Replacement prosthetic heart valves and methods of implantation

Information

  • Patent Grant
  • 7871436
  • Patent Number
    7,871,436
  • Date Filed
    Friday, February 15, 2008
    16 years ago
  • Date Issued
    Tuesday, January 18, 2011
    13 years ago
Abstract
A replacement prosthetic heart valve for engagement with a structure of a previously implanted prosthetic heart valve, the replacement heart valve including a stent structure and at least two leaflets attached within the interior area of a tubular body portion of the stent structure. The stent structure includes a generally tubular body portion having an interior area, at least two upper flange portions for positioning at an outflow end of the previously implanted heart valve, wherein the upper flange portions extend radially outward from the tubular body portion and are biased toward an inflow end of the replacement heart valve, and at least one lower flange portion for positioning at an inflow end of the previously implanted heart valve, wherein the lower flange portions extend radially outward from the tubular body portion and are biased toward an outflow end of the replacement heart valve.
Description
TECHNICAL FIELD

The present invention relates to prosthetic heart valves. More particularly, it relates to devices, methods, and delivery systems for percutaneously implanting prosthetic heart valves.


BACKGROUND

Various types and configurations of prosthetic heart valves are used to replace diseased natural human heart valves. The actual shape and configuration of any particular prosthetic heart valve is dependent to some extent upon the valve being replaced (i.e., mitral valve, tricuspid valve, aortic valve, or pulmonary valve). In general, the prosthetic heart valve designs attempt to replicate the function of the valve being replaced and thus will include valve leaflet-like structures used with either bioprostheses or mechanical heart valve prostheses.


As used throughout this specification a “prosthetic heart valve” is intended to encompass bioprosthetic heart valves having leaflets made of a biological material (e.g., harvested porcine valve leaflets, or bovine or equine pericardial leaflets), along with synthetic leaflet materials or other materials. These bioprosthetic heart valves typically include a stent having a substantially circular base (or stent ring), around which an annular suture material is disposed for suturing the prosthesis to heart tissue. The stent further typically includes at least two, but typically three, support structures extending from the stent ring. These support structures are commonly referred to as stent posts or commissure posts. These posts typically are rigid yet somewhat flexible structures extending from the stent ring, which are covered by a cloth-like material similar to that of the annular suture material. The stent or commissure posts define the juncture between adjacent tissue or synthetic leaflets otherwise secured thereto. Examples of bioprosthetic heart valves are described in U.S. Pat. No. 4,106,129 (Carpentier et al.), and U.S. Pat. No. 5,037,434 (Lane), the entire disclosures of which are incorporated herein by reference. These disclosures describe a conventional configuration of three leaflets, with one leaflet disposed between each pair of stent or commissure posts. Regardless of whether a stent is provided, however, bioprosthetic heart valves are generally tubular so that when the leaflets are in an open position, an internal passage is defined through which blood can flow.


The bioprosthetic heart valves further typically include a sewing ring or suture ring that provides a means for fixing the prosthetic heart valve to the patient's native heart valve orifice tissue (e.g., native annulus or valvular rim) that is associated with the native heart valve being repaired or replaced. In particular, an exacting surgical implantation technique is traditionally employed whereby the heart is stopped (i.e., cardiopulmonary bypass) and opened, which is followed by surgical removal of damaged or diseased natural valve structure. A prosthetic heart valve can then be oriented within the native valvular area, with the sewing ring being seated against or at the native annulus or valvular rim. Sutures are then used to affix the sewing ring to the natural tissue. Obviously, the risks associated with this invasive type of surgery are numerous, particularly when cardiopulmonary bypass procedures are used.


A successfully implanted prosthetic heart valve will normally function without problems for many years. In certain instances, however, deficiencies may become evident shortly after implant or within a few years, particularly in younger patients. Common functional deficiencies include the calcification of the prosthetic heart valve leaflets, stenosis, and prosthetic heart valve insufficiency. Under these and other circumstances, the prosthetic heart valve does not function properly and conventionally requires surgical removal and replacement. Surgical removal of such a previously implanted prosthetic heart valve entails the same invasive surgical intervention described above, coupled with the need to remove the old prosthetic valve and implant a new prosthetic heart valve. In addition, the risk of mortality is often higher when performing a second surgery in the same area of the body, particularly when performing heart-related surgeries. Another disadvantage to this additional surgery is that the reopening of a sternotomy has been known to have a relatively high risk of causing an infection.


Thus, while these types of surgeries are well-accepted, the conventional surgical intervention described above is difficult to perform and can result in patient injury or more severe complications. In fact, due to physical weakness of a patient, implantation of a prosthetic heart valve via the conventional surgical technique may be considered too high-risk or contra-indicated for certain patients. Further, removal of a previously implanted prosthetic heart valve requires cutting of the sutures that secure the prosthesis to the native annulus/valvular rim, and attachment of a new sewing ring via stitching, which can further compromise the integrity of the valvular rim and lead to recovery complications, morbidity, and mortality.


Although not necessarily related to the specific prosthetic heart valve replacement concerns described above, efforts have also been made to devise a prosthetic heart valve capable of being delivered percutaneously via transcatheter implantation, thereby avoiding the complications and risks associated with conventional surgical intervention. For example, in U.S. Pat. No. 6,168,614 (Andersen et al.), a heart valve prosthesis is described for implantation in the body by use of a catheter. The valve prosthesis consists of a support structure with a tissue valve connected to it, whereby the support structure is delivered in a collapsed state through a blood vessel and secured to a desired valve location with the support structure in an expanded state.


Other percutaneously-delivered prosthetic heart valves have been suggested having a generally similar configuration, such as by Bonhoeffer, P. et al., “Transcatheter Implantation of a Bovine Valve in Pulmonary Position.” Circulation, 2002; 102:813-816, and by Cribier, A. et al. “Percutaneous Transcatheter Implantation of an Aortic Valve Prosthesis for Calcific Aortic Stenosis.” Circulation, 2002; 106:3006-3008, the disclosures of which are incorporated herein by reference. These techniques rely at least partially upon a frictional type of engagement between the expanded support structure and the native tissue to maintain a position of the delivered prosthesis, although the stents can also become at least partially embedded in the surrounding tissue in response to the radial force provided by the stent and any balloons used to expand the stent. Thus, with these transcatheter techniques, conventional sewing of the prosthetic heart valve to the patient's native tissue is not necessary. Similarly, in an article by Bonhoeffer, P. et al. titled “Percutaneous Insertion of the Pulmonary Valve.” J Am Coll Cardiol, 2002; 39:1664-1669, the disclosure of which is incorporated herein by reference, percutaneous delivery of a biological valve is described. The valve is sutured to an expandable stent within a previously implanted valved or non-valved conduit, or a previously implanted valve. Again, radial expansion of the secondary valve stent is used for placing and maintaining the replacement valve.


Devices and methods have more recently been developed for percutaneously replacing deficient, previously implanted prosthetic heart valves, which are described, for example, in U.S. Patent Publication No. 2006/0052867 (Revuelta et al.), the entire disclosure of which is incorporated herein by reference. Other transcatheter technologies for delivering replacement valves are described in PCT Application Nos. WO 2007/053243-A2, WO 2007/130537-A1, and WO 2007/081820-A1; United States Patent Application Publication Nos. 2005/0251251-A1, 2007/0043435-A1, and 2008/0004696-A1; and U.S. Pat. No. 7,195,641. However, a need exists for additional prosthetic heart valves, delivery systems, and related methods of implantation that are conducive to percutaneous delivery for replacing a deficient, previously implanted bioprosthetic heart valve.


SUMMARY

The replacement valves of the invention are configured to provide complimentary features that promote physical docking or connection of the replacement heart valve to a previously implanted prosthetic heart valve, such as the aortic valve, mitral valve, pulmonic valve, and tricuspid valve. In some embodiments, the replacement heart valve and related methods of implantation of the invention utilize a previously implanted prosthetic heart valve as a platform to facilitate mounting relative to a native heart valve. Thus, the replacement heart valves of the invention are highly amenable to percutaneous delivery, although delivery of the heart valves using an apical approach (either with or without cardiopulmonary bypass) is also contemplated. Further, in cases where a previously implanted prosthetic heart valve is being functionally replaced, the deficient prosthetic heart valve need not be physically removed from the patient. Thus, the prosthetic heart valve and related method of implantation of the present invention can be used at any point during the “useful life” of a conventional prosthetic heart valve. Further, the methodology associated with the present invention can be repeated multiple times, such that several prosthetic heart valves of the present invention can be mounted on top of or within one another, if necessary or desired.


The replacement heart valves of the invention each include a stent to which a valve structure is attached. The stents of the invention include a wide variety of structures and features that can be used alone or in combination with features of other stents of the invention. In particular, these stents provide a number of different docking and/or anchoring structures that cooperate with the structure of a previously implanted prosthetic heart valve, and are conducive to percutaneous delivery thereof. Many of the structures are thus compressible to a relatively small diameter for percutaneous delivery to the heart of the patient, and then are expandable either via removal of external compressive forces (e.g., self-expanding stents), or through application of an outward radial force (e.g., balloon expandable stents). In a further alternative, some portions of a stent may be self-expanding while other portions of the same stent are expandable through application of an externally applied force.


Insertion or implantation of the replacement heart valves of the invention can be accomplished using delivery systems that can maintain the stent structures in their compressed state during their insertion and allow or cause all or specific features of the stent structures to expand once they are in their desired location. In addition, some stents of the invention can further include features that allow them to be retrieved for removal or relocation thereof after they have been deployed from the stent delivery systems. The methods may include implantation of the stent structures using either an antegrade or retrograde approach. Further, in many of the delivery approaches of the invention, the stent structure is rotatable in vivo to allow the stent structure to be positioned in a desired orientation.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be further explained with reference to the appended Figures, wherein like structure is referred to by like numerals throughout the several views, and wherein:



FIG. 1 is a perspective view of a prosthetic heart valve with a stent of a replacement prosthetic heart valve of the invention positioned therein;



FIG. 2 is a top view of the stent of FIG. 1 as positioned relative to the outflow end of a prosthetic heart valve;



FIG. 3 is a bottom view of the stent of FIG. 1 as positioned relative to the inflow end of a prosthetic heart valve;



FIG. 4 is a perspective view of the stent of FIG. 1 as it can be used as a component of a replacement prosthetic heart valve;



FIG. 5 is a perspective view of another embodiment of a stent of the invention as it can be used as a component of a replacement prosthetic heart valve;



FIG. 6 is a side, partial cross-sectional view of one embodiment of a delivery system of the invention for implanting a balloon-expandable stent of a replacement prosthetic heart valve;



FIGS. 7-10 are sequential perspective views of the implantation of a self-expanding stent in a prosthetic heart valve, utilizing a retrograde approach of implantation;



FIG. 11 is a perspective view of a prosthetic heart valve with another exemplary embodiment of a stent of a replacement prosthetic heart valve of the invention positioned therein;



FIG. 12 is a top view of the stent of FIG. 11 as positioned relative to the outflow end of a prosthetic heart valve;



FIG. 13 is a bottom view of the stent of FIG. 11 as positioned relative to the inflow end of a prosthetic heart valve;



FIG. 14 is a perspective view of the stent of FIG. 11 as it can be used as a component of a replacement prosthetic heart valve;



FIG. 15 is a side view of the stent and prosthetic heart valve of FIG. 11;



FIG. 16 is a perspective view of another exemplary embodiment of a stent of a replacement heart valve of the invention, with the stent in a partially compressed state;



FIG. 17 is a perspective view of the stent of FIG. 16 positioned within a prosthetic heart valve;



FIG. 18 is a side view of the stent and heart valve of FIG. 17;



FIG. 19 is a top view of the stent of FIG. 16 as positioned relative to the outflow end of a prosthetic heart valve, with the stent in its expanded state;



FIG. 20 is a bottom view of the stent of FIG. 16 as positioned relative to the inflow end of a prosthetic heart valve, with the stent in its expanded state;



FIG. 21 is a perspective view of the stent of FIG. 16 in its expanded state;



FIG. 22 is a perspective view of the stent of FIGS. 16-21 as positioned relative to a prosthetic heart valve;



FIG. 23 is a perspective view of another exemplary embodiment of a stent of a replacement valve of the invention, positioned within a prosthetic heart valve;



FIG. 24 is a perspective view of the stent of FIG. 23;



FIG. 25 is a perspective view of another exemplary embodiment of a stent of a replacement valve of the invention, positioned within a prosthetic heart valve;



FIG. 26 is a top view of the stent of FIG. 25 as positioned relative to the outflow end of a prosthetic heart valve;



FIG. 27 is a bottom view of the stent of FIG. 25 as positioned relative to the inflow end of a prosthetic heart valve;



FIG. 28 is a perspective view of the stent of FIG. 25;



FIG. 29 is a side view of the stent of FIG. 28 positioned relative to a prosthetic heart valve;



FIG. 30 is a perspective view of another exemplary embodiment of a stent of a replacement valve of the invention positioned within a prosthetic heart valve;



FIG. 31 is a top view of the stent of FIG. 30, as positioned relative to the outflow end of a prosthetic heart valve;



FIG. 32 is a bottom view of the stent of FIG. 30, as positioned relative to the inflow end of a prosthetic heart valve;



FIG. 33 is a perspective view of the stent of FIG. 30;



FIG. 34 is a side view of the stent positioned within a prosthetic heart valve of FIG. 30;



FIG. 35 is a perspective view of another exemplary embodiment of a stent of a replacement valve of the invention positioned within a prosthetic heart valve, with the stent in its partially compressed state;



FIG. 36 is a perspective view of the stent of FIG. 35 in its partially compressed state;



FIG. 37 is a side view of the stent positioned within a prosthetic heart valve of FIG. 35;



FIG. 38 is a perspective view of the stent of FIGS. 35-37 positioned within a prosthetic heart valve, with the stent in its expanded state;



FIG. 39 is a perspective view of the stent of FIG. 38;



FIG. 40 is a top view of the stent of FIG. 38, as positioned relative to the outflow end of a prosthetic heart valve;



FIG. 41 is a bottom view of the stent of FIG. 38, as positioned relative to the inflow end of a prosthetic heart valve;



FIG. 42 is a perspective view of another exemplary embodiment of a stent of a replacement valve of the invention positioned within a prosthetic heart valve;



FIG. 43 is a perspective view of the stent of FIG. 42;



FIG. 44 is a top view of the stent of FIG. 42, as positioned relative to the outflow end of a prosthetic heart valve;



FIG. 45 is a bottom view of the stent of FIG. 42, as positioned relative to the inflow end of a prosthetic heart valve;



FIG. 46 is a perspective view of another exemplary embodiment of a stent of a replacement valve positioned within a prosthetic heart valve, with the stent in its partially compressed state;



FIG. 47 is a perspective view of the stent of FIG. 46;



FIG. 48 is a top view of the stent of FIG. 47 positioned within a prosthetic heart valve, with the stent in its partially compressed state;



FIG. 49 is a perspective view of the stent of FIG. 47 in its expanded state as positioned within a prosthetic heart valve;



FIG. 50 is a perspective view of the stent of FIG. 47 in its expanded state; and



FIGS. 51 and 52 are perspective views of a prosthetic heart valve with a stent of a replacement prosthetic heart valve of the invention positioned therein, where FIG. 52 also shows the leaflets of the original prosthetic heart valve.





DETAILED DESCRIPTION

Referring now to the Figures, wherein the components are labeled with like numerals throughout the several Figures, and initially to FIG. 1, a prosthetic heart valve 10 is illustrated with a stent 30 of the invention positioned therein, which will be described in further detail below. However, referring specifically to the prosthetic heart valve 10, this valve 10 is a typical configuration of a valve that can be implanted within the heart of a patient, such as by suturing or otherwise securing the valve 10 into the area of a native heart valve of a patient. The native heart valves referred to herein can be any of the human heart valves (i.e., mitral valve, tricuspid valve, aortic valve, or pulmonary valve), wherein the type and orientation of an implanted (e.g., surgically implanted) prosthetic heart valve 10 will correspond with the particular form, shape, and function of the native heart valve in which it is implanted. Although valve 10 would typically include multiple leaflets attached within its interior area, such leaflets are not shown in many of the illustrated embodiments for clarity purposes.


Valve 10 generally includes a valve structure 12 including a stent ring 14 from which three stent posts or commissure posts 16 extend. All or a portion of the valve structure 12, including the stent ring 14 and stent posts 16, can be covered by a flexible covering 18, which may be a tissue, polymer, fabric, cloth material, or the like to which leaflets (not shown) of the heart valve 10 are attached, such as by sewing. Further, as is known in the art, the internal structure of each of the stent posts 16 can be formed of a stiff but somewhat resiliently bendable material. This construction allows the stent posts 16 to be moved from the orientation shown in FIG. 1 to a deflected orientation by the application of an external force. Once this external force is removed or reduced, the stent posts 16 can then move back toward the orientation shown in FIG. 1.


The valve structure 12 is generally tubular in shape, defining an internal area 20 (referenced generally) that extends from an inflow end 22 to an outflow end 24. The internal area 20 is essentially surrounded by the valve structure 12, and the leaflets attached within the valve structure 12 selectively allow for fluid flow into or out of the lumen of the natural heart valve in which it is implanted. That is, the internal area 20 is alternatively open and closed to the lumen of the natural heart valve in which it is inserted via movement of leaflets. In some patients, the prosthetic heart valve 10 will have previously been implanted in a patient using typical surgical techniques, whereby the stent ring 14 is sewn or attached to the annulus or valvular rim of the native heart valve. Alternatively, the prosthetic valve could have been previously placed in the patient using minimally invasive techniques for holding the valve in place, such as U-clips, for example, or a wide variety of other techniques and features used for minimally invasive and/or percutaneous implantation of the initial prosthetic heart valve.


The prosthetic heart valves (e.g., heart valve 10) used in accordance with the devices and methods of the invention may include a wide variety of different configurations, such as a prosthetic heart valve that has tissue leaflets, or a synthetic heart valve that has polymeric leaflets. In this way, the prosthetic heart valves can be specifically configured for replacing any heart valve. That is, while much of the description herein refers to replacement of aortic valves, the stents (and their associated leaflets) of the invention can also generally be used for replacement of tricuspid valves, for use as a venous valve, or to replace a failed bioprosthesis, such as in the area of an aortic valve or mitral valve, for example. The replacement prosthetic heart valves of the present invention can be employed to functionally replace stentless prosthetic heart valves as well.


The replacement prosthetic heart valves of the present invention can facilitate an implantation technique whereby a replacement prosthetic heart valve is situated or placed relative to a previously implanted prosthetic heart valve, which may be configured as the heart valve 10 shown and described herein. This would become a desirable procedure in cases where it is determined that a previously implanted prosthetic heart valve is functionally deficient due to one or more of a variety of factors, such as stenosis, valve failure, inflammation, native valve insufficiency, etc. Regardless of the cause of the deficiency, rather than removing the previously implanted prosthetic heart valve and implanting a second, similarly formed prosthetic heart valve via relatively complicated and invasive open heart surgical techniques, the methods and devices of the present invention leave the deficient previously implanted prosthetic heart valve in place, and deploy the new prosthetic heart valve so that it functionally replaces the previously implanted prosthetic heart valve. Prior to implanting the new prosthetic valve, the leaflets of the previously implanted and deficient prosthetic heart valve can either be removed using a variety of techniques such as cutters, lasers, and the like, or the leaflets may instead be left in place within the deficient valve, where they will likely be pushed toward the walls of the vessel upon implantation of the new valve.


One embodiment of a stent 30, which can be used as a component of a prosthetic heart valve in accordance with the present invention, is shown in FIGS. 1-4. Stent 30 includes a support structure 31 comprising a number of strut or wire portions arranged relative to each other to provide secure coupling between the stent 30 and a prosthetic heart valve 10 in which it is located. In addition, stent 30 provides a semi-rigid frame for the leaflets of the replacement heart valve, which will be attached in some way within the interior portion of stent 30. For ease and clarity of illustration, the leaflets associated with the replacement heart valves of the invention are not shown in the embodiments of the stents of the invention illustrated herein. Details of several configurations of the stents of the invention are described below; however, in general terms, the stents of the invention are generally a series of wires arranged into a tubular support structure, and leaflets can be secured to the interior of the support structure. The leaflets can be formed from a variety of materials, such as autologous tissue, xenograph material, synthetics, or the like, as known in the art. The leaflets may be provided as a homogenous, biological valve structure, such as a porcine, bovine, or equine valve. Alternatively, the leaflets can be provided independent of one another (e.g., bovine or equine pericardial leaflets) and subsequently assembled and attached to a stent support structure. The support structures shown and described relative to the Figures are generally configured to accommodate three leaflets and replace a heart valve (e.g., heart valve 10) that has three commissure posts that accommodate a three-leaflet structure. However, the replacement prosthetic heart valves of the invention can incorporate more or less than three leaflets.


In more general terms, the combination of a support structure with one or more leaflets can assume a variety of other configurations that differ from those shown and described, including any known prosthetic heart valve design. In one embodiment, a stent support structure with leaflets can be any known expandable prosthetic heart valve configuration, whether balloon expandable, self-expanding, or unfurling (as described, for example, in U.S. Pat. Nos. 3,671,979; 4,056,854; 4,994,077; 5,332,402; 5,370,685; 5,397,351; 5,554,185; 5,855,601; and 6,168,614; U.S. Patent Application Publication No. 2004/0034411; Bonhoeffer P., et al., “Percutaneous Insertion of the Pulmonary Valve”, Pediatric Cardiology, 2002; 39:1664-1669; Andersen H R, et al., “Transluminal Implantation of Artificial Heart Valves”, EUR Heart J., 1992; 13:704-708; Andersen, H. R., et al., “Transluminal Catheter Implantation of New Expandable Artificial Cardiac Valve”, EUR Heart J., 1990, 11: (Suppl) 224a; Hilbert S. L., “Evaluation of Explanted Polyurethane Trileaflet Cardiac Valve Prosthesis”, J Thorac Cardiovascular Surgery, 1989; 94:419-29; Block P C, “Clinical and Hemodyamic Follow-Up After Percutaneous Aortic Valvuloplasty in the Elderly”, The American Journal of Cardiology, Vol. 62, Oct. 1, 1998; Boudjemline, Y., “Steps Toward Percutaneous Aortic Valve Replacement”, Circulation, 2002; 105:775-558; Bonhoeffer, P., “Transcatheter Implantation of a Bovine Valve in Pulmonary Position, a Lamb Study”, Circulation, 2000:102:813-816; Boudjemline, Y., “Percutaneous Implantation of a Valve in the Descending Aorta In Lambs”, EUR Heart J, 2002; 23:1045-1049; and Kulkinski, D., “Future Horizons in Surgical Aortic Valve Replacement: Lessons Learned During the Early Stages of Developing a Transluminal Implantation Technique”, ASAIO J, 2004; 50:364-68).


Referring again to FIGS. 1-4, the stent 30 comprises a support structure 31 that is made up of a number of struts or wire segments arranged to provide desired docking or engagement features. As will be described in further detail below, the support structure 31 may either be made up of a number of individual struts or wire segments arranged and secured to each other, or the support structure 31 may instead be formed from a single piece of material (e.g., a tube of material that is machined to provide the structure shown). With particular regard to FIG. 1, stent 30 is positioned within a heart valve 10, which typically would have been previously implanted in a patient. Stent 30 comprises a support structure 31 having multiple upper vertical members 32 spaced apart from each other around the perimeter of the support structure 31, and a corresponding number of lower vertical members 34. Both the upper and lower vertical members 32, 34 extend in a direction that is generally parallel to a longitudinal axis 40 of the support structure 31, and help to define the generally cylindrical shape of the support structure 31. Upper vertical members 32 extend generally toward the outflow end 24 of the valve structure 12, and the lower vertical members 34 extend in a direction that is generally opposite to the direction of the upper vertical members 32, which is toward the inflow end 22 of the valve structure 12.


Each of these upper and lower vertical members 32, 34 are preferably spaced from adjacent upper and lower vertical members 32, 34, respectively, by a distance that is similar or identical to the distance that the stent posts (e.g., stent posts 16) are spaced from each other in a corresponding implanted heart valve (e.g., heart valve 10). Thus, both the number of upper vertical members 32 and the number of lower vertical members 34 are typically the same as the number of stent posts. However, it is possible that the number of upper and lower vertical members 32, 34 are not the same as each other and/or not the same as the number of stent posts.


The upper vertical members 32 are designed to have a height that allows them to have a desired amount of contact with a corresponding stent post. The upper vertical members 32 may extend at least slightly beyond the tops of the stent posts, or may be at least slightly shorter than the stent posts. The lower vertical members 34 may also have any length that allows them to have a desired amount of contact with their corresponding stent posts 16 and other portions of the stent structure 12 with which they come into contact. Again, the lower vertical members 34 may extend at least slightly below the bottom of the stent structure (i.e., stent ring 14 of FIG. 1), or may be at least slightly shorter so that they do not extend below any portion of the stent structure. The selection of the length of these upper and lower vertical members 32, 34 can vary widely, depending on the configuration of the valve structure and the amount of contact desired between the support structure 31 and the interior portion of the stent or valve structure. In any case, the height of upper and lower vertical members 32, 34 should be adequate to provide sufficient contact between the support structure 31 and the corresponding heart valve in which it is positioned to keep the stent 30 in place relative to the heart valve. In addition, the arrangement of upper and lower vertical members 32, 34 should provide sufficient structural integrity to the support structure 31 so that it is resistant to deformation or other changes that impact its effectiveness as a stent structure.


The upper and lower vertical members 32, 34 may be generally “U” or “V” shaped, as illustrated, with the distance between opposite “legs” or extending portions of the members being chosen to provide desired characteristics to the support structure 31. For example, in FIG. 1, the upper vertical members 32 are preferably narrow enough that they will not unintentionally engage with the top edge of corresponding stent posts 16, but are preferably wide enough that they provide adequate contact with the interior portion of the stent posts 16 to help keep the stent 30 in place. In other words, the distance between opposite legs of the “U” or “V” shaped structure is preferably not so large that the members 32 can latch onto the stent posts 16, but is preferably large enough to provide contact between the members 32 and some portion of the interior surface of the stent posts 16. This “U” or “V” shaped structure of these members 32, 34 is particularly adaptable to the configuration where the support structure 31 is essentially a continuous wire structure; however, if the support structure is configured in another manner (e.g., with separate components that are not wire-like), each of the members 32, 34 may essentially consist of a single, relatively solid extending structure, for example. These structures may be arranged and connected relative to each other in a similar configuration to that described relative to a wire structure.


As shown in FIG. 1, heart valve 10 includes three stent posts 16 that are spaced generally at an equal distance from each other around the perimeter of the valve 10 (i.e., approximately 120 degrees apart). These stent posts 16 will generally correspond with the commissures of leaflets of the valve (not shown). It is understood, however, that the stent posts 16 may instead be unevenly spaced from each other. In one example of such an embodiment, first and second stent posts 16 may be spaced from each other by approximately 120 degrees, second and third stent posts 16 may be spaced from each other by approximately 115 degrees, so that first and third stent posts 16 would be spaced from each other by approximately 125 degrees. Other arrangements that vary slightly or substantially from this arrangement may alternatively be used; particularly in cases where more or less than two stent posts 16 are used. One example of such an arrangement would be in the case of a two-leaflet valve (e.g., the mitral valve), which would only include two stent posts arranged at approximately 180 degrees from each other and a corresponding arrangement for its support structure 31.


Support structure 31 further includes multiple upper flange or petal portions 36, each of which is located generally between two adjacent upper vertical members 32, and multiple lower flange or petal portions 38, each of which is located generally between two adjacent lower vertical members 34. As is best shown in FIG. 4, the upper and lower flange portions 36, 38 both extend from a common area 42 of the support structure 31, which generally corresponds with the area where the upper and lower vertical members 32, 34 meet. However, the upper and lower flange portions 36, 38 may instead extend from the vertical members 32, 34 at locations that are spaced further from each other. In any case, the upper and lower flange portions 36, 38 are provided for engagement with the stent or valve structure 12 on generally opposite edges (i.e., top and bottom edges) of the stent ring 14 when positioned within a heart valve 10. That is, the upper flange portions 36 will be positioned in the area between adjacent stent posts 16 on the outflow end 24 of the valve structure 12, and the lower flange portions 38 will be positioned generally below the upper flange portions 36, but on the opposite side of the valve structure 12 (i.e., along the bottom edge of the stent ring 14 on the inflow end 22 of the valve structure 12).


Orientation and positioning of the stents of the invention may be accomplished either by self-orientation of the stents (such as by interference between features of the stent and a previously implanted stent or valve structure) or by manual orientation of the stent to align its features with anatomical or previous bioprosthetic features, such as can be accomplished using fluoroscopic visualization techniques, for example. For example, when aligning the stents of the invention with a previously implanted bioprosthetic valve, features of the stents can align with the stent rail and/or commissures of the valve. It is desirable that the stents be locked in place both rotationally and axially.


Referring again to FIGS. 1-4, the length and shape of each of these upper and lower flange portions 36, 38 can be the same or different from each other within a single support structure 31, as desired. For example, if the stent posts of a corresponding heart valve are spaced evenly from each other, it may be desirable for the flange portions to be identically spaced, although they may be different from each other in size and/or shape. In any case, it is desirable for the upper and lower flange portions 36, 38 to extend at least slightly beyond the outer perimeter of the valve structure 12 when the stent is deployed in order to insure adequate contact between the valve structure 12 and the stent 30. However, the amount of extension of the upper and lower flanges beyond the outer surface of the valve structure 12 should not be so large that it interferes with any surrounding structure of the heart, as will be discussed in further detail below.


The upper and lower flange portions 36, 38 may be generally “U” or “V” shaped, as illustrated, although the distance between opposite “legs” or extending portions of the members will generally be larger than the distance between the legs of the upper and lower vertical members 32, 34 within the same stent 30, particularly when the stent 30 is in its expanded state. Each upper flange portion 36 includes a distal tip 44 and each lower flange member 38 includes a distal tip 46. The tips 44, 46 may have a tighter curvature than the rest of their respective flange portions 36, 38, if desired. In any case, the tips 44, 46 preferably will contact the upper and lower edges of a stent ring of a heart valve when implanted therein. The tips 44, 46 may also serve as interfaces or connecting portions with a corresponding delivery system, as will be explained in further detail below.


The lower flange portions 38 are configured to engage with the lower surface of a sewing ring 14 of a previously implanted prosthetic heart valve (e.g., heart valve 10) when the stent 30 is in its expanded condition. Alternatively, the lower flange portions 38 can be configured to engage other structure(s) of the previously implanted prosthetic heart valve. Referring to FIG. 1, in order to engage with a previously implanted heart valve, one exemplary embodiment of a lower flange portion 38 includes a wire structure that extends generally from a common area 42 on one upper vertical member 32 toward the tip 46 of the flange portion 38, then toward another common area 42 on an adjacent upper vertical member 32. The curvature or contours of each flange portion 38 can be designed so that it closely matches the shape of the stent or valve structure 12 in which it will be implanted, such as at its inflow end 22. That is, there is preferably minimal to no gap between the flange 38 and the interior surface of the valve structure 12.


As shown in FIG. 3, each of the tips 46 of the flange portions 38 are positioned approximately 120 degrees from each other around the periphery of the sewing ring 14, although they can be spaced differently from each other, depending on the locations of the stent posts of the heart valve. When the stent 30 is in an expanded condition, the lower flange portions 38 are preferably biased toward the sewing ring 14 to keep the flange portion 38 in place relative to the heart valve 10.


The upper flange portions 36 are configured to engage with the spaces between stent posts 16 of a previously implanted heart valve (e.g., heart valve 10) when the stent 30 is in its expanded condition. Alternatively, the upper flange portions 36 can be configured to engage other structure(s) of the previously implanted prosthetic heart valve. Referring to FIG. 1, in order to engage with a previously implanted heart valve, one exemplary embodiment of an upper flange portion 36 includes a wire structure that extends generally from a common area 42 on one upper vertical member 32 toward the tip 44 of the flange portion 36, then toward another common area 42 on an adjacent vertical member 32. The curvature or contours of each flange portion 36 can be designed to closely match the shape of the stent or valve structure 12 in which it will be implanted. As shown in FIG. 2, each of the tips 44 of the flange portions 36 are positioned approximately 120 degrees from each other around the periphery of the sewing ring 14, although they can be spaced differently from each other, depending on the locations of the stent posts of the heart valve. In any case, the tip 44 of flange portion 36 will preferably fit between adjacent stent posts 16 in order to help physically dock or connect the stent 30 to the previously implanted heart valve 10. When the stent 30 is in an expanded condition, the upper flange portions 36 are preferably biased toward the sewing ring 14 (and preferably toward a corresponding lower flange portion 38) to keep each flange portion 36 in place relative to the heart valve 10.


The support structure 31 of the stent 30 is, in one embodiment, a wire stent capable of transitioning from a collapsed state to an expanded state, where a number of individual wires comprising the support structure 31 are formed of a metal or other material. These wires are arranged in such a way that a support structure 31 is provided that allows for folding or compressing to a contracted state in which its internal diameter is at least somewhat smaller than its internal diameter in an expanded state. In its contracted state, such a support structure 31 with attached valves can be mounted relative to a delivery device, such as a balloon catheter, for example. The support structure 31 is configured so that it can be changed to its expanded state when desired, such as by the expansion of a balloon catheter. The delivery systems used for such replacement heart valve can optionally be provided with degrees of rotational and axial orientation capabilities in order to properly position the new heart valve within the previously implanted heart valve.


The wires of the support structure 31 can alternatively be formed from a shape memory material such as a nickel titanium alloy (e.g., Nitinol). With this configuration, the support structure 31 is self-expandable from a contracted state to an expanded state, such as by the application of heat, energy, and the like, or by the removal of external forces (e.g., compressive forces). In addition, the support structure 31 of this embodiment may be laser cut from a single piece of material or may be assembled from a number of different components. For these types of stent structures, one example of a delivery system that can be used includes a catheter with a retractable sheath that covers a compressed stent (thereby providing external compressive forces on the stent) until it is to be deployed, at which point the sheath can be retracted to allow the stent to expand.


The support structure 31 can include features not specifically described or shown instead of, or in addition to, the various coupling structures and methods described herein. For example, the support structure 31 can have a non-expandable design, but can instead be sized and shaped to nest within a previously implanted heart valve (not shown) in a manner that presses features of the previously implanted heart valve (e.g., leaflets) outwardly relative to the native conduit.


The height and diameter of the stent 30 in its expanded state is preferably chosen and/or designed for use with a previously implanted prosthetic heart valve having a particular size and shape. Thus, the stent 30 can assume a variety of different longitudinal heights and/or diameters. In one embodiment, for example, the support structure 31 has a height in its expanded state that is slightly greater than a height of the previously implanted prosthetic heart valve, and/or has a free-standing outer diameter that is greater than an inner diameter of the previously implanted prosthetic heart valve. With this embodiment, upon transitioning toward the expanded state, the support structure 31 (including the vertical members 32, 34) presses against an inner diameter of the previously implanted prosthetic heart valve. The overall shape of the support structure 31 is cylindrical in many cases; however, other shapes are also contemplated, such as elliptical, oval, or the like. For example, portions of the support structure 31 can define an enlarged diameter as compared to other portions. Further, depending upon the previously implanted heart valve being functionally replaced, the support structure 31 can be less uniform along a height thereof.


One method of delivering the stent 30 to the location of a previously implanted heart valve (e.g., heart valve 10) is performed percutaneously, as represented in simplified form in FIG. 6. In general terms for this exemplary delivery system, a transcatheter assembly 70 is provided, including a delivery catheter 72, a balloon catheter 74, and a guide wire 76. The delivery catheter 72 is of a type known in the art, and defines a lumen 78 within which the balloon catheter 74 is received. The balloon catheter 74, in turn, defines a lumen (not shown) within which the guide wire 76 is slidably disposed. Further, the balloon catheter 74 includes a balloon 80 that is fluidly connected to an inflation source (not shown). It is noted that if the stent being implanted is a self-expanding type of stent, the balloon would not be needed and a sheath or other restraining means would instead be used for maintaining the stent in its compressed state until deployment of the stent. In any case, in this embodiment, the transcatheter assembly 70 is appropriately sized for a desired percutaneous approach to the prosthetic heart valve 10 that was previously implanted in a native heart valve 79. For example, the transcatheter assembly 70 can be sized for delivery to the heart valve 10 via an opening at a carotid artery, a jugular vein, a sub-clavian vein, femoral artery or vein, or the like. Essentially, any percutaneous intercostals penetration can be made to facilitate use of the transcatheter assembly 70.


Prior to delivery, the stent 30 is mounted over the balloon 80 in a contracted state to be as small as possible without causing permanent deformation of the stent structure. As compared to the expanded state, the support structure 31 is compressed onto itself and the balloon 80, thus defining a decreased inner diameter as compared to an inner diameter in the expanded state. Further, the vertical members 32, 34 and flange portions 36, 38 are compressed toward the longitudinal axis 40 when in the contracted state. While this description is related to the delivery of a balloon-expandable stent, the same basic procedures can also be applicable to a self-expanding stent, where the delivery system would not include a balloon, but would preferably include a sheath or some other type of configuration for maintaining the stent in its compressed condition until its deployment.


With the stent 30 mounted to the balloon 80, the transcatheter assembly 70 is delivered through a percutaneous opening (not shown) in the patient via the delivery catheter 72. The previously implanted heart valve 10 is located by inserting the guide wire 76 into the patient, which guide wire 76 extends from a distal end 82 of the delivery catheter 72, with the balloon catheter 74 otherwise retracted within the delivery catheter 72. Once the previously implanted heart valve 10 has been located, the balloon catheter 74 is advanced distally from the delivery catheter 72 along the guide wire 76, with the balloon 80 and stent 30 positioned relative to the previously implanted heart valve 10. More particularly, the balloon 80 and stent 30 are positioned within the internal region of the previously implanted prosthetic heart valve 10, with the lower flange portions 38 positioned adjacent the sewing ring 14 of the heart valve 10, and the upper flange portions 36 are positioned adjacent the outflow end 24 of the previously implanted prosthetic heart valve 10.


In an alternative embodiment, the stent 30 is delivered to the previously implanted prosthetic heart valve 10 via a minimally invasive surgical incision (i.e., non-percutaneously). In another alternative embodiment, the stent 30 is delivered via open heart/chest surgery. Regardless, with the stent 30 in the contracted state, the support structure 31 can readily move within the internal area 20 of the previously implanted prosthetic heart valve 10, and the vertical members 32, 34 and flange portions 36, 38, which are otherwise retracted or compressed, do not unintentionally contact or engage portions of the previously implanted prosthetic heart valve 10. In one embodiment, the stent 30 includes a radiopaque, echogenic, or MRI visible material to facilitate visual confirmation of proper placement of the stent 30 relative to the previously implanted prosthetic heart valve 10. Alternatively, other known surgical visual aids can be incorporated into the stent 30.


The techniques described above relative to placement of the stent 30 within the heart can be used both to monitor and correct the placement of the stent 30 in a longitudinal direction relative to the length of the anatomical structure in which it is positioned and also to monitor and correct the orientation of the stent 30 relative to the stent posts 16 of the previously implanted heart valve 10. In particular, it is desirable for the stent 30 to be positioned so that each of the upper flange portions 36 are between two adjacent stent posts 16 when they are expanded outwardly.


Once the stent 30 is properly positioned, the balloon catheter 74 is operated to inflate the balloon 80, thus transitioning the stent 30 to the expanded state shown in FIG. 1. Alternatively, if the support structure 31 is formed of a shape memory material, the stent can be allowed to self-expand to the expanded state of FIG. 1. Thus, a self-expanding stent structure can be percutaneously delivered by an appropriate catheter device other than a balloon catheter, as will be described in further detail below. In either case, the support structure 31 expands within the internal region 20 of the previously implanted heart valve 10, radially pressing against the valve structure 12. Because the previously implanted prosthetic heart valve 10 would have included leaflets (not shown), radial expansion of the stent 30 would press against these leaflets, thereby lodging them against the valve structure 12.



FIG. 5 illustrates an exemplary embodiment of a stent 50 that includes a number of eyelets or apertures 52 that can be used for maintaining the various components of stent 50 in a compressed state when desired. These eyelets 52 would be particularly useful in the case where the stent 50 is a self-expanding stent, since this type of structure needs external forces to keep it in its compressed state. In particular, an eyelet 52 may be located at the end of at least one of the multiple upper vertical members 54 and/or one or more of the upper and lower flange portions 56, 58 and the lower vertical members 55. Each eyelet 52 is preferably sized for accepting an elongated thread-like material, such as suture material or a thin wire, and/or sized for engagement with a hook or other engagement feature of a delivery device. If a thread-like material is used, it can be threaded through at least one of the eyelets 52 in such a way that when the material is pulled tight, the eyelets 52 are pulled toward the central axis of the stent 50. If a wire-like material is used, it may be configured as a metal snare or other configuration that pulls the eyelets 52 toward the central axis of the stent 50. If a delivery device having such engagement features is used, it may be configured in such a way that the engagement features can be moved toward and away from the central axis of the stent, as desired for insertion and deployment of the stent.


Other arrangements of pulling the various portions of a stent toward a central stent axis are also contemplated, which preferably are relatively easy to operate for compression and release of the stent structures. In any case, once the stent structure is compressed to its desired configuration, the feature used to pull the stent into its compressed configuration is capable of being secured or fastened in some way to keep the stent from unintentionally expanding. This same feature can have its operation reversed to allow the various structures of the stent to move toward their expanded state.



FIGS. 7-10 illustrate one exemplary system of delivering a stent of the type illustrated in FIG. 5, for example, into a heart valve 10, which would have previously been implanted in a patient. One feature provided by the delivery system of this embodiment is that a self-expanding stent is retrievable after its initial deployment if it is not positioned correctly in the heart. The stent then could be redeployed into the proper position, using the same or a different delivery system. With particular reference to the Figures, a distal portion of a delivery system 90 is illustrated, which includes a tip portion 92 and a sheath 94. The system further includes a plurality of hooks or engagement features 96 that can engage with eyelets 52 of stent 50, for example. While this delivery system 90 can generally be used for more procedures than the described implantation procedure, the procedure illustrated relative to FIGS. 7-10 is particularly directed to percutaneous delivery of a stent to a previously implanted aortic heart valve via a retrograde approach. For purposes of this description of an implantation method, the exemplary stent 50 of FIG. 5 is used in the implantation description; however, a number of different stent embodiments may utilize these same procedures, such as other stent embodiments described relative to the present invention.


As illustrated in FIG. 7, delivery system 90 is being advanced toward heart valve 10 as such a heart valve would have been previously implanted in a patient. A compressed replacement valve (not shown) is encompassed within sheath 94 for insertion into the patient so that there is no contact between the replacement valve and any portion of the patient's internal anatomy during the insertion process.



FIG. 8 illustrates delivery system 90 as it has been further advanced into heart valve 10, and wherein the sheath 94 has been partially retracted away from the tip 92 to expose the stent 50 that was previously compressed therein. Because the upper flange portions 56 were no longer constrained by the sheath 94, these portions 56 were able to move away from a central member 100 of the delivery system 90 as the sheath 94 was retracted. Further, eyelets 52 that extend from the ends of upper vertical members 54 are each engaged by a hook 96 of the delivery system 90. These hooks 96 can be attached to a mechanism within the interior portion of the sheath 94, for example, or may be attached to some other structure that extends through the sheath 94. In either case, hooks 96 can maintain the upper vertical members 54 in their compressed state until they are disengaged from the hooks 96. That is, the delivery system can control the diameter of the stent inflow structures, the stent outflow structures, or both the stent inflow and outflow structures independently or together. As is also illustrated in FIG. 8, the lower flange portions 58 are held in their compressed state with a snare 98 that engages with eyelets 52 that extend from each of the flange portions 58. Snare 98 is shown as a single, shaped piece of elongated material; however, the lower flange portions 58 may instead be held in their compressed state via an alternative structure or system, such as by a suture, or by a moveable sleeve attached to the delivery system, for example.


As shown in FIG. 9, the delivery system 90 is further advanced into valve 10 until the upper flange portions 56, which are extending radially away from the central member 100 of the delivery system 90, become engaged with the valve structure 12 of the heart valve 10. In particular, each of the upper flange portions 56 are preferably positioned to be in contact with the surface of the stent ring 14 between two adjacent stent posts 16. In order to verify that the flange portions 56 are properly positioned relative to the valve structure 12 (e.g., flange portions 56 are not resting on the top of the stent posts 16), the entire delivery system 90 can be rotated slightly in either direction while pressing downwardly toward the valve structure 12. The system 90 can also be advanced axially to the desired position. In this way, the flange portions 56 can be moved into the area between adjacent stent posts 16 if they are not already in this position.


Once the delivery system 90 and its stent 50 are properly oriented, the snare 98, sheath, or other structure holding the lower flange portions 58 in their compressed state is released or retracted, thereby allowing the lower flange portions 58 to deploy or radially extend, as illustrated in FIG. 10. The lower flange portions 58 can then contact the surface of the stent ring 14 that is opposite the surface that is contacted by the upper flange portions 56. The hooks 96 can then be disengaged from the eyelets 52 of stent 50, such as by further advancing the delivery system 90 into the opening of the valve 10, or by activating a mechanism associated with the hooks 96 that can move the hooks 96 relative to the eyelets 52 until they become disengaged from the eyelets 52. It is noted that the stent is retrievable at any point prior to the hooks 96 being disengaged from the stent 50 with use of the hooks 96 and/or the sheath 94. The upper and lower vertical members 54, 55 are then free to expand radially until they contact the inner surface of the stent or valve structure 12. The upper and lower vertical members 54, 55 preferably are configured so that they will press against the inner surface of the valve structure 12 with sufficient force to provide further anchoring of the stent 50 within the previously implanted heart valve 10.


After the stent 50 is implanted and its various portions are deployed or released from a compressed state to an expanded state, the delivery system 90 can be removed from the patient. The stent 50 will then be in its deployed or expanded state, as is generally illustrated in FIG. 5, or in a similar manner to that illustrated in FIG. 1 relative to a stent 30.



FIGS. 11-15 illustrate another exemplary embodiment of a stent 110 that has a similar structure to the stent 30 of FIG. 1, but further includes at least one stent post engaging structure 112. Relative to the specific embodiment of the stent 110 that is illustrated, this structure also does not include upper flange portions (such as upper flange portions 36 of stent 30), since such portions could be redundant and/or interfere with the specific structure of the structures 112 shown. However, it is contemplated that upper flange portions could also be provided with this embodiment, if they are configured to not interfere with any stent post engagement structures 112. Further, in the embodiment shown in the Figures, three structures 112 are provided to correspond with a like number of stent posts 16 of heart valve 10; however it is contemplated that the stent 110 includes less than three structures 112, even if three stent posts are provided. If less than three structures 112 are provided, it may be desirable to additionally provide at least one upper flange portion to engage with the heart valve 10.


Each stent post engaging structure 112 is configured to partially surround a portion of a stent post 16, thereby providing another way of anchoring the stent 110 in place. These structures 112 can cooperate with one or more lower flange portions 114 to provide anchoring on both the inflow and outflow ends of the previously implanted heart valve 10. The structures 112 can be individual structures that are each secured to upper vertical members 116, or may be formed as a single structure having multiple loops that are secured to the structure of the stent 110. Alternatively, these structures 112 can be integrally formed with the structure of the stent 110. Stent 110 can be a self-expanding stent or may be a balloon-expandable stent structure.



FIGS. 16-22 illustrate another exemplary embodiment of a stent 120 for use with a replacement prosthetic heart valve in accordance with the present invention. Stent 120 includes a number of strut or wire portions arranged relative to each other to provide secure coupling between the stent 120 and a previously-implanted prosthetic heart valve, such as heart valve 10. In addition, stent 120 provides a semi-rigid frame for the leaflets of the replacement heart valve, which will be attached to the interior portion of stent 120, as will be described in further detail below.


Stent 120 includes multiple upper vertical members 122 spaced apart from each other around the perimeter of the stent 120, and a corresponding number of lower vertical members 124. It is understood that the number of upper and lower vertical members can be different from each other, however. Both the upper and lower vertical members 122, 124 extend in a direction that is generally parallel to a longitudinal axis of the stent 120, thereby partially defining the generally cylindrical shape of the stent 120. Upper vertical members 122 extend generally toward the outflow end of the stent structure 12, and the lower vertical members 124 extend in a direction that is generally opposite to the direction of the upper vertical members 122, which is toward the inflow end of the stent structure 12. As with previously described embodiments, the number of upper and lower vertical members 122, 124 may or may not be the same as the number of stent posts of the stent structure 12. In addition, the length of upper and lower vertical members 122, 124 should be adequate to provide sufficient contact between the stent 120 and the stent structure 12 to help keep the stent 120 in place relative to the heart valve 10.


Stent 120 further includes upper and lower flange portions 126, 128, respectively. Flange portions 126, 128 are configured for positioning on opposite sides of a stent ring 14 of stent structure 12 when the stent is in its expanded state. Through the design and manufacturing of the stent 120, the flange portions 126, 128 can be biased toward each other when the stent is in its expanded condition in order to keep the stent 120 positioned properly relative to the stent structure 12.


Stent 120 includes components that can be made of materials that perform differently relative to deployment thereof. In particular, a portion of stent 120 can be expandable from its compressed state via the application of an internal radial force (e.g., inflation of a balloon), while another portion of stent 120 can be self-expandable such that the removal of radial compressive forces will allow that portion of stent 120 to expand without application of additional forces. Alternatively, different portions of the stent 120 can be made of different materials that are both self-expanding, or of different materials that are expandable via the application of an internal radial force. Although the components that comprise these two structures can vary, the stent 120 illustrated in FIGS. 16-22 includes a first component that is expandable through application of a radial force. This component may be made of a material such as stainless steel, for example. The first component includes the upper vertical members 122, lower vertical members 124, and lower flange portions 128, and can include a number of components attached to each other, or can be a single machined piece. This first component is illustrated in its compressed state in FIGS. 16-18 and in its expanded state in FIGS. 21 and 22. The stent 120 further includes a second component that is self-expandable and may be made of a shape memory material such as a nickel titanium alloy (e.g., Nitinol). This second component includes the upper flange portions 126 and also a second lower vertical member 130 that can at least roughly duplicate the shape of the lower vertical member 124 of the first component.


When this stent 120 is implanted into a patient, a sheath or other mechanism will be holding the self-expandable portions of the stent in a compressed state until such a mechanism is retracted or removed, thereby allowing the upper flange portions 126 to extend radially from the stent structure, as is illustrated in FIG. 17. These upper flange portions 126 are preferably positionable between adjacent stent posts of a previously implanted heart valve for proper orientation of the stent 120. Because the first component is not made from a self-expandable material, the first component of stent 120 will remain in its compressed state, as shown in FIG. 17, until it is expanded radially, such as via expansion by a balloon catheter that is positioned in its central opening. When fully inflated, such a balloon will be constrained by the stent structure 12 along a portion of its length, but portions of the balloon that are above and below the stent structure 12 can be allowed to expand further so that the balloon takes on an “hourglass” type of shape, thereby pressing the lower flange portions 128 outward and under the stent ring 14, as illustrated in FIG. 22. These lower flange portions 128 can thereby help to anchor the stent 120 relative to the heart valve in which it is positioned. Thus, FIGS. 21 and 22 illustrate the stent 120 in its expanded state, where the upper and lower flange portions 126, 128 are positioned on opposite sides of stent ring 14, and where the vertical members 122, 124, 130 are positioned adjacent to the internal portion of stent structure 12.



FIGS. 23 and 24 illustrate another exemplary embodiment of a stent 140 for use as a replacement prosthetic heart valve in accordance with the invention. This stent 140 includes similar structures to that of the stent 30 of FIG. 1; however, stent 140 does not include lower vertical members that correspond to and extend in the opposite direction from upper vertical members 142. Otherwise, stent 140 can include any of the features described above relative to the stents of the invention. Stent 140 can be self-expanding or expandable with application of a radial force, and pericardial tissue or other materials may be attached to its structure to provide a prosthetic heart valve.



FIGS. 25-29 illustrate another exemplary embodiment of a stent 150 for use as a replacement prosthetic heart valve in accordance with the present invention. Stent 150 includes similar structures to the stent 110 of FIG. 11, including upper vertical members 152 and corresponding lower vertical members 154, stent post engagement structures 156, and lower flange members 158. In an embodiment where the number of stent post engagement structures 156 is optionally less than the number of corresponding stent posts of the previously implanted heart valve, upper flange members may be included on stent 150, if desired. Alternatively, upper flange members may be included on stent 150 in a configuration that does not interfere with the structures 156.


Stent 150 further includes “W” shaped structures 160 positioned along the stent ring 14 between adjacent stent posts 16 in the interior area of the stent structure 12. Each structure 160 is positioned generally between adjacent lower flange members 158 and provides additional contact surfaces between the stent 150 and the interior portion of the stent structure 12. In addition, any or all of the structures 160 can be used to hold a leaflet of the failed bioprosthesis against the stent ring of the failed bioprosthesis (such as stent ring 14) so that the leaflets of the failed bioprosthesis do not interfere with the valve leaflets of the newly implanted valved stent. That is, it may be desirable to hold the leaflets of the failed bioprosthesis toward the stent ring in order to minimize the potential for formation of thrombus between the failed leaflets and the new leaflets. In addition, holding the leaflets against the stent ring can prevent abrasion and/or tearing of the new leaflets that can occur during repeated contact with the old leaflets. The structures 160 may take a “W” type shape, as shown, or may instead have a different shape, such as one or more “U” or “V” shapes, a series of extensions, a sinusoidal shape, or any desired configuration that can hold leaflets against the stent ring of the failed bioprosthesis, when desired.


The stent 150 may comprise any desired number of components that are connected or attached to each other; however, the exemplary embodiment of stent 150 illustrated in FIG. 28 provides an embodiment with two separate structures attached or arranged relative to each other. That is, a first component is a formed structure that includes the stent post engagement structures 156 and the “W” shaped structures 160, while a second component is a formed structure that includes the upper and lower vertical members 152, 154 and the lower flange members 158.



FIGS. 30-34 illustrate another exemplary embodiment of a stent 170 for use as a prosthetic heart valve in accordance with the present invention. Stent 170 generally includes upper vertical members 172 and corresponding lower vertical members 174, upper flange members 176, lower flange members 178, and upper connecting members 182. In this embodiment, the upper flange members 176 are offset relative to lower flange members 178 such that each of the upper flange members 176 is positioned generally between adjacent stent posts 16 of stent structure 12, and each of the lower flange members 178 is generally aligned with the stent posts 16. Upper connecting members 182 extend between adjacent upper vertical members 172 and are provided for tying together the upper vertical members 172 to carry the valve hydrodynamic closing loads, which can thereby reduce various stresses in the stent. The upper connecting members 182 can also provide interface points for connection of the stent 170 with the delivery system used for the implantation process. Stent 170 further includes optional lower connecting members 184 that extend between adjacent lower vertical members 174. Lower connecting members 184 are provided for attachment of the material that makes up the leaflets of the replacement heart valve. That is, pericardial or another valve material may be sewn or otherwise attached to the lower connecting members 184 and may further be sewn or otherwise attached to the upper vertical members 172.


The upper connecting members 182 are shown as a single curved member; however, the connecting members can have any desired structure or configuration that provides the desired support for the upper vertical members 172. Further, the connecting members 182 may be made of the same or a different material than the other portions of the stent.


One or more of the lower flange members 178 may further include an eyelet or aperture 180 for engagement with a structure for use during the implantation of the stent 170 (e.g., sutures or a hook structure that can pull the stent structure toward its central axis). One or more of the upper vertical members 172 may similarly include an eyelet or aperture 185 for use during the implantation of the stent 170 and/or for use as an anchor point for attachment of valve material to the stent 170.



FIGS. 35-41 illustrate another exemplary embodiment of a stent 200 for use as a replacement prosthetic heart valve in accordance with the present invention. Stent 200 is similar to stent 120 of FIG. 16 in that stent 200 also includes a portion that is made of a material that is expandable (e.g., stainless steel) with a device such as a balloon catheter, for example, and a portion that is made of a material that is self-expanding (e.g., Nitinol) when external forces are removed. In particular, a self-expanding portion of stent 200 may include upper flange portions 202 that can be generally positioned between adjacent stent posts 16 of a stent structure 12, and bracing portions 204 that can be generally aligned with stent posts 16 of a stent structure 12. The other portion (i.e., the portion that is not self-expanding) of the stent 200 may include any or all of the following structures: upper vertical members 206; lower vertical members 208; upper support structures 210 extending between adjacent upper vertical members 206; lower support structures 212 extending between adjacent lower vertical members 208, lower flange portions 220; and intermediate lower flange portions 214 located between adjacent lower flange portions 220. The lower flange portions 214 can provide additional anchoring force for the stent 200 against the stent structure 12 in the areas generally adjacent to the stent posts 16. The lower support structures 212 may be used for securing the valve structure to the stent 200, if desired.



FIGS. 42-45 illustrate another exemplary embodiment of a stent 230 for use as a prosthetic heart valve in accordance with the present invention. Stent 230 includes multiple upper vertical members 232 and optional corresponding lower vertical members 234, and multiple lower flange members 236. The number of upper vertical members 232 and lower vertical members 234 preferably correspond to the number of stent posts of the previously implanted heart valve. In addition, the number of lower flange members 236 also preferably corresponds to the number of stent posts 16 of the previously implanted heart valve 10 so that one lower flange member 236 can be positioned generally between two adjacent stent posts 16, but on the opposite side of the stent structure 12 from the stent posts 16. The stent 230 further includes multiple upper flange members 238, which are positionable in the space between every two adjacent stent posts 16, but on the same side of the stent structure 12 as the stent posts 16. In this embodiment illustrated in FIGS. 42-45, two upper flange members 238 are positioned in each of the spaces between two adjacent stent posts 16, which thereby provide additional anchoring points for the stent 230 within the stent structure 12. In addition, these flange members 238 can function similarly to the structures 160 described above relative to FIGS. 25-29 in that one or more of the flange members 238 can help to hold the leaflets of the failed bioprosthesis generally against the stent ring of the bioprosthesis so that they do not interfere with the leaflets of the new valved stent. The stent 230 can be configured so that each of the upper flange members 238 of the pair of upper flange members are angled at least slightly toward their adjacent stent posts 16 so that they are facing in at least slightly opposite directions from each other.



FIGS. 46-50 illustrate another exemplary embodiment of a stent 250 for use as a prosthetic heart valve in accordance with the invention. Stent 250 is similar to stent 120 of FIG. 16 in that stent 250 also includes a portion that is made of an expandable material (e.g., stainless steel) with a balloon catheter, for example, and a portion that is made of a material that is self-expanding (e.g., Nitinol) when external forces are removed. In particular, a self-expanding portion of stent 250 may include multiple stent post engagement structures 252, which are shown in this embodiment as being part of a continuous unit or piece that is configured to include three stent post engagement structures 252. Each of the structures 252 is provided to engage with a stent post 16 of a stent structure 12. The other portion (i.e., the portion that is not self-expanding) of the stent 250 comprises a mesh-like stent structure 254 that includes a number of wire portions arranged as best illustrated in the expanded version of the stent 250 in FIG. 50. Although this embodiment does not illustrate particular flange portions that extend above or below the stent structure 12, it is contemplated that any of the anchoring structures discussed above may be incorporated into the stent 250 to provide additional anchoring mechanisms for the stent 250.



FIGS. 51 and 52 illustrate another stent 360 of the invention as it can be implanted within a previously implanted heart valve, such as a heart valve 362. FIG. 52 illustrates an exemplary positioning of the leaflets 370 of the previously implanted heart valve 362 and FIG. 51 does not show these leaflets. Stent 360 includes a split petal structure for its upper flange member that is positioned between stent posts 364, as shown with petals 366, 368. These petals 366, 368 provide two structures for holding the leaflets 370 of the heart valve 362 against the stent rail of that heart valve 362 so that the leaflets 370 do not interfere with the implantation and/or functioning of the newly implanted heart valve. The petals 366, 368 may have the same configuration as each other, as shown, or may instead be differently sized and/or shaped than each other. It is also contemplated that other structures may be used, such as a series of barbs or extending members, and it is further understood that more or less than two structures can be used for holding the leaflets 370 against the rail of the heart valve 362. The petal structures could also be used to hold native leaflets outward for the stented valve implanted in a native valve.


As discussed herein, the various stent embodiments of the invention can all be used with a valve structure for replacement of a previously implanted prosthetic heart valve. A number of different delivery systems can be used for implantation of such devices, including the delivery systems described above, along with other exemplary delivery systems, such as those described in U.S. Patent Application Publication No. 2003/0199963-A1; U.S. patent application Ser. No. 12/070,382, entitled “DELIVERY SYSTEMS AND METHODS OF IMPLANTATION FOR REPLACEMENT PROSTHETIC HEART VALVES”, filed on even date herewith; U.S. patent application Ser. No. 12/070,380, entitled “DELIVERY SYSTEMS AND METHODS OF IMPLANTATION FOR REPLACEMENT PROSTHETIC HEART VALVES”, filed on even date herewith; and U.S. patent application Ser. No. 12/070,387, entitled “REPLACEMENT PROSTHETIC HEART VALVES AND METHODS OF IMPLANTATION”, filed on even date herewith, all of which are incorporated by reference in their entireties.


Referring again to FIG. 1, the stent or valve structure 12 includes a sewing ring 14 and stent posts 16 and is covered by a covering 18, such as is included in the stented tissue valves commercially available from Medtronic, Inc. of Minneapolis, Minn. under the trade designations “Hancock II” and “Mosaic”. A wide variety of other stented tissue valves, such as those described in U.S. Pat. Nos. 4,680,031, 4,892,541, and 5,032,128, the teachings of which are incorporated herein by reference, can be employed as the stent or valve structure 12. Alternatively, the structure 12 can be stentless, such as, for example, a Freestyle stentless bioprosthesis, commercially available from Medtronic, Inc. under the trade designation “Freestyle”. Other acceptable stentless configurations are described in U.S. Pat. Nos. 5,156,621; 5,197,979; 5,336,258; 5,509,930; 6,001,126; 6,254,436; 6,342,070; 6,364,905; and 6,558,417, the teachings of which are incorporated herein by reference. Regardless, the leaflets (not shown) are attached to the structure 12 by sewing, crimping, adhesive, etc., for example, and can assume a variety of forms (e.g., autologous tissue, xenograph tissue, or synthetic material, such as polymers, metals, combinations thereof, and the like).


With any of the embodiments of the invention described herein, the valved stents can be placed inside of a failed valve with leaflets, as described herein, or the leaflets of the failed valve can be removed prior to implantation of the new valved stents, in accordance with known procedures for leaflet removal. Exemplary procedures for leaflet removal are described, for example, in U.S. Patent Publication No. 2004/0034380 (Woolfson et al.), and exemplary devices and methods of filtering in conjunction with leaflet removal are described, for example, in U.S. Pat. No. 6,896,690 (Lambrecht et al.) and U.S. Pat. No. 6,692,513 (Streeter et al.), all of which are incorporated herein by reference. In this way, the leaflets of the failed bioprosthesis cannot interfere with the leaflets of the newly implanted valved stent and particulates from the leaflet removal can be filtered from the blood of the patient.


Stents described herein may further include at least one location of a radiopaque, echogenic, or MRI visible material to facilitate visual confirmation of proper placement of the stent relative to the previously implanted prosthetic heart valve. Alternatively, other known surgical visual aids can be incorporated into the stent. Such visual aids can be included on at least one flange of the replacement heart valve and at least one stent post of the previously implanted heart valve to provide indicators for proper placement of the stent.


It is further noted that the stent embodiments described herein can also include a tubular structure that is generally positioned within the previously implanted heart valve, wherein the various flanges and stent post engagement features can extend from the body of the tubular structure. In addition, the stents described herein may include a gasket material around all or a portion of the perimeter to provide for enhanced sealing between the new prosthetic valve and the previously implanted heart valve.


The present invention has now been described with reference to several embodiments thereof. The foregoing detailed description and examples have been given for clarity of understanding only. No unnecessary limitations are to be understood therefrom. It will be apparent to those skilled in the art that many changes can be made in the embodiments described without departing from the scope of the invention. Thus, the scope of the present invention should not be limited to the structures described herein, but only by the structures described by the language of the claims and the equivalents of those structures.

Claims
  • 1. A method of implanting a replacement prosthetic heart valve within a previously implanted prosthetic heart valve, the method comprising: positioning a replacement prosthetic heart valve in an internal area defined by the structure of the previously implanted prosthetic heart valve, wherein the replacement heart valve comprises:a stent structure comprising: a generally tubular body portion having an interior area;at least two upper flange portions for positioning at an outflow end of the previously implanted heart valve, wherein the upper flange portions extend outwardly from the tubular body portion and are biased toward an inflow end of the replacement heart valve; andat least one lower flange portion for positioning at the inflow end of the previously implanted heart valve, wherein the lower flange portions extend outwardly from the tubular body portion and are biased toward an outflow end of the replacement heart valve; andat least two leaflets attached within the interior area of the tubular body portion;wherein a second portion of the stent structure comprises the at least two upper flange portions and is self-expandable with the removal of an external compressive force and wherein a first portion of the stent structure comprises the at least one lower flange portion and is expandable with the application of an internal radial force;wherein the first portion of the stent structure is made of a first material, and the second portion of the stent structure is made of a second material that is different from the first material removing the external compressive force on the stent structure to allow the second portion of the stent structure to radially expand; andapplying an internal radial force to the stent structure to expand the first portion of the stent.
  • 2. The method of claim 1, wherein the upper and lower flange portions are biased toward each other when the first and second portions of the stent structure are in an expanded condition.
  • 3. The method of claim 1, wherein the first portion of the stent structure is made of a first material, and the second portion of the stent structure is made of a second material that is different from the first material.
  • 4. The method of claim 3, wherein the second portion of the stent structure comprises a shape memory material.
  • 5. The method of claim 1, wherein the stent structure further comprises at least two upper vertical members spaced from each other around a perimeter of the stent structure, and at least two lower vertical members spaced from each other around the perimeter of the stent structure.
  • 6. The method of claim 5, wherein the upper vertical members extend in a direction that is generally toward the outflow end of the stent structure and wherein the lower vertical members extend in a direction that is generally toward the inflow end of the stent structure.
  • 7. The method of claim 5, wherein the upper and lower vertical members extend in a direction that is generally parallel to a longitudinal axis of the stent structure.
  • 8. The method of claim 5, wherein the first portion of the stent structure further comprises the upper vertical and at least one lower vertical member.
  • 9. The method of claim 5, wherein the second portion of the stent structure further comprises at least one lower vertical member.
CROSS-REFERENCE TO RELATED APPLICATION

The present application claims priority to U.S. Provisional Application No. 60/901,787, filed Feb. 16, 2007, and titled “Replacement Prosthetic Heart Valve Including Delivery System and Method of Implantation”, the entire contents of which is incorporated herein by reference in its entirety.

US Referenced Citations (558)
Number Name Date Kind
3657744 Ersek Apr 1972 A
3671979 Moulopoulos Jun 1972 A
3795246 Sturgeon Mar 1974 A
3839741 Haller Oct 1974 A
3868956 Alfidi et al. Mar 1975 A
4035849 Angell et al. Jul 1977 A
4056854 Boretos et al. Nov 1977 A
4106129 Carpentier et al. Aug 1978 A
4233690 Akins Nov 1980 A
4265694 Boretos May 1981 A
4291420 Reul Sep 1981 A
4297749 Davis et al. Nov 1981 A
4339831 Johnson Jul 1982 A
4343048 Ross et al. Aug 1982 A
4345340 Rosen Aug 1982 A
4425908 Simon Jan 1984 A
4470157 Love Sep 1984 A
4574803 Storz Mar 1986 A
4580568 Gianturco Apr 1986 A
4592340 Boyles Jun 1986 A
4610688 Silvestrini et al. Sep 1986 A
4612011 Kautzky Sep 1986 A
4655771 Wallsten Apr 1987 A
4662885 DiPisa, Jr. May 1987 A
4681908 Broderick et al. Jul 1987 A
4710192 Liotta et al. Dec 1987 A
4787899 Lazarus Nov 1988 A
4787901 Baykut Nov 1988 A
4796629 Grayzel Jan 1989 A
4819751 Shimada et al. Apr 1989 A
4834755 Silvestrini et al. May 1989 A
4856516 Hillstead Aug 1989 A
4872874 Taheri Oct 1989 A
4878495 Grayzel Nov 1989 A
4878906 Lindemann et al. Nov 1989 A
4883458 Shiber Nov 1989 A
4909252 Goldberger Mar 1990 A
4917102 Miller et al. Apr 1990 A
4922905 Strecker May 1990 A
4966604 Reiss Oct 1990 A
4979939 Shiber Dec 1990 A
4986830 Owens et al. Jan 1991 A
4994077 Dobben Feb 1991 A
5007896 Shiber Apr 1991 A
5026366 Leckrone Jun 1991 A
5032128 Alonso Jul 1991 A
5037434 Lane Aug 1991 A
5047041 Samuels Sep 1991 A
5059177 Towne et al. Oct 1991 A
5061273 Yock Oct 1991 A
5085635 Cragg Feb 1992 A
5089015 Ross Feb 1992 A
5152771 Sabbaghian et al. Oct 1992 A
5163953 Vince Nov 1992 A
5167628 Boyles Dec 1992 A
5232445 Bonzel Aug 1993 A
5272909 Nguyen et al. Dec 1993 A
5295958 Shturman Mar 1994 A
5327774 Nguyen et al. Jul 1994 A
5332402 Teitelbaum et al. Jul 1994 A
5350398 Pavcnik et al. Sep 1994 A
5370685 Stevens Dec 1994 A
5397351 Pavcnik et al. Mar 1995 A
5411552 Andersen et al. May 1995 A
5415633 Lazarus et al. May 1995 A
5431676 Dubrul et al. Jul 1995 A
5443446 Shturman Aug 1995 A
5480424 Cox Jan 1996 A
5489294 McVenes et al. Feb 1996 A
5489297 Duran Feb 1996 A
5496346 Horzewski et al. Mar 1996 A
5500014 Quijano et al. Mar 1996 A
5507767 Maeda et al. Apr 1996 A
5545209 Roberts et al. Aug 1996 A
5545211 An et al. Aug 1996 A
5545214 Stevens Aug 1996 A
5554185 Block et al. Sep 1996 A
5575818 Pinchuk Nov 1996 A
5580922 Park et al. Dec 1996 A
5591195 Taheri et al. Jan 1997 A
5609626 Quijano et al. Mar 1997 A
5645559 Hachtman et al. Jul 1997 A
5665115 Cragg Sep 1997 A
5667523 Bynon et al. Sep 1997 A
5674277 Freitag Oct 1997 A
5695498 Tower Dec 1997 A
5702368 Stevens et al. Dec 1997 A
5713953 Vallana et al. Feb 1998 A
5716417 Girard et al. Feb 1998 A
5746709 Rom et al. May 1998 A
5749890 Shaknovich May 1998 A
5766151 Valley et al. Jun 1998 A
5782809 Umeno et al. Jul 1998 A
5800456 Maeda et al. Sep 1998 A
5800508 Goicoechea et al. Sep 1998 A
5817126 Imran Oct 1998 A
5824041 Lenker Oct 1998 A
5824043 Cottone, Jr. Oct 1998 A
5824053 Khosravi et al. Oct 1998 A
5824056 Rosenberg Oct 1998 A
5824061 Quijano et al. Oct 1998 A
5824064 Taheri Oct 1998 A
5843158 Lenker et al. Dec 1998 A
5851232 Lois Dec 1998 A
5855597 Jayaraman Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5860966 Tower Jan 1999 A
5861028 Angell Jan 1999 A
5876448 Thompson et al. Mar 1999 A
5888201 Stinson et al. Mar 1999 A
5891191 Stinson Apr 1999 A
5906619 Olson et al. May 1999 A
5913842 Boyd et al. Jun 1999 A
5925063 Khosravi Jul 1999 A
5944738 Amplatz et al. Aug 1999 A
5957949 Leonhardt et al. Sep 1999 A
5968068 Dehdashtian et al. Oct 1999 A
5984957 Laptewicz, Jr. et al. Nov 1999 A
5997573 Quijano et al. Dec 1999 A
6022370 Tower Feb 2000 A
6027525 Suh et al. Feb 2000 A
6029671 Stevens et al. Feb 2000 A
6042589 Marianne Mar 2000 A
6042598 Tsugita et al. Mar 2000 A
6042607 Williamson, IV Mar 2000 A
6051014 Jang Apr 2000 A
6059809 Amor et al. May 2000 A
6110201 Quijano et al. Aug 2000 A
6146366 Schachar Nov 2000 A
6159239 Greenhalgh Dec 2000 A
6162208 Hipps Dec 2000 A
6162245 Jayaraman Dec 2000 A
6168614 Andersen et al. Jan 2001 B1
6171335 Wheatley et al. Jan 2001 B1
6200336 Pavcnik et al. Mar 2001 B1
6203550 Olson Mar 2001 B1
6210408 Chandrasekaran et al. Apr 2001 B1
6218662 Tchakarov et al. Apr 2001 B1
6221006 Dubrul et al. Apr 2001 B1
6221091 Khosravi Apr 2001 B1
6241757 An et al. Jun 2001 B1
6245102 Jayaraman Jun 2001 B1
6248116 Chevilon Jun 2001 B1
6258114 Konya et al. Jul 2001 B1
6258115 Dubrul Jul 2001 B1
6258120 McKenzie et al. Jul 2001 B1
6277555 Duran et al. Aug 2001 B1
6299637 Shaolia et al. Oct 2001 B1
6302906 Goicoechea et al. Oct 2001 B1
6309382 Garrison et al. Oct 2001 B1
6309417 Spence et al. Oct 2001 B1
6338735 Stevens Jan 2002 B1
6348063 Yassour et al. Feb 2002 B1
6350277 Kocur Feb 2002 B1
6352708 Duran et al. Mar 2002 B1
6371970 Khosravi et al. Apr 2002 B1
6371983 Lane Apr 2002 B1
6379383 Palmaz et al. Apr 2002 B1
6380457 Yurek et al. Apr 2002 B1
6398807 Chouinard et al. Jun 2002 B1
6409750 Hyodoh et al. Jun 2002 B1
6425916 Garrison et al. Jul 2002 B1
6440164 DiMatteo et al. Aug 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6461382 Cao Oct 2002 B1
6468303 Amplatz et al. Oct 2002 B1
6475239 Campbell et al. Nov 2002 B1
6482228 Norred Nov 2002 B1
6488704 Connelly et al. Dec 2002 B1
6494909 Greenhalgh Dec 2002 B2
6503272 Duerig et al. Jan 2003 B2
6508833 Pavcnik et al. Jan 2003 B2
6527800 McGuckin, Jr. et al. Mar 2003 B1
6530949 Konya et al. Mar 2003 B2
6530952 Vesely Mar 2003 B2
6562031 Chandrasekaran et al. May 2003 B2
6562058 Seguin et al. May 2003 B2
6569196 Vesely May 2003 B1
6585758 Chouinard et al. Jul 2003 B1
6592546 Barbut et al. Jul 2003 B1
6605112 Moll et al. Aug 2003 B1
6613077 Gilligan et al. Sep 2003 B2
6622604 Chouinard et al. Sep 2003 B1
6635068 Dubrul et al. Oct 2003 B1
6652571 White et al. Nov 2003 B1
6652578 Bailey et al. Nov 2003 B2
6656213 Solem Dec 2003 B2
6663663 Kim et al. Dec 2003 B2
6669724 Park et al. Dec 2003 B2
6673089 Yassour et al. Jan 2004 B1
6673109 Cox Jan 2004 B2
6676698 McGuckin, Jr. et al. Jan 2004 B2
6682558 Tu et al. Jan 2004 B2
6682559 Myers et al. Jan 2004 B2
6685739 DiMatteo et al. Feb 2004 B2
6689144 Gerberding Feb 2004 B2
6689164 Seguin Feb 2004 B1
6692512 Jang Feb 2004 B2
6692513 Streeter et al. Feb 2004 B2
6695878 McGuckin, Jr. et al. Feb 2004 B2
6702851 Chinn et al. Mar 2004 B1
6719789 Cox Apr 2004 B2
6730118 Spenser et al. May 2004 B2
6730377 Wang May 2004 B2
6733525 Yang et al. May 2004 B2
6736846 Cox May 2004 B2
6752828 Thornton Jun 2004 B2
6758855 Fulton, III et al. Jul 2004 B2
6769434 Liddicoat et al. Aug 2004 B2
6786925 Schoon Sep 2004 B1
6790229 Berreklouw Sep 2004 B1
6792979 Konya et al. Sep 2004 B2
6797002 Spence Sep 2004 B2
6821297 Snyders Nov 2004 B2
6830575 Stenzel et al. Dec 2004 B2
6830584 Seguin Dec 2004 B1
6830585 Artof Dec 2004 B1
6846325 Liddicoat Jan 2005 B2
6866650 Stevens Mar 2005 B2
6872223 Roberts Mar 2005 B2
6875231 Anduiza et al. Apr 2005 B2
6883522 Spence et al. Apr 2005 B2
6887266 Williams et al. May 2005 B2
6890330 Streeter et al. May 2005 B2
6893460 Spenser et al. May 2005 B2
6896690 Lambrecht et al. May 2005 B1
6908481 Cribier Jun 2005 B2
6913600 Valley et al. Jul 2005 B2
6929653 Streeter Aug 2005 B2
6936066 Palmaz et al. Aug 2005 B2
6939365 Fogarty et al. Sep 2005 B1
6951571 Srivastava Oct 2005 B1
6986742 Hart et al. Jan 2006 B2
6989027 Allen et al. Jan 2006 B2
6989028 Lashinski et al. Jan 2006 B2
6991649 Sievers Jan 2006 B2
7018401 Hyodoh et al. Mar 2006 B1
7041128 McGuckin, Jr. et al. May 2006 B2
7044966 Svanidze et al. May 2006 B2
7048014 Hyodoh et al. May 2006 B2
7097659 Woolfson et al. Aug 2006 B2
7101396 Artof et al. Sep 2006 B2
7105016 Shui et al. Sep 2006 B2
7115141 Menz et al. Oct 2006 B2
7147663 Berg et al. Dec 2006 B1
7153324 Case et al. Dec 2006 B2
7160319 Chouinard et al. Jan 2007 B2
7175656 Khairkhahan Feb 2007 B2
7186265 Sharkawy et al. Mar 2007 B2
7195641 Palmaz et al. Mar 2007 B2
7198646 Figulla et al. Apr 2007 B2
7201761 Woolfson et al. Apr 2007 B2
7201772 Schwammenthal et al. Apr 2007 B2
7252682 Seguin Aug 2007 B2
7300457 Palmaz Nov 2007 B2
7300463 Liddicoat Nov 2007 B2
7316706 Bloom et al. Jan 2008 B2
7329278 Seguin Feb 2008 B2
7335218 Wilson et al. Feb 2008 B2
7338520 Bailey et al. Mar 2008 B2
7374571 Pease et al. May 2008 B2
7381218 Schreck Jun 2008 B2
7384411 Condado Jun 2008 B1
7429269 Schwammenthal et al. Sep 2008 B2
7442204 Schwammenthal et al. Oct 2008 B2
7462191 Spenser et al. Dec 2008 B2
7470284 Lambrecht et al. Dec 2008 B2
7481838 Carpentier et al. Jan 2009 B2
7544206 Cohn et al. Jun 2009 B2
7556646 Yang et al. Jul 2009 B2
20010001314 Davison et al. May 2001 A1
20010002445 Vesely May 2001 A1
20010007956 Letac et al. Jul 2001 A1
20010010017 Letac et al. Jul 2001 A1
20010011189 Drasler et al. Aug 2001 A1
20010021872 Bailey et al. Sep 2001 A1
20010025196 Chinn et al. Sep 2001 A1
20010032013 Marton Oct 2001 A1
20010039450 Pavcnik et al. Nov 2001 A1
20010041928 Pavcnik et al. Nov 2001 A1
20010044647 Pinchuk et al. Nov 2001 A1
20020010508 Chobotov Jan 2002 A1
20020029014 Jayaraman Mar 2002 A1
20020032480 Spence et al. Mar 2002 A1
20020032481 Gabbay Mar 2002 A1
20020035396 Heath Mar 2002 A1
20020042650 Vardi et al. Apr 2002 A1
20020052651 Myers et al. May 2002 A1
20020058995 Stevens May 2002 A1
20020072789 Hackett et al. Jun 2002 A1
20020099439 Schwartz et al. Jul 2002 A1
20020103533 Langberg et al. Aug 2002 A1
20020107565 Greenhalgh Aug 2002 A1
20020111674 Chouinard et al. Aug 2002 A1
20020123802 Snyders Sep 2002 A1
20020133183 Lentz et al. Sep 2002 A1
20020138138 Yang Sep 2002 A1
20020151970 Garrison et al. Oct 2002 A1
20020161392 Dubrul Oct 2002 A1
20020161394 Macoviak et al. Oct 2002 A1
20020193871 Beyersdorf et al. Dec 2002 A1
20030014104 Cribier Jan 2003 A1
20030023300 Bailey et al. Jan 2003 A1
20030023303 Palmaz et al. Jan 2003 A1
20030028247 Cali Feb 2003 A1
20030036791 Philipp et al. Feb 2003 A1
20030040771 Hyodoh et al. Feb 2003 A1
20030040772 Hyodoh et al. Feb 2003 A1
20030040792 Gabbay Feb 2003 A1
20030050694 Yang et al. Mar 2003 A1
20030055495 Pease et al. Mar 2003 A1
20030065386 Weadock Apr 2003 A1
20030069492 Abrams et al. Apr 2003 A1
20030109924 Cribier Jun 2003 A1
20030125795 Pavcnik et al. Jul 2003 A1
20030130726 Thorpe et al. Jul 2003 A1
20030130729 Paniagua et al. Jul 2003 A1
20030139804 Hankh et al. Jul 2003 A1
20030149475 Hyodoh et al. Aug 2003 A1
20030149476 Damm et al. Aug 2003 A1
20030149478 Figulla et al. Aug 2003 A1
20030153974 Spenser et al. Aug 2003 A1
20030181850 Diamond et al. Sep 2003 A1
20030191519 Lombardi et al. Oct 2003 A1
20030199913 Dubrul et al. Oct 2003 A1
20030199963 Tower et al. Oct 2003 A1
20030199971 Tower et al. Oct 2003 A1
20030199972 Zadno-Azizi et al. Oct 2003 A1
20030212410 Stenzel et al. Nov 2003 A1
20030212452 Zadno-Azizi et al. Nov 2003 A1
20030212454 Scott et al. Nov 2003 A1
20030225445 Derus et al. Dec 2003 A1
20040034411 Quijano et al. Feb 2004 A1
20040039436 Spenser et al. Feb 2004 A1
20040049224 Buehlmann et al. Mar 2004 A1
20040049262 Obermiller et al. Mar 2004 A1
20040049266 Anduiza et al. Mar 2004 A1
20040082904 Houde et al. Apr 2004 A1
20040088045 Cox May 2004 A1
20040093005 Durcan May 2004 A1
20040093060 Sequin et al. May 2004 A1
20040097788 Mourles et al. May 2004 A1
20040098112 DiMatteo et al. May 2004 A1
20040106976 Bailey et al. Jun 2004 A1
20040106990 Spence et al. Jun 2004 A1
20040111096 Tu et al. Jun 2004 A1
20040116951 Rosengart Jun 2004 A1
20040117004 Osborne et al. Jun 2004 A1
20040122468 Yodfat et al. Jun 2004 A1
20040122516 Fogarty Jun 2004 A1
20040127979 Wilson Jul 2004 A1
20040138742 Myers et al. Jul 2004 A1
20040138743 Myers et al. Jul 2004 A1
20040153146 Lashinski et al. Aug 2004 A1
20040167573 Williamson Aug 2004 A1
20040167620 Ortiz Aug 2004 A1
20040186563 Iobbi Sep 2004 A1
20040193261 Berreklouw Sep 2004 A1
20040210240 Saint Oct 2004 A1
20040210304 Seguin et al. Oct 2004 A1
20040210307 Khairkhahan Oct 2004 A1
20040215333 Duran Oct 2004 A1
20040215339 Drasler et al. Oct 2004 A1
20040225353 McGuckin, Jr. Nov 2004 A1
20040225354 Allen Nov 2004 A1
20040254636 Flagle et al. Dec 2004 A1
20040260394 Douk et al. Dec 2004 A1
20040267357 Allen et al. Dec 2004 A1
20050010246 Streeter Jan 2005 A1
20050010285 Lambrecht et al. Jan 2005 A1
20050010287 Macoviak Jan 2005 A1
20050015112 Cohn et al. Jan 2005 A1
20050027348 Case et al. Feb 2005 A1
20050033398 Seguin Feb 2005 A1
20050043790 Seguin Feb 2005 A1
20050049692 Numamoto Mar 2005 A1
20050049696 Siess Mar 2005 A1
20050055088 Liddicoat et al. Mar 2005 A1
20050060029 Le Mar 2005 A1
20050060030 Lashinski et al. Mar 2005 A1
20050075584 Cali Apr 2005 A1
20050075712 Biancucci Apr 2005 A1
20050075717 Nguyen Apr 2005 A1
20050075719 Bergheim Apr 2005 A1
20050075724 Svanidze Apr 2005 A1
20050075727 Wheatley Apr 2005 A1
20050075730 Myers Apr 2005 A1
20050075731 Artof Apr 2005 A1
20050085841 Eversull et al. Apr 2005 A1
20050085842 Eversull et al. Apr 2005 A1
20050085843 Opolski et al. Apr 2005 A1
20050085890 Rasmussen et al. Apr 2005 A1
20050085900 Case et al. Apr 2005 A1
20050096568 Kato May 2005 A1
20050096692 Linder et al. May 2005 A1
20050096724 Stenzel et al. May 2005 A1
20050096734 Majercak et al. May 2005 A1
20050096735 Hojeibane et al. May 2005 A1
20050096736 Osse et al. May 2005 A1
20050096738 Cali et al. May 2005 A1
20050107871 Realyvasquez et al. May 2005 A1
20050113910 Paniagua May 2005 A1
20050119688 Bergheim Jun 2005 A1
20050131438 Cohn Jun 2005 A1
20050137686 Salahieh Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137692 Haug Jun 2005 A1
20050137695 Salahieh Jun 2005 A1
20050137701 Salahieh Jun 2005 A1
20050143809 Salahieh Jun 2005 A1
20050148997 Valley et al. Jul 2005 A1
20050149181 Eberhardt Jul 2005 A1
20050165477 Anduiza et al. Jul 2005 A1
20050187616 Realyvasquez Aug 2005 A1
20050203549 Realyvasquez Sep 2005 A1
20050203605 Dolan Sep 2005 A1
20050203618 Sharkawy Sep 2005 A1
20050222674 Paine Oct 2005 A1
20050228495 Macoviak Oct 2005 A1
20050234546 Nugent Oct 2005 A1
20050240200 Bergheim Oct 2005 A1
20050240263 Fogarty et al. Oct 2005 A1
20050251251 Cribier Nov 2005 A1
20050261759 Lambrecht et al. Nov 2005 A1
20050283962 Boudjemline Dec 2005 A1
20060004439 Spenser et al. Jan 2006 A1
20060004469 Sokel Jan 2006 A1
20060009841 McGuckin et al. Jan 2006 A1
20060052867 Revuelta et al. Mar 2006 A1
20060058775 Stevens et al. Mar 2006 A1
20060074484 Huber Apr 2006 A1
20060089711 Dolan Apr 2006 A1
20060100685 Seguin et al. May 2006 A1
20060116757 Lashinski et al. Jun 2006 A1
20060135964 Vesely Jun 2006 A1
20060142848 Gabbay Jun 2006 A1
20060149360 Schwammenthal et al. Jul 2006 A1
20060167474 Bloom et al. Jul 2006 A1
20060178740 Stacchino et al. Aug 2006 A1
20060195134 Crittenden Aug 2006 A1
20060206192 Tower et al. Sep 2006 A1
20060206202 Bonhoefer et al. Sep 2006 A1
20060247763 Slater Nov 2006 A1
20060259134 Schwammenthal et al. Nov 2006 A1
20060259136 Nguyen et al. Nov 2006 A1
20060259137 Artof et al. Nov 2006 A1
20060265056 Nguyen et al. Nov 2006 A1
20060271166 Thill et al. Nov 2006 A1
20060271175 Woolfson et al. Nov 2006 A1
20060276874 Wilson et al. Dec 2006 A1
20060282161 Huynh et al. Dec 2006 A1
20070005129 Damm et al. Jan 2007 A1
20070005131 Taylor Jan 2007 A1
20070010878 Raffiee et al. Jan 2007 A1
20070016286 Herrmann et al. Jan 2007 A1
20070027518 Case et al. Feb 2007 A1
20070027533 Douk Feb 2007 A1
20070043435 Seguin et al. Feb 2007 A1
20070051377 Douk et al. Mar 2007 A1
20070073392 Heyninck-Janitz Mar 2007 A1
20070078509 Lotfy et al. Apr 2007 A1
20070078510 Ryan Apr 2007 A1
20070088431 Bourang et al. Apr 2007 A1
20070093869 Bloom et al. Apr 2007 A1
20070100439 Cangialosi May 2007 A1
20070100440 Figulla May 2007 A1
20070100449 O'Neil et al. May 2007 A1
20070112415 Bartlett May 2007 A1
20070162102 Ryan et al. Jul 2007 A1
20070162113 Sharkawy et al. Jul 2007 A1
20070185513 Woolfson et al. Aug 2007 A1
20070203391 Bloom et al. Aug 2007 A1
20070225681 House Sep 2007 A1
20070232898 Huynh et al. Oct 2007 A1
20070233228 Eberhardt et al. Oct 2007 A1
20070233237 Krivoruchko Oct 2007 A1
20070233238 Huynh et al. Oct 2007 A1
20070238979 Huynh et al. Oct 2007 A1
20070239254 Chia et al. Oct 2007 A1
20070239265 Birdsall Oct 2007 A1
20070239266 Birdsall Oct 2007 A1
20070239269 Dolan et al. Oct 2007 A1
20070239273 Allen Oct 2007 A1
20070244544 Birdsall et al. Oct 2007 A1
20070244545 Birdsall et al. Oct 2007 A1
20070244546 Francis Oct 2007 A1
20070244553 Rafiee et al. Oct 2007 A1
20070244554 Rafiee et al. Oct 2007 A1
20070244555 Rafiee et al. Oct 2007 A1
20070244556 Rafiee et al. Oct 2007 A1
20070244557 Rafiee et al. Oct 2007 A1
20070250160 Rafiee Oct 2007 A1
20070255394 Ryan Nov 2007 A1
20070255396 Douk et al. Nov 2007 A1
20070288000 Bonan Dec 2007 A1
20080004696 Vesely Jan 2008 A1
20080009940 Cribier Jan 2008 A1
20080015671 Bonhoeffer Jan 2008 A1
20080021552 Gabbay Jan 2008 A1
20080048656 Tan Feb 2008 A1
20080065011 Marchand et al. Mar 2008 A1
20080065206 Liddicoat Mar 2008 A1
20080071361 Tuval et al. Mar 2008 A1
20080071362 Tuval et al. Mar 2008 A1
20080071363 Tuval et al. Mar 2008 A1
20080071366 Tuval et al. Mar 2008 A1
20080071368 Tuval et al. Mar 2008 A1
20080077234 Styrc Mar 2008 A1
20080082165 Wilson et al. Apr 2008 A1
20080082166 Styrc et al. Apr 2008 A1
20080133003 Seguin et al. Jun 2008 A1
20080140189 Nguyen et al. Jun 2008 A1
20080147105 Wilson et al. Jun 2008 A1
20080147180 Ghione et al. Jun 2008 A1
20080147181 Ghione et al. Jun 2008 A1
20080147182 Righini et al. Jun 2008 A1
20080154355 Benichow et al. Jun 2008 A1
20080154356 Obermiller et al. Jun 2008 A1
20080161910 Revuelta et al. Jul 2008 A1
20080161911 Revuelta et al. Jul 2008 A1
20080183273 Mesana et al. Jul 2008 A1
20080188928 Salahieh et al. Aug 2008 A1
20080215143 Seguin et al. Sep 2008 A1
20080215144 Ryan et al. Sep 2008 A1
20080228254 Ryan Sep 2008 A1
20080228263 Ryan Sep 2008 A1
20080234797 Stryc Sep 2008 A1
20080243246 Ryan et al. Oct 2008 A1
20080255651 Dwork Oct 2008 A1
20080255660 Guyenot et al. Oct 2008 A1
20080255661 Straubinger et al. Oct 2008 A1
20080262593 Ryan et al. Oct 2008 A1
20080269878 Iobbi Oct 2008 A1
20090005863 Goetz et al. Jan 2009 A1
20090012600 Styrc et al. Jan 2009 A1
20090048656 Wen Feb 2009 A1
20090054976 Tuval et al. Feb 2009 A1
20090069886 Suri et al. Mar 2009 A1
20090069887 Righini et al. Mar 2009 A1
20090069889 Suri et al. Mar 2009 A1
20090138079 Tuval et al. May 2009 A1
20090164004 Cohn Jun 2009 A1
20090171447 VonSeggesser et al. Jul 2009 A1
20090192585 Bloom et al. Jul 2009 A1
20090192586 Tabor et al. Jul 2009 A1
20090192591 Ryan et al. Jul 2009 A1
20090198316 Laske et al. Aug 2009 A1
20090216310 Straubinger et al. Aug 2009 A1
20090216312 Straubinger et al. Aug 2009 A1
20090216313 Straubinger et al. Aug 2009 A1
20090234443 Ottma et al. Sep 2009 A1
20090240264 Tuval et al. Sep 2009 A1
20090240320 Tuval Sep 2009 A1
20100094411 Tuval et al. Apr 2010 A1
20100100167 Bortlein et al. Apr 2010 A1
20100131054 Tuval et al. May 2010 A1
20100137979 Tuval et al. Jun 2010 A1
Foreign Referenced Citations (77)
Number Date Country
2007-100074433 Jan 2007 CN
195 32 846 Mar 1997 DE
195 46 692 Jun 1997 DE
195 46 692 Jun 1997 DE
198 57 887 Jul 2000 DE
199 07 646 Aug 2000 DE
100 48 814 Sep 2000 DE
100 49 812 Apr 2002 DE
100 49 813 Apr 2002 DE
100 49 815 Apr 2002 DE
0103546 Mar 1984 EP
0597967 Dec 1994 EP
0850607 Jul 1998 EP
1057459 Jun 2000 EP
1057460 Jun 2000 EP
1088529 Apr 2001 EP
1255510 Nov 2002 EP
0937439 Sep 2003 EP
1340473 Sep 2003 EP
0819013 Jun 2004 EP
1 671 608 Jun 2006 EP
2788217 Dec 1999 FR
2056023 Mar 1981 GB
2433700 Dec 2007 GB
1271508 Nov 1986 SU
9117720 Nov 1991 WO
9301768 Feb 1993 WO
9529640 Nov 1995 WO
9814137 Apr 1998 WO
9829057 Jul 1998 WO
9933414 Jul 1999 WO
0041652 Jul 2000 WO
0044313 Aug 2000 WO
0047136 Aug 2000 WO
0047139 Aug 2000 WO
0135870 May 2001 WO
0149213 Jul 2001 WO
0154625 Aug 2001 WO
0162189 Aug 2001 WO
0164137 Sep 2001 WO
0176510 Oct 2001 WO
0222054 Mar 2002 WO
0236048 May 2002 WO
0241789 May 2002 WO
0243620 Jun 2002 WO
0247575 Jun 2002 WO
0249540 Jun 2002 WO
03003943 Jan 2003 WO
03003949 Jan 2003 WO
03011195 Feb 2003 WO
03030776 Apr 2003 WO
2004019811 Mar 2004 WO
2004019825 Mar 2004 WO
2004023980 Mar 2004 WO
2004041126 May 2004 WO
2004058106 Jul 2004 WO
2004089250 Oct 2004 WO
2005004753 Jan 2005 WO
2005027790 Mar 2005 WO
2005046528 May 2005 WO
2006026371 Mar 2006 WO
2007013999 Feb 2007 WO
2007053243 May 2007 WO
2007071436 Jun 2007 WO
2007081820 Jul 2007 WO
2007130537 Nov 2007 WO
2008047354 Apr 2008 WO
2008100599 Aug 2008 WO
2008138584 Nov 2008 WO
2008150529 Dec 2008 WO
2009002548 Dec 2008 WO
2009029199 Mar 2009 WO
2009042196 Apr 2009 WO
2009045338 Apr 2009 WO
2009061389 May 2009 WO
2009091509 Jul 2009 WO
2009111241 Sep 2009 WO
Related Publications (1)
Number Date Country
20080215144 A1 Sep 2008 US
Provisional Applications (1)
Number Date Country
60901787 Feb 2007 US