The subject matter disclosed herein relates generally to the field of manufacturing and, more particularly, to a removable magnetic mask for masking areas of a substrate to be coated or processed.
Typically, masking materials, such as vinyl adhesive tapes and lead tapes are used to prevent coatings from being deposited in areas that are covered with the masked material. For example, lead tape is used to mask flat areas of a metallic substrate in order to prevent deposition of copper plating. However, on flat areas, vinyl masking materials lift off during processing, thereby compromising the integrity of the coating process. Additionally, conductive and non-conductive coatings are applied through the coating process at different times and may need to be removed using chemicals. These chemicals pose an environmental risk during the coating process. An improved method of masking certain areas for applying coatings or other materials during processing would be well received in the field.
According to one aspect of the invention, a method for selectively coating a substrate, includes magnetically coupling a removable mask to at least one surface of the substrate; forming a coating of a coating material on the at least one surface of the substrate with the magnetically coupled removable mask using a bath containing the coating material; and selectively decoupling the removable mask from the at least one coated surface to reveal a portion of the surface without the coating.
According to another aspect of the invention, a system for coating a substrate having an inside surface and an outside surface includes a removable mask with a magnetic member having a first surface contour shaped to conform to the outside surface; and a magnetizable member having a second surface contour shaped to conform to the inside surface, the magnetizable member being sufficiently magnetizable to magnetically couple the removable mask to the outside surface to prevent a coating material from being deposited or plated between the removable mask and the outside surface during a deposition or plating process.
According to another aspect of the invention, a selectively coated substrate made according to a process including the steps of magnetically coupling a removable mask to at least one surface of the substrate; forming a coating of a coating material on the at least one surface of the substrate with the magnetically coupled removable mask using a bath containing the coating material; and selectively decoupling the removable mask from the at least one coated surface to reveal a portion of the coated surface without the coating.
Other aspects, features, and techniques of the invention will become more apparent from the following description taken in conjunction with the drawings.
The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which like elements are numbered alike in the several FIGURES:
Referring to the drawings,
According to one exemplary process, the surface pre-treatment process 402 includes removing surface contaminants using a suitable technique such as, in some non-limiting examples, solvent rinsing, vapor degreasing using trichloroethylene or other suitable solvents, solvent emulsion cleaning or the like in order to remove any grease or organic compounds. In an exemplary embodiment, a degreasing bath having an aqueous, non-silicate alkaline solution containing a surfactant may be utilized to clean the substrate. Following degreasing, the substrate is subject to a rinse in a water bath to remove solvents from its surface. In an embodiment, the substrate may be immersed in a second rinse in order to ensure that solvents are not present on the surface. Following water rinse, the substrate may be subjected to a solvent emulsion cleaning or the like in order to remove any grease or organic compounds. Following, solvent emulsion cleaning, the substrate is rinsed in a water bath and, in an embodiment, subjected to an acid etching. In acid etching, the substrate is immersed in an acid bath containing 30% by mass hydrochloric acid (HCL) for a predetermined time in order to remove an oxide layer from its surface. Following the acid bath, the substrate is rinsed in a water bath and dried in preparation for a copper plating process 404. As will be appreciated by those of skill in the art, these surface pre-treatment procedures are susceptible to a wide array of alternatives. Thus, it is contemplated that any number of other procedures and practices may likewise be utilized such as, for example, by mechanical methods or by immersion or spray cleaner systems in order to perform the pre-treatment process of the substrate. Such pre-treatment may not be needed in all aspects of the invention, and different chemicals and processes may be utilized in other aspects.
Following the surface pre-treatment process 402, the pre-treated substrate is subjected to a copper plating process 404. With further reference to
Next, in an embodiment, the copper plated substrate includes a corrosion inhibitive conversion coating process 406 with a trivalent chromium-containing layer in order to protect the surface from corrosion. As the conversion coating is conductive, areas of the substrate that are to be made non-conductive are covered with the removable mask 104 and/or 304. As such, the mask 104 and/or 304 need not be applied in the coating process 404 where the plating is desired, and can be applied afterwards to block the application of subsequent layers in a subsequent process such as process 406. The removable mask 104 and/or 304 prevents the conversion coating from infiltrating through it and coating the covered surface. With reference to
In an exemplary embodiment, following conversion coating process 406, the substrate is subjected to substrate hardening process 408. In an embodiment, the removable mask 104 is removed from the copper plated substrate prior to the copper plated substrate being inserted into a carburization chamber, although it is understood that the mask 104 and/or 304 could be left on in other aspects. In embodiments, the copper plated substrate may be carburized in a carburization chamber using a source of carbon and at an elevated temperature. In an embodiment, gas carburizing may be utilized at a temperature within the range of 900 degree Celsius (1173 Kelvin) to 950 degree Celsius (1253 Kelvin) using carbon monoxide gas as the carbon source. In another embodiment, liquid source may be used such as, for example, a molten salt of sodium cyanide and barium chloride is used. It is understood that the hardening process 406 is not required in all aspects, and that other temperatures and materials can be used according the specific application in other aspects.
Lastly, the substrate surface is subjected to a surface post-treatment process 410 which may include removing chemical contaminants using a suitable technique such as, in some non-limiting examples, immersion in a water bath, solvent rinsing, vapor degreasing or other suitable solvents, solvent emulsion cleaning or the like in order to remove any compounds. It is understood that the post-treatment process 410 is not required in all aspects or can be provided at a separate facility.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. While the description of the present invention has been presented for purposes of illustration and description, it is not intended to be exhaustive or limited to the invention in the form disclosed. Further, while described in the context of the manufacture of parts for a helicopter, it is understood that aspects can be used in other contexts in which a coating is to be selectively disposed on a surface, such as in semiconductor manufacturing. Many modifications, variations, alterations, substitutions, or equivalent arrangement not hereto described will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. Additionally, while the various embodiment of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4169022 | Ward | Sep 1979 | A |
4358349 | Masami | Nov 1982 | A |
4997529 | Totsuka | Mar 1991 | A |
5885667 | Calfat | Mar 1999 | A |
5950908 | Fujino | Sep 1999 | A |
6004448 | Martyak | Dec 1999 | A |
20090301894 | Ehlers | Dec 2009 | A1 |
20100180793 | Dingwerth | Jul 2010 | A1 |
20110308955 | Olson | Dec 2011 | A1 |
20120052205 | Wang | Mar 2012 | A1 |
20130043135 | Demers | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
953576 | Mar 1964 | GB |
1448585 | Aug 1976 | GB |
56090997 | Jul 1981 | JP |
04193978 | Jul 1992 | JP |
Number | Date | Country | |
---|---|---|---|
20150056427 A1 | Feb 2015 | US |