This application is based on and claims Convention priority to Japanese patent application No. 2009-222304, filed Sep. 28, 2009, the entire disclosure of which is herein incorporated by reference as a part of this application.
1. Field of the Invention
The present invention relates to a remote controlled actuator capable of altering the attitude of a work tool, provided at a tip of an elongated guide section of a curved configuration, by remote control and also to a plastic forming method for making an attitude altering member which is one of component parts of such remote controlled actuator.
2. Description of Related Art
A remote controlled actuator of a type for use in a cutting process in the medical application or in the mechanical application has long been known. This remote controlled actuator is of a structure in which a work tool such as, for example, a tool or a holder element is provided at a tip of an elongated guide section of a rectilinear configuration or a curved configuration and this work tool is controlled by remote control. Hereinafter, in discussing over the problems inherent in the conventional art of the remote controlled actuator, reference will be made to the use of the conventional remote controlled actuator in the medical field in processing a bone.
In the orthopedic field, the artificial joint replacement is well known, in which a joint, of which bone has been abraded by due to bone deterioration, is replaced with an artificial joint. The joint replacement surgery requires a living bone of a patient to be processed to enable an artificial joint to be implanted. In order to enhance the strength of postoperative adhesion between the living bone and the artificial joint, such processing is required to be performed precisely and accurately in conformity to the shape of the artificial joint.
By way of example, during the hip joint replacement surgery, a thigh bone is opened to secure access of an artificial joint into the femoral marrow cavity. In order to secure a strength of contact between the artificial joint and the bone, surfaces of contact of the artificial joint and the bore must be large and so the opening for insertion of the artificial joint is processed to represent an elongated shape extending deep into the bone. In this procedure, a remote controlled actuator is used of a type having such a structure that a tool is rotatably provided in a tip of an elongated guide section so that the tool can be rotated by remote control. The surgical operation for artificial joint replacement generally accompanies skin incision and muscular scission. In other words, the human body must be invaded. In order to minimize the postoperative trace, it is quite often desirable that the elongated guide referred to above is not necessarily straight, but is moderately curved.
To meet this desire, the following technique has hitherto been suggested. For example, the Patent Document 1 listed below discloses the elongated pipe having its intermediate portion curved twice to displace an axial position of the distal end of the pipe relative to the longitudinal axis of the proximal end of the same pipe. To make the axial position of the distal end of the pipe relative to the longitudinal axis of the proximal end of the same pipe is also known from other publications. Also, the Patent Document 2 listed below discloses the elongated pipe rotated by 180°.
[Patent Document 1] U.S. Pat. No. 4,466,429
[Patent Document 2] U.S. Pat. No. 4,265,231
Since the above described remote controlled actuator conventionally employed in the medical field merely controls the rotation of the tool by remote control, accurate positioning of the tool at a site deep into the hole for insertion of the artificial joint and processing of the bone to a complicated shape have been difficult to achieve. In view of this, in order to alleviate the foregoing problems and inconveniences, the attempt has been made, in which the distal end member for rotatably supporting the tool is provided at the tip of the guide section for alteration in the attitude and the attitude of the distal end member is made alterable by remote control. More specifically, the attempt has been made in which a guide hole having its opposite end opening is provided within the guide section, an attitude altering member of a wire-like shape is inserted within this guide hole for selective advance or retraction and a working force for the attitude alteration is applied to the distal end member through this attitude altering member so that the distal end member can be altered in attitude. Since the attitude altering member of the wire-like shape is flexible, the working force necessary to alter the attitude of the distal end member can be transmitted to the distal end member even in the case of the guide pipe and the guide hole being curved.
It has, however, been found that the above described construction involves the following problems particularly where the guide hole is of a curved shape. In other words, as shown in
If the attitude altering member 31 is selectively advanced or retracted by an attitude altering drive source, the frictional forces FA2, FB2 and FC2 referred to above act as respective resisting forces to the attitude altering member 31, causing the attitude altering member 31 to expand and contract. In other words, a displacement ΔX on an input side of the attitude altering member 31 is different from a displacement ΔX′ on an output side thereof. In view of the structure of the remote controlled actuator, it is difficult to directly detect the attitude of the distal end member, and, therefore, to control the attitude of the distal end member from the amount of activation of the attitude altering drive source may be considered to be a practically realizable control method. However, if such control method is to be employed, expansion and contraction of the attitude altering member 31, which take place by the reason as hereinabove described, will results in an error represented by the increment and decrement (ΔX−ΔX′) and, therefore, a control to alter the attitude of the distal end member highly accurately cannot be accomplished. Also, in order to selectively advance or retract the attitude altering member 31 while overcoming the frictional forces FA2, FB2 and FC2, the attitude altering drive source is required to have a large driving force and this leads to an increase of the size of the attitude altering drive source.
Therefore, a first object of the present invention herein disclosed is to provide a remote controlled actuator capable of accurately altering the attitude of a work tool, provided at the tip of the elongated guide section of a curved shape, by remote control, which actuator requires a compact drive source for altering the attitude of the work tool. A second object of the present invention herein disclosed is to provide a plastic forming method capable of easily shaping the attitude altering member, which is one of component parts of the remote controlled actuator, to a proper shape that suits to the shape of the guide section.
The remote controlled actuator designed in accordance with the present invention includes an elongated guide section of a curved shape, a distal end member fitted to a tip of the guide section for alteration in attitude, a work tool provided in the distal end member, a work tool drive source for driving the work tool and an attitude altering drive source for operating the attitude of the distal end member. In such case, the guide section has an interior, in which a drive shaft for transmitting a driving force of the work tool drive source to the work tool and a curved guide hole extending to its opposite ends are accommodated, and a wire-like attitude altering member is inserted within the guide hole for selective advance or retraction, with the wire-like attitude altering member being adapted to be driven by the attitude altering drive source to undergo a selective advance or retraction to alter the attitude of the distal end member. In such case, the attitude altering member has a curved shape similar to the curved shape of the guide hole under a natural condition while the attitude altering member has not yet been inserted into the guide hole.
According to the above described construction, as a result of rotation of the work tool fitted to the distal end member, a predetermined work takes place. In such case, when the attitude altering member is selectively advanced and retracted one at a time by the attitude altering drive source, the tip end of the attitude altering member works on the distal end member to allow the attitude of the distal end member, fitted to the tip end of the guide section through the distal end member connecting unit for alteration in attitude, to alter. The attitude altering drive source is provided at a position distant from the distal end member and the alteration of the attitude of the distal end member is carried out by remote control. Since the attitude altering member is passed through the guide hole, the attitude altering member can work on the distal end member properly at all time without being displaced in a direction transverse to the longitudinal direction thereof, and the operation to alter the attitude of the distal end member takes place accurately. Also, since the attitude altering member is in the form of a wire and flexible, the attitude altering operation takes place assuredly even when the guide section is of a type having a curved portion.
Since the attitude altering member is of a curved shape similar to the curved shape of the guide hole, when the attitude altering member has not yet been inserted into the guide hole and is under the natural condition, the frictional force developed between the attitude altering member and the inner wall surface of the guide hole, when in a condition with the attitude altering member having been inserted into the guide hole, is so low that extension or contraction of the attitude altering member will hardly occur. For this reason, an error due to such an extension or a contraction of the attitude altering member becomes small, and therefore, the attitude of the distal end member can accurately be altered. Also, the frictional force between the attitude altering member and the inner wall surface of the guide hole is so low that no large force may be required to selectively advance or retract the attitude altering member and, hence, the use of the attitude altering drive source that is small in size is sufficient.
In the present invention, the attitude altering drive source may be operable to selectively advance or retract the attitude altering member so that the tip of the attitude altering member may press the distal end member, and the use may be made of a counterforce applying unit for applying a force to the distal end member, which force counteracts against a force applied to the distal end member as a result of the selective advance or retraction of the attitude altering member, so that the attitude of the distal end member can be altered and maintained by the balance between the force, which the attitude altering member applies to the distal end member, and the force which the counterforce applying unit applies to the distal end member.
Alternatively, the attitude altering drive source may be operable to selectively advance or retract the attitude altering member so that the tip of the attitude altering member may pull the distal end member, and the use may be made of a counterforce applying unit for applying a force to the distal end member, which force counteracts against a force applied to the distal end member as a result of the selective advance or retraction of the attitude altering member, so that the attitude of the distal end member can be altered and maintained by the balance between the force, which the attitude altering member applies to the distal end member, and the force which the counterforce applying unit applies to the distal end member. According to either of them, the attitude of the distal end member can be accurately altered by means of the attitude altering member.
In the present invention, the attitude altering member may be shaped to the same shape as the curved shape of the guide hole by means of either a plastic deformation caused by a plastic forming or a cutting process.
In the present invention, where the drive shaft is a rotary shaft, a plurality of rolling bearings may be provided for rotatably supporting the drive shaft within the guide section, along with the use of a spring element provided between the neighboring rolling bearings for applying a preload to those rolling bearings. By way of example, where the work tool is a rotary tool and an article to be processed is to be cut by rotating this tool, it is recommended to rotate the tool at a high speed in order to give rise to an authentic finish of the processing. Rotating the tool at the high speed also brings about such an effect as to reduce the cutting resistance acting on the tool. The high speed rotation of the tool effects a reduction in cutting resistance of the tool. Since the rotational force is transmitted to the tool through the thin drive shaft within the guide section, it is necessary to apply the preload to the rolling bearings used to support the drive shaft in order to realize the high speed rotation of the tool. Therefore, if the spring element for the preloading is provided between the neighboring rolling bearings, the spring element can be provided without increasing the diameter of the guide section.
In the present invention, the distal end member may be connected with the tip of the guide section through a distal end member connecting unit for tilting in an arbitrary direction, in which case each of the guide hole and the attitude altering member, inserted into the guide hole, is provided at three or more locations about a center of tilting of the distal end member. In such case, the attitude altering drive source is provided for each of the attitude altering members and the attitude of the distal end member is altered and maintained in two axis directions by the balance between respective forces which the attitude altering members at those three or more locations apply to the distal end member. If the attitude of the distal end member can be altered and maintained in the two axis directions, the work tool provided in the distal end member can be accurately positioned. Also, since the force for altering and maintaining the attitude is applied from the three or more attitude altering members to the distal end member, the attitude stability of the distal end member can be increased.
In the present invention, one or both of the work tool drive source and the attitude altering drive source may be provided within a drive unit housing to which a base end of the guide section is connected. If one or both of the work tool drive source and the attitude altering drive source is/are provided within the drive unit housing, the number of component parts provided outside the drive unit housing can be reduced to thereby simplify the structure of the remote controlled actuator in its entirety.
Also, the work tool drive source and the attitude altering drive source may be provided outside the drive unit housing to which a base end of the guide section is connected. If the work tool drive source and the attitude altering drive source are provided outside the drive unit housing, the drive unit housing can be compactized. For this reason, the handlability at the time the remote controlled actuator is operated with the drive unit housing carried by an operator can be increased.
A plastic forming method for making the attitude altering member for use in the remote controlled actuator designed in accordance with the present invention makes use of a mold having a groove of a sectional shape with a curvature greater than the curvature of the curved shape of the guide hole and capable of accommodating the attitude altering member in a non-movable fashion, with the attitude altering member, which is straight under a natural condition, being plastically deformed while accommodated within the groove in the mold. By inserting the attitude altering member of a straight shape under the natural condition within the groove in the mold, the attitude altering member undergoes an elastic deformation and is then shaped to the target curved shape. The reason for choosing the curvature of the groove that is greater than the curvature of the curved shape of the guide hole is that since the attitude altering member, when removed out of the groove, will restore towards the original shape by a quantity it has been elastically deformed, the attitude altering member need be curved too much by that quantity the attitude altering member has been elastically deformed. It is to be noted that the curvature of the curved shape should be broadly construed as including the extent to which the entirety is curved, not limited as meaning the curvature of the whole or various portions. Accordingly, the shape of the guide hole may not be necessarily limited strictly to an arcuate shape, but may be a shape represented by a quadratic curve or a curved shape similar to the quadratic curve.
In any event, the present invention will become more clearly understood from the following description of preferred embodiments thereof, when taken in conjunction with the accompanying drawings. However, the embodiments and the drawings are given only for the purpose of illustration and explanation, and are not to be taken as limiting the scope of the present invention in any way whatsoever, which scope is to be determined by the appended claims. In the accompanying drawings, like reference numerals are used to denote like parts throughout the several views, and:
A first preferred embodiment of the present invention will first be described in detail with particular reference to
As shown in
The guide section 3 includes a drive shaft 22 for transmitting a rotational force exerted by a work tool drive source 41 (
The guide section 3 has an outer shell pipe 25, which forms an outer shell of the guide section 3, and the drive shaft 22 referred to above is positioned at a center of this outer shell pipe 25. The drive shaft 22 so positioned is rotatably supported by a plurality of rolling bearings 26 positioned spaced a distant apart from each other in a direction axially of the guide section 3. Between the neighboring rolling bearings 26, spring elements 27A for generating a preload on the inner rings of the corresponding rolling bearing 26 and spring elements 27B for generating the preload on the outer rings of the corresponding rolling bearings 26 are alternately disposed relative to each other. Those spring elements 27A and 27B may be employed in the form of, for example, compression springs. The constraint member 21 referred to previously is fixed to a pipe end portion 25a of the outer shell pipe 25 by means of a fixing pin 28 and has its distal end inner peripheral portion supporting a distal end of the drive shaft 22 through a rolling bearing 29. It is, however, to be noted that the pipe end portion 25a may be a member separate from the outer shell pipe 25 and may then be connected with the outer shell pipe 25 by means of, for example, welding.
Provided between an inner diametric surface of the outer shell pipe 25 and the drive shaft 22 is a guide pipe 30, having its opposite ends opening Within a guide hole 30a which is an inner diametric hole of this guide pipe 30, an attitude altering or operating member 31 is reciprocally movably inserted. The wire for the attitude altering member is the same as that for the drive shaft 22 referred to previously. For a material for the wire, metal, resin or glass fiber, for example, can be employed. The wire may be either a single wire or a twisted wire. Also, a shape memory alloy may be employed for the wire. The attitude altering member 31 has a tip which is of a spherical shape, and, as shown in
Between a base end face of the housing 11 of the distal end member 2 and a tip end face of the outer shell pipe 25 of the guide section 3, a counterforce applying unit 32 made of, for example, a compression coil spring, is arranged at a location spaced 180° degrees circumferentially in phase from the circumferential location where the attitude altering member 31 is positioned. This counterforce applying unit 32 is operable to apply a force, which counteracts against the force the selective advance or retraction of the attitude altering member 31 applies to the distal end member 2, to the distal end member 2.
Also, a plurality of reinforcement shafts 34 are arranged, separate from the guide pipe 30, between the inner diametric surface of the outer shell pipe 25 and the drive shaft 22 and on the same pitch circle C as that depicted by the guide pipe 30. Those reinforcement shafts 34 are employed for securing the rigidity of the guide section 3. The guide pipe 30 and the plural reinforcement shafts 34 are spaced an equal distance from each other. The guide pipe 30 and the plural reinforcement shafts 34 are held in contact with the inner diametric surface of the outer shell pipe 25 and an outer diametric surface of each of the rolling bearings 26 so as to support the respective outer diametric surfaces of the rolling bearings 26.
The outer shell pipe 25, the guide pipe 30 and the reinforcement shafts 34, all forming respective component parts of the guide section 3, are curved over their entire lengths and are so curved as to assume the same curved shape. The outer shell pipe 25, the guide pipe 30 and the reinforcement shafts 34, although they are of an arcuate shape in which various portions thereof have a uniform curvature in the instance as shown, may not be limited to the arcuate shape, but may have a shape represented by a quadratic curve or a curved shape similar to the quadratic curve.
For the above described attitude altering member 31, what has been plastically formed to have a curved shape following the curved shape of the guide hole 30a in the guide pipe 30 is employed. The attitude altering member 31 is made of a material of a kind capable of being elastically deformed to a certain extent, but is plastically deformed by a plastic forming process so as to have the above described curved shape under a natural condition where no external force acts. For the above described plastic deformation, a mold 50 for the plastic formation of the attitude altering member 31 is employed as shown in
The force increasing and transmitting mechanism 43 includes a pivot lever 43b pivotable about a support pin 43a and is so designed and so configured as to allow a force of the output rods 42a to work on a working point P1 of the levers 43b, which are respectively spaced a long distance from the support pin 43a, and as to apply a force to the attitude altering members 31 at a force point P2, which are spaced a short distance from the support pin 43a, wherefore the outputs of the attitude altering drive sources 42 can be increased and then transmitted to the attitude altering members 31. Since the use of the force increasing and transmitting mechanism 43 is effective to enable a large force to be applied to the attitude altering members 31 even in the linear actuator of a low output capability, the linear actuator can be downsized. The drive shaft 22 referred to above is made to extend through an opening 44 defined in the pivot lever 43b. It is also to be noted that in place of the use of, for example, the electrically driven actuator, the attitude of the distal end member 2 may be manually altered by remote control.
The attitude altering drive mechanism 4c is provided with an actuation amount detector 45 for detecting the amount of actuation of the attitude altering drive source 42. A detected value of this actuation amount detector 45 is fed to an attitude detector 46. The attitude detector 46 then detects an inclined attitude of the distal end member 2 about the X axis (
The attitude altering drive mechanism 4c is provided with a supply power meter 47 for detecting the electric energy supplied to the attitude altering drive source 42, which is an electrically operated actuator, independent of each other. The detection value of this supply power meter 47 is outputted to a load detector 48. This load detector 48 in turn detects a load acting on the distal end member 2 in reference to the outputs of the supply power meter 47. Specifically, this load detector 48 includes a relation setting unit (not shown), in which the relation between the load and the output signal of the supply power meter 47 is set in terms of an arithmetic equation or table, and makes use of the relation setting unit to detect the load in reference to the output signal so inputted. This load detector 48 may be provided either in the controller 5 or in an external control device.
The controller 5 is provided with a tool rotation operating instrument 5a for outputting a rotation command signal of the tool 1 and an attitude alteration operating instrument 5b for outputting an attitude alteration command signal of the distal end member 2. This controller 5 has an electronic calculating circuit (not shown) and a control program (not shown) built therein and is operable to control the work tool drive source 41 and the attitude altering drive source 42 on the basis of the respective command signals from the tool rotation operating instrument 5a and the attitude alteration operating instrument 5b and respective output signals from the attitude detector 46 and the load detector 48.
The operation of the remote controlled actuator of the structure described hereinabove will now be described. When by operating the tool rotation operating instrument 5a the work tool drive source 41 as shown in
Also, when the attitude alteration operating instrument 5b is operated to drive the attitude altering drive source 42, the attitude altering member 31 is selectively advanced or retracted to alter the attitude of the distal end member 2. By way of example, if the attitude altering member 31 is advanced by the attitude altering drive source 42 in a direction towards the tip or distal side, the housing 11 for the distal end member 2 is pressed by the attitude altering member 31 with the distal end member 2 consequently altered in attitude along the guide faces F1 and F2 so that the tip or distal side can be oriented downwardly as viewed in
Since the attitude altering member 31 is inserted through the guide hole 30a of the guide pipe 30, the attitude altering member 31 can properly act on the distal end member 2 at all times without being accompanied by displacement in position in a direction perpendicular to the lengthwise direction thereof and the attitude altering operation of the distal end member 2 can therefore be performed accurately. Also, since the center of the junction between the spindle 13 and the drive shaft 22 lies at the same position as the respective centers of curvature O of the guide faces F1 and F2, no force tending to press and pull will not act on the drive shaft 22 as a result of the alteration of the attitude of the distal end member 2 and the distal end member 2 can be smoothly altered in attitude.
If, as shown in
In addition, since the use has been made of the rotation preventing mechanism 37 for preventing the distal end member 2 from rotating about the center line CL of the distal end member 2 relative to the guide section 3, even in the event that the distal end member 2 for holding the tool 1 becomes uncontrollable because of, for example, a failure of one or both of the attitude altering drive mechanism 4c for controlling the selective advance and retraction of the attitude altering member 31 and a control device therefor, the risk can be avoided that the distal end member 2 will rotate about the center line CL to impair the surroundings of the site to be processed and/or the distal end member 2 itself may be damaged.
The remote controlled actuator of the foregoing construction is utilized in grinding the femoral marrow cavity during, for example, the artificial joint replacement surgery and during the surgery, it is used with the distal end member 2 in its entirety or a part thereof inserted into the body of a patient. Because of this, with such distal end member 2 as described above that can be altered in attitude by remote control, the bone can be processed in a condition with the tool 1 maintained in a proper attitude at all times and the opening for insertion of the artificial joint can be finished accurately and precisely.
There is the necessity that the drive shaft 22 and the attitude altering member 31 are provided within the guide section 3 of an elongated shape in a protected fashion. Hence, the drive shaft 22 is provided in the center portion of the outer shell pipe 25 and the guide pipe 30, in which the attitude altering member 31 is accommodated, and the reinforcement shafts 34 are arranged between the outer shell pipe 25 and the drive shaft 22 so as to be juxtaposed in the circumferential direction. Accordingly, it is possible to protect the drive shaft 22 and the attitude altering member 31 and, at the same time, the interior can be made hollow to thereby reduce the weight without sacrificing the rigidity. Also, the balance as a whole is good.
Since the outer diametric surfaces of the rolling bearings 26 supporting the drive shaft 22 are supported by the guide pipes 30 and the reinforcement shafts 34, the outer diametric surfaces of the rolling bearings 26 can be supported with no need to use any extra member. Also, since the preload is applied to the rolling bearings 26 by means of the spring elements 27A and 27B, the drive shaft 22 comprised of the wire can be rotated at a high speed. Because of that, the processing can be accomplished with the spindle 13 rotated at a high speed and a good finish of the processing can also be obtained and the cutting resistance acting on the tool 1 can be reduced. Since the spring elements 27A and 27B are disposed between the neighboring rolling bearings 26, the spring elements 27A and 27B can be provided with no need to increase the diameter of the guide section 3.
In the embodiment described hereinbefore, the work tool drive source 41 and the attitude altering drive source 42 are provided within the common drive unit housing 4a. For this reason, the structure of the remote controlled actuator as a whole can be simplified. It is, however, to be noted that only one of the work tool drive source 41 and the attitude altering drive source 42 may be provided within the drive unit housing 4a. Also, as will be explained later, both of the work tool drive source 41 and the attitude altering drive source 42 may be provided outside the drive unit housing 4a.
Although in the first embodiment as hereinbefore described, the alteration of the attitude of the distal end member 2 has been shown and described as accomplished by causing the attitude altering member 31 to press the housing 11, arrangement may be made that as is the case with a second preferred embodiment of the present invention shown in
The drive unit 4 (not shown) is provided with two attitude altering drive sources 42 (not shown) for selectively advancing and retracting respective attitude altering members 31 so that when those two attitude altering drive sources 42 are driven in respective directions opposite to each other, the distal end member 2 can be altered in attitude. By way of example, when the upper attitude altering member 31 shown in
As hereinabove described, even when the two attitude altering members 31 arranged spaced 180° in phase from each other are advanced and retracted in respective directions opposite to each other, the attitude of the distal end member 2 can be altered. During this alteration, when one of the two attitude altering members 31 applies a force necessary to alter the attitude, the other of the two attitude altering members 31 functions as the counterforce applying unit for applying a force, which counteracts against the force necessary to alter the attitude, to the distal end member.
The pressures from the upper and lower attitude altering members 31 and a reactive force from the constraint member 21 act on the distal end member connecting unit 15 and, accordingly, the attitude of the distal end member 2 is determined in dependence on the balance of those working forces. According to this construction, since the housing 11 for the distal end member 2 is pressed by the two attitude altering members 31, as compared with the previously described embodiment in which it is pressed by a single attitude altering member 31, the attitude stability of the distal end member 2 can be increased.
A fourth preferred embodiment of the present invention is shown in
The drive unit 4 is provided with three attitude altering drive sources 42 (42U, 42L and 42R), best shown in
By way of example, when one of the attitude altering members 31U, upper side one as viewed in
Also, when while the attitude altering member 31U on the upper side is held still, the attitude altering member 31L on the left side is advanced towards the tip end side and the attitude altering member 31R on the right side is retracted, the housing 11 for the distal end member 2 is pressed by the attitude altering member 31L on the left side to allow the distal end member 2 to be oriented rightwards, that is, to be altered in attitude along the guide surfaces F1 and F2 with the distal end member 2 oriented towards a rear side of the sheet of the drawing of
When the attitude altering members 31 are arranged at the three locations in the circumferential direction as described above, it is possible to alter the attitude of the distal end member 2 in two-axis directions (X axis and Y axis), that is, vertical and horizontal directions. At the time of this attitude alteration, when the force necessary to alter the attitude of the distal end member 2 is applied to the distal end member 2 by one or two of the three attitude altering members 31, the remaining two or one of the three attitude altering members 31 function as the counterforce applying unit for applying the force, which counteracts against the force necessary to alter the attitude, to the distal end member.
Respective pressures from the three attitude altering members 31 and the reactive force from the constraint member 21 act on the distal end member connecting unit 15 and, therefore, the attitude of the distal end member 2 is determined in dependence on the balance of those working forces. According to the above described construction, since the housing 11 for the distal end member 2 is pressed by the three attitude altering members 31, the attitude stability of the distal end member 2 can be further increased. If the number of the attitude altering members 31 is increased, the attitude stability of the distal end member 2 can be yet further increased.
Where the attitude altering members 31 are provided at the three circumferential locations such as shown in
The tool rotation drive mechanism, now identified by 61, that is employed in the practice of this fifth embodiment is operable to transmit the rotation of the output shaft 41a of the tool rotation drive source 41, provided in the drive source housing 60, to a base end of the drive shaft 22 within the drive unit housing 4a by means of an inner wire 64 (shown in
Also, the attitude altering drive mechanism 71 employed in the practice of the fifth embodiment is of such a structure that the operation of the attitude altering drive source 42 provided in the drive source housing 60 is transmitted to a drive mechanism section 78 within the drive unit housing 4a through an attitude alteration cable 72. The drive mechanism section 78 corresponds to the attitude altering drive mechanism 4c, which is employed in the practice of the previously described embodiment and from which the attitude altering drive source 42 is removed, and, in place of the output rod 42a of the attitude altering drive source 42 in the attitude altering drive mechanism 4c, the use is made of an advancing and retracting member 75 capable of selectively advancing or retracting relative to the drive unit housing 4a in a condition with its tip held in contact with the pivot lever 43b. The advancing and retracting member 75 is, when the rotary motion is translated into a linear motion by a screw mechanism 75a such as, for example, a ball screw, selectively advanced or retracted relative to the drive unit housing 4a. In such case, the attitude altering drive source 42 is in the form of a rotary actuator and the rotation of this attitude altering drive source 42 is transmitted to the advancing and retracting member 75 by means of the inner wire 74 (
The attitude altering cable 72 is of the same structure as the work tool rotating cable 62 and takes such a structure as shown in
As shown in
If, as is the case with the foregoing fifth embodiment, the work tool drive source 41 and the attitude altering drive source 42 are provided outside the drive unit housing 4a, the drive unit housing 4a can be compactized. For this reason, the handleability at the time the remote controlled actuator is operated with the drive unit housing 4a carried by an operator can be increased.
Although the present invention has been fully described in connection with the preferred embodiments thereof with reference to the accompanying drawings which are used only for the purpose of illustration, those skilled in the art will readily conceive numerous changes and modifications within the framework of obviousness upon the reading of the specification herein presented of the present invention. By way of example, although in any one of the embodiments of the present invention hereinbefore fully described, the work tool has been shown and described as represented by a tool 1, the work tool may be any other work tool such as, for example, a prehension orthosis.
Also, the present invention may not be necessarily limited to the remote controlled actuator for medical use, but can be equally applied to any other remote controlled actuator that is used in any other field such as, for example, a mechanical processing field.
Accordingly, such changes and modifications are, unless they depart from the scope of the present invention as delivered from the claims annexed hereto, to be construed as included therein.
1 . . . Tool (Work Tool)
2 . . . Distal end member
3 . . . Guide section
4
a . . . Drive unit housing
15 . . . Distal end member connecting unit
22 . . . Drive shaft
26, 29 . . . Rolling bearing
27A, 27B . . . Spring element
30 . . . Guide pipe
30
a . . . Guide hole
31 . . . Attitude altering member
32 . . . Counterforce applying unit
41 . . . Work tool drive source
42 . . . Attitude altering drive source
50 . . . Mold
51 . . . Groove
Number | Date | Country | Kind |
---|---|---|---|
2009-222304 | Sep 2009 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2010/066387 | 9/22/2010 | WO | 00 | 3/6/2012 |