1. Field of the Invention
The present invention relates generally to the field of medical devices and methods. More particularly, the present invention relates to catheter insertion devices, through-the-needle catheters, and related methods of their use.
Catheters are used in various medical procedures to administer fluids to a patient and/or to withdraw body fluids from a vein of a patient. Catheters are generally made of a flexible plastic material or various polymers, and a needle is used to access a vein or artery in the body in order to introduce the catheter into a blood vessel. One catheter insertion technique is known as the “through-the-needle” technique. In this technique, the needle is inserted through the skin and into the blood vessel until the needle tip is properly located in the vessel. Proper location of the needle tip is usually noted by a small flow of blood through the needle and into a flash chamber in a needle hub. After the needle is in proper position, a catheter is advanced through the needle and into the vessel. The needle is then withdrawn from the body, leaving the catheter implanted with the distal end of the catheter located in the vessel. However, typically, the needle cannot be easily removed and disposed of because of the interference of the catheter hub at the proximal end of the catheter. Accordingly, a common solution to this problem with the through-the-needle catheter is to remove the needle from the catheter by splitting the needle. For example, the needle may be made splittable by forming the needle of two longitudinally aligned halves, or by longitudinally scoring or perforating the body of the needle.
However, even with a splittable needle, the portions of the needle present a safety/disposal risk. Furthermore, the catheter is typically manipulated by an operator while threading the catheter through the lumen of the needle. As a result, catheters are often contaminated by bacteria from the skin of the patient or due to manipulation by the operator.
US2019/0076628, commonly assigned with the present application, describes a splittable needle catheter insertion tool where the catheter is held free from contamination prior to and during penetration of the needle to a patient's target vein. The design of the splittable needle catheter insertion tool is a significant advance in the art but still requires a separate needle/handle removal step during deployments as well as disposable of the needle at the point of use.
It would thus be desirable to provide needle-type catheter insertion tools which do not require splitting or other disassembly of the insertion tool at the time of catheter insertion. It would be further desirable that any such catheter insertion tools be inherently safe and non-traumatic to the patient in use, and in particular reduce any risk of accidental needle sticks to medical personnel as well as the patient. At least some of these objectives will be met by the inventions described and claimed below.
2. Listing of the Background Art
US2019/0076628 is described above. Other relevant patents and publications include U.S. Pat. Nos. 8,974,411; 4,957,489; US2017/0209671; US2019/328954; US2019/314614; US2019/351192; US2019/201667; US2009/264825; US2004/116855; U.S. Pat. Nos. 10,525,236; 10,238,840; 9,162,037; 5,935,110; 5,911,705; and 5,129,884.
In a first aspect, the present invention provides a catheter insertion system which includes both a catheter insertion device and a catheter to be inserted into a patient's venous system using the catheter insertion device. The catheter insertion device includes a housing extending along a longitudinal axis and a needle extending distally, usually coaxially, from a distal end of housing. The needle will typically have a longitudinal passage coaxially aligned with the longitudinal axis of the housing. The catheter will typically be configured (typically having a suitable length, diameter, and shaped) to allow the catheter to be advanced from a retracted position within the longitudinal passage in the needle to an extended position beyond a distal tip of the needle, typically having from 25% to 90%, usually from 50% to 75%, of the catheter length extending beyond the distal end of the needle when the catheter is in its extended position. The needle will be configured to be retracted back into the housing after the catheter has been distally advanced through the needle. In this way, the needle can be safely sequestered within the housing, and the housing can be secured to the patient, typically being taped or otherwise secured to a location on the patient's skin adjacent the catheter entry location.
In exemplary embodiments, the catheter insertion tool will further comprise a slider which is typically coupled to a proximal end of the needle. The slider maybe mounted on an outer surface of the housing so that a user may manually retract the needle in a proximal direction after the catheter has been advanced through the needle in a distal direction. In specific embodiments, the slider may be configured to be retracted through or within an axial slot on the housing. In many embodiments, the needle and/or the slider will be configured to prevent distal advancement of the needle after the needle has been retracted. In many instances, the catheter of the present invention will have an atraumatic distal tip. For example, the catheter may have a bullet tip where a port is formed within or through the bullet tip, typically by chamfering a hemispherical or other rounded surface of the bullet tip at an angle to provide a laterally deflected flow from the distal tip of the catheter. For example, the port may be chamfered or otherwise orientated at an angel from 35° to 75° relative to a longitudinal axis of the catheter were the distal end period.
In a particular aspect of the present invention, the venous or other luminal access catheter has a distal port configured to direct an outlet flow in a lateral direction (relative to the axial direction of the needle). The distal port has a fixed rotational orientation relative to the longitudinal axis of the housing. In this way, a user can readily control a rotational orientation of the distal port of the catheter as the catheter is being advanced from the needle. Usually, the user will rotationally orient the catheter insertion device which carries the catheter so that the distal port on the catheter is deployed in a desired rotational orientation in the venous lumen. Typically, the distal region of the catheter will be advanced against a wall of the venous lumen and the distal port will be oriented to direct fluid flow from the distal port toward the center of the venous lumen. Such orientation is advantageous as it promotes mixing of the fluid with a greater blood flow.
In other particular embodiments of the present invention, the port may be configured to orient the outlet flow at an angle in a range from 30° to 75° relatively to a longitudinal access of the catheter near its distal end.
In other specific aspects, the catheter may have an atraumatic tip, such as a bullet tip and the outlet port may be formed by a chamfer angled on one side of the bullet tip.
In a second aspect, the present invention provides a method for inserting a catheter into a vein. The method comprises manually advancing a needle extending distally from the housing into the vein. A catheter is manually advanced from the needle so that a distal port of the catheter lies at a desired location in a venous or other vessel lumen. The needle may then be manually retracted over the catheter and into the housing. After the catheter is thus deployed, the housing may be secured to a skin region of the patient, typically adjacent to the catheter insertion site, and a fluid source may be connected to a connecter at a proximal end of the catheter.
In particular method embodiments, the catheter has an atraumatic tip, such as a bullet tip, and the port may be formed by chamfering one side of the bullet tip, for example being oriented at an angle from 30° to 75° relative to a longitudinal axis of the catheter near the distal end. The methods may further comprise releasing a fluid from a non-longitudinally oriented port in a direction across a blood flow to promote mixing. For example, the distal region of the catheter will be advanced to lie along one side of a venous wall, where the user points the outlet port to direct fluid flow toward a center of the venous lumen, promoting mixing.
In still further aspects, the present invention provides an integrated catheter insertion apparatus comprising a housing, a needle, and a venous access catheter. By “integrated,” it is meant that the housing, the needle, and the catheter are provided as a single assembly or structure. In particular, while various components of the single assembly will be rearranged during use, the components of the integrated apparatus are intended to be used together without disassembly and the apparatus will include a luer or other connector for subsequent attachment to external devices and equipment for both venous access for various purposes including delivery of intravenous fluids, drugs, blood transfusions, and the like as well as drawing blood and other treatments.
Any of these catheter insertion apparatuses may further comprising a valve in the luer or other proximal connector where the valve is configured to open in response to engagement with an external connector when the external connector is attached to the proximal connector. For example, the valve in the proximal connector may comprise a split valve that opens when advanced distally against a male rod or other fitting in an axial passage in the proximal connector.
In particular, a second exemplary embodiment of the catheter insertion apparatus according to the present invention comprise an integrated structure comprising housing having a longitudinal passage. A needle is slidably mounted within the longitudinal passage of the housing and has an axial lumen extending from a proximal end to a tissue-penetrating distal tip. A catheter is slidably mounted within the needle lumen and has a distal port and a proximal connector. In an initial configuration of the catheter insertion apparatus, the needle extends distally of the housing and the catheter is retracted proximally within the needle. The proximal connector of the catheter is distally advanceable to engage a proximal end of the housing. Such distal advancement extends the distal port of the catheter distally from the distal tip of the needle, and the needle is fully retractable over the catheter and within the housing after the catheter has been distally advanced.
In exemplary embodiments, the needle will typically have a length in a range from 0.5 cm to 3 cm, often having a length of 1.5 cm, but sometimes having a length or 1 cm or shorter. The catheter may have an exposed length (catheter tube length when fully extended distally from the housing) in a range from 2 cm to 8 cm, typically having an exposed length of 3 cm to 6 cm.
In particular embodiments, a spring assembly is disposed within the longitudinal passage of the housing and configured to retract the needle after the catheter has been distally advanced from the needle. Typically, the spring assembly is configured to automatically retract the needle after the catheter has been fully distally advanced from the needle. In specific instances, the spring assembly comprises a coiled spring disposed coaxially over the needle and a locking mechanism that holds the needle it its distally advanced position with the spring in an axially compressed configuration. Release of the locking mechanism allows the spring to axially expand, driving the needle proximally to retract the needle fully within the housing. In specific instances, the locking mechanism may be configured to automatically release the spring when the catheter is fully advanced and/or when the catheter retraction mechanism is actuated. Alternatively, in some embodiments, the spring assembly could be configured to be manually released, e.g. by a button or other trigger on the housing.
In further specific aspects, the catheter locks within the housing after the catheter has been fully advanced. In still other particular embodiments, the housing will be configured to be taped or otherwise secured to the patient after the needle has been retracted. In still further specific instances, the proximal connector of the catheter comprises a luer fitting for attachment to external structure, such as fluid delivery tubing, used in conventional medical systems.
In still further aspects of the present invention, a catheter insertion apparatus comprises a housing having a longitudinal passage. A needle assembly is slidably mounted within the longitudinal passage of the housing and has an axial lumen extending from a proximal carriage to a tissue-penetrating distal tip. Typically, a needle of the needle assembly extends distally from a distal end of the housing when the catheter insertion apparatus is in an initial configuration. The apparatus further comprises a catheter assembly including a catheter slidably mounted within the needle lumen. The catheter typically includes a distal port, a proximal connector, and at least one arm extending distally from the proximal connector. The catheter is typically retracted proximally within the needle in an initial configuration of the catheter insertion apparatus. The apparatus usually further comprises an axially compressed coil spring disposed coaxially over a proximal portion of the needle. The coil spring has a distal end engaging an interior surface of the longitudinal passage of the housing and a proximal end engaging a distal face of the proximal hub of the needle when the insertion apparatus is in its initial configuration. A locking disc is configured to hold the coil spring in its axially compressed configuration. Usually, the locking disc is further configured to be engaged by the at least one arm of the catheter assembly when the catheter assembly is distally advanced relative to the housing. Typically, rotation of the catheter assembly after it has been fully advanced will release the locking disc, thus allowing the spring to axially expand to retract the needle. In particular instances of the catheter insertion apparatus of the present invention, prior to rotation of the catheter assembly, the locking disc engages one or more retaining features on an interior surface of the longitudinal passage. In such instances, rotation of the catheter assembly causes the locking disc to rotate and disengage from the one or more retaining feature, thus allowing the coil spring to expand and proximally retract the needle assembly.
In still further particular embodiments, a distal end of the at least one arm of the catheter assembly may have a slot which locks with the retaining feature on the interior surface of the longitudinal passage after the catheter assembly has been rotated. Thus, in a single motion of rotating the catheter assembly, the catheter assembly both locks to the retaining feature and releases the needle so that the needle is automatically retracted by expansion of the spring.
In other specific aspects of the catheter insertion apparatus, once the needle has been fully retracted within the housing and the catheter fully advanced from the housing, the integrated apparatus may be taped to the patient and connected to any conventional fluid or other medicament source. There is no need to detach the needle, and the needle is fully protected and locked within the housing, thus presenting no safety issues.
In still further aspects of the present invention, a method is provided for inserting a catheter into a vein of a patient. A needle on a housing is manually advanced into the vein, where the needle and the housing carry a retracted catheter. The catheter is then manually advanced from the needle into the vein, and the needle is retracted over the catheter into the housing while the catheter remains in the vein. Once the needle is within the housing, the housing may be secured to skin of the patient and is available for connection to a conventional fluid delivery or other medicament system.
In particular aspects of the method, the needle remains fully retracted within the housing when the housing is secured to the skin of the patient. The needle may be retracted manually, e.g. where the user retracts the slider on the housing. Alternatively, the needle may be retracted automatically, e.g. by releasing a constrained spring to axially translate the needle relative to the catheter and the housing.
In still other embodiments, automatic needle retraction can be affected by mechanically coupling the catheter assembly to the needle, thus accomplishing “automatic” needle retraction while eliminating the need for a spring. For example, a pulley assembly can be provided by attaching a pulling end of one or more tethers to the needle and a driving end of each tether to the catheter, The tether will be passed over a “pulley” feature on the body so that the pulling end of the tethers travels proximally to draw the needle proximally into the housing as the driving ends of the tethers are translated distally as the catheter is pushed forward.
In still other instances, an elastic band or other element may be attached to the needle and the housing and loaded under tension. The tensioned element may then be automatically or manually released to drive the needle proximally into the housing.
In a third exemplary embodiment of the present invention, an integrated catheter comprises, and in preferred instances consists of, a housing, a needle cannula, a venous access catheter, and a spring configured to automatically retract the needle after the venous access catheter has been advanced through the needle.
In particular, the catheter insertion apparatus may comprise or consist of a housing having a longitudinal passage and a cannula or other needle assembly slidably mounted within the longitudinal passage of the housing. The longitudinal passage typically extends from a proximal extension to a distal end of the housing, and the needle cannula extends from a proximal hub to a tissue-penetrating distal tip. In an initial configuration, the needle cannula extends distally from the distal end of the housing, fully exposing the tissue-penetrating distal tip to allow percutaneous introduction to a patient's venous lumen.
The venous access catheter is typically formed as an assembly including a catheter body or shaft having a distal port and being slidably mounted within the needle lumen, a proximal connector, and at least one arm extending distally from the proximal connector. The catheter shaft is proximally disposed (retracted) within the needle lumen when the catheter insertion apparatus is in its initial configuration. The spring typically comprises an axially compressed coil spring disposed coaxially over the proximal hub or other portion of the needle cannula, where a distal end of the spring engages an interior surface of the longitudinal passage of the housing and a proximal end of the spring engages a distal face of the proximal hub of the needle when the catheter insertion apparatus is in its initial configuration. A latch on the needle hub engages a locking feature on an inner surface of the longitudinal passage of the housing to hold the needle in place against the force of the compressed spring, wherein the at least one arm of the catheter assembly is configured to disengage the latch from the locking feature after the catheter is distally advanced to allow the spring to decompress and retract the needle into the housing.
In specific instances of the third embodiment of the catheter insertion apparatus, the needle assembly may comprise a needle hub having at least one spring-loaded latch which engages the locking feature on the inside surface of the longitudinal passage in the housing to hold the needle in place where the at least one arm engages and releases the at least one spring-loaded latch from the locking feature as the catheter is advanced. The at least one spring-loaded latch may comprise a cantilevered hook on the needle hub, and the locking feature may comprise an undercut or other slot formed on the inside surface of the longitudinal passage in the housing. The proximal connector of the catheter typically comprises a female luer taper and the proximal extension of the housing typically comprises male luer threads, wherein the female luer taper and the male luer threads are joined to form a complete luer fitting when the catheter is fully advanced through the housing. In most instances, the housing is configured to be taped to a patient after the needle has been retracted.
In a further aspect, the present invention provides a catheter insertion system which includes both a catheter insertion device and a catheter to be inserted into a patient's venous system using the catheter insertion device. The catheter insertion device comprises a housing extending along a longitudinal axis and a needle extending distally, usually coaxially, from a distal end of the housing. The needle will have a longitudinal passage which is coaxially aligned with the longitudinal axis of the housing. The catheter has a length and is sized and shaped to be advanced from a retracted position within the longitudinal passage of the needle to an extended position when at least a portion, typically one-half or more, of the catheter length extends beyond a distal tip of the needle.
In particular aspects of the present invention, the catheter has a distal port configured to direct an outlet flow in a lateral direction (relative to the axial direction of the needle). The distal port has a fixed rotational orientation relative to the longitudinal axis of the housing. In this way, a user can readily control a rotational orientation of the distal port of the catheter as the catheter is being advanced from the needle. Usually, the user will rotationally orient the catheter insertion device which carries the catheter so that the distal port on the catheter is deployed in a desired rotational orientation in the venous lumen. Typically, the distal region of the catheter will be advanced against a wall of the venous lumen and the distal port will be oriented to direct fluid flow from the distal port toward the center of the venous lumen. Such orientation is advantageous as it promotes mixing of the fluid with the blood flow.
In further embodiments of the present invention, the housing of the catheter insertion device may have an upper side and the outflow from the distal port of the catheter may be aligned in a direction toward the upper side of the housing. This allows a user to easily control the direction of the distal port since it will always be aligned with the upper side of the housing which remains visible at all times during catheter deployment.
In other particular embodiments of the present invention, the port may be configured to orient the outlet flow at an angle in a range from 30° to 75° relatively to a longitudinal access of the catheter near its distal end.
In other specific aspects, the catheter may have an atraumatic tip, such as a bullet tip and the outlet port may be formed by a chamfer angled on one side of the bullet tip.
In still other particular embodiments of the present invention, the catheter may have an advancer (typically on a proximal hub) which is disposed through a channel in the upper side of the housing so that the advancer is aligned with the outlet flow of the distal port. The needle may be retractable into the housing so that the housing may be secured to a patient without removing the needle. Alternatively, the housing and the needle may both be “splittable” to facilitate removal of the housing and needle from the catheter after the catheter has been introduced into a vein, as described in US2019/0076628, commonly assigned with the present application, the full disclosure of which is incorporated herein by reference.
All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.
The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
The invention will be understood from the following description of preferred embodiments, taken in conjunction with the accompanying drawings, wherein:
The illustrations presented herein are not actual views of any particular catheter insertion device but are merely idealized representations employed to describe example embodiments of the present disclosure. The following description provides specific details of embodiments of the present disclosure in order to provide a thorough description thereof. However, a person of ordinary skill in the art will understand that the embodiments of the disclosure may be practiced without employing many such specific details. Indeed, the embodiments of the disclosure may be practiced in conjunction with conventional techniques employed in the industry. In addition, the description provided below does not include all elements to form a complete structure or assembly. Only those process acts and structures necessary to understand the embodiments of the disclosure are described in detail below. Additional conventional acts and structures may be used. Also note, any drawings accompanying the application are for illustrative purposes only and are thus not drawn to scale. Additionally, elements common between figures may have corresponding numerical designations.
As used herein, the terms “comprising,” “including,” and grammatical equivalents thereof are inclusive or open-ended terms that do not exclude additional, un-recited elements or method steps, but also include the more restrictive terms “consisting of,” “consisting essentially of,” and grammatical equivalents thereof.
As used herein, the term “may” with respect to a material, structure, feature, or method act indicates that such is contemplated for use in implementation of an embodiment of the disclosure, and such term is used in preference to the more restrictive term “is” so as to avoid any implication that other compatible materials, structures, features, and methods usable in combination therewith should or must be excluded.
As used herein, the term “configured” refers to a size, shape, material composition, and arrangement of one or more of at least one structure and at least one apparatus facilitating operation of one or more of the structure and the apparatus in a predetermined way.
As used herein, the singular forms following “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
As used herein, spatially relative terms, such as “below,” “lower,” “bottom,” “above,” “upper,” “top,” and the like, may be used for ease of description to describe one element's or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Unless otherwise specified, the spatially relative terms are intended to encompass different orientations of the materials in addition to the orientation depicted in the figures. For example, the spatially relative terms may refer to a catheter insertion device when the device is disposed on a horizontal surface (e.g., the position depicted in
As used herein, the term “substantially” in reference to a given parameter, property, or condition means and includes to a degree that one of ordinary skill in the art would understand that the given parameter, property, or condition is met with a degree of variance, such as within acceptable manufacturing tolerances. By way of example, depending on the particular parameter, property, or condition that is substantially met, the parameter, property, or condition may be at least 90.0% met, at least 95.0% met, at least 99.0% met, or even at least 99.9% met.
As used herein, the term “vascular catheter” means and includes any catheter that may be used for providing access to the vasculature, such as one or more veins or one or more arteries of a patient, such as a midline catheter, a basilic catheter, a cephalic catheter, a centesis catheter (for deployment in the thoracic or abdominal regions of a patient), or another type of catheter. Vascular catheters described herein may comprise an arterial catheter or a venous catheter.
Referring to
A slider 20 is slidably mounted on a surface of the housing 12. The slider 20 is coupled at or near a proximal end of the needle 14 to allow a user to manually retract the needle into an interior space within the housing, as will be described further below. Typically, the slider 20 will be connected through an axial slot 21 or other feature formed in the surface of the housing 12.
A catheter 22 is slidably mounted within the housing 12. Catheter 22 will have a proximal housing 24, typically being or including a luer connector, and a distal tip 30, typically a bullet tip as described in more detail elsewhere herein. Catheter 22 is free to move within the housing 12 and the needle 14 so that it may be manually advanced by pushing on the catheter, typically pushing in a proximal direction on the proximal housing 24. To prevent such movement during needle insertion, however, a locking sheath 28 is provided around a proximal portion of the catheter 22. So long as the locking sheath 28 is in place, as illustrated in
Referring now to
In exemplary embodiments, the length of the needle 14 be in a range from 1.5 cm to 5 cm, typically being in a range from 2.5 cm to 3.5 cm. The catheter shaft 23 may have a length in the range from 6 cm to 20 cm, typically being from 8 cm to 14 cm. In such embodiments, a distal region of the catheter shaft having a length in the range from 1.5 cm to 6 cm, typically from 2 cm to 4 cm is available to be advanced from the needle and deployed in the patient's vein as described below.
As shown in
Referring now to
Referring now to
Referring now to
In an initial configuration (i.e. the configuration used for initial needle penetration into the patient's vein), the catheter 106 will be fully retracted within the needle 104 and the housing 102, as shown in
The catheter insertion apparatus 100 further includes a flashback window 112 and a pair of taping wings 120 on the housing 102. Flashback window 112 allows the user to detect when blood flows back into the device after the sharpened distal tip 114 first enters a vein, confirming that access has been achieved. The taping wings facilitate taping, wrapping, or otherwise securing the housing to the patient after the catheter 106 has been positioned in the target vein.
After the needle 104 has been introduced into a vein, typically by manual placement in a conventional manner, flashback will be observed through the window 112, and the catheter 106 will be distally advanced from the needle 104 by distally advancing the proximal connector 108, as shown in
Referring now to
Referring now to
The locking disc 134 is held in place by an engagement between locking tab 136 which extends radially outwardly from the locking disc and a blocking feature 144 formed on an interior surface of the interior passage 105 of the housing 102. Rotation of the locking disc 134 about a longitudinal axis of the housing 102 (perpendicular to a plane of the locking disk) will disengage the locking tab 136 from the blocking feature 144, allowing the disc to translate proximally propelled by expansion of the spring 124, releasing the needle carriage 138 and spring 124. The mechanisms required to rotate the locking disc are described in connection with
In order to both advance the catheter 106 and release the locking disc 134, the catheter assembly may be distally translated by pushing on the proximal connector 108 to engage a distal surface of the proximal connector against a proximal end of the housing 102, as shown in
In order to both lock the catheter 106 to the housing 102 and release the locking disc 134 to allow the needle 104 to retract under the force of spring 124, the proximal connector 108 may be rotated to the position shown in
Simultaneously, as the arm 110 rotates, the locking slot 130 on the arm will engage and lock onto the blocking feature 144 on the interior wall of the housing 102, as shown in
Positioning of the alignment rails 148 and the arms 110 of catheter assembly during various stages of the operation of the catheter insertion apparatus 100 can be observed in
Referring now to
As further shown in
Referring now to
As further seen in
Referring now to
Referring now to
Referring now to
Referring now to
After the needle 204 has been advanced into the venous lumen, the catheter 206 is advanced into the venous lumen by distally pushing the partial luer fitting 218 into the partial luer fitting 208 formed on the proximal extension 234 of the housing, as shown in
Referring now to
Referring now to
The external IV connector 340 is typically attached to a fluid delivery tube 342 which may be connected to a conventional saline or other fluid delivery bag (not shown). As shown in
While the present invention has been described herein with respect to certain illustrated embodiments, those of ordinary skill in the art will recognize and appreciate that it is not so limited. Rather, many additions, deletions, and modifications to the illustrated embodiments may be made without departing from the scope of the invention as claimed, including legal equivalents thereof. In addition, features from one embodiment may be combined with features of another embodiment while still being encompassed within the scope of the invention as contemplated by the inventors. Further, embodiments of the disclosure have utility with different and various tool types and configurations.
This application is a continuation of PCT Application No. PCT/US2020/061633, filed Nov. 20, 2020, which claims the benefit of U.S. Provisional No. 63/023,699, filed May 12, 2020; U.S. Provisional No. 62/985,182, filed Mar. 4, 2020; U.S. Provisional No. 62/941,541, filed on Nov. 27, 2019, and U.S. Provisional No. 62/941,211, filed on Nov. 27, 2019, the disclosures of which are fully incorporated herein by reference; this application also claims the benefit of U.S. Provisional No. 63/144,258, filed Feb. 1, 2021, the disclosure of which is fully incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3262448 | Ring et al. | Jul 1966 | A |
3598118 | Warren | Aug 1971 | A |
3827434 | Thompson et al. | Aug 1974 | A |
3921631 | Thompson | Nov 1975 | A |
4037600 | Poncy | Jul 1977 | A |
4068659 | Moorehead | Jan 1978 | A |
4772264 | Cragg | Sep 1988 | A |
4957489 | Cameron | Sep 1990 | A |
5049133 | Villen Pascual | Sep 1991 | A |
5098389 | Cappucci | Mar 1992 | A |
5129884 | Dysarz | Jul 1992 | A |
5685852 | Turkel et al. | Nov 1997 | A |
5797880 | Erskine | Aug 1998 | A |
5911705 | Howell | Jun 1999 | A |
5935110 | Brimhall | Aug 1999 | A |
5954698 | Pike | Sep 1999 | A |
6443926 | Kletschka | Sep 2002 | B1 |
6537253 | Haindl | Mar 2003 | B1 |
6547762 | Botich | Apr 2003 | B1 |
7740615 | Shaw et al. | Jun 2010 | B2 |
8974411 | McKinnon | Mar 2015 | B2 |
9162037 | Belson et al. | Oct 2015 | B2 |
10238840 | Ishida | Mar 2019 | B2 |
10525236 | Belson | Jan 2020 | B2 |
20020045843 | Barker | Apr 2002 | A1 |
20020169457 | Quinn | Nov 2002 | A1 |
20030050601 | Righi et al. | Mar 2003 | A1 |
20030120222 | Vaillancourt | Jun 2003 | A1 |
20040116855 | Popov et al. | Jun 2004 | A1 |
20050197635 | Greydanus et al. | Sep 2005 | A1 |
20070225647 | Luther et al. | Sep 2007 | A1 |
20080300574 | Belson et al. | Dec 2008 | A1 |
20090264825 | Cote et al. | Oct 2009 | A1 |
20090292272 | McKinnon | Nov 2009 | A1 |
20110009849 | Christensen et al. | Jan 2011 | A1 |
20120184910 | Woehr | Jul 2012 | A1 |
20130178822 | Hickingbotham | Jul 2013 | A1 |
20150073304 | Millerd | Mar 2015 | A1 |
20150328434 | Gaur | Nov 2015 | A1 |
20160045715 | Galgano et al. | Feb 2016 | A1 |
20170209671 | Ring | Jul 2017 | A1 |
20190076628 | Anstett | Mar 2019 | A1 |
20190201667 | Braithwaite et al. | Jul 2019 | A1 |
20190314614 | Krause et al. | Oct 2019 | A1 |
20190328954 | Hull | Oct 2019 | A1 |
20190351192 | Bierman et al. | Nov 2019 | A1 |
Number | Date | Country |
---|---|---|
WO-2018213148 | Nov 2018 | WO |
WO-2021108274 | Jun 2021 | WO |
Entry |
---|
Co-pending U.S. Appl. No. 17/244,898, inventors Kujawa; John et al., filed Apr. 29, 2021. |
PCT/US2020/061633 International Search Report and Written Opinion dated Mar. 26, 2021. |
U.S. Appl. No. 17/244,898 Office Action dated Sep. 9, 2021. |
U.S. Appl. No. 17/244,898 Notice of Allowance dated Oct. 25, 2021. |
PCT/US2022/013928 International Search Report and Written Opinion of the International Searching Authority dated Apr. 11, 2022. |
Number | Date | Country | |
---|---|---|---|
20210244919 A1 | Aug 2021 | US |
Number | Date | Country | |
---|---|---|---|
63144258 | Feb 2021 | US | |
63023699 | May 2020 | US | |
62985182 | Mar 2020 | US | |
62941211 | Nov 2019 | US | |
62941541 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2020/061633 | Nov 2020 | US |
Child | 17244871 | US |