The present invention relates to an apparatus and method of preventing cracking of a liquid system, such as may be useful for transferring heat from electronic devices and components thereof. In particular, the invention utilizes a variety of means and objects to protect against expansion of water-based solutions when frozen.
When water or many other fluid mixtures are cooled below freezing, the material changes from a liquid state to a solid state, and undergoes a significant expansion in volume, which is as much as 10% or more for water or water-based mixtures. When water freezes in a pipe, it undergoes a similar expansion. Water that has frozen in pipes or other confined spaces does more than simply clog the pipes and block flow. When freezing occurs in a confined space like a steel pipe, the ice will expand and exert extreme pressure which is often enough to crack the pipe and cause serious damage. This phenomenon is a common failure mode in hot-water heating systems and automotive cooling systems.
Ice forming in a pipe does not always cause cracking where ice blockage occurs. Rather, following a complete ice blockage in a pipe, continued freezing and expansion inside the pipe can cause water pressure to increase downstream. The increase in water pressure leads to pipe failure and/or cracking. Upstream from the ice blockage the water can retreat back towards its inlet source, and there is little pressure buildup to cause cracking.
Liquid cooling systems for electronic devices are occasionally subjected to sub-freezing environments during shipping, storage, or in use. Since these systems are going to be frozen on occasion, they must be designed to tolerate the expansion of water when frozen. Additives, such as antifreeze, are potentially poisonous and flammable and can damage mechanical components, sensitive sensors, and electronics, which is why pure or substantially pure water is typically the coolant of choice.
What is needed is an apparatus for and method of preventing cracking in a liquid cooling system that can tolerate a predetermined level of freezing and expansion inside confined spaces without damaging electronic components or affecting system performance.
A liquid system utilizing size and volume reducing means, air pockets, compressible objects, and flexible objects is provided to protect against expansion of water-based solutions when frozen. In such a system, pipes, pumps, and heat exchangers are designed to prevent cracking of their enclosures and chambers.
In a first aspect of the invention, an apparatus for preventing cracking of a liquid system is disclosed. The apparatus comprises at least one heat exchanger; one or more inlet ports extending through a first opening for conveying a fluid to a plurality of channels and passages; one or more outlet ports extending through a second opening for discharging the fluid from the plurality of channels and passages; and one or more compressible objects positioned substantially adjacent the inlet ports and the outlet ports in an unpressured condition such that the compressible objects reduce a volume of the inlet ports and the outlet ports and further wherein pressure exerted on the compressible objects increases a volume of the inlet ports and the outlet ports.
The compressible objects can preferably accommodate a predetermined level of fluid expansion. The predetermined level of fluid expansion can be between 5 to 25 percent. The compressible objects are preferably capable of contracting and expanding between a minimum volume and a maximum volume. The compressible objects can be secured within the inlet port and the outlet port. Alternatively, the compressible objects can be positioned at any location throughout the system. The compressible objects can be made of sponge, foam, air-filled bubbles, balloons and encapsulated in a hermetically sealed package. The package can be made of metallic material, metallized plastic sheet material, or plastic material. The plastic materials can be selected from teflon, mylar, nylon, PET, PVC, PEN or any other suitable package.
In a second aspect of the invention, an apparatus for preventing cracking of a liquid system is disclosed. The apparatus comprises at least one heat exchanger having a top element and a bottom element; a plurality of channels and passages formed within the bottom element to provide flow of a fluid therethrough; and one or more compressible objects positioned within one or more of the plurality of channels and passages such that in an uncompressed state the compressible objects reduce a volume of each of the plurality of channels and passages having one or more of the compressible objects and further wherein under pressure exerted within the channels and passages the compressible objects are compressed to increase the volume of each of the plurality of channels and passages.
In a further separate aspect of the invention, an apparatus for preventing cracking of a liquid system is provided. The system preferably includes one or more pumps and one or more heat exchangers. The apparatus comprises an enclosure, wherein a size and volume occupied by fluid within the enclosure is minimized. The pump can be an electro-osmotic pump.
The enclosure is preferably capable of contracting and expanding between a minimum size and volume condition and a maximum size and volume condition.
In a second separate aspect of the invention, an apparatus for preventing cracking of a liquid system is disclosed. The apparatus comprises a housing having at least one inlet chamber and at least one outlet chamber, wherein a size and volume occupied by fluid within the inlet and outlet chambers is minimized.
The inlet and outlet chambers are preferably capable of contracting and expanding between a minimum size and volume condition and a maximum size and volume condition. The inlet and outlet chambers can be separated by a pumping structure or mechanism.
In a further separate aspect of the invention, a method of preventing cracking of a liquid system is disclosed. The system includes at least one pump and at least one heat exchanger. The method comprises the steps of providing an enclosure and minimizing a size and volume occupied by fluid within the enclosure.
In a further aspect of the invention, a method of preventing cracking of a liquid system is disclosed. The method comprises the steps of providing a housing having at least one inlet chamber and at least one outlet chamber; and minimizing a size and volume occupied by fluid within the inlet and outlet chambers.
In a further aspect of invention, an apparatus for preventing cracking of a liquid system is provided. The system includes at least one pump and at least one heat exchanger. The apparatus comprises an enclosure and one or more compressible objects immersed in the enclosure.
The objects preferably accommodate a predetermined level of fluid expansion. The predetermined level of fluid expansion is preferably between 5 to 25 percent. The objects preferably have a size and volume proportion to an amount of fluid in the enclosure. The objects can be a hydrophobic foam. Alternatively, the objects can be hydrophobic sponges. Also, the objects can be balloons in hydrophobic bags. The objects can be made of rubber, plastic, foam, sealed foam or rubber, or vacuum laminated foam or rubber. The objects may be enclosed in vacuum laminated bags.
In a further aspect of the invention, an apparatus for preventing cracking of a liquid system is provided. The apparatus comprises a housing having at least one inlet chamber and at least one outlet chamber and one or more compressible objects immersed in the inlet and outlet chambers. The objects preferably have a size and volume proportional to an amount of fluid in the chambers.
In a further aspect of the invention, a method of preventing cracking of a liquid system is disclosed. The method comprises the steps of providing an enclosure and immersing one or more compressible objects in the enclosure.
In a further aspect of the invention, a method of preventing cracking of a liquid system is disclosed. The method comprises the steps of providing a housing having at least one inlet chamber and at least one outlet chamber and immersing one or more compressible objects in the inlet and outlet chambers.
In a further aspect of the invention, an apparatus for preventing cracking of a liquid system is disclosed. The apparatus comprises an enclosure and one or more air pockets disposed in the enclosure. The air pockets are preferably positioned farthest away from a location where liquid begins to freeze in the enclosure.
The air pockets preferably have a volume proportional to an amount of fluid in the enclosure. The air pockets preferably accommodate a predetermined level of fluid expansion. The predetermined level of fluid expansion is preferably between 5 to 25 percent.
In a further aspect of the invention, an apparatus for preventing cracking of a liquid system is disclosed. The apparatus comprises a housing having at least one inlet chamber and at least one outlet chamber and an one or more air pockets disposed in the inlet and outlet chambers. The air pockets are preferably positioned farthest away from a location where liquid begins to freeze in the chambers. The air pockets preferably have a volume proportion to an amount of fluid in the chambers.
In a further aspect of the invention, a method of preventing cracking of a liquid system is provided. The method comprises the steps of providing an enclosure and disposing one or more air pockets in the enclosure. The air pockets are positioned farthest away from a location where liquid begins to freeze in the enclosure.
In a further aspect of the invention, a method of preventing cracking of a liquid system is disclosed. The method comprises the steps of providing a housing having at least one inlet chamber and at least one outlet chamber and disposing one or more air pockets in the inlet and outlet chambers. The air pockets are positioned farthest away from a location where liquid begins to freeze in the chambers.
In a further aspect of the invention, an apparatus for preventing cracking of a liquid system is provided. The apparatus comprises an enclosure for holding liquid having a plurality of walls and at least one flexible object coupled to form a portion of at least one wall of the enclosure such that pressure exerted on the flexible objects increases a volume of the enclosure.
The flexible objects preferably accommodate a predetermined level of fluid expansion. The flexible objects can be spaced apart a predetermined distance. The flexible objects are preferably capable of contracting and expanding between a minimum volume condition and a maximum volume condition. The flexible objects are preferably secured within the enclosure and deformable under pressure. The flexible objects can be made of rubber. Alternatively, the flexible objects can be made of plastic or foam.
In a further aspect of the invention, an apparatus for preventing cracking of a liquid system is provided. The apparatus comprises a housing having at least one inlet chamber and at least one outlet chamber and at least one flexible object coupled to form a portion of at least one of the inlet and outlet chambers such that pressure exerted on the flexible objects increases a volume of the housing. The flexible objects preferably accommodate a predetermined level of fluid expansion.
In a further aspect of the invention, a method of preventing cracking of a liquid system is disclosed. The method comprises the steps of providing an enclosure and disposing at least one flexible object to form a portion of at least one wall of the enclosure such that pressure exerted on the flexible objects increases a volume of the enclosure. The flexible objects preferably accommodate a predetermined level of fluid expansion.
In a further aspect of the invention, a method of preventing cracking of a liquid system is disclosed. The method comprises the steps of providing a housing having at least one inlet chamber and at least one outlet chamber and disposing at least one flexible object to form a portion of at least one of the inlet and outlet chambers such that pressure exerted on the flexible objects increases a volume of the housing. The flexible objects preferably accommodate a predetermined level of fluid expansion.
Reference will now be made in detail to the preferred and alternative embodiments of the invention, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with the preferred embodiments, it will be understood that they are not intended to limit the invention to these embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the invention as defined by the appended claims. Furthermore, in the following detailed description of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it should be noted that the present invention may be practiced without these specific details. In other instances, well known methods, procedures and components have not been described in detail as not to unnecessarily obscure aspects of the present invention.
Still referring to
As fluid temperature drops below freezing, ice forms into a blockage. Continued growth of ice in areas of the system 100 can lead to excessive fluid pressure. The resulting pressure can rupture or damage individual elements, such as the lengths 110, 112, 114 of tubing, channels in the heat exchangers 20 and 40, and/or chambers inside the pump 30. As will be explained and understood in further detail below, the individual elements must be designed in a way that tolerates expansion of the fluid or water when frozen.
In one embodiment, shown in
Still referring to
As shown in
In another embodiment, as shown in
Still referring to
As mentioned before, ice forming in a confined space does not typically cause a break where initial ice blockage occurs. Rather, following a complete ice blockage in a confined space, continued freezing and expansion inside the confined space cause fluid pressure to increase downstream. The fluid pressure will reach a maximum at a last location to freeze in a hermetically sealed system. The pressure can be very large, unless there is a trapped air pocket in that region. Thermal design of the chambers 82 and 84 can be altered to select a location where the fluid begins to freeze, and to arrange for freezing to start from one location and advance continuously towards an air pocket at another location. For example, if there is an air pocket at the top surface of a chamber, the fluid should be nucleated at the bottom surface of the chamber. As the fluid begins to freeze at the bottom surface of the chamber, ice expansion displaces water and compresses the air pocket. Since air is easily compressible, the chamber can freeze completely without generating large forces at any location in the chamber.
To arrange a location of initial freezing in the chamber, it may be necessary to provide a thermal path from the location of initial freezing to its surroundings. As the fluid or chamber is cooled from above a freezing point, the thermal path serves to efficiently reject heat stored in the location. For example, an optional metallic insert 288 is mounted from the location of initial freezing in the chamber to the top surface of the chamber would serve. Preferably, the metallic insert 288 is formed of a material that will not contaminate the fluid such as copper. Alternatively, reducing the size and volume of the chamber or reducing package insulation in the chamber could also work. A critical factor is use of any material or structure that assists a particular location become cold fastest, and so that progression of freezing is continuous from that location to the air pockets 85 and 87 of
In some cases, it may be difficult to control the positioning and location of the air pockets 85 and 87 in the chambers 82 and 84. Further, it may be difficult to dispose an air pocket in each chamber of the system 100 (
Still referring to
The objects 95 and 97 can be comprised of a compressible material, such as an open-cell or closed-cell foam, rubber, sponge, air-filled bubbles, elastomer, or any related material, and a protective layer covering all surfaces of the compressible material. A purpose of having the protective layer is to prevent contact between the compressible material and a surrounding fluid. The protective layer can be formed by many means, including wrapping and sealing, dip-coating, spray-coating, or other similar means. The protective layer can be a vacuum laminated cover, such as a spray-on layer, a deposited layer, or a layer formed by reacting or heating surfaces of the compressible material. In addition, it is possible to form a protective layer on the surface of the compressible material by thermally fusing, melting, or chemically modifying the surface. The protective layer can be flexible enough so that a volume of the compressible material can be reduced by pressure. In order to achieve this degree of flexibility, the protective layer can be much thinner than the compressible material. Further, the protective layer can be formed from a material that is not chemically attacked by the fluid used in the cooling system, or degraded by temperature cycles above and below freezing. The protective layer can be hermetically sealed so that gas cannot enter or leave the volume within the protective layer. The protective layer can be formed from a variety of materials, including teflon, mylar, polyethylene, nylon, PET, PVC, PEN or any other suitable plastic, and can additionally include metal films on interior or exterior surfaces to improve hermeticity. In addition, the protective layer can be a metallized plastic sheet material, as used in potato chip packaging, and can serve as an impervious layer, blocking all gas and liquid diffusion. Furthermore, in cases where occasional bubbles are moving through the cooling system, as when an electroosmotic pump is generating hydrogen and oxygen gas bubbles, the protective layer can be hydrophilic to help reduce the possibility that the bubbles will attach to the surfaces.
In a further embodiment, as shown in
Still referring to
In addition to the use of size and volume reducing means, air pockets, compressible objects, and compressible objects discussed above, other techniques can be used to prevent cracking in a liquid cooling system, as would be recognized by one of ordinary skill in the art. For example, as shown in
In another embodiment, shown in
Still referring to
In an alternative embodiment, as shown in
The predetermined level of fluid can be between five to twenty five percent. The flexible objects are preferably spaced apart a predetermined distance. Additionally, the flexible objects are preferably capable of contracting and expanding between a minimum volume condition and a maximum volume condition. The pump can be electro-osmotic. The housing can include rigid plates. Furthermore, the flexible objects can be fastened to the rigid plates. The flexible objects can be made of rubber, plastic or foam.
In another embodiment, shown in
As the fluid or chamber is cooled from above a freezing point, the thermal path serves to efficiently reject heat stored in the location. For example, an optional metallic insert 430 is mounted from the location of initial freezing in the chamber to the top surface of the chamber would serve. Preferably, the metallic insert 430 is formed of a material that will not contaminate the fluid such as copper. A critical factor is use of any material or structure that assists a particular location become cold fastest, and so that progression of freezing is continuous from that location to the expanded end portions 407 of the chambers. The combination of having a hourglass-shaped chambers and the metallic insert 430 allows for freezing to initiate at the narrowed middle or central portion 405 of the hourglass-shaped chambers and expand outward to the expanded end portions 407.
In the above-described embodiments, the present invention is applied to a pump or a housing having an inlet chamber and an outlet chamber. Alternatively, the present invention may be applied to any enclosure in a liquid cooling system. The liquid cooling system preferably includes an electro-osmotic pump and a heat exchanger. As such, the size and volume reducing means, the air pockets, the compressible objects, and the compressible objects can be applied to any or each enclosure in the system, including tubing, of the liquid cooling system.
The present invention has been described in terms of specific embodiments incorporating details to facilitate the understanding of the principles of construction and operation of the invention. Such reference herein to specific embodiments and details thereof is not intended to limit the scope of the claims appended hereto. It will be apparent to those skilled in the art that modification s may be made in the embodiment chosen for illustration without departing from the spirit and scope of the invention.
This patent application is a divisional of U.S. patent application Ser. No. 10/643,641 filed Aug. 18, 2003 now U.S. Pat. No. 7,201,012 and entitled “REMEDIES TO PREVENT CRACKING TN A LIQUID SYSTEM.” This application claims priority under 35 U.S.C. § 119(e) of the co-pending U.S. provisional patent application Ser. No. 60/444,269, filed on Jan. 31, 2003, and titled “REMEDIES FOR FREEZING IN CLOSED-LOOP LIQUID COOLING FOR ELECTRONIC DEVICES.” The provisional patent application Ser. No. 60/444,269, filed on Jan. 31, 2003, and titled “REMEDIES FOR FREEZING IN CLOSED-LOOP LIQUID COOLING FOR ELECTRONIC DEVICES” is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
596062 | Firey | Dec 1897 | A |
2039593 | Hubbuch et al. | May 1936 | A |
2273505 | Florian | Feb 1942 | A |
2600103 | Feck | Jun 1952 | A |
3267859 | Jutila | Aug 1966 | A |
3361195 | Meyerhoff et al. | Jan 1968 | A |
3524497 | Chu et al. | Aug 1970 | A |
3554669 | Reader | Jan 1971 | A |
3654988 | Clayton, III | Apr 1972 | A |
3771219 | Tuzi et al. | Nov 1973 | A |
3817321 | von Cube et al. | Jun 1974 | A |
3823572 | Cochran, Jr. | Jul 1974 | A |
3923426 | Theeuwes | Dec 1975 | A |
3948316 | Souriau | Apr 1976 | A |
4109707 | Wilson et al. | Aug 1978 | A |
4138996 | Cartland | Feb 1979 | A |
4203488 | Johnson et al. | May 1980 | A |
4211208 | Lindner | Jul 1980 | A |
4235285 | Johnson et al. | Nov 1980 | A |
4312012 | Frieser et al. | Jan 1982 | A |
4345267 | Corman et al. | Aug 1982 | A |
4450472 | Tuckerman et al. | May 1984 | A |
4467861 | Kiseev et al. | Aug 1984 | A |
4485429 | Mittal | Nov 1984 | A |
4494171 | Bland et al. | Jan 1985 | A |
4516632 | Swift et al. | May 1985 | A |
4540115 | Hawrylo | Sep 1985 | A |
4561040 | Eastman et al. | Dec 1985 | A |
4567505 | Pease et al. | Jan 1986 | A |
4573067 | Tuckerman et al. | Feb 1986 | A |
4574876 | Aid | Mar 1986 | A |
4644385 | Nakanishi et al. | Feb 1987 | A |
4716494 | Bright et al. | Dec 1987 | A |
4758926 | Herrell et al. | Jul 1988 | A |
4866570 | Porter | Sep 1989 | A |
4868712 | Woodman | Sep 1989 | A |
4893174 | Yamada et al. | Jan 1990 | A |
4894709 | Phillips et al. | Jan 1990 | A |
4896719 | O'Neill et al. | Jan 1990 | A |
4903761 | Cima | Feb 1990 | A |
4908112 | Pace | Mar 1990 | A |
4938280 | Clark | Jul 1990 | A |
4978638 | Buller et al. | Dec 1990 | A |
5009760 | Zare et al. | Apr 1991 | A |
5016090 | Galyon et al. | May 1991 | A |
5016138 | Woodman | May 1991 | A |
5043797 | Lopes | Aug 1991 | A |
5057908 | Weber | Oct 1991 | A |
5070040 | Pankove | Dec 1991 | A |
5083194 | Bartilson | Jan 1992 | A |
5088005 | Ciaccio | Feb 1992 | A |
5096388 | Weinberg | Mar 1992 | A |
5099311 | Bonde et al. | Mar 1992 | A |
5099910 | Walpole et al. | Mar 1992 | A |
5125451 | Matthews | Jun 1992 | A |
5131233 | Cray et al. | Jul 1992 | A |
5142970 | ErkenBrack | Sep 1992 | A |
5145001 | Valenzuela | Sep 1992 | A |
5161089 | Chu et al. | Nov 1992 | A |
5179500 | Koubek et al. | Jan 1993 | A |
5199487 | DiFrancesco et al. | Apr 1993 | A |
5203401 | Hamburgen et al. | Apr 1993 | A |
5218515 | Bernhardt | Jun 1993 | A |
5219278 | Van Lintel | Jun 1993 | A |
5228502 | Chu et al. | Jul 1993 | A |
5232047 | Matthews | Aug 1993 | A |
5239200 | Messina et al. | Aug 1993 | A |
5239443 | Fahey et al. | Aug 1993 | A |
5263251 | Matthews | Nov 1993 | A |
5265670 | Zingher | Nov 1993 | A |
5269372 | Chu et al. | Dec 1993 | A |
5274920 | Mathews | Jan 1994 | A |
5275237 | Rolfson et al. | Jan 1994 | A |
5308429 | Bradley | May 1994 | A |
5309319 | Messina | May 1994 | A |
5310440 | Zingher | May 1994 | A |
5316077 | Reichard | May 1994 | A |
5317805 | Hoopman et al. | Jun 1994 | A |
5325265 | Turlik et al. | Jun 1994 | A |
5336062 | Richter | Aug 1994 | A |
5346000 | Schlitt | Sep 1994 | A |
5371529 | Eguchi et al. | Dec 1994 | A |
5380956 | Loo et al. | Jan 1995 | A |
5383340 | Larson et al. | Jan 1995 | A |
5386143 | Fitch | Jan 1995 | A |
5388635 | Gruber et al. | Feb 1995 | A |
5397919 | Tata et al. | Mar 1995 | A |
5398848 | Padamsee | Mar 1995 | A |
5421943 | Tam et al. | Jun 1995 | A |
5427174 | Lomolino, Sr. et al. | Jun 1995 | A |
5436793 | Sanwo et al. | Jul 1995 | A |
5441613 | McCormick et al. | Aug 1995 | A |
5459099 | Hsu | Oct 1995 | A |
5490117 | Oda et al. | Feb 1996 | A |
5508234 | Dusablon, Sr. et al. | Apr 1996 | A |
5514832 | Dusablon, Sr. et al. | May 1996 | A |
5514906 | Love et al. | May 1996 | A |
5534471 | Carolan et al. | Jul 1996 | A |
5544696 | Leland | Aug 1996 | A |
5548605 | Benett et al. | Aug 1996 | A |
5564497 | Fukuoka et al. | Oct 1996 | A |
5575929 | Yu et al. | Nov 1996 | A |
5585069 | Zanzucchi et al. | Dec 1996 | A |
5632876 | Zanzucchi et al. | May 1997 | A |
5641400 | Kaltenbach et al. | Jun 1997 | A |
5658831 | Layton et al. | Aug 1997 | A |
5675473 | McDunn et al. | Oct 1997 | A |
5685966 | Aaron et al. | Nov 1997 | A |
5692558 | Hamilton et al. | Dec 1997 | A |
5696405 | Weld | Dec 1997 | A |
5703536 | Davis et al. | Dec 1997 | A |
5704416 | Larson et al. | Jan 1998 | A |
5727618 | Mundinger et al. | Mar 1998 | A |
5740013 | Roesner et al. | Apr 1998 | A |
5759014 | Van Lintel | Jun 1998 | A |
5763951 | Hamilton et al. | Jun 1998 | A |
5768104 | Salmonson et al. | Jun 1998 | A |
5774779 | Tuchinskiy | Jun 1998 | A |
5800690 | Chow et al. | Sep 1998 | A |
5801442 | Hamilton et al. | Sep 1998 | A |
5810077 | Nakamura et al. | Sep 1998 | A |
5835345 | Staskus et al. | Nov 1998 | A |
5836750 | Cabuz | Nov 1998 | A |
5839290 | Nazeri | Nov 1998 | A |
5858188 | Soane et al. | Jan 1999 | A |
5863708 | Zanzucchi et al. | Jan 1999 | A |
5870823 | Bezama et al. | Feb 1999 | A |
5874795 | Sakamoto | Feb 1999 | A |
5876655 | Fisher | Mar 1999 | A |
5880524 | Xie | Mar 1999 | A |
5886870 | Omori | Mar 1999 | A |
5901037 | Hamilton et al. | May 1999 | A |
5921087 | Bhatia et al. | Jul 1999 | A |
5936192 | Tauchi | Aug 1999 | A |
5940270 | Puckett | Aug 1999 | A |
5942093 | Rakestraw et al. | Aug 1999 | A |
5945217 | Hanrahan | Aug 1999 | A |
5964092 | Tozuka et al. | Oct 1999 | A |
5965001 | Chow et al. | Oct 1999 | A |
5965813 | Wan et al. | Oct 1999 | A |
5978220 | Frey et al. | Nov 1999 | A |
5989402 | Chow et al. | Nov 1999 | A |
5993750 | Ghosh et al. | Nov 1999 | A |
5997713 | Beetz, Jr. et al. | Dec 1999 | A |
5998240 | Hamilton et al. | Dec 1999 | A |
6007309 | Hartley | Dec 1999 | A |
6010316 | Haller et al. | Jan 2000 | A |
6012902 | Parce | Jan 2000 | A |
6013164 | Paul et al. | Jan 2000 | A |
6014312 | Schulz-Harder et al. | Jan 2000 | A |
6019165 | Batchelder | Feb 2000 | A |
6019882 | Paul et al. | Feb 2000 | A |
6021045 | Johnson | Feb 2000 | A |
6034872 | Chrysler et al. | Mar 2000 | A |
6039114 | Becker et al. | Mar 2000 | A |
6054034 | Soane et al. | Apr 2000 | A |
6068752 | Dubrow et al. | May 2000 | A |
6090251 | Sundberg et al. | Jul 2000 | A |
6096656 | Matzke et al. | Aug 2000 | A |
6100541 | Nagle et al. | Aug 2000 | A |
6101715 | Fuesser et al. | Aug 2000 | A |
6103199 | Bjornson et al. | Aug 2000 | A |
6106685 | McBride et al. | Aug 2000 | A |
6119729 | Oberholzer | Sep 2000 | A |
6126723 | Drost et al. | Oct 2000 | A |
6129145 | Yamamoto et al. | Oct 2000 | A |
6129260 | Andrus et al. | Oct 2000 | A |
6131650 | North et al. | Oct 2000 | A |
6140860 | Sandhu et al. | Oct 2000 | A |
6146103 | Lee et al. | Nov 2000 | A |
6154226 | York et al. | Nov 2000 | A |
6154363 | Chang | Nov 2000 | A |
6159353 | West et al. | Dec 2000 | A |
6167948 | Thomas | Jan 2001 | B1 |
6171067 | Parce | Jan 2001 | B1 |
6174675 | Chow et al. | Jan 2001 | B1 |
6176962 | Soane et al. | Jan 2001 | B1 |
6186660 | Kopf-Sill et al. | Feb 2001 | B1 |
6196307 | Ozmat | Mar 2001 | B1 |
6206022 | Tsai et al. | Mar 2001 | B1 |
6210986 | Arnold et al. | Apr 2001 | B1 |
6216343 | Leland et al. | Apr 2001 | B1 |
6221226 | Kopf-Sill | Apr 2001 | B1 |
6227809 | Forster et al. | May 2001 | B1 |
6234240 | Cheon | May 2001 | B1 |
6238538 | Parce et al. | May 2001 | B1 |
6251254 | Katoh et al. | Jun 2001 | B1 |
6253832 | Hallefalt | Jul 2001 | B1 |
6253835 | Chu et al. | Jul 2001 | B1 |
6257320 | Wargo | Jul 2001 | B1 |
6260579 | Yokota et al. | Jul 2001 | B1 |
6277257 | Paul et al. | Aug 2001 | B1 |
6287440 | Arnold et al. | Sep 2001 | B1 |
6301109 | Chu et al. | Oct 2001 | B1 |
6313992 | Hildebrandt | Nov 2001 | B1 |
6317326 | Vogel et al. | Nov 2001 | B1 |
6321791 | Chow | Nov 2001 | B1 |
6322753 | Lindberg et al. | Nov 2001 | B1 |
6324058 | Hsiao | Nov 2001 | B1 |
6330907 | Ogushi et al. | Dec 2001 | B1 |
6336497 | Lin | Jan 2002 | B1 |
6337794 | Agonafer et al. | Jan 2002 | B1 |
6347036 | Yeager et al. | Feb 2002 | B1 |
6351384 | Daikoku et al. | Feb 2002 | B1 |
6366462 | Chu et al. | Apr 2002 | B1 |
6366467 | Patel et al. | Apr 2002 | B1 |
6367544 | Calaman | Apr 2002 | B1 |
6388317 | Reese | May 2002 | B1 |
6388385 | McGinn et al. | May 2002 | B1 |
6396706 | Wohlfarth | May 2002 | B1 |
6397932 | Calaman et al. | Jun 2002 | B1 |
6400012 | Miller et al. | Jun 2002 | B1 |
6406605 | Moles | Jun 2002 | B1 |
6415860 | Kelly et al. | Jul 2002 | B1 |
6416642 | Alajoki et al. | Jul 2002 | B1 |
6417060 | Tavkhelidze et al. | Jul 2002 | B2 |
6424531 | Bhatti et al. | Jul 2002 | B1 |
6431260 | Agonafer et al. | Aug 2002 | B1 |
6437981 | Newton et al. | Aug 2002 | B1 |
6438984 | Novotny et al. | Aug 2002 | B1 |
6443222 | Yun et al. | Sep 2002 | B1 |
6443704 | Darabi et al. | Sep 2002 | B1 |
6444461 | Knapp et al. | Sep 2002 | B1 |
6449157 | Chu | Sep 2002 | B1 |
6449162 | Corbin, Jr. et al. | Sep 2002 | B1 |
6457515 | Vafai et al. | Oct 2002 | B1 |
6459581 | Newton et al. | Oct 2002 | B1 |
6459582 | Ali et al. | Oct 2002 | B1 |
6466442 | Lin | Oct 2002 | B2 |
6477045 | Wang | Nov 2002 | B1 |
6492200 | Park et al. | Dec 2002 | B1 |
6495015 | Schoeniger et al. | Dec 2002 | B1 |
6508301 | Marsala | Jan 2003 | B2 |
6519151 | Chu et al. | Feb 2003 | B2 |
6533029 | Phillips | Mar 2003 | B1 |
6536516 | Davies et al. | Mar 2003 | B2 |
6537437 | Galambos et al. | Mar 2003 | B1 |
6543521 | Sato et al. | Apr 2003 | B1 |
6553253 | Chang | Apr 2003 | B1 |
6572749 | Paul et al. | Jun 2003 | B1 |
6578626 | Calaman et al. | Jun 2003 | B1 |
6581388 | Novotny et al. | Jun 2003 | B2 |
6587343 | Novotny et al. | Jul 2003 | B2 |
6588498 | Reyzin et al. | Jul 2003 | B1 |
6591625 | Simon | Jul 2003 | B1 |
6600220 | Barber et al. | Jul 2003 | B2 |
6601643 | Cho et al. | Aug 2003 | B2 |
6606251 | Kenny et al. | Aug 2003 | B1 |
6609560 | Cho et al. | Aug 2003 | B2 |
6632655 | Mehta et al. | Oct 2003 | B1 |
6632719 | DeBoer et al. | Oct 2003 | B1 |
6651735 | Cho et al. | Nov 2003 | B2 |
6675875 | Vafai et al. | Jan 2004 | B1 |
6719535 | Rakestraw et al. | Apr 2004 | B2 |
6729383 | Cannell et al. | May 2004 | B1 |
6743664 | Liang et al. | Jun 2004 | B2 |
6770183 | Hencken et al. | Aug 2004 | B1 |
6787052 | Vaganov | Sep 2004 | B1 |
6865081 | Meyer et al. | Mar 2005 | B2 |
6934154 | Prasher et al. | Aug 2005 | B2 |
20010016985 | Insley et al. | Aug 2001 | A1 |
20010024820 | Mastromatteo et al. | Sep 2001 | A1 |
20010044155 | Paul et al. | Nov 2001 | A1 |
20010045270 | Bhatti | Nov 2001 | A1 |
20010046703 | Burns et al. | Nov 2001 | A1 |
20010055714 | Cettour-Rose et al. | Dec 2001 | A1 |
20020011330 | Insley et al. | Jan 2002 | A1 |
20020075645 | Kitano et al. | Jun 2002 | A1 |
20020096312 | Korin | Jul 2002 | A1 |
20020121105 | McCarthy, Jr. et al. | Sep 2002 | A1 |
20020134543 | Estes et al. | Sep 2002 | A1 |
20030022505 | Ouellet et al. | Jan 2003 | A1 |
20030062149 | Goodson et al. | Apr 2003 | A1 |
20030121274 | Wightman | Jul 2003 | A1 |
20030213580 | Philpott et al. | Nov 2003 | A1 |
20040040695 | Chesser et al. | Mar 2004 | A1 |
20040052049 | Wu et al. | Mar 2004 | A1 |
20040089008 | Tilton et al. | May 2004 | A1 |
20040112571 | Kenny et al. | Jun 2004 | A1 |
20040120827 | Kim et al. | Jun 2004 | A1 |
20040125561 | Gwin et al. | Jul 2004 | A1 |
20040160741 | Moss et al. | Aug 2004 | A1 |
20040188069 | Tomioka et al. | Sep 2004 | A1 |
20050084385 | Corbin et al. | Apr 2005 | A1 |
20050168949 | Tilton et al. | Aug 2005 | A1 |
Number | Date | Country |
---|---|---|
97212126.9 | Mar 1997 | CN |
197 10 716 | Sep 1998 | DE |
1-256775 | Oct 1989 | JP |
10-99592 | Apr 1998 | JP |
10099592 | Apr 1998 | JP |
2000-277540 | Oct 2000 | JP |
2001-326311 | Nov 2001 | JP |
WO 0125711 | Apr 2001 | WO |
WO 2004036040 | Apr 2004 | WO |
WO 2004076857 | Sep 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20050183845 A1 | Aug 2005 | US |
Number | Date | Country | |
---|---|---|---|
60444269 | Jan 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10643641 | Aug 2003 | US |
Child | 11111536 | US |