1. Field of the Invention
The invention relates generally to excavation tools, as exemplified by a conventional rotor tiller; and more particularly to a remote excavation tool for robotically removing soil, where the tool has a relatively low mass that efficiently utilizes low power and high rotation to excavate, where the tool is fitted to a remotely controlled robotic platform.
2. Background
Robotic platforms nominally have a robotic arm that can be remotely controlled. The platform can include lights, transmitted video, GPS positioning, and movement of the robotic arm, which often includes a gripping device. Depending on the mission, the robotic platform can also include sensors; one or more propulsion means including continuous tracks, wheels, propellers, fixed wings, jets and rockets. Military robots can also have weapons including projectiles and may be fitted to carry items that are heavy and/or dangerous, such as unexploded ordnance.
Another example of a robotic platform is the MTRS platform (Man Transportable Robotic System). The robotic device can be used to dispense detonation chord.
Tilling implements use rotating tines to break up soil. Rotation is relatively slow, often approximately 250 rpm. The slow rotation is usually clockwise, thus enabling an operator to keep pace with the tiller, while not needing to have to pull the tiller forward. Even home garden tillers are purposely heavy so that tines generate enough force to penetrate and loosen the soil. Conventional tillers require a large power source to carry its mass.
The tine count on conventional tilling implements is relatively low so that the downward and forward force is focused. Slow rotating tines are often sharply curved so that that a greater volume of soil can be churned at a slow rate of rotation. Clockwise rotation tends to move the loosened soil backwards, and a rear plate is usually present to contain the backward movement of the tilled soil.
The invention is a tool for remotely excavating soil, where the tool has a low mass and utilizes a low amount of power. The tool may be attached to a robotic platform. An aspect of the invention includes one or more interfacing elements, which enable the low mass high speed rotation tool to be attached to a robotic arm extending from the robotic platform or gripped by a robotic claw on the robotic arm or elsewhere on the robotic platform. The excavation tool, may be remotely controlled through existing electronics on the robotic platform.
The tool includes an extension boom and a drive train assembly, where the drive train assembly transmits rotational power from a rotor shaft of a motor to a polygonal shaft. The polygonal shaft rotates tilling elements mounted on the polygonal shaft. The motor has a forward fastening element and it is mounted to the extension boom. Power from the motor is conveyed through the drive train assembly to achieve the desired torque and rpm. The drive train assembly includes a drive shaft and a system of belts and pulleys or a variable mechanical interface or an electrical controller, or a combination thereof. The motor has a rearward mount for attaching the tool to an interface element, where the interface element enables the tool to be connected directly or indirectly to the robotic platform. The motor is nominally powered by a remotely controlled robotic platform.
Another aspect of the invention is that the tilling elements include a plurality of tined disks, where each tined disk has a plurality of tines. Each tine has a leading edge and a peripheral edge that are hardened and tapered. A plurality of tines radiate from a plate with a center opening, therein forming the tined disk. A pair of tined disks, where the tines curve toward a common vertical plane, define a couple, where the couple are two fastened disks. The couple functions as a toothed blade.
The tined disks are rotated by the polygonal shaft. Viewed from the right side, the polygonal shaft rotates counterclockwise. Tines on the tined disks rotate so they tend to dig deeper, pushing into the soil; which is in contrast to a conventional tilling implement, where the tines are rotated clockwise so as to pull the tilling implement forward. When rotated counterclockwise, the tapered edges of the tines on the disks are leading.
Left and right lengths of the polygonal shaft are fitted with multiple couples of tined disks, and between them are rotating round brushes that are mounted on the polygonal shaft. The rotating round brushes push loosened soil forwards and sideways, and a diameter of a brush limits the depth of penetration of the tines. Excavation is more uniform, and less likely to overly strain either the right or the left length of the polygonal shaft. Generally, with the invention, soil is pushed forward, away from the excavation tool and the robotic platform.
The apparatus utilizes high speed rpm rotation, on the order of about 1500 rpm+/−100 rpm, in contrast to conventional excavation equipment, which uses comparatively low speed rotation to excavate soil. Recall, that conventional excavation equipment rotates at about 250 rpm.
Both the desired cutting depth and feed rate may be adjusted robotically depending on the amount of soil removed and the cutting resistance.
The apparatus utilizes a “high cycle, low force” methodology. The low mass of the invented robotic apparatus enables control of an effective cutting depth. In contrast to a conventional a rotor tiller (such as on a garden tiller), where substantially the entire actual weight of the excavating tool is used to push down on the soil—making control of the cutting depth extremely difficult. In further contrast to conventional technology, the amount of force that the inventive tool applies against the ground is largely controlled by its angle relative to the ground and the speed of the robotic platform. Of course the angle that the tool is extending from the robot and the speed of the robot are remotely controllable.
An object of the invention is to mitigate vibration and maintain reaction-force symmetry. This objective is achieved based on the following exemplary structure. Assuming each side of the polygonal shaft is fitted with a set of four paired tined disks, where the tines are uniformly staggered and positioned, then the tines are offset about the same number of degrees on both sides of the tool. Also, the symmetry provides that only one left tine and one right tine will hit the ground, if the ground is substantially level. Staggering the tines increases the frequency of impact, and the symmetry nominally transmits a smoother force response. The center holes maintain an exact angle on the polygonal shaft
The transmitted cutting force onto the ground with simultaneous contact of two tines with the ground, means less tine area, and therefore a more focused pressure is applied, therein fracturing soil more effectively. The concentration of the force is augmented by the counter-rotation, which causes the remote excavator tool to dig down, once the surface is breached. A balance of depth, forward speed, angle and rate of rotation influence the feed rate of soil.
The foregoing invention will become readily apparent by referring to the following detailed description and the appended drawings in which:
a is a perspective view of a first tined disk having tapered leading edges and wherein the four tines curve inward;
b is a perspective view of a second tined second disk, wherein the tines are a mirror image of the first tined disk, so that when coupled with a first tined disk the tines curve toward the first disk and the tapered edges are similarly on the leading edges;
a-7c is a plan view as seen from the right side of the tool, wherein the coupled disks are shown in
a-8c is a plan view as seen from the left side of the tool, wherein the coupled disks are shown in
The invention is a remote excavation tool that enables soil to be excavated using a low power, low mass tool. An exemplary embodiment is illustrated in the following drawings. In
The second belt-and-pulley drive train 24b is located within the extension boom 20, and the drive train 24b has a second smaller pitch diameter grooved pulley 66 on an in-board end 25 of the driveshaft 22, a second larger pitch diameter grooved pulley 67 on the polygonal shaft 26, and a second belt 68 that is tensioned with a second idler roll 69. The second belt 68 transmits rotational power from the second smaller diameter pulley 66 to the second larger diameter pulley 67 which drives the polygonal shaft 26. Taken together, the two drive trains increase torque and decrease the rpm. A nominal rpm range from about 1400 to about 1600 rpm is obtained using the motor described later.
The illustrated polygonal shaft 26 is a square bar, and it rotates the tilling elements 30 mounted on the square bar. The motor in the illustrated exemplary embodiment includes a housing 51. The extension boom 20 is substantially contiguous with the motor housing which provides a forward fastening element 52 whereby the motor is mounted to the extension boom 20. In an example of the drive train assembly utilizing grooved belts (timing belts), the first belt-and-pulley drive train has a first smaller pulley with a pitch diameter of about 0.637 inches and 10 grooves, and a first larger pulley with a pitch diameter of about 1.4010 inches and 22 grooves, where the rpm is reduced by a factor of about 22/10, or 2.2. The second belt-and-pulley drive train has a second smaller pulley with a pitch diameter of about 0.637 inches and 10 grooves, and a second larger pulley with a pitch diameter of about 1.146 inches and 18 grooves, the rpm is reduced by a factor of about 18/10, or 1.8. Cumulatively, the combined reduction is 1.8*2.2=3.96.
The drive train assembly 60 may utilize other means, including a gear box, a variable mechanical interface (i.e., intersecting cones), an electrical controller, or a combination thereof. In the illustrated embodiment, a suitable motor is, in an exemplary embodiment, a product of MIDWEST MOTION PRODUCTS®, and the performance parameters are given in Table 1. The rated speed of the DC motor is about 5700 rpm. The desired rpm for the polygonal shaft is about 1500+/−100 rpm. Based on the calculated reducing of 3.96, then the rpm is about 1439 (5700/3.96=1439 rpm). The illustrated motor 50 has a fan 56 to cool the motor and to maintain a positive air pressure on the extension boom 20. The motor and the fan also may be used as a dynamic braking device, by altering the electrical power coming from the robotic platform.
The motor 50 has a rearward mount 54 for attaching the tool to an interface element 100, or a variation of the interface element 110 as depicted in
Communication with the robotic platform 1 enables remote control of the tool 10. Capabilities include starting, stopping, and dynamic braking the tilling elements 30 on the tool 10. Remote auxiliary control maybe largely independent of other robotic platform activities or in concert with them. For example, video feedback from the platform's camera 6, provides an operator with a way to observe the excavation, and based on the video the operator can remotely adjust how the tool is being used.
The interface element 100 includes an adjustable extension assembly 102 with a pivotal lower collar 108, and a pivoting strut assembly 104 with a pivotal upper collar 106. The extension assembly 102 attaches to the rearward mount 54. The collars 108,106 may be disassembled to be positioned, and tightened around the robot arm to secure the attachment. As shown in
A variation of the arm interface element 100 is shown in
Returning to
The tilling elements 30 on one side of the tool include a round brush 40 positioned between two coupled tined disks.
A separated couple of tined disks 32,32′ is illustrated in
The tined disks are mounted in pairs, and the angle of the mount is diagrammatically illustrated in
a,7b,7c and
The round brush 40r is shown in
Disks 30r3 and 30r4 are illustrated in
a,8b and 8c are the same as
The invented tines in the illustrated embodiment are hardened, fabricated out of, in an exemplary embodiment, D2 Tool Steel, heat treated to a hardness of 60-63 on the Rockwell C scale. The hardness of this steel provides a balance of toughness and hardness. Heat treatment imparts hardness at the surface of the tines to mitigate deformation and wear. The tine thickness-to-length ratio is about 0.1:1 (for example 3/16 in thick to 2 in length). Conventional tiller tines have a thickness-to-length ratio of about 0.03:1. The invented thicker tines have increased stiffness, therein maintaining an effective geometry though an excavation cut.
The rotating round brushes function to push the loosened soil forwards and sideways, and they limit the depth of penetration of the tined disks. Excavation is uniform, and less likely to asymmetrically deform the tines or the polygonal shaft. Generally, with the invention, soil is pushed forward and to the side of the excavation tool and the robotic platform.
Finally, any numerical parameters set forth in the specification and attached claims are approximations (for example, by using the term “about”) that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of significant digits and by applying ordinary rounding.
The invention described herein may be manufactured and used by or for the Government of the United States of America for Governmental purposes without the payment of any royalties thereon or therefore.
Number | Name | Date | Kind |
---|---|---|---|
5507351 | Martin | Apr 1996 | A |
5562166 | Griffin | Oct 1996 | A |
7743683 | Dayton et al. | Jun 2010 | B2 |
7895930 | Fisk et al. | Mar 2011 | B2 |
8162072 | Marcil et al. | Apr 2012 | B2 |
20080086241 | Phillips et al. | Apr 2008 | A1 |
Entry |
---|
http://www.yetterco.com/products. |