1. Field of the Invention
The invention relates in general to a remote control device, a display system and associated display method, and more particularly, to a remote control device, a display system and associated display method that adjust a display image according to a movement amount of indicator and a movement direction of indicator.
2. Description of the Related Art
Accompanied with the prevalence of electronic whiteboards and interactive projectors, technologies of optical pens for presenting a mouse cursor also continue to progress. Among the different trace sensing methods, basis for trace sensing methods of an optical pen may be categorized into two types—an image signal including coordinate information and an image signal excluding coordinate information.
In the type of an image signal excluding coordinate information, an optical pen generates an indication point on a screen purely in response to a user operation. Then, a position device disposed near the screen detects a coordinate position of the indication point. In the type of an image signal including coordinate information, an optical pen is capable of reading coordinate information carried in the image signal. Hence, coordinate position of a current indication point in a display image can be accordingly determined.
Under the above architecture, when detecting trace of an optical trace using the technology based on an image signal excluding coordinate information, sensed coordinates of the sensing devices 111 need to be consistent with display coordinates of a projected image of the projector 112. Otherwise, the display coordinates in the projected image of the projector 14 may not be equivalent to the sensed coordinates. For instance, the sensing devices 111 accurately sense the sensed coordinates of the indication point as (X.Y), but an indication point of a mouse cursor may be presented at a different position on the projection screen 11. As such, the optical pen 10 may be interpreted as being malfunctioning.
In other words, when sensing an input trace of the optical pen using the technology based on an image signal excluding coordinate information, a calibration procedure on the sensing devices 111 and the projector 12 is required whenever relative positions of the sensing devices 111, the projection screen 11 and the projector 14 change. For example, the sensing devices 111 and the projector 14 are relocated from a classroom A and rearranged in a conference room B. The calibration procedure for adjusting corresponding relationship between display coordinates and sensed coordinates leads to usage restriction and inconveniences.
As such, by inserting the sequence of coordinate patterns at the timing of the 60th frame, each position on the display image is given a unique sequence of light intensity. Therefore, the sequence of the unique sequence of light intensity corresponding to a specified position in the display region is detected once every 60 frames. Consequentially, a corresponding code representing a position of an indication point currently pointed by the optical pen point can be retrieved. Further, in the display region, the position of the indication point of an optical pen 15 can be determined according to the sequence of light intensity.
For example, the coordinate patterns are designed and presented by the display image with a shadow at different corner. For instance, a shadow at an upper-left block at a first time point t1 (the timing of the 60th frame), a shadow at an upper-right block at a second time point t2 (the timing of the 120th frame), a shadow at a lower-right block at a third time point t3 (the timing of the 180th frame), and a shadow at a lower-left block at a fourth time point t4 (the timing of the 240th frame) are shown in
As such, when the code sequence sensed by the optical pen 15 at the first time point t1, the second time point t2, the third time pint t3, and the fourth time point t4 is (1, 0, 0, 0), it can be determined that the position of the current indication point is at the upper-left block of the display image. Similarly, when the code sequence is (0, 1, 0, 0), it can be determined that the position of the current indication point is aligned with the upper-right block of the display image.
Since the image of the coordinate patterns and the user image signal are both projected by the projection device 14, a display system 17 in
A display image to be described below is applicable to display systems that either implements an image signal including or excluding coordinate information. For illustration purposes, whether an image signal includes coordinate information is not specified below.
Referring to
In
Further, when the user needs to adjust the display image 22 in a display window, adjustments with respect to a vertical scroll 24 and a horizontal scroll 25 in the display image 22 are usually required. Thus, the above horizontal or vertical adjustments on the display image 22 involve additional control means such as a mouse or a touch pad that is connected to a computer host. Consequently, the user is mandated to alternately utilize the optical pen and the touch pad/mouse in order to successfully perform the process of drawing or writing.
According to an aspect of the present invention, a display method applied between a remote control device and a display device that are in communication with each other is provided. The display method comprises the following steps. The remote control device generates a vibration signal of housing by sensing an acceleration of a movement of the housing in a space. The remote control device transmits the vibration signal of housing to the display device. The display device displays a display image. In the display image, the indication path is pointed to an intersection position, and an indication pattern is displayed at the intersection position. An appearance of the indication pattern changes according to a number of times that the vibration signal of housing is received.
The above and other aspects of the invention will become better understood with regard to the following detailed description of the preferred but non-limiting embodiments. The following description is made with reference to the accompanying drawings.
According to an embodiment of the present invention, a display image is directly adjusted by a remote control device. For example, a vertical scroll of the display image, a horizontal scroll of the display image, and a scaling ratio of the display image are adjusted. Further, when drawing with an optical pen of the present invention, a width, brightness level and colors of an input trace of the optical pen can be directly controlled. For illustration purposes, an example of an optical pen utilized as a remote control device is given for explaining the embodiments. It should be noted that in practical application, type of the remote control device is unlimited.
The roller 352 may be regarded as an input unit, and generate movement information of indicator (A) according to a rotation amount and a rotation direction. The gravity sensing unit 353 generates placement information (B) according to placement of the pen-like housing 351. Through transmission means such as Bluetooth or wireless networks, the transmission unit 354 outputs the movement information of indicator (A) and the placement information (B).
In an embodiment of the present invention, a direction of a pen body from a tail to the pen point of the optical pen 35 is defined as a long axis of the housing, and an extended direction of the long axis of the housing is further defined as an indication path. Besides, a horizontal included angle at long-axis is defined as an included angle between the long axis of the housing and a horizontal plane. When the user holds the optical pen 35 and controls the placement of the optical pen 35, the direction of the pen body of the optical pen 35 changes, and this leads to a change in the horizontal included angle at long-axis.
Thus, the gravity sensing unit 353 may utilize the horizontal included angle at long-axis to represent the placement information (B). Further, the roller 352 is rotated according to the user control to generate the movement information of indicator (A) including a movement direction of indicator (a1) and a movement amount of indicator (a2).
A display device 32 includes a reception unit 321, a display control unit 323, and a display unit 322. The reception unit 321 is in communication with the transmission unit of the remote control device, and the display control unit 323 is electrically connected to the reception unit 321 and the display unit 322.
After the reception unit 321 receives the movement information of indicator (A) and the placement information (B), the display control unit 323 adjusts the display image presented by the display unit 322 according to the movement information of indicator (A) and the placement information (B).
The display device 32 may further include a storage unit (not shown) electrically connected to the display unit 322. When the display device 32 is utilized with graphics software, with the storage unit, the display device 32 may store position changes of an input trace, and settings of display attributes such as size, width, color and brightness level settings of the input trace.
When a determination result of step S53 is negative, the display device vertically moves the display image according to the movement information of indicator (A) in step S55. For example, the display image is controlled for vertical scroll up/down. Conversely, when the determination result of step S53 is positive, the display device horizontally adjusts the display image according to the movement information of indicator (A) in step S54. For example, the display image is controlled for horizontal scroll right/left.
Take
When the user turns the roller towards the direction of the pen tail, the movement direction of indicator (a1) is defined as a positive movement direction (+), and the display image is moved upwards along the vertical direction, as shown in
A range for moving the display image upwards is determined according to the movement amount of indicator (a2). For example, when the roller turns one-half of a round towards the pen tail, contents of the display image are moved upwards by 100 pixels. When the roller turns one full round towards the pen tail, the contents of the display image are moved upwards by 200 pixels.
Similarly, when the user turns the roller towards the pen point, the movement direction of indicator (a1) is defined as a negative movement direction (−), and the display image is moved downwards, as shown in
Take
When the user turns the roller towards the pen tail, the movement direction of indicator (a1) is defined as a positive movement direction (+), and the display image is moved to the left along the horizontal direction, as shown in
Similarly, when the user turns the roller towards the pen point of the optical pen, the movement direction of indicator (a1) is defined as a negative movement direction (−), and the display image is moved to the right, as shown in
As demonstrated by the above description, the optical pen according to an embodiment of the present invention is capable of directly adjusting the display image vertically or horizontally.
Referring to
When a determination result of step S63 is negative, the display image is vertically adjusted according to the movement information of indicator (A) in step S67. Details of the display control method in step S67 are similar to those in step S55 in
When the determination result of step S63 is affirmative, whether an indication path points towards the display image is further determined in step S64.
When the indication path does not point towards the display image, in step S65, the display device horizontally adjusts the display image according to the movement information of indicator (A). Details of the display control method in step S65 are similar to those in step S54 in
Instead, when the indication path points towards the display image, in step S66, the display device scales the display image according to the movement information of indicator (A).
Assume that
Similarly, when the user rotates the roller towards the pen point, the movement direction of indicator (a1) is defined as a negative movement direction (−), and the contents of the display image are scaled up (zoom-in), as shown in
Therefore, the present invention is capable of determining the placement of the optical pen according to the long axis of the housing of the optical pen to accordingly vertically or non-vertically adjust movement of the display image. With reference to
In
In
For example, the first threshold of horizontal included angle (α_th) may be defined as 50 degrees. When the horizontal included angle at long-axis is greater than 50 degrees, the display device adjusts the display image vertically. When the horizontal included angle at long-axis is smaller than 50 degrees, the display device adjusts the display image non-vertically.
In the present invention, the first threshold of horizontal included angle may also incorporate an error range (e.g., ±5 degrees). When a change within the error range occurs in the horizontal included angle at long-axis, the original operation mode is maintained.
For example, while the user operates the optical pen to horizontally adjust the display image, the display image is maintained if the horizontal included angle at long-axis increases from 40 degrees to 54 degrees. Only when the horizontal included angle at long-axis of the optical pen 81 continues to increase and exceeds 55 degrees, the display device then vertically adjusts the display image; and vice versa.
In addition to representing the placement information (B) by the horizontal included angle at long-axis, the placement information (B) may also be otherwise defined according to another embodiment of the present invention.
The included angle between the lateral axis of input unit and the horizontal plane is defined as a horizontal included angle at lateral-axis. The horizontal included angle at lateral axis is utilized to represent the placement information (B). Similarly, by utilizing the placement information (B) cooperating with the movement information of indicator (A) represented by a rotation direction and a rotation amount of the roller 422, the display device is enabled to further control the display image.
When a change occurs in the placement of the optical pen, the horizontal included angle at lateral-axis also changes.
In
In
Further, the horizontal included angle at lateral-axis is relatively larger when the placement of the optical pen 42 is positioned at the second placement P2 and the fifth placement P5, as shown in the diagram. That is, the horizontal included angle at lateral-axis gets larger as the direction of the pen body of the optical pen 42 gets closer to the horizontal direction. Therefore, a second threshold of horizontal included angle (θ=β_th) is defined. When the placement of the optical pen 42 is in a way that the horizontal included angle at lateral-axis is greater than the second threshold of horizontal included angle (θ>β_th), the display device adjusts the display image non-vertically.
Thus, in
When the optical pen represents the placement information by the horizontal included angle at lateral-axis, details of how the display device adjusts the display image according to the rotation direction and the rotation amount of the roller can be deduced from the foregoing description, and shall be omitted herein. It should be noted that, the corresponding relationships between the display control method of the input unit and definitions of the movement amount and the movement direction of indicator are not limited to the examples described. For example, when the roller rotates towards the pen point, the movement direction of indicator may also be defined as a positive movement direction, and vice versa.
In the above embodiments, it is assumed that the input unit of the optical pen is a roller. Hence, the two directions along which the roller rotates correspond to two opposite directions of the same dimension in an indicator movement, and an actual rotation amount of the roller corresponds to the movement amount of indicator of the display image. Alternatively, the input unit of the optical pen may also be a touch pad on an X-Y plane, a rocker, or a key switch etc. The input unit extends along the Y-axis, and the X-axis is the lateral axis of the input unit.
The touch pad 711 is capable of detecting a touch gesture, whose movement direction may be selected from either a positive movement direction or a negative movement direction. When the optical pen 71 utilizes the touch pad 711 as an input unit, the movement amount and the movement direction of indicator may be represented by a movement distance and a movement direction of the touch gesture.
The rocker 721 may generate a conduction signal in response to a user press. The movement amount of indicator corresponds to a pressed period or the number of presses on the rocker 721. When a position at a front half 721a of the rocker 721 close to the pen point is pressed, the positive movement direction indicates the movement direction of the indicator. When a position at a second half 721b of the rocker 721 close to the pen tail is pressed, the negative movement direction indicates the movement direction of indicator.
When a pressed position is a key switch 731a closer to the pen point, it is assumed that the conduction signal is in a first state, and the movement direction of indicator at this point is defined as a positive movement direction.
When a pressed position is a key switch 731b closer to the pen tail, it is assumed that the conduction signal is in a second state, and the movement direction of indicator at this point is defined as a negative movement direction.
Apart from determining the movement direction of indicator according to the key switches 731a and 731b, the movement amount of indicator may be further determined according to the number of presses or a press period of the key switches 731a and 731b.
In another application, in addition to writing or drawing function, the optical pen further provides a function for modifying display attributes of an input trace.
On the left side of the graphics software, there are setting panels for brush strokes and colors. A user may control a placement of an optical pen 143 in a way that an intersection position of the optical pen 143 and a display image 142 stays at the various areas at the left of the display image 142, such that the user is allowed to select a brush stroke or color of an input trace according to a desired setting type. Associated details are described below.
In addition to displaying an indication pattern at an intersection position for prompting a user, the display device may also display a brush stroke pattern as an indication pattern. The type of the brush stroke pattern is selected by an user when the user utilizes the graphics software for writing or drawing.
Taking
According to an embodiment of the present invention, when an intersection position stays at the brush stroke setting panel, and the user performs a dynamic operation using the optical pen (e.g., swinging the optical pen back-and-forth), the pattern of the brush stroke may correspondingly change.
For example, the first brush stroke pattern (watercolor) is selected when the optical pen is swung once, the second brush stroke pattern (paint brush) is selected when the optical pen is swung twice, and the third brush stroke pattern (tumbler) is selected when the optical pen is swung three times. Similarly, the optical pen may restore to the first brush stroke pattern (watercolor) when the user again swings the optical pen, and so forth in a cyclic manner.
In other words, instead of changing the selected brush stroke pattern from options provided by the setting panel, the display system of the present invention allows the user to change the selected brush stroke pattern through directly operating the optical pen. In the present invention, the current brush stroke pattern is selected according to whether the user swings the optical pen and the number of swing times.
To implement the above function, an acceleration sensing unit, for sensing an acceleration of movements of the pen-like housing in space, may be disposed in the optical pen. When the optical pen is dynamically swung, wavered or vibrated by the user, a vibration signal of housing is generated by the acceleration sensing unit. The vibration signal of housing is then transmitted to the display device via the transmission unit electrically connected to the acceleration sensing unit.
The reception unit of the display device is in communication with the transmission unit of the optical pen, such that the display device receives the vibration signal of housing via the reception unit. The display unit then changes an appearance of the indication pattern according to the number of times that the vibration signal of housing is received.
That is, according to the number of times of swings of the optical pen, a color desired by the user can be selected. Similar to details for setting the brush stroke, through the number of times of swings of the optical pen, the user's desired color may be cyclically and sequentially selected. When the user finishes drawing or modifying a display image by operating the optical pen, the graphics software may store the display image.
The first switch unit 161c is regarded as a lock unit electrically connected to the gravity sensing unit and the transmission unit.
When the user wishes to set a display attribute of the input trace, the lock unit stays inactivated, and the acceleration sensing unit continues sensing the dynamic operation of the user. That is, the display attribute of the input trace is determined according to the area where the intersection position stays and the number of swing times performed by the user.
Once the user determines the brush stroke and the color of the input trace, the first switch unit 161c may be pressed. At this point, the lock unit is activated, meaning that the optical pen 161 no longer detects the dynamic operation made by the user. When the lock unit is activated and a lock signal is generated, the acceleration sensing unit also stops outputting the vibration signal of housing.
When the user again wishes to change the display attribute of the input trace after having written for a period, the first switch unit 161c may again be pressed, i.e., to terminate the activation of the lock unit. The above selection setting process may be repeated, and the lock unit may be re-activated after the selection process is completed.
The second switch unit 161a is regarded as an enable unit electrically connected to the transmission unit, and generates an enable signal in response to a user operation.
When the enable unit is pressed, the enable unit generates an enable signal, which is transmitted to the display device. When the enable unit is pressed, it means that the user wishes to set the graphics software to a writing mode. That is to say, in addition to adjusting position of the indication pattern in response to a change in the intersection position, the input trace is also correspondingly modified.
In the foregoing preferred embodiments, the graphics software determining how to change the input trace according to the back-and-forth swings of the optical pen is given as an example. In practice, the type of dynamic operation sensed by the optical pen is not limited to the given example of back-and-forth swings. Other movements such as rotations and vibrations may also serve as a determination basis for the optical pen to generate the vibration signal of housing.
Further, after the user determines the brush stroke or color (e.g., the third brush stroke pattern and the first candidate of color) and presses the enable unit to enter the writing mode, changes in a width and a brightness level of the input trace may also be determined according to a rotation of the pen body. Associated details are given as below.
The present invention further provides a method for adjusting the width setting of the input trace by rotating of the optical pen during a writing process. Associated details are given as below.
Assume that the user writes a horizontal S trace by operating the optical pen 181. It is also assumed that, in addition to moving the optical pen 181 along the dotted line in the diagram when the position of the optical pen 181 is postured in a three-dimensional space, the rotation direction of the pen body of the optical pen 181 also changes at different time points when the user operates the optical pen 181.
As seen from the diagram, when the user operates the optical pen 181, the width of the input trace displayed in the display image is synchronously adjusted. For example, corresponding to rotation directions of the optical pen 181 at time points t1, t3 and t5, the width of the input trace displayed in a display image 180 becomes thicker, narrower and thicker, respectively.
To distinguish rotation statuses of the optical pen at different time points, it is assumed that a predetermined cross-section is a cross-section of the enable unit of the optical pen at a position on the surface of the optical pen. The predetermined cross-section may be defined according to another method. For example, the predetermined cross-section may be defined as a cross-section of the roller of the optical pen on a position of the surface of the optical pen. Further, in the embodiment, an included angle between the predetermined cross-section of the optical pen 181 and the vertical line is defined as a vertical included angle.
At the first time point t1, when viewing the cross-section of the optical pen 181 from a rear side of the optical pen 181, the enable unit 181a is located at a position relative to an upper part of the optical pen 181. At this point, the vertical included angle between the predetermined cross-section of the optical pen 181 and the vertical line is 90 degrees. It is assumed that width of the input trace is thicker when the vertical included angle is 90 degrees. For example, the width of the input trace at the first time point t1 is set to a display ratio of 100%.
At the second time point t2, when viewing the cross-section of the optical pen 181 from the rear side of the optical pen 181, the enable unit is located at a position relative to an upper-right part of the optical pen 181. At this point, the vertical included angle between the predetermined cross-section of the optical pen 181 and the vertical line is 45 degrees. The width of the input trace at the second time point t2 may be set to a reduced display ratio of 75%.
At the third time point t3, when viewing the predetermined cross-section of the optical pen 181 from the rear side of the optical pen 181, the enable unit is located at a position relative to a right part of the optical pen 181. At this point, the vertical included angle between the predetermined cross-section of the optical pen 181 and the vertical line is 0 degree. The width of the input trace at the third time point t3 may be set to a reduced display ratio of 50%.
At the fourth time point t4, when viewing the predetermined cross-section of the optical pen 181 from the rear side of the optical pen 181, the enable unit is located at a position relative to the upper-right part of the optical pen 181. At this point, the vertical included angle between the predetermined cross-section of the optical pen 181 and the vertical line is 45 degrees. The width of the input trace at the third time point t3 may be restored to a display ratio of 75%.
At the fifth time point t5, when viewing the predetermined cross-section of the optical pen 181 from the rear side of the optical pen 181, the enable unit 181a is located at a position relative to the upper part of the optical pen 181. At this point, the vertical included angle between the predetermined cross-section of the optical pen 181 and the vertical line is restored to 90 degrees such that the width of the input trace in the display image again becomes thicker. The width of the input trace at the fifth time point t5 may be restored to a display ratio of 100%.
The optical pen of the present invention may utilize the gravity sensing unit to sense the vertical included angle to obtain information of vertical included angle, and transmit the information of vertical included angle to the display device through the transmission unit. The display device receives the information of vertical included angle through the reception unit, and provides the information of vertical included angle to the graphics software at the personal computer end. Accordingly, the graphics software at the personal computer end may adjust the display attribute of the input trace with reference to the received information.
In
Assuming that settings of the graphics software are that, the width of the input trace is equivalent to a first width W1 when the vertical included angle of the optical pen 181 is equivalent to a first predetermined angle θ1, and is equivalent to a second width W2 when the vertical included angle is equivalent to a second predetermined angle θ2.
When the user operates the optical pen 181, a first angle difference Δθ1 exists between the vertical included angel of the optical pen 181 and the first predetermined angle θ1, and a second angle difference Δθ2 exists between the vertical included angel of the optical pen 181 and the second predetermined angle θ2. A width W of the input trace is jointly determined according to the first width W1, the second width W2, the first angle difference Δθ1, and the second angle difference Δθ2. For example:
In the first row of
On the other hand, in the third row in
Further, in the second row of
For example, when the vertical included angle is 45 degrees, the corresponding width of the input trace of the optical pen is determined as below.
Further, setting of the brightness level or color of the input trace may also be similarly obtained.
For example, when the vertical included angle is 90 degrees, the corresponding brightness level of the input trace is assumed to be a first brightness level L1. When the vertical included angle is 0 degree, the corresponding brightness level of the input trace is assumed to be a second brightness level L2. It is also assumed that the first brightness level L1 is brighter than the second brightness level L2.
Accordingly, when the vertical included angle is 30 degrees, the corresponding brightness level of the input trace is represented in following equation.
That is, different display attributes (e.g., the brightness level, color and width) may be adjusted using the vertical included angle, and the predetermined angle corresponding to different display attributes may be different or the same. Associated details can be easily understood and modified by a person having ordinary skill in the art, and shall be omitted herein.
Apart from the width of the input trace, such approach of changing settings according to the rotation of the roller may also be applied to the brightness level and color settings of the optical pen.
Therefore, according to a preferred embodiment of the present invention, when the user operates the optical pen for writing, the display attribute of the input trace may be changed according to the direction of the rotation axis of the optical pen. Instead of obtaining the display attributes of the input trace through calculation, the display attributes of the input trace may also be obtained through a look-up table (LUT). Associated details can be easily understood and deduced by a person having ordinary skill in the art, and shall be omitted herein.
Similarly, the optical pen according to an embodiment of the present invention may further include a lock unit. When the lock unit is inactivated, a lock signal is not generated. In such case, the gravity sensing unit continues to sense the vertical included angle to update the included angle information. When the lock unit is activated, the lock signal is correspondingly generated. With the generation of the lock signal, contents of the information of vertical included angle is maintained as that is last updated by the gravity sensing unit before the lock unit is activated.
In conclusion, in the present invention, associated display settings of the display device can be adjusted through various operation methods and placements of the optical pen, thereby offering enhanced ease-of-use to the operations of the display system.
It should be noted that, the display system may include a plurality of remote control devices, each of which has corresponding identity. Input traces corresponding to the remote control devices may be provided, with each of input traces having distinctive brush stroke, size, width, color and brightness level settings. Details for applying the display system with multiple remote control devices are known to a person having ordinary skill in the art, and shall be omitted herein.
While the invention has been described by way of example and in terms of the preferred embodiments, it is to be understood that the invention is not limited thereto. On the contrary, it is intended to cover various modifications and similar arrangements and procedures, and the scope of the appended claims therefore should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements and procedures.
Number | Date | Country | Kind |
---|---|---|---|
101132668 | Sep 2012 | TW | national |
This application is a continuation application of U.S. application Ser. No. 14/016,325, filed Sep. 3, 2013, which claims the benefit of Taiwan application Serial No. 101132668, filed Sep. 7, 2012, the contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 14016325 | Sep 2013 | US |
Child | 14795885 | US |