1. Field of the Invention
The present invention relates generally to global navigation satellite systems (GNSS), and in particular to removing biases in dual frequency GNSS receivers.
2. Description of the Related Art
The Global Positioning System (GPS) was established by the United States government, and employs a constellation of 24 or more satellites in well-defined orbits at an altitude of approximately 26,500 km. These satellites continually transmit microwave L-band radio signals in two frequency bands, centered at 1575.42 MHz and 1227.6 MHz., denoted as L1 and L2 respectively. These signals include timing patterns relative to the satellite's onboard precision clock (which is kept synchronized by a ground station) as well as a navigation message giving the precise orbital positions of the satellites. GPS receivers process the radio signals, computing ranges to the GPS satellites, and by triangulating these ranges, the GPS receiver determines its position and its internal clock error. Different levels of accuracies can be achieved depending on the techniques deployed. For example, processing carrier phase observations both from a mobile/remote receiver and from one or more fixed-position reference stations is often referred to as Real-Time-Kinematic or RTK, and can produce sub-centimeter accuracy.
To gain a better understanding of the accuracy levels achievable by using the GPS system, it is necessary understand the two types of signals available from the GPS satellites. The first type of signal includes both the Coarse Acquisition (C/A) code, which modulates the L1 radio signal and the precision (P) code, which modulates both the L1 and L2 radio signals. These are pseudorandom digital codes that provide a known pattern that can be compared to the receiver's version of that pattern. By measuring the time-shift required to align the pseudorandom digital codes, the GPS receiver is able to compute an (DN 4165)
unambiguous pseudo range to the satellite. Both the C/A and P codes have a relatively long “wavelength,” of about 300 meters (1 microsecond) and 30 meters ( 1/10 microsecond), respectively. Consequently, use of the C/A code and the P code yield position data only at a relatively coarse level of resolution.
The second type of signal utilized for position determination is the carrier signal. The term “carrier”, as used herein, refers to the dominant spectral component which remains in the radio signal after the spectral content caused by the modulated pseudorandom digital codes (C/A and P) is removed. The L1 and L2 carrier signals have wavelengths of about 19 and 24 centimeters, respectively. The GPS receiver is able to “track” these carrier signals, and in doing so, make measurements of the carrier phase to a small fraction of a complete wavelength, permitting range measurement to an accuracy of less than a centimeter.
Satellite-based augmentation systems (SBASs), such as the FAA's Wide Area Augmentation System (WAAS) and the European Geostationary Navigation Overlay Service (EGNOS), broadcast correction components for global navigation satellite system (GNSS, including the Global Positioning System (GPS)) positioning that include ionosphere correction maps, fast clock correctors, slow clock correctors and orbit correctors. A single-frequency GPS receiver receives these components over an SBAS broadcast signal, and using a troposphere model, differentially corrects its measured pseudo ranges, ultimately improving receiver positioning accuracy.
One of the problems with existing SBAS systems is that they are designed for use with single-frequency receivers, with which the ability of the SBAS system to correct ionosphere errors is one of the main limitations to achieving higher accuracy. SBAS systems model the ionosphere as a thin shell and fit ionosphere delay readings obtained with a network of dual-frequency GPS receivers to this shell. SBAS satellites then broadcast a vertical delay map of the shell to SBAS-enabled GPS receivers so that the single-frequency GPS receiver can correct ionosphere errors in its measured pseudo ranges. In the receiver, vertical delays are interpolated from the map and scaled according to an obliquity factor. However, the SBAS approach to correcting ionosphere errors is a first order approach and can have errors exceeding one half meter during normal operation and even tens of meters during high solar activity. This is particularly true as ionosphere gradients become large and the assumption of a thin shell breaks down.
Whitehead U.S. Pat. No. 6,397,147 discloses real-time, single-receiver relative GPS positioning using a technique where differential correction terms are computed at particular locations and instants of time, adjusted for atmospheric delays and then applied at later instants of time. The later GPS-defined positions are thus determined accurately relative to the earlier positions because the ionosphere errors are canceled out. This patent is assigned to a common assignee herewith and is incorporated herein by reference. Such relative positioning accuracy is often sufficient for applications not requiring absolute positioning accuracy, such as agricultural and machine control operations where the primary concern is positioning the equipment relative to its initial location or starting point. For example, agricultural equipment is often guided over fields in parallel swaths which are preferably located accurately relative to each other, but need not be precisely positioned in absolute GPS or other earth-based coordinates.
SBAS systems are designed to correct only L1(C/A) pseudo ranges including the problematic ionosphere delay component, but a dual frequency receiver can circumvent the need for ionosphere corrections by using L2(P) in combination with either L1(P) or L1(C/A) to form the ionosphere-free ranges. A bias, known as the inter-frequency bias, exists between L1(P) and L2(P). This bias is different for each GPS space vehicle and takes on a value ranging from a fraction of a meter to a couple of meters. The GPS satellites broadcast this bias in a term known as Tau-Group-Delay (τGD), but due to word size, this broadcast has a limited resolution of 0.14 meters.
There is another bias, on the order of a few decimeters, between L1(C/A) and L1(P) that is also satellite dependant, but is not broadcast over the GPS navigation message (today). This bias is the inter-signal group delay code bias, referred to in the modernized GPS ICDs as ISCL1C/A. Various organizations, particularly the Center for Orbit Determination in Europe (CODE) predict and maintain estimates of ISCL1C/A using a global network of monitoring Dual-Frequency GPS receivers.
A good discussion of these biases can be found in “Dual-Frequency GPS Precise Point Positioning with WADGPS Correctors” by Hyunho Rho and Richard Langely, Navigation Journal of The Institute of Navigation, Summer 2007, No. 2, Vol. 54, pp. 139-151.
Although SBAS systems are designed for operation with single-frequency receivers, dual-frequency receivers can apply the corrections as well if proper care is taken. The advantage of a dual-frequency receiver is that ionosphere-free code and carrier combinations can be formed that allow the receiver to circumvent the need for the SBAS ionosphere map. Thus, only SBAS clock and orbit correctors are required.
The L1(C/A)/L2(P) ionosphere-free combination is preferred over L1(P)/L2(P) due to the robustness of tracking L1(C/A) over tracking of L1(P). The aforementioned inter-frequency and inter-signal biases must be taken into account to properly apply SBAS corrections to the ionosphere-free combination involving L1(C/A) and L2(P). The τGD clock correction is not used when utilizing ionosphere-free observations, however, SBAS systems assume that τGD is applied so errors in broadcast τGD will be implicitly present in the SBAS corrections.
One additional bias, BUSER-SBAS, that must be considered, and which is not mentioned in other literature, takes into account any remaining errors; particularly biases of the SBAS system relative to the user's receiver. Such biases have been observed and may arise due to differences in the user receiver's tracking loops as compared to tracking loops deployed within the receivers comprising the SBAS network. The biases may also contain a portion resulting from systematic errors in the SBAS processing algorithms or receivers. Disclosed here is a method to compute a bias term, BTOTAL, that includes BUSER-SBAS as well as biases caused by un-modeled satellite inter-signal and inter-frequency delays. This method involves post-processing data that is collected using a dual-frequency GPS receiver situated in a known location. We note that different SBAS systems (WAAS and EGNOS for example) may lead to different biases.
All bias terms must be taken into account to achieve the highest-level of accuracy in a dual-frequency GPS Receiver employing SBAS corrections. Only the bias τGD is readily available to a conventional GPS receiver since it is broadcast in the GPS navigation message, albeit not at a high resolution (only 0.14 meters resolution). The remaining biases are not readily available to a conventional GPS receiver. The system of the present invention provides a means to upload and store the needed biases in a table within the receiver. The upload means can occur on a periodic basis to account for slow drifts in the biases, or to account for bias change due to satellite replacements. Also disclosed is a means to compute the needed biases.
To further improve performance, an additional step can be taken. Rather than relying solely on a troposphere model (such as the one provided in RTCA/DO-229D), the approach disclosed here is to estimate actual troposphere perturbations to a nominal model in real-time as the state of a Kalman filter. Such approaches have been taken in prior art, but not in combination with a dual-frequency receiver that forms ionosphere-free observations that are corrected with SBAS orbit and clock correctors, all in a real-time application giving superior navigation accuracy.
As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention in virtually any appropriately detailed structure.
Certain terminology will be used in the following description for convenience in reference only and will not be limiting. For example, up, down, front, back, right and left refer to the invention as oriented in the view being referred to. The words “inwardly” and “outwardly” refer to directions toward and away from, respectively, the geometric center of the embodiment being described and designated parts thereof. Global navigation satellite systems (GNSS) are broadly defined to include GPS (U.S.), Galileo (proposed), GLONASS (Russia), Beidou (China), Compass (proposed), IRNSS (India, proposed), QZSS (Japan, proposed) and other current and future positioning technology using signals from satellites, with or without augmentation from terrestrial sources.
The GPS control segment computes satellite clock biases relative to the inonsphere-free pseudo ranges, Piono
Piono
where
K1=F12/(F12−F22)=2.546
K2=F22/(F12−F22)=1.546
and F1=1575.42 MHz, F2=1227.60 MHz
Note that K1−K2=1.
Due to group delays and inter-signal delays, there are slight biases between the three observables C1, P1 and P2. Accordingly, define the inter-signal code bias, ISCL1/CA, as
ISCL1/CA=P1−C1
and the inter-frequency bias, BP2−P1, as
BP2−P1=P2−P1
BP2−P1 is related to the group delay, known as τGD in the GPS Interface Control Document, ICD-GPS-200, by the following relationship:
τGD=K2BP2−P1
Since we are concerned with satellite biases, we shall write the observation equations with the assumption that the GPS receiver clock is perfect, and that there are no atmosphere effects, multipath noise, thermal noise or other error sources aside from satellite clock errors. This greatly simplifies the equations, allowing us to focus on the relevant clock terms. With the assumption of perfect user clock, we eventually solve for this common-mode term when computing the GPS solution.
Ignoring all but satellite clock biases, the three observation equations become:
C1=R−(TSV−τGD)−ISCL1/CA
P1=C1+ISCL1/CA=R−(TSV−τGD)
P2=P1+BP2−P1=R−(TSV−τGD)+BP2−P1
where R is geometric range (true range), and TSV is the satellite clock bias relative to ionosphere-free observation, Piono
There are actually two ionosphere-free combinations of interest; one involves the use of a P1/P2 code combination while the other uses the more reliable C1/P2 combination. These are:
where we have used the relationship τGD=K2BP2−P1 to simplify.
Both ionosphere-free observations, are, as their name implies, free of any ionosphere induced delays. They are desirable since they enable a receiver to overcome one of the largest remaining sources of error in single frequency SBAS positioning: the un-modeled ionosphere. SBAS cannot provide a perfect ionosphere map, and it is better to simply cancel out the ionosphere effects using these ionosphere-free observations.
When SBAS sends clock correctors, the clock correctors are relative to the C1 observable, not the ionosphere-free observations. In computing these corrections, the SBAS system assumes (see RTCA/DO-229D) that the user receiver will apply the GPS broadcast clock model, TSVGPS as well as the broadcast group-delay, τGDGPS. The superscript “GPS” indicates that TSVGPS and τGDGPS are estimates provided by the GPS Control Segment rather than the true values. The GPS navigation message, which is modulated on the GPS transmitted signals, contains coefficients of a time-based polynomial fitting TSVGPS. The navigation message contains a single word providing the group-delay, τGDGPS. Each satellite sends its respective, satellite-specific values for the above quantities.
The SBAS clock correction, TSBAS, although provided by SBAS systems as a single quantity, can be broken down into its individual constituents as follows:
TSBAS=TSV−TSVGPS+ISCL1/CA−(τGD−τGDGPS)
In the above equation, it is assumed that SBAS does a perfect job of correcting the clock errors in the C1 observable. In other words, the SBAS system makes no errors when predicting TSV, ISCL1/CA, and (which, we note, it does as a lumped clocked correction rather than separately as we have shown). While this is not precisely true, it is a sufficient assumption for the purpose of explanation, and as will later be shown, long-term systematic errors are treated as biases that we can compute and eliminate.
According to the SBAS specification, the SBAS clock correction is added to the C1 observable while the conventions outlined in the ICD-GPS-200 are followed with respect to use of TSVGPS and τGDGPS. Thus, the SBAS-corrected pseudo range becomes
SABS corrected L1(C/A) pseudo range=C1+TSVGPS−τGDGPS+TSBAS
or, substituting in the constituents of C1 and TSBAS we get
SBAS corrected L1(C/A) pseudo range=[R−(TSV−τGD)−ISCL1/CA]+TSVGPS−τGDGPS+[TSV−TSVGPS+ISCL1/CA−(τGD−τGDGPS)]=R
As can be seen, if SBAS does a perfect job correcting the clocks, the corrected pseudo range becomes the true geometric range R, (ignoring all non-clock errors) as desired.
Now, consider a similar application of the SBAS correctors to the ionosphere-free combination based on C1/P2; namely Piono
Piono
The term, BISC
In order to get the desired result, BISC
BISC
With this, we have
Piono
We see that BISC
One more bias that must be included is one not included in previous literature, which we shall denote as BUSER-SBAS. This bias accounts for differences between the code tracking-loops in the SBAS's network of GPS receivers and code tracking-loops in a user's GPS receiver (different multipath mitigation techniques and receiver group-delays can result in different biases). It also accounts for any other implementation-specific biases between the SBAS system and user receiver. One way to describe BUSER-SBAS is a bias that models the difference between the pseudo range measured in a receiver that would be corrected perfectly by SBAS, and the pseudo range measured in a receiver that is actually being deployed. The total bias that must be taken into account when using SBAS corrector with the ionosphere-free C1/P2 combination is
BTOTAL=BISC
In the exemplary embodiment, this bias, BTOTAL, is stored in the non-volatile memory of the user's GPS receiver, one for each GPS space vehicle. The biases have been observed to be nearly constant, varying slowly over time and only taking dramatic steps upon replacement of a space vehicle. Consequently, frequent uploads of biases to receiver non-volatile memory is not necessary. Uploads can be done on a periodic basis which will typically be on the order of several months to a year. Biases should be monitored for substantial changes so that new bias tables can be made available. We note that one component of the biases, the ISCL1/CA bias, is monitored by the Center for Orbit Determination in Europe (CODE) where results are made public via the Internet. However, for best results it is recommended that biases are monitored and computed using the exact type of GPS receivers for which the bias will be utilized. Particularly since CODE uses a network of receivers from different manufacturers to compute their bias estimates based on an average of all contributing receiver data.
Rather than compute BTOTAL as the sum of individual components, it can be computed as one lumped bias. This is accomplished by replacing BISC
During calibration mode, a receiver is situated in a known location and configured to gather carrier-smoothed, ionosphere-free pseudo ranges corrected with SBAS orbit and clock correctors. Smoothing can take place indefinitely since there is no divergence between code and carrier with the ionosphere-free combinations.
The carrier-smoothed, ionosphere-free pseudo ranges, corrected with SBAS are computed as
Piono
where
(K1C1−K2P2)SMOOTH is the carrier-smoothed, ionosphere-free pseudo range
TSVGPS is the GPS broadcast SV clock model
TUSER is the user clock estimate, common to all observations
TSBAS is the SBAS clock correction (both fast and slow)
TropoModel is a nominal model of the troposphere delay, as for example, the model in RTCA/DO 229, Appendix A
A residual is formed for each satellite by subtracting the geometric (truth) range of the satellite from Piono
The residual includes the desired bias, BTOTAL, plus other error terms. That is
residual=Piono
Other is all other sources of error aside from those constant errors making up BTOTAL.
The term “Other” would include the following:
Residual terms are gathered, ideally over multiple days for better averaging away of noise effects. Post processing of the residuals then yields the desired biases. In the crudest form of post-processing, residual data is simply plotted and systematic shifts in residuals are visually determined. The eye is generally good at averaging out time-varying effects, such as those mentioned above.
A more systematic approach to calibrating the biases is to use a Kalman filter or a least-squares method to estimate and remove the effects of un-modeled troposphere errors, common clock errors, and to effectively time-average the data. The state vector of a Kalman filter is comprised of a troposphere perturbation state and a clock state, both of which are allowed to vary (a random-walk process), and the BTOTAL biases, one per satellite, each of which is assumed to be constant in the Kalman process model. The troposphere state is a perturbation from the model of the troposphere, and its effect on the residual observations is through a mapping function based on satellite elevation angle. By estimating and removing troposphere and clock effects, the Kalman filter is able to effectively estimate the BTOTAL bias terms (essentially these biases are a time-average of what is left in the residual errors after removing troposphere and clock offsets).
As mentioned, BTOTAL encompasses inaccuracies in the assumed τGD and ISCL1C/A as well as SBAS system-to-user-receiver biases. Clearly, portions of BTOTAL (such as the ISCL1C/A or τGD contribution) can be determined in advance by other methods, for example, ISCL1C/A can be determined simply by averaging P1−C1. In this case, the known bias contributions are removed up-front during the calibration process. Only the remaining portions of BTOTAL are then calculated and, following calibration, these remaining portions are summed together with the known biases to yield the desired total bias, BTOTAL.
Having performed the bias calibrations, a table of satellite biases (a separate BTOTAL for each satellite) is made available for upload to receivers in the field. This could be via the internet (with a web-based server for example) or the bias table could be loaded onto a memory stick that is plugged into the individual receivers. The user may manually enter the bias table into the receiver through issuing a command over one of the receiver's RS-232 com ports, or the process may be automated, such as simply connecting the receiver to a PC and letting software take over. The receiver then stores the biases in non-volatile memory for subsequent use. Other approaches can be taken which are obvious to those skilled in the art. Biases are re-computed and made available on a periodic basis or as new satellites are launched.
In summary, a single receiver situated at a known location can be used to calibrate biases (producing a table of BTOTAL at 106) that can later be provided (by some means) to a large number of receivers in the field. The process of
With the biases known and accounted for, the SBAS orbit and clock are applied to the ionosphere-free range observations resulting in improved accuracy in a dual-frequency GPS receiver. As was the case during calibration, smoothing of ionosphere-free code against ionosphere-free carrier (for example, a Hatch filter) is employed for best results. Smoothing can take place indefinitely since there is no divergence between code and carrier with the ionosphere-free combinations. This is unlike a single-frequency receiver where smoothing intervals must be limited as a result of code/carrier divergence. In practice, a two hour smoothing window would typically be sufficient for many applications.
In the exemplary embodiment of the present invention an additional step is taken to improve accuracy. This step is the estimation of residual troposphere content in the observed pseudo ranges. Having removed ionosphere error using ionosphere-free combinations and correcting clock and orbit errors using SBAS corrections, troposphere model errors start to become relevant and limit overall accuracy. However, with a sufficient numbers of satellites (5 or more), perturbations in the troposphere relative to the model can be estimated in real-time.
A state that models a troposphere zenith delay perturbation is estimated by a Kalman filter that also simultaneously estimates receiver location, clock, and other navigation quantities of interest. In another embodiment, the Kalman filter can ignore a nominal model altogether and estimate the entire zenith troposphere, not just a perturbation to a nominal model. In constructing the Kalman filter, measurements are assumed to be impacted by the troposphere zenith delay scaled by a mapping function that maps zenith into a slant delay based on satellite elevation angle.
A Kalman filter state vector will consist of position (x,y,z), time, t, and troposphere, τ plus possibly other quantities such as velocity or past positions.
The Kalman residual, for satellite, j, is defined as
residualj=Rmeasuredj−Rpredictedj
where
Rmeasuredj=the jth satellite's measured pseudo range
and
Rpredictedj=the jth satellite's predicted range, where the prediction is based on the current state, X, of the Kalman filter.
The Kalman filter is based on a linearization of the non-linear range equations. The partials of the residual with respect to X giving
∂(residualj)=−[Hj][∂X]
where
Hj=[uxj, uyj, uzj, 1, Mj, . . . ] is the jth row of what is frequently referred to as the design matrix and is the matrix needed for Kalman filter design, or least squares solution. The first 3 elements of Hj, [uxj, uyj, uzj,], are a unit vector from satellite j to the current location X, and Mj is a troposphere mapping function for satellite j. The clock, t, is mapped through unity (the 4th element of Hj).
The troposphere mapping function, is taken as
where Elj is the elevation angle of satellite j.
The Kalman time-update of troposphere state can follow a simple linear model which exponentially correlates over time. The following equation shows the Kalman process model for the update of the troposphere state, τ, from time k, to time k+1,
τ(k+1)=fTropτ(k)+gTropn(k)
fTrop=exp(−Ts/Tc),gTrop=√{square root over (P−fTrop2P)}
Here, n(k) is unit white noise, Ts is the Kalman sample period, Tc is the troposphere time-correlation period, and P is the troposphere auto-correlation power. Typical values for Tc are one to several hours and P is on the order of centimeters since τ(k) represents a perturbation from nominal troposphere.
The equations given above are sufficient, for one skilled in the art, to design a Kalman filter estimator for the navigation state that includes a troposphere delay estimate in addition to receiver location and receiver clock.
It is to be understood that the invention can be embodied in various forms, and is not to be limited to the examples discussed above.
Number | Name | Date | Kind |
---|---|---|---|
3585537 | Rennick et al. | Jun 1971 | A |
3596228 | Reed, Jr. et al. | Jul 1971 | A |
3727710 | Sanders et al. | Apr 1973 | A |
3815272 | Marleau | Jun 1974 | A |
3899028 | Morris et al. | Aug 1975 | A |
3987456 | Gelin | Oct 1976 | A |
4132272 | Holloway et al. | Jan 1979 | A |
4170776 | MacDoran | Oct 1979 | A |
4180133 | Collogan et al. | Dec 1979 | A |
4398162 | Nagai | Aug 1983 | A |
4453614 | Allen et al. | Jun 1984 | A |
4529990 | Brunner | Jul 1985 | A |
4637474 | Leonard | Jan 1987 | A |
4667203 | Counselman, III | May 1987 | A |
4689556 | Cedrone | Aug 1987 | A |
4694264 | Owens et al. | Sep 1987 | A |
4710775 | Coe | Dec 1987 | A |
4714435 | Stipanuk et al. | Dec 1987 | A |
4739448 | Rowe et al. | Apr 1988 | A |
4751512 | Longaker | Jun 1988 | A |
4769700 | Pryor | Sep 1988 | A |
4785463 | Janc et al. | Nov 1988 | A |
4802545 | Nystuen et al. | Feb 1989 | A |
4812991 | Hatch | Mar 1989 | A |
4813991 | Hatch | Mar 1989 | A |
4858132 | Holmquist | Aug 1989 | A |
4864320 | Munson et al. | Sep 1989 | A |
4894662 | Counselman | Jan 1990 | A |
4916577 | Dawkins | Apr 1990 | A |
4918607 | Wible | Apr 1990 | A |
4963889 | Hatch | Oct 1990 | A |
5031704 | Fleischer et al. | Jul 1991 | A |
5100229 | Lundberg et al. | Mar 1992 | A |
5134407 | Lorenz et al. | Jul 1992 | A |
5148179 | Allison | Sep 1992 | A |
5152347 | Miller | Oct 1992 | A |
5155490 | Spradley et al. | Oct 1992 | A |
5155493 | Thursby et al. | Oct 1992 | A |
5156219 | Schmidt et al. | Oct 1992 | A |
5165109 | Han et al. | Nov 1992 | A |
5173715 | Rodal et al. | Dec 1992 | A |
5177489 | Hatch | Jan 1993 | A |
5185610 | Ward et al. | Feb 1993 | A |
5191351 | Hofer et al. | Mar 1993 | A |
5202829 | Geier | Apr 1993 | A |
5207239 | Schwitalia | May 1993 | A |
5239669 | Mason et al. | Aug 1993 | A |
5255756 | Follmer et al. | Oct 1993 | A |
5268695 | Dentinger et al. | Dec 1993 | A |
5293170 | Lorenz et al. | Mar 1994 | A |
5294970 | Dornbusch et al. | Mar 1994 | A |
5296861 | Knight | Mar 1994 | A |
5311149 | Wagner et al. | May 1994 | A |
5323322 | Mueller et al. | Jun 1994 | A |
5334987 | Teach | Aug 1994 | A |
5343209 | Sennott et al. | Aug 1994 | A |
5345245 | Ishikawa et al. | Sep 1994 | A |
5359332 | Allison et al. | Oct 1994 | A |
5361212 | Class et al. | Nov 1994 | A |
5365447 | Dennis | Nov 1994 | A |
5369589 | Steiner | Nov 1994 | A |
5375059 | Kyrtsos et al. | Dec 1994 | A |
5390124 | Kyrtsos | Feb 1995 | A |
5390125 | Sennott et al. | Feb 1995 | A |
5390207 | Fenton et al. | Feb 1995 | A |
5416712 | Geier et al. | May 1995 | A |
5442363 | Remondi | Aug 1995 | A |
5444453 | Lalezari | Aug 1995 | A |
5451964 | Babu | Sep 1995 | A |
5467282 | Dennis | Nov 1995 | A |
5471217 | Hatch et al. | Nov 1995 | A |
5476147 | Fixemer | Dec 1995 | A |
5477228 | Tiwari et al. | Dec 1995 | A |
5477458 | Loomis | Dec 1995 | A |
5490073 | Kyrtsos | Feb 1996 | A |
5491636 | Robertson | Feb 1996 | A |
5495257 | Loomis | Feb 1996 | A |
5504482 | Schreder | Apr 1996 | A |
5511623 | Frasier | Apr 1996 | A |
5519620 | Talbot et al. | May 1996 | A |
5521610 | Rodal | May 1996 | A |
5523761 | Gildea | Jun 1996 | A |
5534875 | Diefes et al. | Jul 1996 | A |
5543804 | Buchler et al. | Aug 1996 | A |
5546093 | Gudat et al. | Aug 1996 | A |
5548293 | Cohen et al. | Aug 1996 | A |
5561432 | Knight | Oct 1996 | A |
5563786 | Torii | Oct 1996 | A |
5568152 | Janky et al. | Oct 1996 | A |
5568162 | Samsel et al. | Oct 1996 | A |
5583513 | Cohen | Dec 1996 | A |
5589835 | Gildea et al. | Dec 1996 | A |
5592382 | Colley | Jan 1997 | A |
5596328 | Stangeland et al. | Jan 1997 | A |
5600670 | Turney | Feb 1997 | A |
5604506 | Rodal | Feb 1997 | A |
5608393 | Hartman | Mar 1997 | A |
5610522 | Locatelli et al. | Mar 1997 | A |
5610616 | Vallot et al. | Mar 1997 | A |
5610845 | Slabinski | Mar 1997 | A |
5612883 | Shaffer et al. | Mar 1997 | A |
5615116 | Gudat et al. | Mar 1997 | A |
5617100 | Akiyoshi et al. | Apr 1997 | A |
5617317 | Ignagni | Apr 1997 | A |
5621646 | Enge et al. | Apr 1997 | A |
5638077 | Martin | Jun 1997 | A |
5644139 | Allen et al. | Jul 1997 | A |
5664632 | Frasier | Sep 1997 | A |
5673491 | Brenna et al. | Oct 1997 | A |
5680140 | Loomis | Oct 1997 | A |
5684696 | Rao et al. | Nov 1997 | A |
5706015 | Chen et al. | Jan 1998 | A |
5717593 | Gvili | Feb 1998 | A |
5725230 | Walkup | Mar 1998 | A |
5731786 | Abraham et al. | Mar 1998 | A |
5739785 | Allison et al. | Apr 1998 | A |
5757316 | Buchler | May 1998 | A |
5765123 | Nimura et al. | Jun 1998 | A |
5777578 | Chang et al. | Jul 1998 | A |
5810095 | Orbach et al. | Sep 1998 | A |
5828336 | Yunck et al. | Oct 1998 | A |
5838562 | Gudat et al. | Nov 1998 | A |
5854987 | Sekine et al. | Dec 1998 | A |
5862501 | Talbot et al. | Jan 1999 | A |
5864315 | Welles et al. | Jan 1999 | A |
5864318 | Cozenza et al. | Jan 1999 | A |
5875408 | Pinto | Feb 1999 | A |
5877725 | Kalafus | Mar 1999 | A |
5890091 | Talbot et al. | Mar 1999 | A |
5899957 | Loomis | May 1999 | A |
5906645 | Kagawa et al. | May 1999 | A |
5912798 | Chu | Jun 1999 | A |
5914685 | Kozlov et al. | Jun 1999 | A |
5917448 | Mickelson | Jun 1999 | A |
5918558 | Susag | Jul 1999 | A |
5919242 | Greatline et al. | Jul 1999 | A |
5923270 | Sampo et al. | Jul 1999 | A |
5926079 | Heine et al. | Jul 1999 | A |
5927603 | McNabb | Jul 1999 | A |
5928309 | Korver et al. | Jul 1999 | A |
5929721 | Munn et al. | Jul 1999 | A |
5933110 | Tang | Aug 1999 | A |
5935183 | Sahm et al. | Aug 1999 | A |
5936573 | Smith | Aug 1999 | A |
5940026 | Popeck | Aug 1999 | A |
5941317 | Mansur | Aug 1999 | A |
5943008 | Van Dusseldorp | Aug 1999 | A |
5944770 | Enge et al. | Aug 1999 | A |
5945917 | Harry | Aug 1999 | A |
5949371 | Nichols | Sep 1999 | A |
5955973 | Anderson | Sep 1999 | A |
5956250 | Gudat et al. | Sep 1999 | A |
5969670 | Kalafus et al. | Oct 1999 | A |
5987383 | Keller et al. | Nov 1999 | A |
6014101 | Loomis | Jan 2000 | A |
6014608 | Seo | Jan 2000 | A |
6018313 | Englemayer et al. | Jan 2000 | A |
6023239 | Kovach | Feb 2000 | A |
6052647 | Parkinson et al. | Apr 2000 | A |
6055477 | McBurney et al. | Apr 2000 | A |
6057800 | Yang et al. | May 2000 | A |
6061390 | Meehan et al. | May 2000 | A |
6061632 | Dreier | May 2000 | A |
6062317 | Gharsalli | May 2000 | A |
6069583 | Silvestrin et al. | May 2000 | A |
6076612 | Carr et al. | Jun 2000 | A |
6081171 | Ella | Jun 2000 | A |
6100842 | Dreier et al. | Aug 2000 | A |
6122595 | Varley et al. | Sep 2000 | A |
6128574 | Diekhans | Oct 2000 | A |
6144335 | Rogers | Nov 2000 | A |
6191730 | Nelson, Jr. | Feb 2001 | B1 |
6191733 | Dizchavez | Feb 2001 | B1 |
6198430 | Hwang et al. | Mar 2001 | B1 |
6198992 | Winslow | Mar 2001 | B1 |
6199000 | Keller et al. | Mar 2001 | B1 |
6205401 | Pickhard et al. | Mar 2001 | B1 |
6215828 | Signell et al. | Apr 2001 | B1 |
6229479 | Kozlov et al. | May 2001 | B1 |
6230097 | Dance et al. | May 2001 | B1 |
6233511 | Berger et al. | May 2001 | B1 |
6236916 | Staub et al. | May 2001 | B1 |
6236924 | Motz | May 2001 | B1 |
6253160 | Hanseder | Jun 2001 | B1 |
6256583 | Sutton | Jul 2001 | B1 |
6259398 | Riley | Jul 2001 | B1 |
6266595 | Greatline et al. | Jul 2001 | B1 |
6285320 | Olster et al. | Sep 2001 | B1 |
6292132 | Wilson | Sep 2001 | B1 |
6307505 | Green | Oct 2001 | B1 |
6313788 | Wilson | Nov 2001 | B1 |
6314348 | Winslow | Nov 2001 | B1 |
6325684 | Knight | Dec 2001 | B1 |
6336066 | Pellenc et al. | Jan 2002 | B1 |
6345231 | Quincke | Feb 2002 | B2 |
6356602 | Rodal et al. | Mar 2002 | B1 |
6377889 | Soest | Apr 2002 | B1 |
6380888 | Kucik | Apr 2002 | B1 |
6389345 | Phelps | May 2002 | B2 |
6392589 | Rogers et al. | May 2002 | B1 |
6397147 | Whitehead | May 2002 | B1 |
6415229 | Diekhans | Jul 2002 | B1 |
6418031 | Archambeault | Jul 2002 | B1 |
6421003 | Riley et al. | Jul 2002 | B1 |
6424915 | Fukuda et al. | Jul 2002 | B1 |
6431576 | Viaud et al. | Aug 2002 | B1 |
6434462 | Bevly et al. | Aug 2002 | B1 |
6445983 | Dickson et al. | Sep 2002 | B1 |
6445990 | Manring | Sep 2002 | B1 |
6449558 | Small | Sep 2002 | B1 |
6463091 | Zhodzicshsky et al. | Oct 2002 | B1 |
6463374 | Keller et al. | Oct 2002 | B1 |
6466871 | Reisman et al. | Oct 2002 | B1 |
6469663 | Whitehead et al. | Oct 2002 | B1 |
6484097 | Fuchs et al. | Nov 2002 | B2 |
6501422 | Nichols | Dec 2002 | B1 |
6515619 | McKay, Jr. | Feb 2003 | B1 |
6516271 | Upadhyaya et al. | Feb 2003 | B2 |
6539303 | McClure et al. | Mar 2003 | B2 |
6542077 | Joao | Apr 2003 | B2 |
6549835 | Deguchi | Apr 2003 | B2 |
6553299 | Keller et al. | Apr 2003 | B1 |
6553300 | Ma et al. | Apr 2003 | B2 |
6553311 | Aheam et al. | Apr 2003 | B2 |
6570534 | Cohen et al. | May 2003 | B2 |
6577952 | Geier et al. | Jun 2003 | B2 |
6587761 | Kumar | Jul 2003 | B2 |
6606542 | Hauwiller et al. | Aug 2003 | B2 |
6611228 | Toda et al. | Aug 2003 | B2 |
6611754 | Klein | Aug 2003 | B2 |
6611755 | Coffee et al. | Aug 2003 | B1 |
6622091 | Perlmutter et al. | Sep 2003 | B2 |
6631916 | Miller | Oct 2003 | B1 |
6643576 | O'Connor et al. | Nov 2003 | B1 |
6646603 | Dooley et al. | Nov 2003 | B2 |
6657875 | Zeng et al. | Dec 2003 | B1 |
6671587 | Hrovat et al. | Dec 2003 | B2 |
6688403 | Bernhardt et al. | Feb 2004 | B2 |
6703973 | Nichols | Mar 2004 | B1 |
6711501 | McClure et al. | Mar 2004 | B2 |
6721638 | Zeitler | Apr 2004 | B2 |
6732024 | Rekow et al. | May 2004 | B2 |
6744404 | Whitehead et al. | Jun 2004 | B1 |
6754584 | Pinto et al. | Jun 2004 | B2 |
6774843 | Takahashi | Aug 2004 | B2 |
6792380 | Toda | Sep 2004 | B2 |
6819269 | Flick | Nov 2004 | B2 |
6822314 | Beasom | Nov 2004 | B2 |
6865465 | McClure | Mar 2005 | B2 |
6865484 | Miyasaka et al. | Mar 2005 | B2 |
6900992 | Kelly et al. | May 2005 | B2 |
6922635 | Rorabaugh | Jul 2005 | B2 |
6931233 | Tso et al. | Aug 2005 | B1 |
6967538 | Woo | Nov 2005 | B2 |
6990399 | Hrazdera et al. | Jan 2006 | B2 |
7006032 | King et al. | Feb 2006 | B2 |
7026982 | Toda et al. | Apr 2006 | B2 |
7027918 | Zimmerman et al. | Apr 2006 | B2 |
7031725 | Rorabaugh | Apr 2006 | B2 |
7089099 | Shostak et al. | Aug 2006 | B2 |
7142956 | Heiniger et al. | Nov 2006 | B2 |
7162348 | McClure et al. | Jan 2007 | B2 |
7191061 | McKay et al. | Mar 2007 | B2 |
7231290 | Steichen et al. | Jun 2007 | B2 |
7248211 | Hatch et al. | Jul 2007 | B2 |
7271766 | Zimmerman et al. | Sep 2007 | B2 |
7277784 | Weiss | Oct 2007 | B2 |
7292186 | Miller et al. | Nov 2007 | B2 |
7324915 | Altman | Jan 2008 | B2 |
7358896 | Gradincic et al. | Apr 2008 | B2 |
7373231 | McClure et al. | May 2008 | B2 |
7388539 | Whitehead et al. | Jun 2008 | B2 |
7395769 | Jensen | Jul 2008 | B2 |
7428259 | Wang et al. | Sep 2008 | B2 |
7437230 | McClure et al. | Oct 2008 | B2 |
7451030 | Eglington et al. | Nov 2008 | B2 |
7479900 | Horstemeyer | Jan 2009 | B2 |
7505848 | Flann et al. | Mar 2009 | B2 |
7522100 | Yang et al. | Apr 2009 | B2 |
7571029 | Dai et al. | Aug 2009 | B2 |
7689354 | Heiniger et al. | Mar 2010 | B2 |
20030014171 | Ma et al. | Jan 2003 | A1 |
20030187560 | Keller et al. | Oct 2003 | A1 |
20030208319 | Ell et al. | Nov 2003 | A1 |
20040039514 | Steichen et al. | Feb 2004 | A1 |
20040212533 | Whitehead et al. | Oct 2004 | A1 |
20050080559 | Ishibashi et al. | Apr 2005 | A1 |
20050225955 | Grebenkemper et al. | Oct 2005 | A1 |
20050265494 | Goodlings | Dec 2005 | A1 |
20060167600 | Nelson et al. | Jul 2006 | A1 |
20060215739 | Williamson et al. | Sep 2006 | A1 |
20070078570 | Dai et al. | Apr 2007 | A1 |
20070088447 | Stothert et al. | Apr 2007 | A1 |
20070121708 | Simpson | May 2007 | A1 |
20070205940 | Yang et al. | Sep 2007 | A1 |
20070285308 | Bauregger et al. | Dec 2007 | A1 |
20080129586 | Martin | Jun 2008 | A1 |
20080204312 | Euler | Aug 2008 | A1 |
20090171583 | DiEsposti | Jul 2009 | A1 |
20090174587 | DiLellio et al. | Jul 2009 | A1 |
20090174622 | Kanou | Jul 2009 | A1 |
20090177395 | Stelpstra | Jul 2009 | A1 |
20090177399 | Park et al. | Jul 2009 | A1 |
20090259397 | Stanton | Oct 2009 | A1 |
20090259707 | Martin et al. | Oct 2009 | A1 |
20090262014 | DiEsposti | Oct 2009 | A1 |
20090262018 | Vasilyev et al. | Oct 2009 | A1 |
20090262974 | Lithopoulos | Oct 2009 | A1 |
20090265054 | Basnayake | Oct 2009 | A1 |
20090265101 | Jow | Oct 2009 | A1 |
20090265104 | Shroff | Oct 2009 | A1 |
20090273372 | Brenner | Nov 2009 | A1 |
20090273513 | Huang | Nov 2009 | A1 |
20090274079 | Bhatia et al. | Nov 2009 | A1 |
20090274113 | Katz | Nov 2009 | A1 |
20090276155 | Jeerage et al. | Nov 2009 | A1 |
20090295633 | Pinto et al. | Dec 2009 | A1 |
20090295634 | Yu et al. | Dec 2009 | A1 |
20090299550 | Baker | Dec 2009 | A1 |
20090322597 | Medina Herrero et al. | Dec 2009 | A1 |
20090322598 | Fly et al. | Dec 2009 | A1 |
20090322600 | Whitehead et al. | Dec 2009 | A1 |
20090322601 | Ladd et al. | Dec 2009 | A1 |
20090322606 | Gronemeyer | Dec 2009 | A1 |
20090326809 | Colley et al. | Dec 2009 | A1 |
20100013703 | Tekawy et al. | Jan 2010 | A1 |
20100026569 | Amidi | Feb 2010 | A1 |
20100030470 | Wang et al. | Feb 2010 | A1 |
20100039316 | Gronemeyer et al. | Feb 2010 | A1 |
20100039318 | Kmiecik | Feb 2010 | A1 |
20100039320 | Boyer et al. | Feb 2010 | A1 |
20100039321 | Abraham | Feb 2010 | A1 |
20100060518 | Bar-Sever et al. | Mar 2010 | A1 |
20100063649 | Bing-Fei | Mar 2010 | A1 |
20100085249 | Ferguson et al. | Apr 2010 | A1 |
20100085253 | Ferguson et al. | Apr 2010 | A1 |
20100117899 | Papadimitratos et al. | May 2010 | A1 |
20100117900 | van Diggelen et al. | May 2010 | A1 |
Number | Date | Country |
---|---|---|
07244150 | Sep 1995 | JP |
WO9836288 | Aug 1998 | WO |
WO0024239 | May 2000 | WO |
WO03019430 | Mar 2003 | WO |
WO2005119386 | Dec 2005 | WO |
WO2009066183 | May 2009 | WO |
WO2009126587 | Oct 2009 | WO |
WO2009148638 | Dec 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20100231443 A1 | Sep 2010 | US |