The following disclosure relates generally to mechanical and/or chemical-mechanical planarization of micro-device workpieces and, more particularly, to retaining rings for use with planarizing apparatuses.
Mechanical and chemical-mechanical planarization processes (collectively “CMP”) remove material from the surface of micro-device workpieces in the production of microelectronic devices and other products.
A micro-device workpiece 12 can be attached to a lower surface 32 of the carrier head 30, or to a resilient pad 34 under the lower surface 32. The carrier head 30 may be a weighted, free-floating wafer carrier, or an actuator assembly 36 can be attached to the carrier head 30 to impart rotational motion to the micro-device workpiece 12 (indicated by arrow J) and/or reciprocate the workpiece 12 back and forth (indicated by arrow 1).
The planarizing pad 40 and a planarizing solution 44 define a planarizing medium that mechanically and/or chemically-mechanically removes material from the surface of the micro-device workpiece 12. The planarizing solution 44 may be a conventional CMP slurry with abrasive particles and chemicals that etch and/or oxidize the surface of the micro-device workpiece 12, or the planarizing solution 44 may be a “clean” non-abrasive planarizing solution without abrasive particles. In most CMP applications, abrasive slurries with abrasive particles are used on non-abrasive polishing pads, and clean non-abrasive solutions without abrasive particles are used on fixed-abrasive polishing pads.
To planarize the micro-device workpiece 12 with the CMP machine 10, the carrier head 30 presses the workpiece 12 face-downward against the planarizing pad 40. More specifically, the carrier head 30 generally presses the micro-device workpiece 12 against the planarizing solution 44 on a planarizing surface 42 of the planarizing pad 40, and the platen 20 and/or the carrier head 30 moves to rub the workpiece 12 against the planarizing surface 42. As the micro-device workpiece 12 rubs against the planarizing surface 42, the planarizing medium removes material from the face of the workpiece 12.
The force generated by friction between the micro-device workpiece 12 and the planarizing pad 40 during planarization will, at any given instant, be exerted against the workpiece 12 primarily in the direction of relative movement between the workpiece 12 and the planarizing pad 40. A retaining ring 33 can be used to counteract this force and hold the micro-device workpiece 12 in position. The retaining ring 33 extends downwardly from the carrier head 30 and contacts the planarizing surface 42 around the micro-device workpiece 12.
The planarity of the finished micro-device workpiece surface is a function of the distribution of planarizing solution 44 under the workpiece 12 during planarization and several other factors. The distribution of planarizing solution 44 is a controlling factor for the distribution of abrasive particles and chemicals under the workpiece 12, as well as a factor affecting the temperature distribution across the workpiece 12. In certain applications it is difficult to control the distribution of planarizing solution 44 under the micro-device workpiece 12 because the retaining ring 33 wipes some of the solution 44 off of the planarizing pad 40. Moreover, the retaining ring 33 can prevent proper exhaustion of the planarizing solution 44 from inside the retaining ring 33, causing a build-up of the planarizing solution 44 proximate to the trailing edge. These problems cause an uneven distribution of abrasive particles and chemicals under the micro-device workpiece that result in non-uniform and uncontrollable polishing rates across the workpiece.
To solve this problem, some retaining rings have grooves. These retaining rings, however, may not be very effective at exhausting the planarizing solution. Various examples of retaining rings with grooves are described in detail in U.S. Pat. No. 6,869,335 to Taylor; U.S. Pat. No. 6,224,472 to Lai et al.; U.S. Pat. No. 6,267,643 to Teng et al.; U.S. Pat. No. 5,944,593 to Chiu et al.; and U.S. Patent Publication No. 2002/0182867 of Kajiwara et al., published Dec. 5, 2002. Each of these patents and the patent publication is incorporated in the present application in its entirety by reference.
This summary is provided for the benefit of the reader only, and is not intended to limit the invention as set forth by the claims.
The present invention relates to retaining rings and associated planarizing apparatuses, and related methods for planarizing micro-device workpieces. A carrier head configured in accordance with one aspect of the invention can be used to retain a micro-device workpiece during mechanical or chemical-mechanical polishing. The carrier head can include a retaining ring carried by a workpiece holder. The retaining ring can include an inner annular surface, an outer annular surface, and a base surface extending at least partially between the inner and outer surfaces. In addition, the retaining ring can further include an annular groove and a plurality of transverse grooves. The annular groove can be positioned adjacent to the base surface between the inner and outer surfaces. The plurality of transverse grooves can extend from the inner surface to the annular groove. In one embodiment, each of the transverse grooves can intersect the annular groove at an angle of about 90°. In another embodiment, one or more of the transverse grooves can intersect the annular groove at an oblique angle.
A carrier head configured in accordance with another aspect of the invention includes a retaining ring carried by a workpiece holder. The retaining ring can include an inner wall, an outer wall, and a base surface extending at least partially between the inner and outer walls. The base surface can include an annular channel, a first plurality of transverse channels, and a second plurality of transverse channels. The first and second pluralities of transverse channels can extend from the inner wall of the annular ring to the annular channel. Further, the first plurality of transverse channels can be configured to pump a planarizing solution into the retaining ring when the retaining ring is rotated in a first direction, and the second plurality of transverse channels can be configured to exhaust the planarizing solution from the retaining ring when the retaining ring is rotated in the first direction. In one embodiment, one or more of the transverse channels can extend all the way across the base surface of the retaining ring from the inner wall to the outer wall. In another embodiment, the annular channel can be a first annular channel, and the retaining ring can further include a second annular channel positioned adjacent to the first annular channel.
A machine for polishing micro-device workpieces in accordance with a further aspect of the invention can include a table, a planarizing pad coupled to the table, and a workpiece carrier assembly having a drive system operably coupled to a carrier head. The carrier head can include a retaining ring carried by a workpiece holder. The retaining ring can include an inner surface, an outer surface, and a base surface extending at least partially between the inner and outer surfaces. The retaining ring can also include an annular groove positioned adjacent to the base surface between the inner and outer surfaces, and a plurality of transverse grooves extending at least from the inner surface to the annular groove.
A method of polishing a micro-device workpiece in accordance with another aspect of the invention can include positioning the workpiece proximate to an inner surface of a retaining ring, and applying a solution to a polishing pad. The method can further include rotating the retaining ring relative to the polishing pad in a first direction, and passing at least a portion of the solution from the inner surface of the retaining ring to an annular groove in the retaining ring through at least one transverse groove in the retaining ring. In one embodiment, the transverse groove can be a first transverse groove having a first orientation in the retaining ring, and the method can further include passing at least a portion of the solution from the annular groove to the inner surface through at least a second transverse groove in the retaining ring. In this embodiment, the second transverse groove can have a second orientation in the retaining ring that is different than the first orientation.
The present invention is directed generally to retaining rings, associated planarizing apparatuses, and related methods for mechanical and/or chemical-mechanical planarization of micro-device workpieces. The term “micro-device workpiece” is used throughout the present disclosure to refer to substrates upon which or in which microelectronic devices, micromechanical devices, data storage elements, and other features can be fabricated. Such micro-device workpieces can include, for example, semi-conductor wafers, glass substrates, insulated substrates, etc. Furthermore, the terms “planarization” and “planarizing” can refer to forming a planar and/or smooth surface (e.g., “polishing”). Moreover, the term “transverse” can mean oblique, perpendicular, and/or not parallel.
Specific details are set forth in the following description and in
In one aspect of this embodiment, the carrier head 330 includes a workpiece holder or carrier 331. The workpiece carrier 331 includes a lower surface 332 to which a backing member 334 is attached. The micro-device workpiece 312 is positioned between the backing member 334 and the planarizing pad 340. The backing member 334 can be operably coupled to a movable back plate, membrane, and/or other apparatus configured to selectively exert a downward force upon the micro-device workpiece 312 during planarization. In other embodiments, the backing member 334 can be omitted and the micro-device workpiece 312 can be attached to the lower surface 332 of the workpiece carrier 331.
In another aspect of this embodiment, the carrier head 330 further includes a retaining ring 333 configured to prevent the micro-device workpiece 312 from slipping relative to the workpiece carrier 331 during the planarizing process. In the illustrated embodiment, the retaining ring 333 is circular and extends around the outside of the micro-device workpiece 312 to hold the micro-device workpiece 312 in position as the workpiece carrier 331 rubs it against the pad 340. The retaining ring 333 can have a diameter greater than the micro-device workpiece 312 if desirable to allow the workpiece 312 to precess relative to the workpiece carrier 331 during the planarizing process.
The retaining ring 333 can be configured to move upwardly and downwardly relative to the workpiece carrier 331 if needed to adjust the relative pressures exerted by the retaining ring 333 and the micro-device workpiece 312 against the pad 340. Adjusting these pressures may be necessary and/or advantageous to maintain an adequate hold on the micro-device workpiece 312 during planarization while at the same time providing a superior surface finish. For example, in one embodiment of the present invention, the retaining ring 333 can be configured to exert a ring pressure against the pad 340 which is equal to about twice a pad pressure exerted by the micro-device workpiece 312 against the pad 340. In other embodiments, the ring pressure and the pad pressure can have other relative values. For example, in one other embodiment described in greater detail below, the ring pressure can be reduced relative to the pad pressure such that the ratio is less than 2:1, such as about 1.5:1. Reducing ring pressure in this manner can advantageously reduce pad glazing and wear, particle generation, and workpiece edge defects resulting from pad rebound.
The base surface 350 of the retaining ring 333 contacts the planarizing solution 44 and the planarizing pad 340. As a result, the outer surface 354 and the base surface 350 sweep the planarizing solution 44 across the pad 340 during the planarizing process. With conventional retaining rings (such as the retaining rings described above with reference to
In the illustrated embodiment, the tranverse grooves 370 can have a first width W1 of about 0.025 inch and a corresponding depth D (
During the planarizing process, the annular grooves 560 (and 360 in
Another expected advantage of the embodiments illustrated in
Although the transverse grooves 370 and 570 described above with reference to
The orientation of the transverse grooves 770 can prevent the planarizing solution 44 (
Another expected advantage of the illustrated embodiment is that the retaining ring 733 will function properly regardless of the direction of rotation. For example, when the retaining ring 733 is rotated in a second direction J2, the planarizing solution 44 flows into the annular groove 760 through the first transverse grooves 710, and out of the annular groove 760 through the second transverse groove 720. Accordingly, the retaining ring 733 can be used with either workpiece carrier in those CMP machines having two or more carrier heads that counter rotate during the planarizing process. This versatility reduces inventory costs and the likelihood of placing the wrong retaining ring on a particular workpiece carrier.
Referring next to
Although various retaining rings have been described above, in other embodiments of the invention, various features of these retaining rings can be combined or omitted to create other retaining rings configured in accordance with the present invention. These other retaining rings can include one or more annular grooves and one or more transverse grooves at similar or different orientations, and/or at different spacing around the retaining ring. Further, such rings can be made from a single piece of material or a plurality of pieces or sections of materia.
From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. For example, aspects of the invention described in the context of particular embodiments may be combined or eliminated in other embodiments. Further, while advantages associated with certain embodiments of the invention have been described in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the invention. Accordingly, the invention is not limited, except as by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5069002 | Sandhu et al. | Dec 1991 | A |
5081796 | Schultz | Jan 1992 | A |
5232875 | Tuttle et al. | Aug 1993 | A |
5234867 | Schultz et al. | Aug 1993 | A |
5240552 | Yu et al. | Aug 1993 | A |
5244534 | Yu et al. | Sep 1993 | A |
5245790 | Jerbic | Sep 1993 | A |
5245796 | Miller et al. | Sep 1993 | A |
RE34425 | Schultz | Nov 1993 | E |
5421769 | Schultz et al. | Jun 1995 | A |
5433651 | Lustig et al. | Jul 1995 | A |
5449314 | Meikle et al. | Sep 1995 | A |
5486129 | Sandhu et al. | Jan 1996 | A |
5514245 | Doan et al. | May 1996 | A |
5533924 | Stroupe et al. | Jul 1996 | A |
5540810 | Sandhu et al. | Jul 1996 | A |
5618381 | Doan et al. | Apr 1997 | A |
5643060 | Sandhu et al. | Jul 1997 | A |
5658183 | Sandhu et al. | Aug 1997 | A |
5658190 | Wright et al. | Aug 1997 | A |
5664988 | Stroupe et al. | Sep 1997 | A |
5679065 | Henderson | Oct 1997 | A |
5695392 | Kim | Dec 1997 | A |
5702292 | Brunelli et al. | Dec 1997 | A |
5730642 | Sandhu et al. | Mar 1998 | A |
5747386 | Moore | May 1998 | A |
5792709 | Robinson et al. | Aug 1998 | A |
5795495 | Meikle | Aug 1998 | A |
5807165 | Uzoh et al. | Sep 1998 | A |
5830806 | Hudson et al. | Nov 1998 | A |
5851135 | Sandhu et al. | Dec 1998 | A |
5868896 | Robinson et al. | Feb 1999 | A |
5882248 | Wright et al. | Mar 1999 | A |
5893754 | Robinson et al. | Apr 1999 | A |
5895550 | Andreas | Apr 1999 | A |
5930699 | Bhatia | Jul 1999 | A |
5934980 | Koos et al. | Aug 1999 | A |
5944593 | Chiu et al. | Aug 1999 | A |
5945347 | Wright | Aug 1999 | A |
5954912 | Moore | Sep 1999 | A |
5967030 | Blalock | Oct 1999 | A |
5972792 | Hudson | Oct 1999 | A |
5980363 | Meikle et al. | Nov 1999 | A |
5981396 | Robinson et al. | Nov 1999 | A |
5994224 | Sandhu et al. | Nov 1999 | A |
5997384 | Blalock | Dec 1999 | A |
6004193 | Nagahara et al. | Dec 1999 | A |
6039633 | Chopra | Mar 2000 | A |
6040245 | Sandhu et al. | Mar 2000 | A |
6054015 | Brunelli et al. | Apr 2000 | A |
6066030 | Uzoh | May 2000 | A |
6074286 | Ball | Jun 2000 | A |
6083085 | Lankford | Jul 2000 | A |
6110820 | Sandhu et al. | Aug 2000 | A |
6116988 | Ball | Sep 2000 | A |
6120354 | Koos et al. | Sep 2000 | A |
6125255 | Litman et al. | Sep 2000 | A |
6135856 | Tjaden et al. | Oct 2000 | A |
6139402 | Moore | Oct 2000 | A |
6143123 | Robinson et al. | Nov 2000 | A |
6143155 | Adams et al. | Nov 2000 | A |
6152808 | Moore | Nov 2000 | A |
6176992 | Talieh | Jan 2001 | B1 |
6180525 | Morgan | Jan 2001 | B1 |
6183350 | Lin et al. | Feb 2001 | B1 |
6187681 | Moore | Feb 2001 | B1 |
6191037 | Robinson et al. | Feb 2001 | B1 |
6193588 | Carlson et al. | Feb 2001 | B1 |
6200901 | Hudson et al. | Mar 2001 | B1 |
6203404 | Joslyn et al. | Mar 2001 | B1 |
6203413 | Skrovan | Mar 2001 | B1 |
6206756 | Chopra et al. | Mar 2001 | B1 |
6210257 | Carlson | Apr 2001 | B1 |
6213845 | Elledge | Apr 2001 | B1 |
6218316 | Marsh | Apr 2001 | B1 |
6224472 | Lai et al. | May 2001 | B1 |
6227955 | Custer et al. | May 2001 | B1 |
6234874 | Ball | May 2001 | B1 |
6234877 | Koos et al. | May 2001 | B1 |
6234878 | Moore | May 2001 | B1 |
6237483 | Blalock | May 2001 | B1 |
6245193 | Quek et al. | Jun 2001 | B1 |
6250994 | Chopra et al. | Jun 2001 | B1 |
6251785 | Wright | Jun 2001 | B1 |
6261151 | Sandhu et al. | Jul 2001 | B1 |
6261163 | Walker et al. | Jul 2001 | B1 |
6267643 | Teng et al. | Jul 2001 | B1 |
6267650 | Hembree | Jul 2001 | B1 |
6267655 | Weldon et al. | Jul 2001 | B1 |
6273786 | Chopra et al. | Aug 2001 | B1 |
6273796 | Moore | Aug 2001 | B1 |
6276996 | Chopra | Aug 2001 | B1 |
6284660 | Doan | Sep 2001 | B1 |
6306012 | Sabde | Oct 2001 | B1 |
6306014 | Walker et al. | Oct 2001 | B1 |
6306768 | Klein | Oct 2001 | B1 |
6312558 | Moore | Nov 2001 | B2 |
6328632 | Chopra | Dec 2001 | B1 |
6331488 | Doan et al. | Dec 2001 | B1 |
6350180 | Southwick | Feb 2002 | B2 |
6350691 | Lankford | Feb 2002 | B1 |
6352466 | Moore | Mar 2002 | B1 |
6354923 | Lankford | Mar 2002 | B1 |
6354930 | Moore | Mar 2002 | B1 |
6358122 | Sabde et al. | Mar 2002 | B1 |
6358127 | Carlson et al. | Mar 2002 | B1 |
6358129 | Dow | Mar 2002 | B2 |
6361417 | Walker et al. | Mar 2002 | B2 |
6364757 | Moore | Apr 2002 | B2 |
6368190 | Easter et al. | Apr 2002 | B1 |
6368193 | Carlson et al. | Apr 2002 | B1 |
6368194 | Sharples et al. | Apr 2002 | B1 |
6368197 | Elledge | Apr 2002 | B2 |
6376381 | Sabde | Apr 2002 | B1 |
6383934 | Sabde et al. | May 2002 | B1 |
6387289 | Wright | May 2002 | B1 |
6395620 | Pan et al. | May 2002 | B1 |
6402884 | Robinson et al. | Jun 2002 | B1 |
6419567 | Glashauser | Jul 2002 | B1 |
6428386 | Bartlett | Aug 2002 | B1 |
6447369 | Moore | Sep 2002 | B1 |
6447380 | Pham et al. | Sep 2002 | B1 |
6498101 | Wang | Dec 2002 | B1 |
6511576 | Klein | Jan 2003 | B2 |
6520834 | Marshall | Feb 2003 | B1 |
6533893 | Sabde et al. | Mar 2003 | B2 |
6547640 | Hofmann | Apr 2003 | B2 |
6548407 | Chopra et al. | Apr 2003 | B1 |
6579799 | Chopra et al. | Jun 2003 | B2 |
6592443 | Kramer et al. | Jul 2003 | B1 |
6609947 | Moore | Aug 2003 | B1 |
6623329 | Moore | Sep 2003 | B1 |
6648734 | Chin et al. | Nov 2003 | B2 |
6652764 | Blalock | Nov 2003 | B1 |
6666749 | Taylor | Dec 2003 | B2 |
6821192 | Donohue | Nov 2004 | B1 |
6835125 | Tseng et al. | Dec 2004 | B1 |
6869335 | Taylor | Mar 2005 | B2 |
7118456 | Moloney et al. | Oct 2006 | B2 |
20020017365 | Gunji et al. | Feb 2002 | A1 |
20020182867 | Kajiwara et al. | Dec 2002 | A1 |
20050037694 | Taylor | Feb 2005 | A1 |
20050113002 | Chen et al. | May 2005 | A1 |
20060137819 | Manens et al. | Jun 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20070049179 A1 | Mar 2007 | US |