1. Field of the Invention
The present invention relates generally to a shock sensor and method for monitoring shock. More particularly, the present invention relates to a low-power and unpowered micro-electromechanical shock sensor using a micromechanical suspended proof mass structure.
2. Background of the Invention
Embedding miniature sensors in products, systems, storage and shipping containers, and other items allows the monitoring of those items to determine health, maintenance needs, lifetime, and other item characteristics. Information from miniature shock sensors can tell a user whether the item has been exposed to shock levels that can cause damage. In addition, miniature shock sensors can be used to “wake up,” from a low-power sleep mode, a more sophisticated sensing system to collect a more complete set of environmental data.
Current battery-powered embedded sensor systems that perform this type of monitoring often require a low power method of determining when a certain level of shock has been reached. Many other applications, such as in transportation and shipping monitoring, heating and air conditioning, and food storage, would benefit from the ability to monitor the shock environment with a completely unpowered sensor. In addition, these applications would benefit from the ability to poll that sensor to determine if a shock extreme was reached, and then reset the sensor for later use. In either case, an ultra-low power sensor, or even a sensor that consumes no quiescent power, would reduce the overall system power consumption enough to allow embedded sensors to operate for many years in portable battery powered applications, or in systems that scavenge small amounts of power from the environment.
Low power and unpowered shock sensors currently exist. However, they are large-scale devices such as the catches used in automotive seat belts. These devices operate in a similar fashion and provide a similar function as the present invention, but are not in a form factor suitable for integration with microdevices, and are not fabricated using techniques that are compatible with microelectronics or micro-electromechanical systems (“MEMS”) devices.
Micro-scale shock sensors, in the form of accelerometers, exist as well, but most of the previous work to develop low-power shock sensors has been focused on minimizing the power consumption of standard miniature devices, and using low-power analog electronics to determine when a specific shock level has been reached. Devices and systems would then create a low-impedance logic level signal for input to a sleeping microcontroller. The fundamental problem is that such a system must continuously power the sensor and analog trigger circuitry, creating a constant power draw on the batteries. Even using the latest in low-power devices and highest capacity batteries, systems that continuously power any sensor will only operate for 5-10 years.
As embedded miniature sensors get smaller, and as batteries are reduced in size and capacity, the use of lower power and unpowered devices will become more critical. Furthermore, maximizing the sensor functionality, without increasing power consumption, will enhance the capability of embedded sensing systems.
Other inventions have used suspended proof mass micro-machined devices to measure shock, and for switching, but, until the present invention, only one as had the advantages of the present invention in combining low- or no-power operation with a mechanical latching function. U.S. Pat. No. 6,737,979 discloses a MEMS shock sensor that achieves the goals of low- and no-power operation of a mechanical shock sensor with a mechanical latching function. In this prior art invention, as in the present invention, a moveable proof mass and a latching means are formed on the surface of a substrate. When the sensor is subject to a sufficient shock, the proof mass moves and latches with the latching means, and the latched condition is detected by external circuitry.
The present invention offers several improvements to the technology disclosed in U.S. Pat. No. 6,737,979 (“the '979 invention”). First, in the '979 invention, each separate device design can detect only one range of shock level because the distance between the proof mass and the latch is not variable. In the present invention, the latching distance is variable and a sensor can therefore be programmed to detect varying shock levels. Second, in the '979 invention, the only electrical contact made between the proof mass and the latch to detect a shock level is through the latch itself. As is discussed in detail below, the present invention offers a contact that is separate from the latch so that a “triggering” condition (i.e., the proof mass contacting with the contact) can be made (and detected) prior to latching, if desired by the user. With this feature, the present invention can be programmed to detect a shock level smaller than that of the latching shock level. Third, although the '979 invention offers an unlatching function so that the sensor can be re-used, the present invention improves upon this function with a mechanical linkage that applies no load to the latch during latching, thereby decreasing the necessary latching force and increasing the sensitivity of the sensor.
It is therefore an object of the present invention to provide a low-power micro-machined shock sensor in which the sensitivity of the sensor can be adjusted.
It is another object of the present invention to provide a low-power micro-machined shock sensor which allows for detection of a shock level separate from and variable from the latching function (i.e., a triggering event separate from a latching event).
It is yet another object of the present invention to provide a micromachined shock sensor with an unlatching apparatus that does not apply a mechanical load on the latch during latching.
The present invention achieves these objectives with a micromachined proof mass connected to a substrate through micromachined flexures. The proof mass includes a contact area and a latching area. The contact area and latching area register respectively with spring-loaded contacts and a spring-loaded latch that are anchored to the substrate. Under a shock load of sufficient magnitude, the proof mass displaces to bring the contact area together with the spring-loaded contacts and to force the latch on the proof mass to engage with the spring-loaded latch. After latching, the contacts remain closed, allowing a voltage source to be connected to the input of a microcontroller, or allowing the completion of an external circuit. A thermal, capacitive, or other actuator can then be used to disengage the latch and return the proof mass to its original position. The sensor will use nearly zero power except when actually providing the trigger signal to the microcontroller or during any reset operation. The sensor can remain latched for interrogation at a later date, even if system power is lost, and the sensor can be reset to detect the next event.
For purposes of summarizing the invention, certain aspects, advantages, and novel features of the invention have been described herein. It is to be understood that not necessarily all such advantages may be achieved in accordance with any one particular embodiment of the invention. Thus, the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.
These and other embodiments of the present invention will also become readily apparent to those skilled in the art from the following detailed description of the embodiments having reference to the attached figures, the invention not being limited to any particular embodiment(s) disclosed.
Repeat use of reference characters throughout the present specification and appended drawings is intended to represent the same or analogous features or elements of the invention
The illustrated embodiment of the invention is fabricated in a thick layer of silicon or other conductor material that has been released from a rigid substrate. Within this thick layer of material, a proof mass, a set of flexures, multiple contacts, multiple latch and pawl structures, multiple actuators, and multiple anchors and pads are fabricated.
Employing the process of
As is illustrated in
In addition, as is shown in
The shock sensor is designed to be reset after the sensor (in its latched state) is read or used to provide a signal to an external system. As shown in
While the sensor is in a latched state, as is shown in
m=ρ*wm*lm*t,
where m is the mass, ρ is the density of the material, wm is the proof mass width, lm is the proof mass length, and t is the thickness of the proof mass.
The inertial force developed on the mass under acceleration is then given by:
F=m*a,
where F is the inertial force, m is the mass of the proof mass, and a is the applied acceleration.
The stiffness of the suspension provides a force against the inertial force. The stiffness is given by:
where k is the entire suspension stiffness, kb is the stiffness of one beam in the suspension, E is the Young's modulus of the material the device is made in, wb is the width of a beam in the suspension, lb is the length of a beam in the suspension, and t is the thickness of the material.
The distance the proof mass will move under the applied acceleration, neglecting the effects of the latch friction, is given by:
A device will latch if the proof mass deflection is greater than the distance of the latch gap plus the distance across the tip of the pawl, and can be expressed by the following latching condition:
Table 1 below contains the shock levels required for latching the sensor given a set of design parameters and a material thickness of 100 μm and a latching gap of 7 μm.
5 μm
In one embodiment of the invention, the shock sensor is used to wake up a microcontroller in an embedded sensing application. In other embodiments, the device is used in standalone applications where the sensor is connected to an RFID tag or other transmitter for remote determination of the shock environment experienced by shipping containers and products. Similar devices for other environmental variables such as temperature, humidity, and chemical concentrations can be developed using the principles disclosed herein.
Although several embodiments and forms of this invention have been illustrated, it is apparent that those skilled in the art can make other various modifications and embodiments of the invention without departing from the scope and spirit of the present invention. For example, other configurations of the sensor are possible that utilize varying surface features on the contacts, multiple movable contacts, and different actuator types.
One particular embodiment of the invention, shown in
Another embodiment, shown in
Another embodiment of the device (not illustrated) uses a capacitive actuator for reset functions instead of a thermal actuator. A capacitive actuator consumes less power but would be suitable only for lower force and lower shock level applications. The configuration would require additional capacitive actuators on the proof mass to move it out of contact with the pawl, thereby eliminating the friction that holds the pawl in contact with the latch. Only then could another capacitive actuator move the pawl out of position, after which the actuator on the proof mass is released, followed by the release of the pawl, at which point the sensor is unlatched and ready for another sensing operation.
Furthermore, other fabrication processes for the device are possible. Any fabrication process that realizes a single thick micromechanical structural layer with 1) conducting sidewalls that can make electrical contact, and 2) large amounts of suspended inertial mass. Examples include bulk micromachining and wafer-bonding fabrication approaches in silicon, silicon dioxide, nickel, titanium and other conductors, as well as LIGA-type fabrication processes using electroplated metals.
This invention may be provided in other specific forms and embodiments without departing from the essential characteristics as described herein. The embodiment described is to be considered in all aspects as illustrative only and not restrictive in any manner. The following claims rather than the foregoing description indicate the scope of the invention.
As described above and shown in the associated drawings, the present invention comprises a micro-electromechanical shock sensor. While particular embodiments of the invention have been described, it will be understood, however, that the invention is not limited thereto, since modifications may be made by those skilled in the art, particularly in light of the foregoing teachings. It is, therefore, contemplated by the appended claims to cover any such modifications that incorporate those features or those improvements that embody the spirit and scope of the present invention.
This application claims priority to Provisional Patent Application U.S. Ser. No. 60/619,496, entitled “Resettable Latching MEMS Shock Sensor” and filed on Oct. 15, 2004, which is fully incorporated herein by reference.
This invention was made with Government support under contract MDA972-03-C-0010, awarded by the Defense Advanced Research Projects Agency (“DARPA”). The Government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
5326945 | Gotoh et al. | Jul 1994 | A |
5339071 | Eckhaus | Aug 1994 | A |
5506568 | Chen | Apr 1996 | A |
5970794 | Yoshida | Oct 1999 | A |
6148670 | Judy | Nov 2000 | A |
6314887 | Robinson | Nov 2001 | B1 |
6514781 | Chang et al. | Feb 2003 | B2 |
6549107 | Lim et al. | Apr 2003 | B2 |
6619123 | Gianchandani et al. | Sep 2003 | B2 |
6737979 | Smith et al. | May 2004 | B1 |
7038150 | Polosky et al. | May 2006 | B1 |
7148436 | Lee et al. | Dec 2006 | B1 |
7159442 | Jean | Jan 2007 | B1 |
7194889 | Jean et al. | Mar 2007 | B1 |
20030020062 | Faris | Jan 2003 | A1 |
20050146504 | Huang et al. | Jul 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20060220803 A1 | Oct 2006 | US |
Number | Date | Country | |
---|---|---|---|
60619496 | Oct 2004 | US |