Results processing circuits and methods associated with computational memory cells

Information

  • Patent Grant
  • 11194519
  • Patent Number
    11,194,519
  • Date Filed
    Friday, December 13, 2019
    5 years ago
  • Date Issued
    Tuesday, December 7, 2021
    3 years ago
Abstract
A read and write data processing apparatus and method associated with computational memory cells formed as a memory/processing array (having a plurality of bit line sections) provides a mechanism to logically combine the computation results across multiple bit line sections in a section and across multiple sections, and transmit the combined result as an output of the processing array and/or store the combined result into one or more of those multiple bit line sections.
Description
FIELD

The disclosure relates generally to a computational memory element and in particular to a computational memory element array having results processing circuitry.


BACKGROUND

Memory cells have traditionally been used to store bits of data. It is also possible to architect a memory cell so that the memory cell is able to perform some simple logical functions when multiple memory cells are connected to the same read bit line. For example, when memory cells A, B, and C are connected to a particular read bit line and are read simultaneously, and the memory cells and read bit line circuitry are designed to produce a logical AND result, then the result that appears on the read bit line is AND (a,b,c) (i.e. “a AND b AND c”), where a, b, and c represent the binary data values stored in memory cells A, B, and C respectively. More particularly, in these computational memory cells, the read bit line is pre-charged to a logic “1” before each read operation, and the activation of one or more read enable signals to one or more memory cells discharges the read bit line to a logic “0” if the data stored in any one or more of those memory cells=“0”; otherwise, the read bit line remains a logic “1” (i.e. in its pre-charge state). In this way, the read bit line result is the logical AND of the data stored in those memory cells. The memory cells may be subdivided into a plurality of sections and each section may have a plurality of bit line sections that perform a logical function and their logical functions, may be used to execute a wide variety of computational algorithms.


Typically, all bit line sections in a section execute the same computational algorithm on their respective data because the bit line sections share the same read and write control signals. Oftentimes, it is desirable to be able to combine the results across multiple bit line sections to generate a single result for those multiple bit line sections. For example, if the algorithm is designed to search for a particular data pattern within the data stored in the bit line sections, it is desirable to know if any of the one or more of the bit line sections contain that data pattern. It is to this end that this disclosure is directed.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates an example of a semiconductor memory that may include a plurality of computation memory cells and RSP circuitry;



FIG. 2 illustrates an example of a computer system that may include a plurality of computation memory cells and RSP circuitry;



FIG. 3A illustrates an example of a processing array with computational memory cells that may be incorporated into a semiconductor memory or computer system;



FIG. 3B illustrates the processing array with computational memory cells having one section and multiple bit line sections;



FIG. 3C illustrates the processing array with computational memory cells having multiple sections and multiple bit line sections;



FIGS. 4A and 4B illustrate examples of two different types of computational memory cells that may be used in the semiconductor memory of FIG. 1, the computer system of FIG. 2 or the processing array of FIGS. 3A-3C;



FIG. 5 illustrates read/write logic including read logic, read data storage, and write logic associated with each bit line section in the processing array device depicted in FIG. 3C;



FIG. 6 illustrates the read/write logic that includes a results processing (RSP) data line and RSP circuitry in each bit line section that is used to produce combined computational results across all bit line sections on the RSP data line;



FIG. 7 illustrates a single bit line section with the RSP circuitry including RSP logic that produces the combined computational results on the RSP line and an additional line to the write multiplexer that provides the ability to store the logic state of the RSP data line;



FIG. 8 illustrates an example of the signal timing associated with the RSP logic shown in FIG. 7;



FIG. 9 illustrates high level RSP functionality when “K” sections with “n” bit lines in the processing array including the generation of the RSP result from each section;



FIG. 10 illustrates a processing array with 2048 bit lines and four RSP data lines;



FIG. 11 illustrates a single bit line section from the processing array in FIG. 10;



FIG. 12 illustrates the detailed RSP logic implemented in FIG. 11;



FIG. 13 illustrates an example of the signal timing for generating an rsp2K result and an resp32K result and transmitting those results out of the processing array;



FIG. 14 illustrates an example of the signal timing for generating an rsp16 result and transmitting that result to the write multiplexer in each bit line section;



FIG. 15 illustrates an example of the signal timing for generating an rsp256 result, transmitting the result back to rsp16 and transmitting that result to the write multiplexer in each bit line section;



FIG. 16 illustrates an example of the signal timing for generating an rsp2K result, transmitting the result back to rsp256 and then to rsp16 and transmitting that result to the write multiplexer in each bit line section;



FIG. 17 illustrates an example of the signal timing for generating an rsp32K result, transmitting the result back to rsp2K, to rsp256 and then to rsp16 and transmitting that result to the write multiplexer in each bit line section; and



FIG. 18 illustrates the high level RSP functionality for sixteen sections with 2K bit lines.





DETAILED DESCRIPTION OF ONE OR MORE EMBODIMENTS

The disclosure is particularly applicable to a processing array, semiconductor memory or computer that utilizes a plurality of computational memory cells (with each cell being formed with a static random access memory (SRAM) cell) and additional response (RSP) circuitry to provide a mechanism to logically combine the computation results across multiple bit line sections in a section and across multiple sections, and transmit the combined result as an output of the processing array and/or store the combined result into one or more of those multiple bit line sections. It will be appreciated, however, that each computational memory cell may be other types of volatile and non-volatile memory cell that are within the scope of the disclosure, that other additional circuitry (including more, less or different logic) may be used and are within the scope of the disclosure or that different computational memory cell architectures that those disclosed below are within the scope of the disclosure.


The disclosure is directed to a memory/processing array that has a plurality of computing memory cells in an array with additional RSP circuitry. Each computing memory cell in a column in the array may have a read bit line and the read bit line for each of the computing memory cells in the column may be tied together as a single read bit line. The memory/processing array may be subdivided into one or more sections (an example of which is shown in FIGS. 3B and 3C) wherein each section has a unique set of “n” bit lines (each bit line being part of a bit line section) where each bit line section (bl-sect) comprises a single read bit line and a pair of positive and negative write bit lines, with each bit line connected to “m” computational memory cells. Each bit line section also may have a read data storage that is used to capture and store the read result from the read bit line during read operations (so a read data storage is implemented per read bit line) and read circuitry for routing the read data or the selected write data for performing logical operations. In the disclosure, BL-Sect[x,y] is a shorthand notation indicating a bit line section with bit line “y” in section “x” and “bl-sect” means bit line section.



FIG. 1 illustrates an example of a semiconductor memory 10 that may include a plurality of computation memory cells and circuitry that provides an RSP capability that is described below in more detail. The below disclosed plurality of computation memory cells and RSP circuitry allow the semiconductor memory 10 to logically combine computation results across bit line sections of the plurality of computation memory cells. FIG. 2 illustrates an example of a computer system 20 that may include a plurality of computation memory cells and the RSP circuitry that are described below in more detail. The below disclosed plurality of computation memory cells and RSP circuitry allow the semiconductor memory 10 or computer system 20 and memory 24 to logically combine computation results across bit line sections of the plurality of computation memory cells. The computer system 20 in FIG. 2 may have at least one processor 22 and a memory 24 that may include the plurality of computation memory cells and read circuitry for selecting read or write data.



FIG. 3A illustrates an example of a processing array 30 with computational memory cells in an array that may be incorporated into a semiconductor memory or computer system and may include RSP circuitry. The processing array 30 may include an array of computational memory cells (cell 00, . . . , cell 0n and cell m0, . . . , cell mn). In one embodiment, the array of computational memory cells may be rectangular as shown in FIG. 3A and may have a plurality of columns and a plurality of rows wherein the computational memory cells in a particular column may also be connected to the same read bit line (RBL0, . . . , RBLn). The processing array 30 may further include a wordline (WL) generator and read/write logic control circuit 32 that may be connected to and generate signals for the read word line (RE) and write word line (WE) for each memory cell (such as RE0, . . . , REn and WE0, . . . , WEn) to control the read and write operations is well known and one or more read/write circuitry 34 that are connected to the read and write bit lines of the computational memory cells. In the embodiment shown in FIG. 3A, the processing array may have read/write circuitry 34 for each set of bit line signals of the computational memory cells (e.g., for each column of the computational memory cells whose read bit lines are connected to each other). For example, BL0 read/write logic 340 may be coupled to the read and write bit lines (WBLb0, WBL0 and RBL0) for the computational memory cells in column 0 of the array and BLn read/write logic 34n may be coupled to the read and write bit lines (WBLbn, WBLn and RBLn) for the computational memory cells in column n of the array as shown in FIG. 3A.


The wordline (WL) generator and read/write logic control circuit 32 may also generate one or more control signals that control each read/write circuitry 34. For example, for the different embodiments of the read/write logic described in the co-pending U.S. patent application Ser. No. 16/111,178 filed Aug. 23, 2018 and entitled “Read Data Processing Circuits and Methods Associated with Computational Memory Cells” and incorporated herein by reference, the one or more control signals may include a Read_Done control signal, an XORacc_En control signal, an ANDacc_En control signal and an ORacc_En control signal whose operation and details are described in the above incorporated by reference application. Note that for each different embodiment, a different one or more of the control signals is used so that the wordline (WL) generator and read/write logic control circuit 32 may generate different control signals for each embodiment or the wordline (WL) generator and read/write logic control circuit 32 may generate each of the control signals, but then only certain of the control signals or all of the control signals may be utilized as described in the above incorporated by reference co-pending patent application.


During a read operation, the wordline (WL) generator and read/write logic control circuit 32 may activate one or more word lines that activate one or more computational memory cells so that the read bit lines of those one or more computational memory cells may be read out. Further details of the read operation are not provided here since the read operation is well known.



FIGS. 3B and 3C illustrate the processing array 30 with computational memory cells having sections having the same elements as shown in FIG. 3A. The array 30 in FIG. 3B has one section (Section 0) with “n” bit lines (bit line 0 (BL0), . . . , bit line n (BLn)) in different bit line sections (bl-sect), where each bit line connects to “m” computational memory cells (cell 00, . . . , cell m0 for bit line 0, for example). In the example in FIG. 3B, the m cells may be the plurality of computational memory cells that are part of each column of the array 30. FIG. 3C illustrates the processing array 30 with computational memory cells having multiple sections. In the example in FIG. 3C, the processing array device 30 comprises “k” sections with “n” bit lines each, where each bit line within each section connects to “m” computational memory cells. Note that the other elements of the processing array 30 are present in FIG. 3C, but not shown for clarity. In FIG. 3C, the BL-Sect(0,0) block shown corresponds to the BL-Sect(0,0) shown in FIG. 3B with the plurality of computational memory cells and the read/write logic 340 and each other block shown in FIG. 3C corresponds to a separate portion of the processing array. As shown in FIG. 3C, the set of control signals, generated by the wordline generator and read/write logic controller 32, for each section may include one or more read enable control signals (for example S[0] RE[m:0] for section 0), one or more write enable control signals (for example S[0]_WE[m:0] for section 0) and one or more read/write control signals (for example S[0]_RW_Ctrl[p:0] for section 0). As shown in FIG. 3C, the array 30 may have a plurality of sections (0, . . . , kin the example in FIG. 3C) and each section may have multiple bit line sections (0, n per section, in the example in FIG. 3C).



FIGS. 4A and 4B illustrate examples of two different types of computational memory cells that may be used in the semiconductor memory of FIG. 1, the computer system of FIG. 2 or the processing array of FIGS. 3A-C. In the examples, the computational memory cell are based on an SRAM memory cell.



FIG. 4A illustrates an example of a dual port SRAM cell 20 that may be used for computation. The dual port SRAM cell may include two cross coupled inverters I21, I22 and two access transistors M23 and M24 that interconnected together to form a 6T SRAM cell. The SRAM may be operated as storage latch and may have a write port. The two inverters are cross coupled since the input of the first inverter is connected to the output of the second inverter and the output of the first inverter is coupled to the input of the second inverter as shown in FIG. 4A. A Write Word line carries a signal and is called WE and a write bit line and its complement are called WBL and WBLb, respectively. The Write word line WE is coupled to the gates of the two access transistors M23, M24 that are part of the SRAM cell. The write bit line and its complement (WBL and WBLb) are each coupled to one side of the respective access transistors M23, M24 as shown in FIG. 4A while the other side of each of those access transistors M23, M24 are coupled to each side of the cross coupled inverters (labeled D and Db in FIG. 4A.)


The circuit in FIG. 4A may also have a read word line RE, a read bit line RBL and a read port formed by transistors M21, M22 coupled together to form as isolation circuit as shown. The read word line RE may be coupled to the gate of transistor M21 that forms part of the read port while the read bit line is coupled to the source terminal of transistor M21. The gate of transistor M22 may be coupled to the Db output from the cross coupled inverters I21, I22.


During reading, multiple cells (with only a single cell being shown in FIG. 4A) can turn on to perform an AND function. Specifically, at the beginning of the read cycle, RBL is pre-charged high and if the Db signal of all cells that are turned on by RE is “0”, then RBL stays high since, although the gate of transistor M21 is turned on by the RE signal, the gate of M22 is not turned on and the RBL line is not connected to the ground to which the drain of transistor M22 is connected. If the Db signal of any or all of the cells is “1” then RBL is discharged to 0 since the gate of M22 is turned on and the RBL line is connected to ground. As a result, RBL=NOR (Db0, Db1, etc.) where Db0, Db1, etc. are the complementary data of the SRAM cells that have been turned on by the RE signal. Alternatively, RBL=NOR (Db0, Db1, etc.)=AND (D0, D1, etc.), where D0, D1, etc. are the true data of the cells that have been turned on by the RE signal.


As shown in FIG. 4A, the Db signal of the cell 20 may be coupled to a gate of transistor M22 to drive the RBL. However, unlike the typical 6T cell, the Db signal is isolated from the RBL line and its signal/voltage level by the transistors M21, M22. Because the Db signal/value is isolated from the RBL line and signal/voltage level, the Db signal is not susceptive to the lower bit line level caused by multiple “0” data stored in multiple cells in contrast to the typical SRAM cell. Therefore, for the cell in FIG. 4A, there is no limitation of how many cells can be turned on to drive RBL. As a result, the cell (and the device made up for multiple cells) offers more operands for the AND function since there is no limit of how many cells can be turned on to drive RBL. Furthermore, in the cell in FIG. 4A, the RBL line is pre-charged (not a static pull up transistor as with the typical 6T cell) so this cell can provide much faster sensing because the current generated by the cell is all be used to discharge the bit line capacitance with no current being consumed by a static pull up transistor so that the bit line discharging rate can be faster by more than 2 times. The sensing for the disclosed cell is also lower power without the extra current consumed by a static pull up transistor and the discharging current is reduced by more than half.


The write port of the cell in FIG. 4A is operated in the same manner as the 6T typical SRAM cell. As a result, the write cycle and Selective Write cycle for the cell have the same limitation as the typical 6T cell. In addition to the AND function described above, the SRAM cell 20 in FIG. 4A also may perform a NOR function by storing inverted data. Specifically, if D is stored at the gate of M22, instead of Db, then RBL=NOR (D0, D1, etc.). One skilled in the art understand that the cell configuration shown in FIG. 4A would be slightly altered to achieve this, but that modification is within the scope of the disclosure. Further details of this exemplary computational memory cell is found in co-pending U.S. patent application Ser. Nos. 15/709,379, 15/709,382 and 15/709,385 all filed on Sep. 19, 2017 and entitled “Computational Dual Port Sram Cell And Processing Array Device Using The Dual Port Sram Cells” which are incorporated herein by reference.



FIG. 4B illustrates an implementation of a dual port SRAM cell 100 with an XOR function. The dual port SRAM cell 100 may include two cross coupled inverters I31, I32 and two access transistors M33 and M34 that are interconnected together as shown in FIG. 4B to form the basic SRAM cell. The SRAM may be operated as storage latch and may have a write port. The two inverters I31, I32 are cross coupled since the input of the first inverter is connected to the output of the second inverter (labeled D) and the output of the first inverter (labeled Db) is coupled to the input of the second inverter as shown in FIG. 4B. The cross coupled inverters I31, I32 form the latch of the SRAM cell. The access transistor M33 and M34 may have their respective gates connected to write bit line and its complement (WBL, WBLb) respectively. A Write Word line carries a signal WE. The Write word line WE is coupled to the gate of a transistor M35 that is part of the access circuitry for the SRAM cell.


The circuit in FIG. 4B may also have a read word line RE, a read bit line RBL and a read port formed by transistors M31, M32 coupled together to form as isolation circuit as shown. The read word line RE may be coupled to the gate of transistor M31 that forms part of the read port while the read bit line RBL is coupled to the drain terminal of transistor M31. The gate of transistor M32 may be coupled to the Db output from the cross coupled inverters I31, I32. The isolation circuit isolates the latch output Db (in the example in FIG. 4B) from the read bit line and signal/voltage level so that the Db signal is not susceptive to the lower bit line level caused by multiple “0” data stored in multiple cells in contrast to the typical SRAM cell.


The cell 100 may further include two more read word line transistors M36, M37 and one extra complementary read word line, REb. When the read port is active, either RE or REb is high and the REb signal/voltage level is the complement of RE signal/voltage level. RBL is pre-charged high, and if one of (M31, M32) or (M36, M37) series transistors is on, RBL is discharged to 0. If none of (M31, M32) or (M36, M37) series transistors is on, then RBL stay high as 1 since it was precharged high. The following equation below, where D is the data stored in the cell and Db is the complement data stored in the cell, describes the functioning/operation of the cell:

RBL=AND(NAND(RE,Db),NAND(REb,D))=XNOR(RE,D)  (EQ1)


If the word size is 8, then it needs to be stored in 8 cells (with one cell being shown in FIG. 4B) on the same bit line. On a search operation, an 8 bit search key can be entered using the RE, REb lines of eight cells to compare the search key with cell data. If the search key bit is 1, then the corresponding RE=1 and REb=0 for that cell. If the search key bit is 0, then the corresponding RE=0 and REb=1. If all 8 bits match the search key, then RBL will be equal to 1. IF any 1 of the 8 bits is not matched, then RBL will be discharged and be 0. Therefore, this cell 100 (when used with 7 other cells for an 8 bit search key) can perform the same XNOR function but uses half the number of cell as the typical SRAM cell. The following equation for the multiple bits on the bit line may describe the operation of the cells as:

RBL=AND(XNOR(RE1,D1),XNOR(RE2,D2), . . . ,XNOR(REi,Di)), where i is the number of active cell.  (EQ2)


By controlling either RE or REb to be a high signal/on, the circuit 100 may also be used to do logic operations mixing true and complement data as shown below:

RBL=AND(D1,D2, . . . Dn,Dbn+1,Dbn+2, . . . Dbm)  (EQ3)


where D1, D2, . . . Dn are “n” number of data with RE on and Dbn+1, Dbn+2, . . . Dbm are m-n number of data with REb on.


Furthermore, if the cell 100 stores inverse data, meaning WBL and WBLb shown in FIG. 4B is swapped, then the logic equation EQ1 becomes XOR function and logic equation EQ3 becomes NOR a function and can be expressed as EQ 4 and EQ5

RBL=XOR(RE,D)  (EQ4)
RBL=NOR(D1,D2, . . . Dn,Dbn+1,Dbn+2, . . . Dbm)  (EQ5)


where D1, D2, . . . Dn are n number of data with RE on and Dbn+1, Dbn+2, . . . Dbm are m-n number of data with REb on.


In another embodiment, the read port of the circuit 100 is FIG. 4B may be reconfigured differently to achieve different Boolean equation. Specifically, transistors M31, M32, M36 and M37 may be changed to PMOS and the source of M32 and M37 is VDD instead of VSS, the bit line is pre-charged to 0 instead of 1 and the word line RE active state is 0. In this embodiment, the logic equations EQ1 is inverted so that RBL is an XOR function of RE and D (EQ6). EQ3 is rewritten as an OR function (EQ7) as follows:

RBL=XOR(RE,D)  (EQ6)
RBL=OR(D1,D2, . . . ,Dn,Dbn+1,Dbn+2, . . . Dbm)  (EQ7)


where D1, D2, . . . Dn are n number of data with RE on and Dbn+1, Dbn+2, . . . Dbm are m-n number of data with REb on.


If the cell stores the inverse data of the above discussed PMOS read port, meaning WBL and WBLb is swapped, then

RBL=XNOR(RE,D)  (EQ8)
RBL=NAND(D1,D2, . . . ,Dn,Dbn+1,Dbn+2, . . . Dbm)  (EQ9)


where D1, D2, . . . Dn are n number of data with RE on and Dbn+1, Dbn+2, . . . Dbm are m-n number of data with REb on.


For example, consider a search operation where a digital word needs to be found in a memory array in which the memory array can be configured as each bit of the word stored on the same bit line. To compare 1 bit of the word, then the data is stored in a cell and its RE is the search key, then EQ1 can be written as below:

RBL=XNOR(Key,D)  EQ10

If Key=D, then RBL=1. If the word size is 8 bits as D[0:7], then the search key Key[0:7] is its RE, then EQ2 can be expressed as search result and be written as below:

RBL=AND(XNOR(Key[0],D[0]),XNOR(Key[1],D[1], . . . ,Key[7],D[7])  EQ11

If all Key[i] is equal to D[i] where i=0-7, then the search result RBL is match. Any one of Key[i] is not equal to D[i], then the search result is not match. Parallel search can be performed in 1 operation by arranging multiple data words along the same word line and on parallel bit lines with each word on 1 bit line. Further details of this computation memory cell may be found in U.S. patent application Ser. Nos. 15/709,399 and 15/709,401 both filed on Sep. 19, 2017 and entitled “Computational Dual Port Sram Cell And Processing Array Device Using The Dual Port Sram Cells For Xor And Xnor Computations”, which are incorporated herein by reference.



FIG. 5 illustrates more details of the read/write circuitry 34 including read logic, read data storage, and write logic for each bl-sect in the processing array device depicted in FIG. 3C. The read/write circuitry 34 for each bit line section may include read circuitry 50, a read storage 52, implemented as a register, and write circuitry 54. The read/write circuitry 34 may also implement one embodiment of the RSP circuitry as described below. The read circuitry 50 and read storage 52 allows the data on the read bit lines connected to the particular read circuitry and read storage to accumulate so that more complex Boolean logic operations may be performed. Various implementations of the read circuitry 50 and read storage 52 may be found in Ser. No. 16/111,178 filed Aug. 23, 2018 and entitled “Read Data Processing Circuits and Methods Associated with Computational Memory Cells” that is co-pending and co-owned and is incorporated herein by reference. The write circuitry 54 manages the writing of data from each section. Each of the read circuitry 50, read storage 52 and write circuitry 54 may be connected to one or more control signals (S[x]_RW_Ctrl[p:0] in the example implementation shown in FIG. 5) that control the operation of each of the circuits. The control signals may include the read control signals that are described above in the incorporated by reference patent application.


The read circuitry 50 may receive inputs from the read bit line of the computing memory cells of the section (S[x]_RBL[y]) and the write circuitry 54 may receive an input from the read data storage 52 and output data to the write bit lines of the computing memory cells of the section (S[x]_WBL[y] and S[x]_WBLb[y] in the example in FIG. 5).


First Embodiment of RSP Circuitry


One way to provide a mechanism to logically combine the computation results across multiple bl-sects in a section, where each bl-sect produces a computation result that is ultimately captured in its Read Register 52, is to:

    • Implement an RSP data line (S[x]_RSP for example) that spans all bl-sects in the section.
    • Utilize additional circuitry in the bl-sects to produce a pre-defined logical function—in particular, a logical OR—on the RSP data line of the computation results captured in all bl-sect Read Registers in the section. That is, when the section has “n” bl-sects, to produce on the RSP data line the function:

      RBL[0]_Reg_Out OR RBL[1]_Reg_Out OR . . . RBL[n−1]_Reg_Out


A logical OR is chosen because a common use case of RSP functionality is to determine if the algorithm (e.g. a search algorithm) produced a result=“1” (e.g. indicating a positive match on the search data) in any one or more of the bl-sects in the section. In the embodiments below, each of the RSP logic circuits, control logic may be implemented using known circuits including Boolean logic circuits.


One way to produce the logical OR on the RSP data line is to define its default state as “0”, and enable (by default) a pull-down transistor on the RSP data line to pull it to its “0” default state. Then when RSP functionality is engaged, temporarily and unconditionally disable the pull-down transistor on the RSP data line, and temporarily enable a pull-up transistor—one per bl-sect—on the RSP data line if the computation result captured in its associated bl-sect Read Register=“1”. In that way, the RSP data line remains in its “0” default state only if the computation result captured in all bl-sect Read Registers is “0”; otherwise, the RSP data line is pulled to “1”, thereby producing a logical OR of all bl-sect Read Register states on the RSP data line.


Functionally, this scheme only requires one pull-down transistor on the RSP data line. However, several pull-down transistors (controlled by the same control signal) may be implemented on the RSP data line if needed (e.g. to decrease the amount of time required to discharge the RSP data line to “0”).


Furthermore, additional RSP circuitry is implemented in each bl-sect such that the logical OR result produced on the RSP data line can be stored in a computational memory cell in the bl-sect.


And furthermore, additional RSP circuitry is implemented in the section such that the logical OR result produced on the RSP data line is driven to circuitry outside the processing array.



FIG. 6 illustrates the read/write logic 34 that includes a results processing (RSP) data line and RSP circuitry in each bit line section that is used to produce combined computational results across all bit line sections on the RSP data line. The read/write logic 34 has the same read logic 50 and read register 52 as the circuitry in FIG. 5 that operates in the same manner. As shown in FIG. 6, the write logic 54 may further have a write multiplexer 62, such as a 6:1 multiplexer) that selects, based on the RW_Ctrl[p:0] control signal, the data to be written into the memory cells for this bit line section wherein the data is selected from the read register 52 output (S[x]_RBL[y]_Reg_Out signal for example) as well as the read register output data from the neighboring bit line sections (S[x−1]_RBL[y]_Reg_Out, S[x+1]_RBL[y]_Reg_Out, S[x]_RBL[y−1]_Reg_Out and S[x]_RBL[y+1]_Reg_Out).


For the RSP circuitry, the read/write circuitry 34 may further include RSP Logic 64 that is used to produce the combined computation result on the RSP data line using the “n” bl-sect Read Register outputs as the data sources. In addition, the RSP data line data may be input to the write MUX 62 as shown that provides the ability to store the logic state of the RSP data line in a bl-sect memory cell. The RSP logic is controlled by the RSPsel and RSPend control signals (generated by the read/write logic control 32 in FIG. 3A) and has an output that drives the RSP data line.



FIG. 7 illustrates a single bit line section with the RSP circuitry 70 including RSP logic that produces the combined computational results on the RSP line and an additional line to the write multiplexer that provides the ability to store the logic state of the RSP data line. The circuitry may include a pull down enable signal (S[x]_RSP_PDen for example) control signal that defaults to “1”, and is only “0” from the rising edge of the RSPsel control signal to the falling edge of the RSPend control signal. The circuitry may further include a latch 72 (RSP latch) whose data input is the “RBL_Reg_Out” output (S[x]_RBL[y]_Reg_out for example) of the Read Register 52 of the bit line section, whose clock input is the RSPsel control signal, whose reset input is the RSP_PDen control signal, and whose data output is an RSP Pull-Up Enable (“RSP_PUen”) control signal. The functionality of RSP LAT 72 is such that when RSP_PDen=1, then RSP_PUen=0; when RSP_PDen=0 and RSPsel=1, then RSP_PUen=RBL_Reg_Out; otherwise, RSP_PUen remains unchanged. In the depicted implementation, there is one RSP LAT per bit line section.


The RSP circuitry 70 may further include an RSP Pull-Down Transistor 74 (“RSP PD”) implemented on the RSP data line, whose enable input is the RSP_PDen control signal. In the depicted implementation, there is one RSP PD per bl-sect. The circuitry 70 may further include an RSP Pull-Up Transistor 76 (“RSP PU”) implemented on the RSP data line, whose enable input is the RSP_PUen control signal. In the depicted implementation, there is one RSP PU per bl-sect. The circuitry 70 may further include a first Buffer 78 (“BUF1”) whose input is the RSP data line, and whose output “RSP_in” is driven to the bl-sect Write Mux shown in FIG. 6. In the depicted implementation, there is one such buffer per bl-sect. The circuitry 70 may further include a second Buffer 79 (“BUF2”) whose input is the RSP data line, and whose output “RSP_out” is driven out of the processing array. In the depicted implementation, there is one such buffer for the entire section.



FIG. 8 illustrates an example of the signal timing associated with the RSP logic shown in FIG. 7 when RSP is engaged to store the RSP result in the bl-sect and to drive the RSP result out of the processing array.

    • 1. In cycle 0, GRE is asserted to “1” for a half-cycle to initiate a read operation that causes a computation result=“1” to be captured in the bl-sect Read Register. In this cycle, RSP_PDen=“1” (its default state), thereby causing RSP_PUen=“0” (its default state), thereby causing the RSP data line=“0” (its default state).
    • 2. In cycle 1, RSPsel is asserted to “1” for a half-cycle to engage RSP functionality. The rising edge of RSPsel causes RSP_PDen=“0”, and RSPsel=1 causes RSP LAT to capture the RBL_Reg_Out output of the Read Register (i.e. the logic “1” from cycle 0), thereby causing RSP_PUen=“1”, thereby causing the RSP data line=“1”.
    • 3. In cycle 2, RSPend is asserted to “1” for a half-cycle to disengage RSP functionality. The falling edge of RSPend causes RSP_PDen=“1”, thereby causing RSP_PUen=“0”, thereby causing the RSP data line=“0” (back to its default state).
    • 4. Simultaneously with the assertion of RSPend, GWE is asserted to “1” for a half-cycle to initiate a write operation that stores the state of the RSP data line in a computational memory cell in the bl-sect. Note that the assertion of GWE unnecessary if the sole objective of the RSP engagement is to use the RSP result outside the processing array.


The timing diagram illustrates the minimum delay required between the assertion of RSPsel and the assertions of RSPend and GWE. If needed, this delay can be increased without affecting the depicted RSP functionality.


The RSP implementation in FIG. 7 allows for an RSP read operation (i.e. a read operation that generates a computation result in the bl-sect Read Register that is subsequently used for RSP engagement) to be initiated as often as every 3 cycles. The RSP implementation in FIG. 7 allows for a non-RSP read operation (i.e. a read operation that generates a computation result in the bl-sect Read Register that is not subsequently used for RSP engagement) to be initiated in any cycle(s) after an RSP read operation is initiated, without affecting the RSP result associated with that RSP read operation.



FIG. 9 illustrates high level RSP functionality for a processing array having “K” sections (Section 0, Section 1, . . . , Section K) with each section having “n” bit line sections (BL-Sect[0,0], . . . , BL-Sect[0,n], etc.) with “n” bit lines in the processing array. As shown in FIG. 9, each section of the processing array has RSP circuitry and logic in each bit line section and a buffer that generate the RSP result (S[0]_RSP_out, etc.) from each section.


Second Embodiment of RSP Circuitry


In a second embodiment, a mechanism to logically combine the computation results across multiple bit line sections (bl-sects) in a section and across multiple sections where each bl-sect produces a computation result that is ultimately captured in its Read Register is provided. The circuitry for the second embodiment may include:

    • A set of “s” RSP data lines (an example of which is shown in FIG. 10) that, in stages, span an increasing number of bl-sects, where the stage 1 through stage “s-2” RSP data lines span a subset of bl-sects in a section, the stage “s-1” RSP data line spans all bl-sects in a section, and the stage “s” RSP data line spans all bl-sects across multiple sections.
    • The generation of outbound RSP functionality from the stage 1 RSP data line to the stage “s” RSP data line, as follows:
      • Utilize additional circuitry in the bl-sects to produce a logical OR on each stage 1 RSP data line of the computation results captured in the bl-sect Read Registers spanned by each stage 1 RSP data line.
      • Utilize additional circuitry in the section to produce a logical OR on each stage 2 RSP data line of the states of the multiple stage 1 RSP data lines spanned by each stage 2 RSP data line.
      • Utilize additional circuitry in the section to produce a logical OR on each additional stage RSP data line from the stage 3 RSP data line to the stage “s-1” RSP data line (e.g., perform this for each successive stage RSP data line).
      • Utilize additional circuitry in each section to produce a logical OR on the stage “s” RSP data line of the states of the multiple stage “s-1” RSP data lines spanned by the stage “s” RSP data line.


One way to produce the logical OR on each RSP data line during the outbound flow is (as was done in the first embodiment) to define their default states as “0”, and enable (by default) pull-down transistor(s) to pull each RSP data line to its “0” default state. Then, when RSP functionality is engaged:

    • At the first stage of the outbound RSP flow, temporarily and unconditionally disable the pull-down transistor(s) on the stage 1 RSP data line, and temporarily enable a pull-up transistor—one per bl-sect—if the computation result captured in the bl-sect Read Register=“1”.
    • At the second stage of the outbound RSP flow, temporarily and unconditionally disable the pull-down transistor(s) on the stage 2 RSP data line, and temporarily enable a pull-up transistor—one per stage 1 RSP data line—if the state of the stage 1 RSP data line=“1”.
    • At the last stage of the outbound RSP flow, temporarily and unconditionally disable the pull-down transistor(s) on the stage “s” RSP data line, and temporarily enable a pull-up transistor—one per stage “s-1” RSP data line—if the state of the stage “s-1” RSP data line=“1”.


The implementation is such that the outbound RSP flow can be halted at any RSP stage before the inbound RSP flow (see below) is engaged to return the OR result from the RSP stage at which the outbound RSP flow was halted back to all stage 1 RSP data lines, and from there store it in the bl-sects. In this way any RSP stage result, from stage 1 to stage “s”, can be stored in the bl-sects.

    • The generation of inbound RSP functionality from the stage “s” RSP data line to the stage “1” RSP data line, as follows:
      • Utilize additional circuitry in each section to enable the state of the stage “s” RSP data line, if =“1”, onto all stage “s-1” RSP data lines spanned by the stage “s” RSP data line. Note that the state of the stage “s” RSP data line can only be “1” if the outbound flow is engaged all the way to stage “s”.
      • Utilize additional circuitry in the section to enable the state of each stage “s-1” RSP data line, if =“1, onto all stage “s-2” RSP data lines spanned by each stage “s-1” RSP data line. Note that the state of the stage “s-1” RSP data line can only be “1” if the outbound flow is engaged to stage “s-1” or further.
      • Utilize additional circuitry in the section to enable the state of each stage 2 RSP data line, if =“1”, onto all stage 1 RSP data lines spanned by each stage 2 RSP data line. Note that the state of the stage 2 RSP data line can only be “1” if the outbound flow is engaged to stage 2 or further.


The purpose of the inbound RSP functionality is to return the OR result from the RSP stage at which the outbound RSP flow is halted back to the stage 1 RSP data lines, and from there store it in the bl-sects. The inbound RSP flow is only engaged when the objective of an RSP engagement includes storing the RSP result in the bl-sects. If the sole objective of an RSP engagement is to use the RSP result outside the processing array, then the outbound RSP flow is engaged to stage “s” and the inbound RSP flow is not engaged.


When the inbound RSP flow is engaged after the outbound RSP flow is halted at stage “r”, where 1<r<=s, one way to return the OR result from the stage “r” RSP data line to the stage “1” RSP data line is to:

    • Enable a pull-up transistor on each stage “s-1” RSP data line if the state of the stage “s” RSP data line that spans it=“1” (which is only possible if r=s).
    • Enable a pull-up transistor on each stage “s-2” RSP data line if the state of the stage “s-1” RSP data line that spans it=“1” (which is only possible if r>=s-1).
    • Enable a pull-up transistor on each stage 1 RSP data line if the state of the stage 2 RSP data line that spans it=“1” (which is only possible if r>=2).


These pull-up transistors are enabled long enough for the stage “r” RSP data line state, if “1”, to propagate back to the multiple stage 1 RSP data lines spanned by the stage “r” RSP data line.


If the outbound RSP flow is halted at the stage 1 RSP data line (i.e. r=1), then the inbound RSP flow is still engaged as part of the process to store the result in the bl-sects even though, in this case, no return propagation from a latter RSP stage is involved.


Furthermore, additional RSP circuitry is implemented in each bl-sect such that the logical OR result produced on the stage 1 RSP data line can be stored in a computational memory cell in the bl-sect. Additional RSP circuitry is also implemented in each section such that the logical OR result produced on each stage “s-1” RSP data line (spanning an entire section) is driven to circuitry outside the processing array. Additional RSP circuitry is also implemented such that the logical OR result produced on the single stage “s” RSP data line (spanning multiple sections) is driven to circuitry outside the processing array.



FIG. 10 illustrates a processing array 30 with 2048 bit lines (and cells 0,0, . . . , cell m,2047), 2K bit line sections (BL-Sect[0,0], . . . , BL-Sect[0,2047]) and four RSP data lines including rsp16 (stage 1), rsp256 (stage 2), rsp2K (stage 3), and rsp32K (stage 4). FIG. 10 shows that each bit line section has its read/write logic with RSP circuitry 341, 342 connected to one of the RSP data lines and each section has RSP logic 343 connected to all of the RSP lines. All of the read/write logic and RSP circuits are also connected to the control signals (RW_Ctrl[p:0] and RSP Ctrl) generated by the controller 32 of the processing array 30. The RSP circuitry in each bl-sect (341, 342 in the example in FIG. 10) is used to produce a combined computation result across groups of 16 bl-sects on each of the 128 rsp16 data lines in the section. The RSP circuitry 343 in each section is used to: 1) produce a combined computation result across groups of 256 bl-sects on each of the 8 rsp256 data lines in the section; 2) produce a combined computation result across all 2K bl-sects on the rsp2K data line in the section; and 3) produce a combined computation result across 32K bl-sects in 16 sections on the rsp32K data line associated with those 16 sections.



FIG. 11 illustrates a single bit line section (Section[x], BL[y] in this example) from the processing array 30 in FIG. 10 that has the same read logic 50, read register 52 and write multiplexer 54 as described above that operates in the same way as described above. In addition to the circuitry in the bit line section, FIG. 11 also shows RSP circuitry outside the bl-sect. As shown in FIG. 11, the group of sixteen sections in the computation memory has RSP Control Logic circuitry 1100. In particular, blocks 1100 and 1104˜1114 shown in FIG. 1 are implemented outside of the bl-sect. For the RSP out logic and the RSP in logic (1104-1114), there are multiple circuits per rspXXX data line. For example, there is one 1104 block and one 1110 block per rsp16 data line, as noted immediately to the right of those blocks; since each rsp16 data line spans 16 bl-sects which means there are one of these particular blocks per 16 bl-sects.


The RSP control logic 1100 has inputs that are rsp16sel, rsp256sel, rsp2Ksel, rsp32Ksel, rspStartRet, and rspEnd control signals that are generated by the control logic 32 of the processing array 30 described above, and whose outputs are rsp16_LATen, rsp16_PDen, rsp256_LATen, rsp256_PDen, rsp2K_LATen, rsp2K_PDen, rsp32K_LATen, rsp32K_PDen, and rspReturn control signals that control the RSP output circuits and logic and RSP input circuits and logic for the bit line section as shown in FIG. 11.


The logic illustrasted in FIG. 11 may further comprise:

    • RSP16 Out Logic 1102 whose inputs are the output of the bl-sect Read Register, rsp16sel, rsp16_LATen, and rsp16_PDen as control signals, and whose output drives the rsp16 data line (S[x]_rsp16).
    • RSP256 Out Logic 1104 whose inputs are the rsp16 data line, rsp256sel, rsp256_LATen, and rsp256_PDen control signals, and whose output drives the rsp256 data line.
    • RSP2K Out Logic 1106 whose inputs are the rsp256 data line, rsp2Ksel, rsp2K_LATen, and rsp2K_PDen control signals, and whose output drives the rsp2K data line.
    • RSP32K Out Logic 1108 whose inputs are the rsp2K data line, rsp32Ksel, rsp32K_LATen, and rsp32K_PDen control signals, and whose output drives the rsp32K data line.
    • RSP2K In Logic 1114 whose inputs are the rsp32K data line and rspReturn control signal, and whose output drives the rsp2K data line.
    • RSP256 In Logic 1112 whose inputs are the rsp2K data line and rspReturn control signal, and whose output drives the rsp256 data line.
    • RSP16 In Logic 1110 whose inputs are the rsp256 data line and rspReturn control signal, and whose output drives the rsp16 data line.
    • The 6:1 Write Mux 54 in the bl_sect whose 6th input is the rsp16 data line.



FIG. 12 illustrates the detailed RSP logic implemented in FIG. 11. The circuits include:

    • The RSP control logic 1100 (shown in FIG. 11) that generates RSP control signals including:
      • An rspReturn control signal, that defaults to “0” and is only “1” from the rising edge of rspStartRet to the rising edge of rspEnd.
      • An RSP16 Latch Enable (“rsp16_LATen”) control signal, that defaults to “0” and is only “1” from the rising edge of rsp16sel to the falling edge of rsp256sel or the falling edge of rspReturn.
      • An RSP16 Pull-Down Enable (“rsp16_PDen”) control signal that defaults to “1”, and is only “0” when rsp16_LATen=1 or rspReturn=1.
      • An RSP256 Latch Enable (“rsp256_LATen”) control signal, that defaults to “0” and is only “1” from the rising edge of rsp256sel to the falling edge of rsp2Ksel or the falling edge of rspReturn.
      • An RSP256 Pull-Down Enable (“rsp256_PDen”) control signal, that defaults to “1” and is only “0” when rsp256_LATen=1 or rspReturn=1.
      • An RSP2K Latch Enable (“rsp2K_LATen”) control signal, that defaults to “0” and is only “1” from the rising edge of rsp2Ksel to the falling edge of rsp32Ksel or the falling edge of rspReturn.
      • An RSP2K Pull-Down Enable (“rsp2K_PDen”) control signal, that defaults to “1” and is only “0” when rsp2K_LATen=1 or rspReturn=1.
      • An RSP32K Latch Enable (“rsp32K_LATen”) control signal, that defaults to “0” and is only “1” from the rising edge of rsp32Ksel to the falling edge of rspEnd.
      • An RSP32K Pull-Down Enable (“rsp32K_PDen”) control signal, that defaults to “1” and is only “0” when rsp32K_LATen=1.
    • RSP16 Out Logic (one set per bl-sect) consisting of:
      • An RSP16 Latch (“rsp16 LAT”) whose data input is the “RBL_Reg_Out” output of the bl-sect's Read Register, whose clock input is the rsp16sel control signal, whose reset input is the rsp16_LATen control signal, and whose data output is an RSP16 Out Pull-Up Enable (“rsp16_PUen_out”) control signal. The functionality of rsp16 LAT is such that when rsp16_LATen=0, then rsp16_PUen_out=0; when rsp16_LATen=1 and rsp16sel=1, then rsp16_PUen_out=RBL_Reg_Out; otherwise, rsp16_PUen_out remains unchanged.
      • An RSP16 Pull-Down Transistor (“rsp16 PD”) implemented on the rsp16 data line, whose enable input is the rsp16_PDen control signal.
      • An RSP16 Out Pull-Up Transistor (“rsp16 out PU”) implemented on the rsp16 data line, whose enable input is the rsp16_PUen_out control signal.
      • A first Buffer (“BUF1”) whose input is the rsp16 data line, and whose output “rsp16_in” is driven to the bl-sect's Write Mux.
    • RSP16 In Logic (one set per rsp16 data line) consisting of:
      • An RSP16 In AND gate (“rsp16 in AND”) whose output is an RSP16 In Pull-Up Enable (“rsp16_PUen_in”) control signal equal to the logical AND of the rsp256 data line and rspReturn.
      • An RSP16 In Pull-Up Transistor (“rsp16 in PU”) implemented on the rsp16 data line, whose enable input is the rsp16_PUen_in control signal.
    • RSP256 Out Logic (one set per rsp16 data line) consisting of:
      • An RSP256 Latch (“rsp256 LAT”) whose data input is the rsp16 data line, whose clock input is the rsp256sel control signal, whose reset input is the rsp256_LATen control signal, and whose data output is an RSP256 Out Pull-Up Enable (“rsp256_PUen_out”) control signal. The functionality of rsp256 LAT is such that when rsp256_LATen=0, then rsp256_PUen_out=0; when rsp256_LATen=1 and rsp256sel=1, then rsp256_PUen_out=RBL_Reg_Out; otherwise, rsp256_PUen_out remains unchanged.
      • An RSP256 Pull-Down Transistor (“rsp256 PD”) implemented on the rsp256 data line, whose enable input is the rsp256_PDen control signal.
      • An RSP256 Out Pull-Up Transistor (“rsp256 out PU”) implemented on the rsp256 data line, whose enable input is the rsp256_PUen_out control signal.
    • RSP256 In Logic (one set per rsp256 data line) consisting of:
      • An RSP256 In AND gate (“rsp256 in AND”) whose output is an RSP256 In Pull-Up Enable (“rsp256_PUen_in”) control signal equal to the logical AND of the rsp2K data line and rspReturn.
      • An RSP256 In Pull-Up Transistor (“rsp256 in PU”) implemented on the rsp256 data line, whose enable input is the rsp256_PUen_in control signal.
    • RSP2K Out Logic (one set per rsp256 data line) consisting of:
      • An RSP2K Latch (“rsp2K LAT”) whose data input is the rsp256 data line, whose clock input is the rsp2Ksel control signal, whose reset input is the rsp2K_LATen control signal, and whose data output is an RSP2K Out Pull-Up Enable (“rsp2K_PUen_out”) control signal. The functionality of rsp2K LAT is such that when rsp2K_LATen=0, then rsp2K_PUen_out=0; when rsp2K_LATen=1 and rsp2Ksel=1, then rsp2K_PUen_out=RBL_Reg_Out; otherwise, rsp2K_PUen remains unchanged.
      • An RSP2K Pull-Down Transistor (“rsp2K PD”) implemented on the rsp2K data line, whose enable input is the rsp2K_PDen control signal.
      • An RSP2K Out Pull-Up Transistor (“rsp2K out PU”) implemented on the rsp2K data line, whose enable input is the rsp2K_PUen_out control signal.
    • RSP2K In Logic (one set per rsp2K data line) consisting of:
      • An RSP2K In AND gate (“rsp2K in AND”) whose output is an RSP2K In Pull-Up Enable (“rsp2K_PUen_in”) control signal equal to the logical AND of the rsp32K data line and rspReturn.
      • An RSP2K In Pull-Up Transistor (“rsp2K in PU”) implemented on the rsp2K data line, whose enable input is the rsp2K_PUen_in control signal.
    • rsp32K Out Logic (one set per rsp2K data line) consisting of:
      • An RSP32K Latch (“rsp32K LAT”) whose data input is the rsp2K data line, whose clock input is the rsp32Ksel control signal, whose reset input is the rsp32K_LATen control signal, and whose data output is an RSP32K Pull-Up Enable (“rsp32K_PUen_out”) control signal. The functionality of rsp32K LAT is such that when rsp32K_LATen=0, then rsp32K_PUen_out=0; when rsp32K_LATen=1 and rsp32Ksel=1, then rsp32K_PUen_out=RBL_Reg_Out; otherwise, rsp32K_PUen remains unchanged.
      • An RSP32K Pull-Down Transistor (“rsp32K PD”) implemented on the rsp32K data line, whose enable input is the rsp32K_PDen control signal.
      • An RSP32K Out Pull-Up Transistor (“rsp32K out PU”) implemented on the rsp32K data line, whose enable input is the rsp32K_PUen control signal.
      • A second Buffer (“BUF2”) whose input is the rsp32K_PUen_out control signal, and whose output “rsp2K_out” is driven out of the processing array. In the depicted implementation, there is one BUF2 per section.
      • A third Buffer (“BUF3”) whose input is the rsp32K data line, and whose output “rsp32K_out” is driven out of the processing array. In the depicted implementation, there is one BUF3 per 16 sections.



FIGS. 13-17 illustrate the RSP signal timing associated with the circuit in FIG. 12. In all five figures:

    • The timing diagrams illustrates the minimum delays required between the assertion of rsp16sel and the assertion of each successive RSP control signal (i.e. rsp256sel, rsp2Ksel, rsp32Ksel, rspStartRet, rspEnd), and the assertion of GWE, required for the depicted flow. If needed, these delays can be increased without affecting the depicted RSP functionality.
    • The RSP implementation in FIG. 12 allows for a non-RSP read operation to be initiated in any cycle(s) after an RSP read operation is initiated, without affecting the RSP result associated with that RSP read operation.



FIG. 13 illustrates an example of the signal timing for generating an rsp2K result and an resp32K result and transmitting those results out of the processing array.

    • 1. In cycle 0, GRE is asserted to “1” for a half-cycle to initiate a read operation that causes a computation result=“1” to be captured in the bl-sect Read Register. In this cycle, rsp16_LATen=“0” (its default state) and rsp16_PDen=“1” (its default state), thereby causing rsp16_PUen_out=“0” (its default state), thereby causing the rsp16 data line=“0” (its default state).
    • 2. In cycle 1, rsp16sel is asserted to “1” for a half-cycle to engage stage 1 outbound RSP functionality. The rising edge of rsp16sel causes rsp16_LATen=“1” and rsp16_PDen=“0”, and rsp16sel=1 causes rsp16 LAT to capture the RBL_Reg_Out output of the Read Register (i.e. the logic “1” from cycle 0), thereby causing rsp16_PUen_out=“1”, thereby causing the rsp16 data line=“1”.
    • 3. In cycle 2, rsp256sel is asserted to “1” for a half-cycle to engage stage 2 outbound RSP functionality. The rising edge of rsp256sel causes rsp256_LATen=“1” and rsp256_PDen=“0”, and rsp256sel=1 causes rsp256 LAT to capture the state of the rsp16 data line (i.e. the logic “1” from cycle 1), thereby causing rsp256 PUen_out=“1”, thereby causing the rsp256 data line=“1”. The falling edge of rsp256sel causes rsp16_LATen=“0” and rsp16_PDen=“1”, thereby causing rsp16_PUen_out=“0”, thereby causing the rsp16 data line=“0” (back to its default state).
    • 4. In cycle 3, rsp2Ksel is asserted to “1” for a half-cycle to engage stage 3 outbound RSP functionality. The rising edge of rsp2Ksel causes rsp2K_LATen=“1” and rsp2K_PDen=“0”, and rsp2Ksel=1 causes rsp2K LAT to capture the state of the rsp256 data line (i.e. the logic “1” from cycle 2), thereby causing rsp2K_PUen_out=“1”, thereby causing the rsp2K data line=“1”. The falling edge of rsp2Ksel causes rsp256_LATen=“0” and rsp256_PDen=“1”, thereby causing rsp256 PUen_out=“0”, thereby causing the rsp256 data line=“0” (back to its default state).
    • 5. In cycle 4, rsp32Ksel is asserted to “1” for a half-cycle to engage stage 4 outbound RSP functionality. The rising edge of rsp32Ksel causes rsp32K_LATen=“1” and rsp32K_PDen=“0”, and rsp32Ksel=1 causes rsp32K LAT to capture the state of the rsp2K data line (i.e. the logic “1” from cycle 3), thereby causing rsp32K_PUen_out=“1”, thereby causing the rsp32K data line=“1”. The falling edge of rsp32Ksel causes rsp2K_LATen=“0” and rsp2K_PDen=“1”, thereby causing rsp2K_PUen_out=“0”, thereby causing the rsp2K data line=“0” (back to its default state).
    • 6. In cycle 5, rspEnd is asserted to “1” for a half-cycle to disengage outbound RSP functionality. The falling edge of rspEnd causes rsp32K_LATen=“0” and rsp32K_PDen=“1”, thereby causing rsp32K_PUen_out=“0”, thereby causing the rsp32K data line=“0” (back to its default state).


The RSP implementation in FIG. 9 allows for “RSP” read operations to be initiated every 3 cycles, when RSP is engaged to drive RSP results out of the processing array.



FIG. 14 illustrates an example of the signal timing for generating an rsp16 result and transmitting that result to the write multiplexer in each bit line section when RSP is engaged to produce and store rsp16 results in the bl_sects.

    • 1. In cycle 0, GRE is asserted to “1” for a half-cycle to initiate a read operation that causes a computation result=“1” to be captured in the bl-sect Read Register. In this cycle, rsp16_LATen=“0” (its default state) and rsp16_PDen=“1” (its default state), thereby causing rsp16_PUen_out=“0” (its default state), thereby causing the rsp16 data line=“0” (its default state).
    • 2. In cycle 1, rsp16sel is asserted to “1” for a half-cycle to engage stage 1 outbound RSP functionality. The rising edge of rsp16sel causes rsp16_LATen=“1” and rsp16_PDen=“0”, and rsp16sel=1 causes rsp16 LAT to capture the RBL_Reg_Out output of the Read Register (i.e. the logic “1” from cycle 0), thereby causing rsp16_PUen_out=“1”, thereby causing the rsp16 data line=“1”.
    • 3. In cycle 2, rspStartRet is asserted to “1” for a half-cycle to disengage outbound RSP functionality and engage inbound RSP functionality. The rising edge of rspStartRet causes rspReturn=“1”.
    • 4. In cycle 2 (and one cycle before rspEnd is asserted), GWE is asserted to “1” for a half-cycle to initiate a write operation that stores the state of the rsp16 data line in a computational memory cell in the bl-sect.
    • 5. In cycle 3, rspEnd is asserted to “1” for a half-cycle to disengage inbound RSP functionality. The rising edge of rspEnd causes rspReturn=“0”, thereby causing rsp16_LATen=“0” and rsp16_PDen=“1”, thereby causing rsp16_PUen_out=“0”, thereby causing the rsp16 data line=“0” (back to its default state).


The RSP implementation in FIG. 11 allows for “RSP” read operations to be initiated every 3 cycles, when RSP is engaged to produce and store rsp16 results in the bl-sects.



FIG. 15 illustrates an example of the signal timing for generating an rsp256 result, transmitting the result back to rsp16 and transmitting that result to the write multiplexer in each bit line section when RSP is engaged to produce and store rsp256 results in the bl_sects.

    • 1. In cycle 0, GRE is asserted to “1” for a half-cycle to initiate a read operation that causes a computation result=“1” to be captured in the bl-sect Read Register. In this cycle, rsp16_LATen=“0” (its default state) and rsp16_PDen=“1” (its default state), thereby causing rsp16_PUen_out=“0” (its default state), thereby causing the rsp16 data line=“0” (its default state).
    • 2. In cycle 1, rsp16sel is asserted to “1” for a half-cycle to engage stage 1 outbound RSP functionality. The rising edge of rsp16sel causes rsp16_LATen=“1” and rsp16_PDen=“0”, and rsp16sel=1 causes rsp16 LAT to capture the RBL_Reg_Out output of the Read Register (i.e. the logic “1” from cycle 0), thereby causing rsp16_PUen_out=“1”, thereby causing the rsp16 data line=“1”.
    • 3. In cycle 2, rsp256sel is asserted to “1” for a half-cycle to engage stage 2 outbound RSP functionality. The rising edge of rsp256sel causes rsp256_LATen=“1” and rsp256_PDen=“0”, and rsp256sel=1 causes rsp256 LAT to capture the state of the rsp16 data line (i.e. the logic “1” from cycle 1), thereby causing rsp256 PUen_out=“1”, thereby causing the rsp256 data line=“1”. The falling edge of rsp256sel causes rsp16_LATen=“0” and rsp16_PDen=“1”, thereby causing rsp16_PUen_out=“0”, thereby causing the rsp16 data line=“0” (back to its default state).
    • 4. In cycle 3, rspStartRet is asserted to “1” for a half-cycle to disengage outbound RSP functionality and engage inbound RSP functionality. The rising edge of rspStartRet causes rspReturn=“1”, thereby causing rsp16_PDen=“0” and (because the rsp256 data line=“1”) rsp16_PUen_in =“1”, thereby causing the rsp16 data line=“1”.
    • 5. In cycle 5 (and one cycle before rspEnd is asserted), GWE is asserted to “1” for a half-cycle to initiate a write operation that stores the state of the rsp16 data line in a computational memory cell in the bl-sect.
    • 6. In cycle 6, rspEnd is asserted to “1” for a half-cycle to disengage inbound RSP functionality. The rising edge of rspEnd causes rspReturn=“0”, thereby causing rsp256_LATen=“0” and rsp256_PDen=“1”, thereby causing rsp256 PUen_out=“0”, thereby causing the rsp256 data line=“0” (back to its default state). The falling edge of rspReturn also causes rsp16_PDen=“1” and rsp16_PUen_in =“0”, thereby causing the rsp16 data line=“0” (back to its default state).


The RSP implementation in FIG. 9 allows for “RSP” read operations to be initiated every 6 cycles, when RSP is engaged to produce and store rsp256 results in the bl-sects.



FIG. 16 illustrates an example of the signal timing for generating an rsp2K result, transmitting the result back to rsp256 and then to rsp16 and transmitting that result to the write multiplexer in each bit line section when RSP is engaged to produce and store rsp2K results in the bl_sects.

    • 1. In cycle 0, GRE is asserted to “1” for a half-cycle to initiate a read operation that causes a computation result=“1” to be captured in the bl-sect Read Register. In this cycle, rsp16_LATen=“0” (its default state) and rsp16_PDen=“1” (its default state), thereby causing rsp16_PUen_out=“0” (its default state), thereby causing the rsp16 data line=“0” (its default state).
    • 2. In cycle 1, rsp16sel is asserted to “1” for a half-cycle to engage stage 1 outbound RSP functionality. The rising edge of rsp16sel causes rsp16_LATen=“1” and rsp16_PDen=“0”, and rsp16sel=1 causes rsp16 LAT to capture the RBL_Reg_Out output of the Read Register (i.e. the logic “1” from cycle 0), thereby causing rsp16_PUen_out=“1”, thereby causing the rsp16 data line=“1”.
    • 3. In cycle 2, rsp256sel is asserted to “1” for a half-cycle to engage stage 2 outbound RSP functionality. The rising edge of rsp256sel causes rsp256_LATen=“1” and rsp256_PDen=“0”, and rsp256sel=1 causes rsp256 LAT to capture the state of the rsp16 data line (i.e. the logic “1” from cycle 1), thereby causing rsp256 PUen_out=“1”, thereby causing the rsp256 data line=“1”. The falling edge of rsp256sel causes rsp16_LATen=“0” and rsp16_PDen=“1”, thereby causing rsp16_PUen_out=“0”, thereby causing the rsp16 data line=“0” (back to its default state).
    • 4. In cycle 3, rsp2Ksel is asserted to “1” for a half-cycle to engage stage 3 outbound RSP functionality. The rising edge of rsp2Ksel causes rsp2K_LATen=“1” and rsp2K_PDen=“0”, and rsp2Ksel=1 causes rsp2K LAT to capture the state of the rsp256 data line (i.e. the logic “1” from cycle 2), thereby causing rsp2K_PUen_out=“1”, thereby causing the rsp2K data line=“1”. The falling edge of rsp2Ksel causes rsp256_LATen=“0” and rsp256_PDen=“1”, thereby causing rsp256_PUen_out=“0”, thereby causing the rsp256 data line=“0” (back to its default state).
    • 5. In cycle 4, rspStartRet is asserted to “1” for a half-cycle to disengage outbound RSP functionality and engage inbound RSP functionality. The rising edge of rspStartRet causes rspReturn=“1”, thereby causing rsp256_PDen=“0” and (because the rsp2K data line=“1”) rsp256_PUen_in =“1”, thereby causing the rsp256 data line=“1”. The rising edge of rspReturn also causes rsp16_PDen=“0” and (because the rsp256 data line=“1”) rsp16_PUen_in =“1”, thereby causing the rsp16 data line=“1”.
    • 6. In cycle 7 (and one cycle before rspEnd is asserted), GWE is asserted to “1” for a half-cycle to initiate a write operation that stores the state of the rsp16 data line in a computational memory cell in the bl-sect.
    • 7. In cycle 8, rspEnd is asserted to “1” for a half-cycle to disengage inbound RSP functionality. The rising edge of rspEnd causes rspReturn=“0”, thereby causing rsp2K_LATen=“0” and rsp2K_PDen=“1”, thereby causing rsp2K_PUen_out=“0”, thereby causing the rsp2K data line=“0” (back to its default state). The falling edge of rspReturn also causes rsp256_PDen=“1” and rsp256_PUen_in =“0”, thereby causing the rsp256 data line=“0” (back to its default state). The falling edge of rspReturn also causes rsp16_PDen=“1” and rsp16_PUen_in =“0”, thereby causing the rsp16 data line=“0” (back to its default state).


The RSP implementation in FIG. 11 allows for “RSP” read operations to be initiated every 8 cycles, when RSP is engaged to produce and store rsp2K results in the bl-sects.



FIG. 17 illustrates an example of the signal timing for generating an rsp32K result, transmitting the result back to rsp2K, to rsp256 and then to rsp16 and transmitting that result to the write multiplexer in each bit line section.

    • 1. In cycle 0, GRE is asserted to “1” for a half-cycle to initiate a read operation that causes a computation result=“1” to be captured in the bl-sect Read Register. In this cycle, rsp16_LATen=“0” (its default state) and rsp16_PDen=“1” (its default state), thereby causing rsp16_PUen_out=“0” (its default state), thereby causing the rsp16 data line=“0” (its default state).
    • 2. In cycle 1, rsp16sel is asserted to “1” for a half-cycle to engage stage 1 outbound RSP functionality. The rising edge of rsp16sel causes rsp16_LATen=“1” and rsp16_PDen=“0”, and rsp16sel=1 causes rsp16 LAT to capture the RBL_Reg_Out output of the Read Register (i.e. the logic “1” from cycle 0), thereby causing rsp16_PUen_out=“1”, thereby causing the rsp16 data line=“1”.
    • 3. In cycle 2, rsp256sel is asserted to “1” for a half-cycle to engage stage 2 outbound RSP functionality. The rising edge of rsp256sel causes rsp256_LATen=“1” and rsp256_PDen=“0”, and rsp256sel=1 causes rsp256 LAT to capture the state of the rsp16 data line (i.e. the logic “1” from cycle 1), thereby causing rsp256 PUen_out=“1”, thereby causing the rsp256 data line=“1”. The falling edge of rsp256sel causes rsp16_LATen=“0” and rsp16_PDen=“1”, thereby causing rsp16_PUen_out=“0”, thereby causing the rsp16 data line=“0” (back to its default state).
    • 4. In cycle 3, rsp2Ksel is asserted to “1” for a half-cycle to engage stage 3 outbound RSP functionality. The rising edge of rsp2Ksel causes rsp2K_LATen=“1” and rsp2K_PDen=“0”, and rsp2Ksel=1 causes rsp2K LAT to capture the state of the rsp256 data line (i.e. the logic “1” from cycle 2), thereby causing rsp2K_PUen_out=“1”, thereby causing the rsp2K data line=“1”. The falling edge of rsp2Ksel causes rsp256_LATen=“0” and rsp256_PDen=“1”, thereby causing rsp256_PUen_out=“0”, thereby causing the rsp256 data line=“0” (back to its default state).
    • 5. In cycle 4, rsp32Ksel is asserted to “1” for a half-cycle to engage stage 4 outbound RSP functionality. The rising edge of rsp32Ksel causes rsp32K_LATen=“1” and rsp32K_PDen=“0”, and rsp32Ksel=1 causes rsp32K LAT to capture the state of the rsp2K data line (i.e. the logic “1” from cycle 3), thereby causing rsp32K_PUen_out=“1”, thereby causing the rsp32K data line=“1”. The falling edge of rsp32Ksel causes rsp2K_LATen=“0” and rsp2K_PDen=“1”, thereby causing rsp2K_PUen_out=“0”, thereby causing the rsp2K data line=“0” (back to its default state).
    • 6. In cycle 5, rspStartRet is asserted to “1” for a half-cycle to disengage outbound RSP functionality and engage inbound RSP functionality. The rising edge of rspStartRet causes rspReturn=“1”, thereby causing rsp2K_PDen=“0” and (because the rsp32K data line=“1”) rsp2K_PUen_in =“1”, thereby causing the rsp2K data line=“1”. The rising edge of rspReturn also causes rsp256_PDen=“0” and (because the rsp2K data line=“1”) rsp256 PUen_in=“1”, thereby causing the rsp256 data line=“1”. The rising edge of rspReturn also causes rsp16_PDen=“0” and (because the rsp256 data line=“1”) rsp16_PUen_in =“1”, thereby causing the rsp16 data line=“1”.
    • 7. In cycle 9 (and one cycle before rspEnd is asserted), GWE is asserted to “1” for a half-cycle to initiate a write operation that stores the state of the rsp16 data line in a computational memory cell in the bl-sect.
    • 8. In cycle 10, rspEnd is asserted to “1” for a half-cycle to disengage inbound RSP functionality. The rising edge of rspEnd causes rspReturn=“0”, thereby causing rsp2K_PDen=“1” and rsp2K_PUen_in =“0”, thereby causing the rsp2K data line=“0” (back to its default state). The falling edge of rspReturn also causes rsp256_PDen=“1” and rsp256 PUen_in =“0”, thereby causing the rsp256 data line=“0” (back to its default state). The falling edge of rspReturn also causes rsp16_PDen=“1” and rsp16_PUen_in =“0”, thereby causing the rsp16 data line=“0” (back to its default state). The falling edge of rspEnd causes rsp32K_LATen=“0” and rsp32K_PDen=“1”, thereby causing rsp32K_PUen_out=“0”, thereby causing the rsp32K data line=“0” (back to its default state).


The RSP implementation in FIG. 11 allows for “RSP” read operations to be initiated every 10 cycles, when RSP is engaged to produce and store rsp32K results in the bl-sects.



FIG. 18 illustrates the high level RSP functionality for sixteen sections with 2K bit lines when 16 sections with 2K bit lines each are implemented in the processing array device according to FIGS. 10-12. As shown, within a section there are:

    • 128 rsp16 data lines—one per each group of 16 bls of 2K.
    • 8 rsp256 data lines—one per each group of 16 rsp16 data lines, i.e. one per each group of 256 bls of 2K.
    • 1 rsp2K data line—one per a single group of 8 rsp256 data lines, i.e. one per all 2K bls.


And across all 16 sections there is:

    • 1 rsp32K data line—one per a single group of 16 rsp2K data lines, i.e. one per 32K bls.


The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the disclosure to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the disclosure and its practical applications, to thereby enable others skilled in the art to best utilize the disclosure and various embodiments with various modifications as are suited to the particular use contemplated.


The system and method disclosed herein may be implemented via one or more components, systems, servers, appliances, other subcomponents, or distributed between such elements. When implemented as a system, such systems may include an/or involve, inter alia, components such as software modules, general-purpose CPU, RAM, etc. found in general-purpose computers. In implementations where the innovations reside on a server, such a server may include or involve components such as CPU, RAM, etc., such as those found in general-purpose computers.


Additionally, the system and method herein may be achieved via implementations with disparate or entirely different software, hardware and/or firmware components, beyond that set forth above. With regard to such other components (e.g., software, processing components, etc.) and/or computer-readable media associated with or embodying the present inventions, for example, aspects of the innovations herein may be implemented consistent with numerous general purpose or special purpose computing systems or configurations. Various exemplary computing systems, environments, and/or configurations that may be suitable for use with the innovations herein may include, but are not limited to: software or other components within or embodied on personal computers, servers or server computing devices such as routing/connectivity components, hand-held or laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes, consumer electronic devices, network PCs, other existing computer platforms, distributed computing environments that include one or more of the above systems or devices, etc.


In some instances, aspects of the system and method may be achieved via or performed by logic and/or logic instructions including program modules, executed in association with such components or circuitry, for example. In general, program modules may include routines, programs, objects, components, data structures, etc. that performs particular tasks or implement particular instructions herein. The inventions may also be practiced in the context of distributed software, computer, or circuit settings where circuitry is connected via communication buses, circuitry or links. In distributed settings, control/instructions may occur from both local and remote computer storage media including memory storage devices.


The software, circuitry and components herein may also include and/or utilize one or more type of computer readable media. Computer readable media can be any available media that is resident on, associable with, or can be accessed by such circuits and/or computing components. By way of example, and not limitation, computer readable media may comprise computer storage media and communication media. Computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and can accessed by computing component. Communication media may comprise computer readable instructions, data structures, program modules and/or other components. Further, communication media may include wired media such as a wired network or direct-wired connection, however no media of any such type herein includes transitory media. Combinations of the any of the above are also included within the scope of computer readable media.


In the present description, the terms component, module, device, etc. may refer to any type of logical or functional software elements, circuits, blocks and/or processes that may be implemented in a variety of ways. For example, the functions of various circuits and/or blocks can be combined with one another into any other number of modules. Each module may even be implemented as a software program stored on a tangible memory (e.g., random access memory, read only memory, CD-ROM memory, hard disk drive, etc.) to be read by a central processing unit to implement the functions of the innovations herein. Or, the modules can comprise programming instructions transmitted to a general purpose computer or to processing/graphics hardware via a transmission carrier wave. Also, the modules can be implemented as hardware logic circuitry implementing the functions encompassed by the innovations herein. Finally, the modules can be implemented using special purpose instructions (SIMD instructions), field programmable logic arrays or any mix thereof which provides the desired level performance and cost.


As disclosed herein, features consistent with the disclosure may be implemented via computer-hardware, software and/or firmware. For example, the systems and methods disclosed herein may be embodied in various forms including, for example, a data processor, such as a computer that also includes a database, digital electronic circuitry, firmware, software, or in combinations of them. Further, while some of the disclosed implementations describe specific hardware components, systems and methods consistent with the innovations herein may be implemented with any combination of hardware, software and/or firmware. Moreover, the above-noted features and other aspects and principles of the innovations herein may be implemented in various environments. Such environments and related applications may be specially constructed for performing the various routines, processes and/or operations according to the invention or they may include a general-purpose computer or computing platform selectively activated or reconfigured by code to provide the necessary functionality. The processes disclosed herein are not inherently related to any particular computer, network, architecture, environment, or other apparatus, and may be implemented by a suitable combination of hardware, software, and/or firmware. For example, various general-purpose machines may be used with programs written in accordance with teachings of the invention, or it may be more convenient to construct a specialized apparatus or system to perform the required methods and techniques.


Aspects of the method and system described herein, such as the logic, may also be implemented as functionality programmed into any of a variety of circuitry, including programmable logic devices (“PLDs”), such as field programmable gate arrays (“FPGAs”), programmable array logic (“PAL”) devices, electrically programmable logic and memory devices and standard cell-based devices, as well as application specific integrated circuits. Some other possibilities for implementing aspects include: memory devices, microcontrollers with memory (such as EEPROM), embedded microprocessors, firmware, software, etc. Furthermore, aspects may be embodied in microprocessors having software-based circuit emulation, discrete logic (sequential and combinatorial), custom devices, fuzzy (neural) logic, quantum devices, and hybrids of any of the above device types. The underlying device technologies may be provided in a variety of component types, e.g., metal-oxide semiconductor field-effect transistor (“MOSFET”) technologies like complementary metal-oxide semiconductor (“CMOS”), bipolar technologies like emitter-coupled logic (“ECL”), polymer technologies (e.g., silicon-conjugated polymer and metal-conjugated polymer-metal structures), mixed analog and digital, and so on.


It should also be noted that the various logic and/or functions disclosed herein may be enabled using any number of combinations of hardware, firmware, and/or as data and/or instructions embodied in various machine-readable or computer-readable media, in terms of their behavioral, register transfer, logic component, and/or other characteristics. Computer-readable media in which such formatted data and/or instructions may be embodied include, but are not limited to, non-volatile storage media in various forms (e.g., optical, magnetic or semiconductor storage media) though again does not include transitory media. Unless the context clearly requires otherwise, throughout the description, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in a sense of “including, but not limited to.” Words using the singular or plural number also include the plural or singular number respectively. Additionally, the words “herein,” “hereunder,” “above,” “below,” and words of similar import refer to this application as a whole and not to any particular portions of this application. When the word “or” is used in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list and any combination of the items in the list.


Although certain presently preferred implementations of the invention have been specifically described herein, it will be apparent to those skilled in the art to which the invention pertains that variations and modifications of the various implementations shown and described herein may be made without departing from the spirit and scope of the invention. Accordingly, it is intended that the invention be limited only to the extent required by the applicable rules of law.


While the foregoing has been with reference to a particular embodiment of the disclosure, it will be appreciated by those skilled in the art that changes in this embodiment may be made without departing from the principles and spirit of the disclosure, the scope of which is defined by the appended claims.

Claims
  • 1. A method for response for a processing device, the method comprising: generating a computation result using a processing array device having a plurality of memory cells arranged in an array having a plurality of columns and a plurality of rows, each memory cell having a storage element wherein the array has a plurality of sections and each section has a plurality of bit line sections and a plurality of bit lines with one bit line per bit line section, wherein the memory cells in each bit line section are all connected to a single read bit line that generates the computation result and the plurality of bit lines in each section are distinct from the plurality of bit lines included in the other sections of the array;communicating, using a plurality of RSP data lines of the processing array device, a combined computation result;performing a response read (RSP) operation by engaging in stages the plurality of RSP data lines; andinitiating a read operation without using the RSP data lines in any clock cycle after the RSP read operation is initiated without affecting the combined computation result.
  • 2. The method of claim 1 further comprising driving an RSP result on the plurality of RSP data lines out of the processing array.
  • 3. The method of claim 2, wherein driving the RSP result further comprises initiating a read operation that causes a “1” computation result to be captured in a read storage of each bit line section and setting a first stage of each of the plurality of RSP data line stages to a default state.
  • 4. The method of claim 3, wherein, after initiating the read operation and setting each of the first stage of the plurality of RSP data line stages to a default state, driving the RSP result further comprises engaging RSP outbound circuits in each of the first stage of the plurality of RSP data line stages and causing each of the first stage of the plurality of RSP data line stages to store a value of “1”.
  • 5. The method of claim 4, wherein, after engaging the RSP outbound circuits in each of the first stage of the plurality of RSP data line stages, engaging the RSP outbound circuits in each of a second stage of the plurality of RSP data line stages, causing each of the second stages of the plurality of RSP data line stages to store a value of “1” and causing each of the first stage of the plurality of RSP data line stages to return back to a default state.
  • 6. The method of claim 5, wherein, after engaging the RSP outbound circuits in each of the second stage of the plurality of RSP data line stages, engaging the RSP outbound circuits in each of a third stage of the plurality of RSP data line stages, causing each of the third stage of the plurality of RSP data line stages to store a value of “1” and causing each of the second stage of the plurality of RSP data line stages to return back to a default state.
  • 7. The method of claim 6, wherein, after engaging the RSP outbound circuits in each of the third stage of the plurality of RSP data line stages, engaging the RSP outbound circuits in each of a fourth stage of the plurality of RSP data line stages, causing each of the fourth stage of the plurality of RSP data line stages to store a value of “1” and causing each of the third stage of the plurality of RSP data line stages to return back to a default state.
  • 8. The method of claim 7, wherein, after engaging the RSP outbound circuits in each of a fourth stage of the plurality of RSP data line stages, disengaging the outbound RSP circuits and causing each of the fourth stage of the plurality of RSP data line stages to return back to a default state.
  • 9. The method of claim 1 further comprising engaging the RSP data lines to produce and store a result for a first stage of the plurality of RSP data line stages in each bit line section.
  • 10. The method of claim 9, wherein storing the result further comprises initiating a read operation that causes a “1” computation result to be captured in a read storage of each bit line section and setting each of a first stage of the plurality of RSP data line stages to a default state.
  • 11. The method of claim 10, after initiating the read operation and setting each of the first stage of the plurality of RSP data line stages to a default state, further comprises driving the RSP result and engaging RSP outbound circuits in each of the first stage of the plurality of RSP data line stages and causing each of the first stage of the plurality of RSP data line stages to store a value of “1”.
  • 12. The method of claim 11, wherein, after engaging the RSP outbound circuits in each of the first stage of the plurality of RSP data line stages, disengaging the RSP outbound circuits, engaging RSP inbound circuits and initiating a write operation that stores a state of the first stage RSP data line in the computational memory cell in the bit line section.
  • 13. The method of claim 12, wherein, after initiating the write operation, disengaging the RSP inbound circuits causing the first stage RSP data line to return to a default value.
  • 14. The method of claim 1 further comprising engaging the RSP data lines to produce and store a result for a second stage of the plurality of RSP data line stages in each bit line section.
  • 15. The method of claim 14, wherein storing the result further comprises initiating a read operation that causes a “1” computation result to be captured in a read storage of each bit line section and setting each of a first stage of the plurality of RSP data line stages to a default state.
  • 16. The method of claim 15, wherein, after initiating the read operation and setting each of the first stage of the plurality of RSP data line stages to a default state, driving the RSP result further comprises engaging RSP outbound circuits in each of the first stage of the plurality of RSP data line stages and causing each of the first stage of the plurality of RSP data line stages to store a value of “1”.
  • 17. The method of claim 16, wherein, after engaging the RSP outbound circuits in each of the first stage of the plurality of RSP data line stages, engaging the RSP outbound circuits in each of a second stage of the plurality of RSP data line stages, causing each of the second stages of the plurality of RSP data line stages to store a value of “1” and causing each of the first stage of the plurality of RSP data line stages to return back to a default state.
  • 18. The method of claim 17, wherein, after engaging the RSP outbound circuits in each of the second stage of the plurality of RSP data line stages, disengaging the RSP outbound circuits, engaging RSP inbound circuits and initiating a write operation that stores a state of the first stage RSP data line in the computational memory cell in the bit line section.
  • 19. The method of claim 18, wherein, after initiating the write operation, disengaging the RSP inbound circuits causing the first stage RSP data line to return to a default value.
  • 20. The method of claim 1 further comprising engaging the RSP data lines to produce and store a result for a third stage of the plurality of RSP data line stages in each bit line section.
  • 21. The method of claim 20, wherein storing the result further comprises initiating a read operation that causes a “1” computation result to be captured in a read storage of each bit line section and setting each of a first stage of the plurality of RSP data line stages to a default state.
  • 22. The method of claim 21, wherein, after initiating the read operation and setting each of the first stage of the plurality of RSP data line stages to a default state, driving the RSP result further comprises engaging RSP outbound circuits in each of the first stage of the plurality of RSP data line stages and causing each of the first stage of the plurality of RSP data line stages to store a value of “1”.
  • 23. The method of claim 22, wherein, after engaging the RSP outbound circuits in each of the first stage of the plurality of RSP data line stages, engaging the RSP outbound circuits in each of a second stage of the plurality of RSP data line stages, causing each of the second stages of the plurality of RSP data line stages to store a value of “1” and causing each of the first stage of the plurality of RSP data line stages to return back to a default state.
  • 24. The method of claim 23, wherein, after engaging the RSP outbound circuits in each of the second stage of the plurality of RSP data line stages, engaging the RSP outbound circuits in each of a third stage of the plurality of RSP data line stages, causing each of the third stage of the plurality of RSP data line stages to store a value of “1” and causing each of the second stage of the plurality of RSP data line stages to return back to a default state.
  • 25. The method of claim 24, wherein, after engaging the RSP outbound circuits in each of the third stage of the plurality of RSP data line stages, disengaging the outbound RSP circuits and causing each of the first and second stage of the plurality of RSP data line stages to be set to “1” and engaging the RSP inbound circuits.
  • 26. The method of claim 25, wherein, after disengaging the RSP outbound circuits and engaging the inbound RSP circuits, initiating a write operation that stores a state of the first stage RSP data line in the computational memory cell in the bit line section.
  • 27. The method of claim 26, wherein, after initiating the write operation, disengaging the RSP inbound circuits causing the first stage RSP data line to return to a default value.
  • 28. The method of claim 1, wherein engaging the RSP data lines to produce and store a result for a fourth stage of the plurality of RSP data line stages in each bit line section.
  • 29. The method of claim 28, wherein engaging the RSP data lines further comprises initiating a read operation that causes a “1” computation result to be captured in a read storage of each bit line section and setting each of a first stage of the plurality of RSP data line stages to a default state.
  • 30. The method of claim 29, wherein, after initiating the read operation and setting each of the first stage of the plurality of RSP data line stages to a default state, driving the RSP result further comprises engaging RSP outbound circuits in each of the first stage of the plurality of RSP data line stages and causing each of the first stage of the plurality of RSP data line stages to store a value of “1”.
  • 31. The method of claim 30, wherein, after engaging the RSP outbound circuits in each of the first stage of the plurality of RSP data line stages, engaging the RSP outbound circuits in each of a second stage of the plurality of RSP data line stages, causing each of the second stages of the plurality of RSP data line stages to store a value of “1” and causing each of the first stage of the plurality of RSP data line stages to return back to a default state.
  • 32. The method of claim 31, wherein, after engaging the RSP outbound circuits in each of the second stage of the plurality of RSP data line stages, engaging the RSP outbound circuits in each of a third stage of the plurality of RSP data line stages, causing each of the third stage of the plurality of RSP data line stages to store a value of “1” and causing each of the second stage of the plurality of RSP data line stages to return back to a default state.
  • 33. The method of claim 32, wherein, after engaging the RSP outbound circuits in each of the third stage of the plurality of RSP data line stages, engaging the RSP outbound circuits in each of a fourth stage of the plurality of RSP data line stages, causing each of the fourth stage of the plurality of RSP data line stages to store a value of “1” and causing each of the third stage of the plurality of RSP data line stages to return back to a default state.
  • 34. The method of claim 33, wherein, after engaging the RSP outbound circuits in each of a fourth stage of the plurality of RSP data line stages, disengaging the outbound RSP circuits and causing each of the first, second and third stage RSP data lines to be set to “1” and engaging the inbound RSP circuits.
  • 35. The method of claim 34, wherein, after disengaging the RSP outbound circuits and engaging the inbound RSP circuits, initiating a write operation that stores a state of the first stage RSP data line in the computational memory cell in the bit line section.
  • 36. The method of claim 35, wherein, after initiating the write operation, disengaging the RSP inbound circuits causing the first, second and third stage RSP data line to return to a default value.
PRIORITY CLAIM/RELATED APPLICATIONS

This application is a division of and claims priority under 35 USC 120 to U.S. patent application Ser. No. 16/152,374, filed Oct. 4, 2018 and entitled “Results Processing Circuits And Methods Associated With Computational Memory Cells”, U.S. patent application Ser. No. 15/709,399, filed Sep. 19, 2017 and entitled “Computational Dual Port Sram Cell And Processing Array Device Using The Dual Port Sram Cells For Xor And Xnor Computations”, U.S. patent application Ser. No. 15/709,401, filed Sep. 19, 2017 and entitled “Computational Dual Port Sram Cell And Processing Array Device Using The Dual Port Sram Cells For Xor And Xnor Computations”, U.S. patent application Ser. No. 15/709,379, filed Sep. 19, 2017 and entitled “Computational Dual Port Sram Cell And Processing Array Device Using The Dual Port Sram Cells”, U.S. patent application Ser. No. 15/709,382, filed Sep. 19, 2017 and entitled “Computational Dual Port Sram Cell And Processing Array Device Using The Dual Port Sram Cells”, and U.S. patent application Ser. No. 15/709,385, filed Sep. 19, 2017 and entitled “Computational Dual Port Sram Cell And Processing Array Device Using The Dual Port Sram Cells” that in turn claim priority under 35 USC 119(e) and 120 and claim the benefit of U.S. Provisional Patent Application No. 62/430,767, filed Dec. 6, 2016 and entitled “Computational Dual Port Sram Cell And Processing Array Device Using The Dual Port Sram Cells For Xor And Xnor Computations” and U.S. Provisional Patent Application No. 62/430,762, filed Dec. 6, 2016 and entitled “Computational Dual Port Sram Cell And Processing Array Device Using The Dual Port Sram Cells”, the entirety of all of which are incorporated herein by reference.

US Referenced Citations (414)
Number Name Date Kind
3451694 Hass Jun 1969 A
3747952 Graebe Jul 1973 A
3795412 John Mar 1974 A
4227717 Bouvier Oct 1980 A
4308505 Messerschmitt Dec 1981 A
4587496 Wolaver May 1986 A
4594564 Yarborough, Jr. Jun 1986 A
4677394 Vollmer Jun 1987 A
4716322 D'Arrigo et al. Dec 1987 A
4741006 Yamaguchi et al. Apr 1988 A
4856035 Lewis Aug 1989 A
5008636 Markinson Apr 1991 A
5302916 Pritchett Apr 1994 A
5375089 Lo Dec 1994 A
5382922 Gersbach Jan 1995 A
5400274 Jones Mar 1995 A
5473574 Clemen et al. Dec 1995 A
5530383 May Jun 1996 A
5535159 Nii Jul 1996 A
5563834 Longway et al. Oct 1996 A
5587672 Ranganathan et al. Dec 1996 A
5608354 Hori Mar 1997 A
5661419 Bhagwan Aug 1997 A
5696468 Nise Dec 1997 A
5736872 Sharma et al. Apr 1998 A
5744979 Goetting Apr 1998 A
5744991 Jefferson et al. Apr 1998 A
5748044 Xue May 1998 A
5768559 Lino et al. Jun 1998 A
5805912 Johnson et al. Sep 1998 A
5883853 Zheng et al. Mar 1999 A
5937204 Schinnerer Aug 1999 A
5942949 Wilson et al. Aug 1999 A
5963059 Partovi et al. Oct 1999 A
5969576 Trodden Oct 1999 A
5969986 Wong et al. Oct 1999 A
5977801 Boerstler Nov 1999 A
5999458 Nishimura et al. Dec 1999 A
6005794 Sheffield et al. Dec 1999 A
6044034 Katakura Mar 2000 A
6058063 Jang May 2000 A
6072741 Taylor Jun 2000 A
6100721 Durec et al. Aug 2000 A
6100736 Wu et al. Aug 2000 A
6114920 Moon et al. Sep 2000 A
6115320 Mick et al. Sep 2000 A
6133770 Hasegawa Oct 2000 A
6167487 Camacho Dec 2000 A
6175282 Yasuda Jan 2001 B1
6226217 Riedlinger et al. May 2001 B1
6262937 Arcoleo et al. Jul 2001 B1
6263452 Jewett et al. Jul 2001 B1
6265902 Klemmer et al. Jul 2001 B1
6286077 Choi et al. Sep 2001 B1
6310880 Waller Oct 2001 B1
6366524 Abedifard Apr 2002 B1
6377127 Fukaishi et al. Apr 2002 B1
6381684 Hronik et al. Apr 2002 B1
6385122 Chang May 2002 B1
6407642 Dosho et al. Jun 2002 B2
6418077 Naven Jul 2002 B1
6441691 Jones et al. Aug 2002 B1
6448757 Hill Sep 2002 B2
6473334 Bailey et al. Oct 2002 B1
6483361 Chiu Nov 2002 B1
6504417 Cecchi et al. Jan 2003 B1
6538475 Johansen et al. Mar 2003 B1
6567338 Mick May 2003 B1
6594194 Gold Jul 2003 B2
6642747 Chiu Nov 2003 B1
6661267 Walker et al. Dec 2003 B2
6665222 Wright et al. Dec 2003 B2
6683502 Groen et al. Jan 2004 B1
6683930 Dalmia Jan 2004 B1
6732247 Berg et al. May 2004 B2
6744277 Chang et al. Jun 2004 B1
6757854 Zhao Jun 2004 B1
6789209 Suzuki et al. Sep 2004 B1
6816019 Delbo' et al. Nov 2004 B2
6836419 Loughmiller Dec 2004 B2
6838951 Nieri et al. Jan 2005 B1
6842396 Kono Jan 2005 B2
6853696 Moser et al. Feb 2005 B1
6854059 Gardner Feb 2005 B2
6856202 Lesso Feb 2005 B2
6859107 Moon et al. Feb 2005 B1
6882237 Singh et al. Apr 2005 B2
6897696 Chang et al. May 2005 B2
6933789 Molnar et al. Aug 2005 B2
6938142 Pawlowski Aug 2005 B2
6940328 Lin Sep 2005 B2
6954091 Wurzer Oct 2005 B2
6975554 Lapidus et al. Dec 2005 B1
6998922 Jensen et al. Feb 2006 B2
7002404 Gaggl et al. Feb 2006 B2
7002416 Pettersen et al. Feb 2006 B2
7003065 Homol et al. Feb 2006 B2
7017090 Endou et al. Mar 2006 B2
7019569 Fan-Jiang Mar 2006 B2
7042271 Chung et al. May 2006 B2
7042792 Lee et al. May 2006 B2
7042793 Masuo May 2006 B2
7046093 McDonagh et al. May 2006 B1
7047146 Chuang et al. May 2006 B2
7053666 Tak et al. May 2006 B2
7095287 Maxim et al. Aug 2006 B2
7099643 Lin Aug 2006 B2
7141961 Hirayama et al. Nov 2006 B2
7142477 Tran et al. Nov 2006 B1
7152009 Bokui et al. Dec 2006 B2
7180816 Park Feb 2007 B2
7200713 Cabot et al. Apr 2007 B2
7218157 Van De Beek et al. May 2007 B2
7233214 Kim et al. Jun 2007 B2
7246215 Lu et al. Jul 2007 B2
7263152 Miller et al. Aug 2007 B2
7269402 Uozumi et al. Sep 2007 B2
7282999 Da Dalt et al. Oct 2007 B2
7312629 Chuang et al. Dec 2007 B2
7313040 Chuang et al. Dec 2007 B2
7330080 Stoiber et al. Feb 2008 B1
7340577 Van Dyke et al. Mar 2008 B1
7349515 Chew et al. Mar 2008 B1
7352249 Balboni et al. Apr 2008 B2
7355482 Meltzer Apr 2008 B2
7355907 Chen et al. Apr 2008 B2
7369000 Wu et al. May 2008 B2
7375593 Self May 2008 B2
7389457 Chen et al. Jun 2008 B2
7439816 Lombaard Oct 2008 B1
7463101 Tung Dec 2008 B2
7464282 Abdollahi-Alibeik et al. Dec 2008 B1
7487315 Hur et al. Feb 2009 B2
7489164 Madurawe Feb 2009 B2
7512033 Hur et al. Mar 2009 B2
7516385 Chen et al. Apr 2009 B2
7538623 Jensen et al. May 2009 B2
7545223 Watanabe Jun 2009 B2
7565480 Ware et al. Jul 2009 B2
7577225 Azadet et al. Aug 2009 B2
7592847 Liu et al. Sep 2009 B2
7595657 Chuang et al. Sep 2009 B2
7622996 Liu Nov 2009 B2
7630230 Wong Dec 2009 B2
7633322 Zhuang et al. Dec 2009 B1
7635988 Madurawe Dec 2009 B2
7646215 Chuang et al. Jan 2010 B2
7646648 Arsovski Jan 2010 B2
7659783 Tai Feb 2010 B2
7660149 Liaw Feb 2010 B2
7663415 Chatterjee et al. Feb 2010 B2
7667678 Guttag Feb 2010 B2
7675331 Jung et al. Mar 2010 B2
7719329 Smith May 2010 B1
7719330 Lin et al. May 2010 B2
7728675 Kennedy et al. Jun 2010 B1
7737743 Gao et al. Jun 2010 B1
7746181 Moyal Jun 2010 B1
7746182 Ramaswamy et al. Jun 2010 B2
7750683 Huang et al. Jul 2010 B2
7760032 Ardehali Jul 2010 B2
7760040 Zhang et al. Jul 2010 B2
7760532 Shirley et al. Jul 2010 B2
7782655 Shau Aug 2010 B2
7812644 Cha et al. Oct 2010 B2
7813161 Luthra Oct 2010 B2
7830212 Lee et al. Nov 2010 B2
7839177 Soh Nov 2010 B1
7843239 Sohn et al. Nov 2010 B2
7843721 Chou Nov 2010 B1
7848725 Zolfaghari et al. Dec 2010 B2
7859919 De La Cruz, II et al. Dec 2010 B2
7876163 Hachigo Jan 2011 B2
7916554 Pawlowski Mar 2011 B2
7920409 Clark Apr 2011 B1
7920665 Lombaard Apr 2011 B1
7924599 Evans, Jr. et al. Apr 2011 B1
7940088 Sampath et al. May 2011 B1
7944256 Masuda May 2011 B2
7956695 Ding et al. Jun 2011 B1
7965108 Liu et al. Jun 2011 B2
8004920 Ito et al. Aug 2011 B2
8008956 Shin et al. Aug 2011 B1
8044724 Rao et al. Oct 2011 B2
8063707 Wang Nov 2011 B2
8087690 Kim Jan 2012 B2
8089819 Noda Jan 2012 B2
8117567 Arsovski Feb 2012 B2
8174332 Lombaard et al. May 2012 B1
8218707 Mai Jul 2012 B2
8242820 Kim Aug 2012 B2
8258831 Banai Sep 2012 B1
8284593 Russell Oct 2012 B2
8294502 Lewis et al. Oct 2012 B2
8400200 Kim et al. Mar 2013 B1
8488408 Shu et al. Jul 2013 B1
8493774 Kung Jul 2013 B2
8526256 Gosh Sep 2013 B2
8542050 Chuang et al. Sep 2013 B2
8575982 Shu et al. Nov 2013 B1
8593860 Shu et al. Nov 2013 B2
8625334 Liaw Jan 2014 B2
8643418 Ma et al. Feb 2014 B2
8692621 Snowden et al. Apr 2014 B2
8693236 Shu Apr 2014 B2
8817550 Oh Aug 2014 B1
8837207 Jou Sep 2014 B1
8885439 Shu et al. Nov 2014 B1
8971096 Jung et al. Mar 2015 B2
8995162 Sang Mar 2015 B2
9018992 Shu et al. Apr 2015 B1
9030893 Jung May 2015 B2
9053768 Shu et al. Jun 2015 B2
9059691 Lin Jun 2015 B2
9070477 Clark Jun 2015 B1
9083356 Cheng Jul 2015 B1
9093135 Khailany Jul 2015 B2
9094025 Cheng Jul 2015 B1
9135986 Shu Sep 2015 B2
9142285 Hwang et al. Sep 2015 B2
9159391 Shu et al. Oct 2015 B1
9171634 Bo Oct 2015 B2
9177646 Arsovski Nov 2015 B2
9196324 Haig et al. Nov 2015 B2
9240229 Oh et al. Jan 2016 B1
9311971 Oh Apr 2016 B1
9318174 Chuang et al. Apr 2016 B1
9356611 Shu et al. May 2016 B1
9384822 Shu et al. Jul 2016 B2
9385032 Shu Jul 2016 B2
9396790 Chhabra Jul 2016 B1
9396795 Jeloka et al. Jul 2016 B1
9401200 Chan Jul 2016 B1
9412440 Shu et al. Aug 2016 B1
9413295 Chang Aug 2016 B1
9431079 Shu et al. Aug 2016 B1
9443575 Yabuuchi Sep 2016 B2
9484076 Shu et al. Nov 2016 B1
9494647 Chuang et al. Nov 2016 B1
9552872 Jung Jan 2017 B2
9608651 Cheng Mar 2017 B1
9613670 Chuang et al. Apr 2017 B2
9613684 Shu et al. Apr 2017 B2
9679631 Haig et al. Jun 2017 B2
9685210 Ghosh et al. Jun 2017 B1
9692429 Chang Jun 2017 B1
9697890 Wang Jul 2017 B1
9722618 Cheng Aug 2017 B1
9729159 Cheng Aug 2017 B1
9789840 Farooq Oct 2017 B2
9804856 Oh et al. Oct 2017 B2
9847111 Shu et al. Dec 2017 B2
9853633 Cheng et al. Dec 2017 B1
9853634 Chang Dec 2017 B2
9859902 Chang Jan 2018 B2
9916889 Duong Mar 2018 B1
9935635 Kim et al. Apr 2018 B2
9966118 Shu et al. May 2018 B2
10065594 Fukawatase Sep 2018 B2
10153042 Ehrman Dec 2018 B2
10192592 Shu et al. Jan 2019 B2
10249312 Kim et al. Apr 2019 B2
10249362 Shu Apr 2019 B2
10388364 Ishizu et al. Aug 2019 B2
10425070 Chen et al. Sep 2019 B2
10521229 Shu et al. Dec 2019 B2
10535381 Shu et al. Jan 2020 B2
10659058 Cheng et al. May 2020 B1
10673440 Camarota Jun 2020 B1
10770133 Haig et al. Sep 2020 B1
10777262 Haig et al. Sep 2020 B1
10847212 Haig et al. Nov 2020 B1
10847213 Haig et al. Nov 2020 B1
10854284 Chuang et al. Dec 2020 B1
10860320 Haig et al. Dec 2020 B1
10877731 Shu et al. Dec 2020 B1
10891076 Haig et al. Jan 2021 B1
10930341 Shu et al. Feb 2021 B1
10943648 Shu et al. Mar 2021 B1
11094374 Haig et al. Aug 2021 B1
20010052822 Kim et al. Dec 2001 A1
20020006072 Kunikiyo Jan 2002 A1
20020060938 Song May 2002 A1
20020136074 Hanzawa et al. Sep 2002 A1
20020154565 Noh et al. Oct 2002 A1
20020168935 Han Nov 2002 A1
20030016689 Hoof Jan 2003 A1
20030107913 Nii Jun 2003 A1
20030185329 Dickmann Oct 2003 A1
20040052152 Kono Mar 2004 A1
20040053510 Little Mar 2004 A1
20040062138 Partsch et al. Apr 2004 A1
20040090413 Yoo May 2004 A1
20040160250 Kim et al. Aug 2004 A1
20040169565 Gaggl et al. Sep 2004 A1
20040199803 Suzuki et al. Oct 2004 A1
20040240301 Rao Dec 2004 A1
20040264279 Wordeman Dec 2004 A1
20040264286 Ware et al. Dec 2004 A1
20050024912 Chen et al. Feb 2005 A1
20050026329 Kim et al. Feb 2005 A1
20050036394 Shiraishi Feb 2005 A1
20050186930 Rofougaran et al. Aug 2005 A1
20050226079 Zhu et al. Oct 2005 A1
20050226357 Yoshimura Oct 2005 A1
20050253658 Maeda et al. Nov 2005 A1
20050285862 Noda Dec 2005 A1
20060039227 Lai et al. Feb 2006 A1
20060055434 Tak et al. Mar 2006 A1
20060119443 Azam et al. Jun 2006 A1
20060139105 Maxim et al. Jun 2006 A1
20060143428 Noda Jun 2006 A1
20060248305 Fang Nov 2006 A1
20070001721 Chen et al. Jan 2007 A1
20070047283 Miyanishi Mar 2007 A1
20070058407 Dosaka et al. Mar 2007 A1
20070109030 Park May 2007 A1
20070115739 Huang May 2007 A1
20070139997 Suzuki Jun 2007 A1
20070171713 Hunter Jul 2007 A1
20070189101 Lambrache et al. Aug 2007 A1
20070229129 Nakagawa Oct 2007 A1
20080010429 Rao Jan 2008 A1
20080049484 Sasaki Feb 2008 A1
20080068096 Feng et al. Mar 2008 A1
20080079467 Hou et al. Apr 2008 A1
20080080230 Liaw Apr 2008 A1
20080117707 Manickavasakam May 2008 A1
20080129402 Han et al. Jun 2008 A1
20080155362 Chang Jun 2008 A1
20080175039 Thomas Jul 2008 A1
20080181029 Joshi et al. Jul 2008 A1
20080265957 Luong et al. Oct 2008 A1
20080273361 Dudeck et al. Nov 2008 A1
20090027947 Takeda Jan 2009 A1
20090089646 Hirose Apr 2009 A1
20090103390 Kim et al. Apr 2009 A1
20090141566 Arsovski Jun 2009 A1
20090154257 Fukaishi et al. Jun 2009 A1
20090231943 Kunce et al. Sep 2009 A1
20090256642 Lesso Oct 2009 A1
20090296869 Chao et al. Dec 2009 A1
20090319871 Shirai et al. Dec 2009 A1
20100020590 Hsueh et al. Jan 2010 A1
20100085086 Nedovic et al. Apr 2010 A1
20100157715 Pyeon Jun 2010 A1
20100169675 Kajihara Jul 2010 A1
20100172190 Lavi Jul 2010 A1
20100177571 Shori et al. Jul 2010 A1
20100214815 Tam Aug 2010 A1
20100232202 Lu Sep 2010 A1
20100260001 Kasprak et al. Oct 2010 A1
20100271138 Thakur et al. Oct 2010 A1
20100322022 Shinozaki et al. Dec 2010 A1
20110018597 Lee et al. Jan 2011 A1
20110063898 Ong Mar 2011 A1
20110153932 Ware et al. Jun 2011 A1
20110211401 Chan et al. Sep 2011 A1
20110267914 Ishikura Nov 2011 A1
20110280307 Macinnis et al. Nov 2011 A1
20110292743 Zimmerman Dec 2011 A1
20110299353 Ito et al. Dec 2011 A1
20120049911 Ura Mar 2012 A1
20120133114 Choi May 2012 A1
20120153999 Kim Jun 2012 A1
20120212996 Rao et al. Aug 2012 A1
20120242382 Tsuchiya et al. Sep 2012 A1
20120243347 Sampigethaya Sep 2012 A1
20120250440 Wu Oct 2012 A1
20120281459 Teman et al. Nov 2012 A1
20120327704 Chan Dec 2012 A1
20130039131 Haig et al. Feb 2013 A1
20130083591 Wuu Apr 2013 A1
20130170289 Grover et al. Jul 2013 A1
20140056093 Tran et al. Feb 2014 A1
20140125390 Ma May 2014 A1
20140136778 Khailany et al. May 2014 A1
20140185366 Chandwani et al. Jul 2014 A1
20140269019 Kolar Sep 2014 A1
20150003148 Iyer et al. Jan 2015 A1
20150029782 Jung Jan 2015 A1
20150063052 Manning Mar 2015 A1
20150187763 Kim et al. Jul 2015 A1
20150213858 Tao Jul 2015 A1
20150248927 Fujiwara Sep 2015 A1
20150279453 Fujiwara Oct 2015 A1
20150302917 Grover Oct 2015 A1
20150310901 Jung Oct 2015 A1
20150357028 Huang et al. Dec 2015 A1
20160005458 Shu et al. Jan 2016 A1
20160027500 Chuang et al. Jan 2016 A1
20160064068 Mojumder Mar 2016 A1
20160141023 Jung May 2016 A1
20160225436 Wang Aug 2016 A1
20160225437 Kumar Aug 2016 A1
20160247559 Atallah et al. Aug 2016 A1
20160254045 Mazumder et al. Sep 2016 A1
20160284392 Block et al. Sep 2016 A1
20160329092 Akerib Nov 2016 A1
20170194046 Yeung, Jr. et al. Jul 2017 A1
20170345505 Noel et al. Nov 2017 A1
20180122456 Li May 2018 A1
20180123603 Chang May 2018 A1
20180157621 Shu et al. Jun 2018 A1
20180158517 Shu et al. Jun 2018 A1
20180158518 Shu et al. Jun 2018 A1
20180158519 Shu et al. Jun 2018 A1
20180158520 Shu Jun 2018 A1
20200160905 Charles et al. May 2020 A1
20200301707 Shu et al. Sep 2020 A1
20200403616 Shu et al. Dec 2020 A1
20210027815 Shu et al. Jan 2021 A1
20210027834 Haig et al. Jan 2021 A1
20210216246 Haig et al. Jul 2021 A1
Foreign Referenced Citations (4)
Number Date Country
104752431 Jul 2015 CN
10133281 Jan 2002 DE
2005-346922 Dec 2005 JP
201812770 Apr 2018 TW
Non-Patent Literature Citations (3)
Entry
US 10,564,982 B1, 02/2020, Oh et al. (withdrawn)
Wang et al., “A Two-Write and Two-Read Multi-Port SRAM with Shared Write Bit-Line Scheme and Selective Read Path for Low Power Operation”, Journal of Low Power Electronics vol. 9. 9-22, 2013, Department of Electronics Engineering and Institute of Electronics, National Chiao-Tung University, Hsinchu 300, Taiwan (Received: Oct. 15, 2012: Accepted: Feb. 11, 2013), 14 pages.
Takahiko et al., “A Ratio-Less 10-Transistor Cell and Static col. Retention Loop Structure for Fully Digital SRAM Design”, Journal: 2012 4th IEEE International Memory Workshop: 2012, ISBN: 9781467310796 (5 pages).
Related Publications (1)
Number Date Country
20200117398 A1 Apr 2020 US
Provisional Applications (2)
Number Date Country
62430767 Dec 2016 US
62430762 Dec 2016 US
Divisions (1)
Number Date Country
Parent 16152374 Oct 2018 US
Child 16713383 US
Continuation in Parts (5)
Number Date Country
Parent 15709399 Sep 2017 US
Child 16152374 US
Parent 15709401 Sep 2017 US
Child 15709399 US
Parent 15709379 Sep 2017 US
Child 15709401 US
Parent 15709382 Sep 2017 US
Child 15709379 US
Parent 15709385 Sep 2017 US
Child 15709382 US