, dated Jun. 30, 2020. |
Office Action regarding German Patent Application No. 102020208717.2, dated Feb. 16, 2021. |
Office Action regarding German Patent Application No. 102019211855.0, dated Feb. 4, 2021. Partial translation provided by Bardehle Pagenberg Partnerschaft mbB. |
SPI Lasers UK Ltd., “Opening new possibilities with single mode oscillation welding (CW).” Presented at: Laser World of Photonics China; Shanghai, China (Mar. 2008). |
Office Action regarding German Patent Application No. 102019212517.4, dated Mar. 11, 2021. Partial translation provided by Bardehle Pagenberg Partnerschaft mbB. |
Office Action regarding Indian Patent Application No. 201921032346, dated Mar. 18, 2021. |
Office Action regarding Chinese Patent Application No. 201910334168.9, dated Apr. 30, 2021. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding German Patent Application No. 102013103671.6, dated May 20, 2021. Translation provided by Witte, Weller & Partner Patentanwälte mbB. |
First Chinese Office Action regarding Application No. 201910801476.8 dated Aug. 10, 2021. English translation provided by Unitalen Attorneys at Law. |
Office Action regarding U.S. Appl. No. 16/996,991, dated Sep. 9, 2021. |
Notice of Allowance regarding U.S. Appl. No. 16/996,991, dated Oct. 4, 2021. |
Office Action regarding U.S. Appl. No. 16/542,369, dated Jul. 16, 2021. |
Office Action regarding U.S. Appl. No. 16/542,369, dated May 17, 2021. |
Notice of Allowance regarding U.S. Appl. No. 16/542,369, dated Oct. 10, 2021. |
Office Action regarding U.S. Appl. No. 16/842,135, dated Sep. 16, 2021. |
Office Action regarding U.S. Appl. No. 16/740,874, dated Apr. 26, 2021. |
Office Action regarding U.S. Appl. No. 16/740,874, dated Aug. 16, 2021. |
Office Action regarding U.S. Appl. No. 16/811,112, dated Sep. 3, 2021. |
Office Action regarding German Application No. 102019110151.4, dated Jul. 12, 2021. |
Office Action regarding German Patent Application No. 102020200559.1, dated Jul. 23, 2021. |
Office Action regarding Chinese Patent Application No. 201910725351.1, dated Jul. 5, 2021. |
Office Action regarding U.S. Appl. No. 16/740,874, dated Oct. 20, 2021. |
Office Action regarding German Patent Application No. 10 2019 211 855.0, dated Nov. 25, 2021. |
Office Action regarding Chinese Patent Application No. 2021120202214440, dated Dec. 7, 2021. |
Office Action regarding Chinese Patent Application No. 201910801476.8, dated Dec. 17, 2021. |
Number | Date | Country | |
---|---|---|---|
20220258651 A1 | Aug 2022 | US |
Number | Date | Country | |
---|---|---|---|
63149799 | Feb 2021 | US |