Rh(D)-binding proteins and magnetically activated cell sorting method for production thereof

Information

  • Patent Grant
  • 6255455
  • Patent Number
    6,255,455
  • Date Filed
    Friday, January 29, 1999
    25 years ago
  • Date Issued
    Tuesday, July 3, 2001
    23 years ago
Abstract
The invention includes Rh(D) binding proteins, including antibodies, and DNA encoding such proteins. Methods of generating such proteins and DNAs are also included.
Description




FIELD OF THE INVENTION




The field of the invention is generation of binding proteins.




BACKGROUND OF THE INVENTION




The ability to produce monoclonal antibodies has revolutionized diagnostic and therapeutic medicine. Monoclonal antibodies are typically produced by immortalization of antibody-producing mouse lymphocytes thus ensuring an endless supply of cells which produce mouse antibodies. However, for many human applications, it is desirable to produce human antibodies. For example, it is preferable that antibodies which are administered to humans for either diagnostic or therapeutic purposes are human antibodies since administration of human antibodies to a human circumvents potential immune reactions to the administered antibody, which reactions may negate the purpose for which the antibody was administered.




In addition, there exists certain situations where, for diagnostic purposes, it is essential that human antibodies be used because other animals are unable to make antibodies against the antigen to be detected in the diagnostic method. For example, in order to determine the Rh phenotype of human red blood cells (RBCs), human sera that contains anti-Rh antibody must be used since other animals cannot make an antibody capable of detecting the human Rh antigen.




The production of human antibodies in vitro by immortalizing human B lymphocytes using Epstein Barr virus (EBV)-mediated transformation or cell fusion has been fraught with technical difficulties due to the relatively low efficiency of both EBV-induced transformation and cell fusion when compared with the murine system. To overcome these problems, processes have been developed for the production of human antibodies using M13 bacteriophage display (Burton et al., 1994, Adv. Immunol. 57:191-280). Essentially, a cDNA library is generated from mRNA obtained from a population of antibody-producing cells. The mRNA encodes rearranged immunoglobulin (Ig) genes and thus, the cDNA encodes the same. Amplified cDNA is cloned into M13 expression vectors creating a library of phage which express human Fab fragments on their surface. Phage which display the antibody of interest are selected by antigen binding and are propagated in bacteria to produce soluble human Fab Ig. Thus, in contrast to conventional monoclonal antibody synthesis, this procedure immortalizes DNA encoding human Ig rather than cells which express human Ig.




There are several difficulties associated with the generation of antibodies using bacteriophage. For example, many proteins cannot be purified in a non-denatured state, in that purification procedures necessarily involve solubilization of protein which may render some proteins permanently denatured with concomitant destruction of antigenic sites present thereon. Such proteins thus cannot be bound to a solid phase and therefore cannot be used to pan for phage bearing antibodies which bind to them. An example of such a protein is the human Rh antigen.




To solve the problem, a method was developed wherein intact RBCs were used as the panning antigen (Siegel et al., 1994, Blood 83:2334-2344). However, it was discovered that since phage are inherently “sticky” and RBCs express a multitude of antigens on the cell surface, a sufficient amount of phage which do not express the appropriate antibody on the surface also adhere to the RBCs, thus rendering the method impractical for isolation of phage which express antibody of desired specificity.




De Kruif et al. (1995, Proc. Natl. Acad. Sci. USA 92:3938-3942) disclose a method of isolating phage encoding antibodies, wherein antibody-expressing phage are incubated with a mixture of antigen-expressing cells and cells which do not express antigen. The antibody-expressing phage bind to the antigen-expressing cells. Following binding with phage, a fluorescently labeled antibody is added specifically to the antigen-expressing cells, which cells are removed from the mixture having antibody-expressing phage bound thereto. The isolation of fluorescently labeled cells is accomplished using the technique of fluorescently-activated cell sorting (FACS), an expensive and time-consuming procedure.




There remains a need for a method of isolating recombinant proteins, preferably antibodies, which is rapid and economical, and which will provide a vast array of protein-binding proteins useful for diagnostic and therapeutic applications in humans.




SUMMARY OF THE INVENTION




The invention relates to an isolated protein having an amino acid sequence comprising a sequence selected from the group consisting of SEQ ID NOs: 1-69 and 139-181. In one embodiment, the isolated protein is an antigen-binding protein. In one aspect, the antigen is human Rh(D) protein. In another embodiment, the binding protein has an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-69 and 139-181. In one aspect, the binding protein is an antibody. In another aspect, the said antibody comprises a heavy chain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-28 and 139-153. In still another aspect, the antibody comprises a light chain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 29-69 and 154-181. In yet another aspect, the antibody comprises a heavy chain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-28 and 139-153 and a light chain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 29-69 and 154-181.




In another embodiment of the isolated binding protein, the binding protein is an antibody fusion protein.




In another embodiment of the isolated protein, the protein is substantially purified.




The invention also includes an isolated DNA encoding the isolated protein of the invention. In one embodiment, the isolated DNA has a nucleotide sequence selected from the group consisting of SEQ ID NOs: 70-138 and 182-224. In another embodiment, the DNA is substantially purified.




The invention also includes an isolated DNA encoding a protein obtained by generating a synthetic DNA library in a virus vector expressing said protein; adding a magnetic label to cells expressing said antigen-bearing moiety; incubating virus expressing said protein with said magnetically labeled cells in the presence of an excess of non-labeled cells which do not express said antigen-bearing moiety to form a mixture, wherein said virus binds to said magnetically labeled cells; isolating virus bound cells from said mixture and obtaining DNA encoding said protein therefrom. In one embodiment, the DNA has a nucleotide sequence selected from the group consisting of SEQ ID NOs: 70-138 and 182-224.




The invention further includes a substantially pure protein obtained by generating a synthetic DNA library in a virus vector expressing said protein; adding a magnetic label to cells expressing said antigen-bearing moiety; incubating virus expressing said protein with said magnetically labeled cells in the presence of an excess of non-labeled cells which do not express said antigen-bearing moiety to form a mixture, wherein said virus binds to said magnetically labeled cells; isolating virus bound cells from said mixture and isolating said protein therefrom. In one embodiment, the protein has an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-69 and 139-181.




The invention also includes a substantially pure preparation of a protein obtained by expressing said protein from DNA encoding said protein, wherein said DNA is obtained by generating a synthetic DNA library in a virus vector expressing said protein; adding a magnetic label to cells expressing said antigen-bearing moiety; incubating virus expressing said protein with said magnetically labeled cells in the presence of an excess of non-labeled cells which do not express said antigen-bearing moiety to form a mixture, wherein said virus binds to said magnetically labeled cells; isolating virus bound cells from said mixture and obtaining DNA encoding said protein therefrom. In one embodiment, the protein has an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-69 and 139-181.




The invention further relates to a method of isolating a DNA encoding a multi-subunit protein which binds to an antigen-bearing moiety. This method comprises




(a) generating a phage display library comprising a plurality of virus vectors. A first of the virus vectors comprises a first heterologous DNA encoding a subunit of the protein and expresses the subunit on the surface thereof. A second of the virus vectors comprises a second heterologous DNA encoding a different subunit of the protein and expresses the different subunit on the surface thereof.




(b) adding a magnetic label to cells bearing the antigen-bearing moiety on their surface.




(c) incubating the phage display library with the magnetically labeled cells in the presence of an excess of non-labeled cells which do not express the antigen-bearing moiety to form a mixture. The first and second virus vectors thereby bind to the magnetically labeled cells.




(d) isolating magnetically labeled cells from the mixture. The first and second virus vectors are thereby isolated from the mixture.




(e) obtaining the first heterologous DNA from the first virus vector.




(f) ligating at least the portion of the first heterologous DNA encoding the subunit and at least the portion of the second heterologous DNA encoding the different subunit to form a hybrid heterologous DNA.




(g) generating a hybrid virus vector comprising the hybrid heterologous DNA and expressing the subunit and the different subunit of the protein on the surface thereof.




(h) adding a magnetic label to cells bearing the antigen-bearing moiety on their surface.




(i) incubating the hybrid virus vector with the magnetically labeled cells in the presence of an excess of non-labeled cells which do not express the antigen-bearing moiety to form a mixture. The hybrid virus vector thereby binds to the magnetically labeled cells.




(j) isolating magnetically labeled cells from the mixture. The hybrid virus vector is thereby isolated from the mixture.




(k) obtaining DNA encoding the protein from the isolated virus vector. The DNA is thereby isolated.




The invention also relates to a method of isolating a multi-subunit protein which binds to an antigen-bearing moiety. This method comprises




(a) generating a phage display library comprising a plurality of virus vectors. A first of the virus vectors comprises a first heterologous DNA encoding a subunit of the protein and expresses the subunit on the surface thereof. A second of the virus vectors comprises a second heterologous DNA encoding a different subunit of the protein and expresses the different subunit on the surface thereof.




(b) adding a magnetic label to cells bearing the antigen-bearing moiety on their surface.




(c) incubating the phage display library with the magnetically labeled cells in the presence of an excess of non-labeled cells which do not express the antigen-bearing moiety to form a mixture. The first and second virus vectors thereby bind to the magnetically labeled cells.




(d) isolating magnetically labeled cells from the mixture. The first and second virus vectors are thereby isolated from the mixture.




(e) obtaining the first heterologous DNA from the first virus vector.




(f) ligating at least the portion of the first heterologous DNA encoding the subunit and at least the portion of the second heterologous DNA encoding the different subunit to form a hybrid heterologous DNA.




(g) generating a hybrid virus vector comprising the hybrid heterologous DNA and expressing the subunit and the different subunit of the protein on the surface thereof.




(h) adding a magnetic label to cells bearing the antigen-bearing moiety on their surface.




(i) incubating the hybrid virus vector with the magnetically labeled cells in the presence of an excess of non-labeled cells which do not express the antigen-bearing moiety to form a mixture. The hybrid virus vector thereby binds to the magnetically labeled cells.




(j) isolating magnetically labeled cells from the mixture. The hybrid virus vector is thereby isolated from the mixture.




(k) isolating the protein from the isolated virus vector. The protein is isolated.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a diagram of a strategy for cell-surface Fab-phage panning using magnetically-activated cell sorting.





FIG. 2

is a graph depicting cell-surface biotinylation of human RBCs.





FIG. 3

is a series of graphs which validate the antigen-positive, antigen-negative cell separation procedure of the invention.





FIG. 4

is an image of a microplate agglutination assay wherein anti-Rh(D) Fab/phage agglutination titer was measured.





FIG. 5

is an image of a microplate agglutination assay showing determination of Rh(D) binding epitope for selected anti-Rh(D) Fab/phage clones.





FIG. 6

is an image depicting the use of Fab/phage antibodies in a gel card assay.





FIG. 7

comprises

FIGS. 7A and 7B

.

FIG. 7A

is a dendrogram which depicts the relationship among the anti-Rh(D) heavy chains described herein in Example 2. The 28 unique heavy chain clones are organized by V


H


family, V


H


germline gene, and VDJ rearrangement. Each heavy chain clone is identified by a numeral preceded by a letter (“B” through “E”) which denotes its gerinline gene. The 28 heavy chains comprised 12 distinct VDJ regions, designated VDJ1-VDJ12. Clones with identical VDJ joins putatively result from intra-clonal diversity of 12 original B lymphocytes.

FIG. 7B

is an alignment of the CDR3 regions of the anti-Rh(D) heavy chains.





FIG. 8

comprises

FIGS. 8A

,


8


B, and


8


C.

FIG. 8A

, comprising FIGS.


8


A and


8


A-


1


through


8


A-


4


, is an alignment of anti-Rh(D) heavy chains to their nearest germline V, D, and J genes. Also illustrated are the putative intermediate heavy chain sequences (Ca, Cb, Da, Db, Dc). The number of nucleotide differences from a germline V


H


is tabulated to the right of each sequence. In general, D segments showed poor homology with known D genes so mutations were not scored in these regions. Replacement mutations are indicated with letters, silent mutations are indicated as “*”, identities are indicated as “.”, and insertions are indicated as “-”. Sequences derived from the 5′V


H


primers used in library construction are indicated as “>”.

FIG. 8A

is a map demonstrating how

FIGS. 8A-1

to


8


A-


4


are arranged.

FIG. 8B

, comprising

FIGS. 8B

,


8


B-


1


, and


8


B-


2


is an alignment of the four VH3 genes utilized by anti-Rh(D) heavy chains.

FIG. 8B

is a map depicting the arrangement of

FIGS. 8B-1

and


8


B-


2


.

FIG. 8C

is a dendrogram which depicts the relationship among human VH3 family germline genes, and illustrate relatedness of VH3-21, VH3-30. VH3-33, and VH3-30.3 and the surprising restriction in V


H


gene usage. The VH3-30.5 gene is present in only certain haplotypes and is identical to VH3-30.





FIG. 9

is an ontogenic tree of anti-Rh(D) heavy chains constructed using nucleotide alignment data. Circles represent isolated and sequenced clones, and diamonds represent putative intermediates. The number of nucleotide mutations from its germline V


H


gene is indicated in parentheses below the clone name. The distance along the horizontal axis represents the degree of mutation (including J segments) within the constraints of the diagram.





FIG. 10

comprises FIGS


10


A and


10


B.

FIG. 10A

, comprising FIGS.


10


A and


10


A-


1


through


10


A-


4


, is an alignment of anti-Rh(D)κ light chains to their nearest germline V and J genes, and indicates predominance of DPK-9 usage from the V


κ


I family. Nomenclature for clones is similar to that for heavy chains but uses the letters “F” through “I”.

FIG. 10A

is a map depicting the arangement of

FIGS. 10A-1

through


10


a-


4


.

FIG. 10B

, comprising

FIGS. 10B

,


10


B-


1


, and


10


B-


2


is an alignment of the four V


κ


genes utilized by anti-Rh(D) light chains.

FIG. 10B

is a map showing the arrangement of

FIGS. 10B-1

and


10


B-


2


. Symbols are the same as those used in FIG.


8


A.





FIG. 11

comprises

FIG. 11A and 11B

.

FIG. 11A

comprising FIGS.


11


A and


11


A-


1


through


11


A-


4


, is an alignment of anti-Rh(D)λ light chains to their nearest germline V and J genes.

FIG. 11A

is a map depicting the arrangement of

FIGS. 11A-1

through


11


A-


4


.

FIG. 11B

, comprising

FIGS. 11B

,


11


B-


1


, and


11


B-


2


, is an alignment of the 10V


λ


germline genes utilized, and illustrates the use of a diverse set of variable region genes derived from multiple families. However, all of the clones use the identical J


λ


gene segment.

FIG. 11B

is a map representing the arrangement of

FIGS. 11B-1

and


11


B-


2


. Nomenclature for the clones is similar to that for heavy chains but uses the letters “J” through “S”. Symbols are the same as those used in FIG.


8


A.





FIG. 12

, comprising

FIGS. 12A

,


12


B, and


12


C, is a trio of graphs which depict comparisons of variable region gene family usage for anti-Rh(D)-specific clones and randomly-picked, non-Rh(D)-binding clones from original γ


1


κ and γ


1


λ non-selected libraries. Upwardly-angled hatched bars reveal heterogeneity in V


H


(FIG.


12


A), V


κ


(FIG.


12


B), and V


λ


(

FIG. 12C

) family representation before selection for anti-Rh(D) specificity. Numbers above bars represent absolute number of clones in that group.





FIG. 13

depicts the results of determinations of the Rh(D) binding epitope of anti-Rh(D) Fab/phage clones. The five different agglutination patterns obtained from screening all of the 53 Fab/phage clones are illustrated. The particular clones shown in

FIG. 13

are identified by their unique heavy chain/light chain pairings using the nomenclature defined in

FIGS. 7

,


10


, and


11


. For E1/M3, reactivity with additional Rh(D) variant cells is required to distinguish its specificity for epD3 from that for epD9. Inclusion of the category IVb cell permits the identification of a new epitope designated “epDX”.





FIG. 14

, comprising

FIGS. 14A and 14B

, is matrix illustrating the genetic composition and epitope specificity of anti-Rh(D) antibodies. The horizontal axis represents the unique γ


1


heavy chains and the vertical axis represents the unique (

FIG. 14A

) and (

FIG. 14B

) λ and κ light chains (based on amino acid sequence). A shaded pattern at the intersection of a heavy chain/light chain pair indicates the Rh(D) epitope specificity observed for that Fab/phage antibody. A few clones gave mixed patterns of reactivity as described herein. Although heavy chains D1, D15, D16, and D17 differ in nucleotide sequence, these chains have an identical amino acid sequence and thus comprise a single column. Similarly, heavy chains C5 and C8 and λ light chains K1 and K2 encode the same proteins. The pairings of these 28 heavy and 41 light chain nucleotide gene segments, which produced 53 unique Fab transcripts, encoded 43 different Fab proteins, as indicated in the matrix.





FIG. 15

, comprising

FIGS. 15A

,


15


B, and


15


C, depicts the results of inhibition studies performed using recombinant anti-Rh(D) antibodies. The figures show results of representative experiments demonstrating the mutual inhibition of antibodies directed at two different Rh(D) epitopes (in this example, epD3 and epD6/7, FIGS.


15


A and


15


C), but not between an Rh(D) antibody and an unrelated recombinant anti-RBC antibody (an anti-blood group B antibody, FIG.


15


B). In

FIG. 15A

, Rh(D)-positive RBCs were incubated with soluble Fabs only, phage-displayed Fabs only, or combinations of the two, as indicated. In

FIG. 15B

, Rh(D)-positive RBCs that were blood group B were used. After washing, RBCs were resuspended in anti-M13 antibody and assessed for agglutination induced by phage-displayed Fabs. Soluble Fabs were used “full-strength” while Fab/phage preparations were present in limiting amounts to increase the sensitivity of the inhibition assay, as described herein. In

FIG. 15C

, mutual inhibition of epD3 and epD6/7 anti-Rh(D) antibodies was demonstrated with Rh(D)-positive RBCs, γ


1


κ and γ


1


λ soluble Fabs, and light chain isotype-specific antisera (see text for details). In these examples, the anti-epD3 and anti-epD6/7 antibodies were clones E1/M3 and D5/I3, respectively. The anti-blood group B antibody was isolated from an IgG phage display library made from the splenic B cells of a blood group O donor.





FIG. 16

, comprising

FIGS. 16A

,


16


B, and


16


C, depict models for Rh(D) antigen/antibody binding. A conventional model (depicted in

FIG. 16A

) and a model described herein (depicted in

FIG. 16B

) for Rh(D) antigen/antibody binding predict different combining sites and genetic relationships between antibodies. As depicted in

FIG. 16C

, if antibodies directed at different Rh(D) epitopes are clonally related, then the expressed repertoire will differ between Rh(D)-negative and partial Rh(D) individuals.











DETAILED DESCRIPTION




According to the present invention, there is provided a novel method of isolating DNA encoding a protein and the protein encoded thereby, wherein the protein is preferably an antibody, which protein is capable of specifically binding to an antigen-bearing moiety.




As exemplified herein but not limited thereto, the method comprises generating bacteriophage which encode human antibodies. Specifically in the present invention, anti-Rh(D) RBC Fab/phage antibodies encoded by an M13 filamentous phage library are obtained. The library is generated from antibody-producing cells obtained from a hyperimmunized donor by first obtaining cDNA derived from mRNA expressed in the antibody-producing cells. Ig encoding fragments of the cDNA are obtained using the polymerase chain reaction (PCR) and primers specific for such fragments of DNA. Ig-specific DNA so obtained is cloned into a bacteriophage. Bacteriophage encoding the Ig fragments are panned against a mixture of antigen-positive, biotinylated RBC-target cells pre-coated with streptavidin-conjugated magnetic microbeads and excess non-labeled RBCs. Bacteriophage which express antibodies on the phage surface, which antibodies are specific for the target cell antigen, bind to the labeled cells. These phage are separated from phage which are bound to non-labeled cells and from phage which are not bound to the cells using a magnetic column. Phage so separated encode and display antibody specific for antigens on the target cells.




To generate a phage antibody library, a cDNA library is first obtained from mRNA which is isolated from cells which express the desired protein to be expressed on the phage surface, e.g., the desired antibody. cDNA copies of the mRNA are produced using reverse transcriptase. cDNA which specifies Ig fragments are obtained by PCR and the resulting DNA is cloned into a suitable bacteriophage vector to generate a bacteriophage DNA library comprising DNA specifying Ig genes. The procedures for making a bacteriophage library comprising heterologous DNA are well known in the art and are described, for example, in Sambrook et al. (1989


, Molecular Cloning: A Laboratory Manual


, Cold Spring Harbor, N.Y.).




A bacteriophage library may also be obtained using cDNA rather than PCR-amplified Ig encoding fragments of cDNA. Generation of a cDNA library is useful for the isolation of proteins which are not antibodies, such as ligands and the like.




Bacteriophage which encode the desired protein, e.g., an antibody, may be engineered such that the protein is displayed on the surface thereof in such a manner that it is available for binding to its corresponding binding protein, e.g., the antigen against which the antibody is directed. Thus, when bacteriophage which express a specific antibody are incubated in the presence of a cell which expresses the corresponding antigen, the bacteriophage will bind to the cell. Bacteriophage which do not express the antibody will not bind to the cell.




For panning of bacteriophage, i.e., selection of phage which express the desired antibody, cells which express the corresponding antigen are labeled with a detectable label such as biotin. Streptavidin-conjugated magnetic beads are then added to the cells. The cells are mixed with an excess of non-labeled cells which do not express the antigen. This cell mixture is then incubated with the phage library, wherein phage which express the antibody bind to cells expressing the antigen. The presence of the excess non-labeled cells in the mixture serves as a means of removing bacteriophage which do not express the antibody but which might otherwise bind to antigen-expressing cells non-specifically. The details of the experimental procedures for practicing the present invention are provided herein in the experimental detail section.




Antigen-expressing cells having antibody-expressing phage bound thereto are magnetically removed from the mixture. One example of magnetic removal involves pouring the mixture of magnetic and non-magnetic cells into a column in the selective presence or absence of a magnetic field surrounding the column. Alternatively, magnetic cells may be separated from non-magnetic cells in solution by simply holding a magnet against the side of a test tube and attracting the cells to the inner wall and then carefully removing the non-magnetic cells from the solution.




Thus, the method of the invention involves a procedure for enriching a population of recombinant phage for those expressing specific phage-displayed ligands derived from natural or synthetic phage DNA libraries by simultaneously performing negative and positive selection against a mixture of magnetically-labeled receptor-positive particles (i.e., cells) and non-labeled receptor-negative particles.




The terms “bacteriophage” and “phage” are used interchangeably herein and refer to viruses which infect bacteria. By the use of the terms “bacteriophage library” or “phage library” as used herein, is meant a population of bacterial viruses comprising heterologous DNA, i.e., DNA which is not naturally encoded by the bacterial virus.




The term “virus vector” includes a virus into which heterologous DNA has been inserted. The virus vector may be a bacteriophage or may be a eukaryotic virus.




By the term “target cell” as used herein, is meant a cell which expresses an antigen against which the desired antibody is sought.




By the term “panning” or “panned” as used herein, is meant the process of selecting phage which encode the desired antibody.




By the term “Fab/phage” as used herein, is meant a phage particle which expresses the Fab portion of an antibody.




By the term “scFv/phage” are used herein, is meant a phage particle which expresses the Fv portion of an antibody as a single chain.




By “excess non-labeled cells” is meant an amount of non-labeled cells which exceeds the number of labeled cells. Preferably, the ratio of labeled cells to non-labeled cells is about 1:2. More preferably, the ratio of labeled cells to non-labeled cells is greater than about 1:4. Even more preferably, the ratio of labeled cells to non-labeled cells is greater than about 1:10.




While the method of the invention as exemplified herein describes the generation of phage which encode the Fab portion of an antibody molecule, the method should not be construed to be limited solely to the generation of phage encoding Fab antibodies. Rather, phage which encode single chain antibodies (scFV/phage antibody libraries) are also included in the invention. Fab molecules comprise the entire Ig light chain, that is, they comprise both the variable and constant region of the light chain, but include only the variable region and first constant region domain (CH1) of the heavy chain. Single chain antibody molecules comprise a single chain of protein comprising the Ig Fv fragment. An Ig Fv fragment includes only the variable regions of the heavy and light chains of the antibody, having no constant region contained therein. Phage libraries comprising scFV DNA may be generated following the procedures described in Marks et al., 1991


, J. Mol. Biol


. 222:581-597. Panning of phage so generated for the isolation of a desired antibody is conducted as described herein for phage libraries comprising Fab DNA.




The invention should also be construed to include synthetic phage display libraries in which the heavy and light chain variable regions may be synthesized such that they include nearly all possible specificities. Therefore, antibody-displaying libraries can be “natural” or “synthetic” (Barbas, 1995


, Nature Medicine


1:837-839; de Kruif et al. 1995


, J. Mol. Biol


. 248:97-105). Antibody-displaying libraries comprising “natural” antibodies are generated as described in the experimental example section. Antibody-displaying libraries comprising “synthetic” antibodies are generated following the procedure described in Barbas (1995, supra) and the references cited therein.




The method of the invention should be further construed to include generation of phage display libraries comprising phage other than M13 as exemplified herein. Other bacteriophage, such as lambda phage, may also be useful in the method of the invention. Lambda phage display libraries have been generated which display peptides encoded by heterologous DNA on their surface (Sternberg et al., 1995


, Proc. Natl. Acad. Sci. USA


92:1609-1613). Moreover, it is contemplated that the method of the invention may be extended to include viruses other than bacteriophage, such as eukaryotic viruses. In fact, eukaryotic viruses may be generated which encode genes suitable for delivery to a mammal and which encode and display an antibody capable of targeting a specific cell type or tissue into which the gene is to be delivered. For example, retroviral vectors have been generated which display functional antibody fragments (Russell et al., 1993


, Nucl. Acids Res


. 21:1081-1085).




The red blood cell antibodies to which antibodies may be generated include, but are not limited to, Rh antigens, including Rh(D), Rh(C), Rh(c), Rh(E), Rh(e), and other non-Rh antigens, including red blood cell antigens in the Kell, Duffy, Lutheran and Kidd blood groups.




Thus, the method of the invention is not limited solely to the isolation of DNA encoding anti-Rh(D) antibodies, but rather may be used for the isolation of DNA encoding antibodies directed against any RBC antigen or other cell antigen, such as, but not limited to, tumor-specific antigen, bacterial antigens, and the like. The method of the invention is also useful for typing platelets by generating phage antibodies specific for a number of clinically important platelet antigens, notably, P1


A1


/P1


A2


, Bak


a


/Bak


b


, Pen


A


/Pen


B


, and the like.




The invention is further useful for typing donor white blood cells for HLA antigens for the purposes of matching donors and recipients for potential transplant matching in the case of both solid (for example, kidney, heart, liver, lung) and non-solid (for example, bone marrow) organ or tissue transplanting.




To detect binding of phage expressing antibody directed against one of these non-red blood cell antigens, the non-red blood cells may be agglutinated or trapped following the procedures described herein for agglutination or trapping of red blood cells. Prior to agglutination or trapping, the cells may be rendered “visible” by staining or other labeling technique in order that agglutination or trapping is apparent to the naked eye or scanner.




The method of the invention is most useful for the generation of a protein which binds to an antigen-bearing moiety, where the antigen-bearing moiety is not easily purified in soluble form. Thus, the antigen-bearing moiety includes antigens which are associated with other structures, usually membranes in the cell such as cell membranes or cell organelle membranes.




In accordance with the present invention, the antigen-bearing moiety may be a protein, a lipid, a carbohydrate or a nucleic acid, or it may be a complex of at least two of a protein, a lipid, a carbohydrate and a nucleic acid, it being appreciated that many antigen-bearing moieties in cells are not comprised of one of these components alone. Preferably, the antigen-bearing moiety is a membrane bound protein, such as an antigen or a receptor protein. However, when the antigen-bearing moiety is a carbohydrate, it may be a carbohydrate expressed on a glycolipid, for example, a P blood group antigen or other antigen.




By the term “antigen-bearing moiety” as used herein, is meant a molecule to which an antibody binds.




By the term “antigen-binding protein” as used herein, is meant a polypeptide molecule, such a an antibody, a fragment thereof or an antibody fusion protein, which is capable of specifically binding to another molecule.




By the term “antibody fusion protein” as used herein, is meant a polypeptide molecule having an amino acid sequence which comprises the amino acid sequence of a portion of an antigen-binding protein. The portion of the antigen-binding protein may, for example, be an entire antibody or a fragment thereof.




The method of the invention is also useful for the generation of autoimmune antibodies such as those involved in autoimmune hemolytic anemia (AIHA) (Siegel et al., 1994


, Structural analysis of red cell autoantibodies


, Garratty (ed.)


Immunobiology of Transfusion Medicine


, Dekker, New York, N.Y.). Autoimmune antibodies that are directed against cell antigens which are cell surface membrane associated or cell organelle membrane associated may be isolated using the technology described herein. Autoimmune diseases and their associated antigens to which antibodies may be isolated include, but are not limited to the following: Myasthenia gravis (acetylcholine receptor; neurons), chronic inflammatory demyelinating polyneuropathy (myelin; neurons), autoimmune thyroid disease (thyroid stimulating hormone receptor; thyroid cells), primary biliary cirrhosis (mitochondrial autoantigens; liver mitochondria), idiopathic thrombocytopenic purpura (platelet membrane integrins; platelets), pemphigus vulgaris (epidermal antigens; epidermis), and Goodpasture's syndrome (basement membrane antigens; kidney or lung cells).




In fact, the method of the invention is useful for the isolation of DNA clones encoding any antibody directed against an antigen expressed on a cell, which cell can be labeled with a magnetic label and which cell can be obtained in sufficient quantities in an non-labeled form so as to provide an excess of non-labeled cells as required in the assay.




Further, the method of the invention is not limited to the isolation of DNA encoding antibodies but rather may also be used for the isolation of DNA encoding other peptides or proteins having specificity for cell proteins, such as, for example, but not limited to, ligands which bind cell receptor proteins, peptide hormones, and the like.




The invention should also not be construed as being limited to the use of biotin as the cell-labeling agent. Other labels may be used provided their addition to a cell does not disturb the structural integrity of any surface proteins expressed thereon and provided such labels permit the addition of a paramagnetic microbead or other magnetic substance thereto. Other such labels include, but are not limited to, cell surface proteins or carbohydrates which can be directly derivitized with magnetic beads that possess activated amine, carboxyl, or thiol groups. In addition, dyes such as fluorescein or rhodamine may also be covalently attached to cells in a manner similar to biotin and magnetic beads coated with anti-dye antibodies may be attached thereto.




The invention also includes a screening method which may be used to isolate a DNA encoding a multi-subunit protein which binds to an antigen-bearing moiety or, alternately, to isolate the multi-subunit protein itself. The multi-subunit protein may, for example, be an antibody or another immunoglobulin. It is well known that antibodies and other immunoglobulins comprise multiple subunits, often designated heavy and light chains.




According to this screening method, a phage display library is generated, either as described herein or using other generally known or hereafter-developed methods. The library comprises a plurality of virus vectors, including a first virus vector which comprises a first heterologous DNA encoding a subunit of the protein. The first virus vector expresses the subunit on its surface, either by itself or in association with one or more other subunits of the protein. The library also comprises a second virus vector which comprises a second heterologous DNA encoding a different subunit of the protein. The second virus vector expresses the different subunit on its surface, either by itself or in association with one or more other subunits of the protein. A magnetic label is added to cells bearing the antigen-bearing moiety on their surface, and the labeled cells are incubated with the phage display library in the presence of an excess of non-labeled cells which do not express the antigen-bearing moiety. The first and second virus vectors bind to the magnetically labeled cells, owing to interaction(s) between the antigen and the subunits of the protein expressed on the surface of the vectors.




After incubating the phage display library with the mixture of cells, magnetically labeled cells are isolated from the mixture. First and second virus vectors bound to the magnetically labeled cells are thereby also isolated from the mixture. The virus vectors are separated from the magnetically labeled cells (e.g. by culturing the cells in a manner in which the virus vectors are produced in the culture supernatant), and heterologous DNA is obtained from virus vectors that adhered to the magnetically labeled cells. The DNA may optionally be purified at this stage. DNA isolated from the virus vectors that adhered to the magnetically labeled cells includes the first heterologous DNA and the second heterologous DNA.




At least the portion of the first heterologous DNA encoding the subunit is ligated to at least the portion of the second heterologous DNA encoding the different subunit to form a hybrid heterologous DNA. For this purpose, it is advantageous that the virus vector be constructed in such a way that the portion of the first heterologous DNA encoding the subunit, the portion of the second heterologous DNA encoding the different subunit, or both, are flanked or surrounded by defined restriction endonuclease cleavage sites. In such constructs, the portion of the first heterologous DNA encoding the subunit may be removed, for example, by treating the first heterologous DNA with restriction endonucleases which specifically cleave the specific sites. This portion may then be ligated, for example either directly or after ligating a linker DNA thereto, to all or a portion of the second heterologous DNA to generate the hybrid heterologous DNA.




The hybrid heterologous DNA is then used to generate a hybrid virus vector comprising the hybrid heterologous DNA. The hybrid virus vector expresses the subunit and the different subunit of the protein on its surface. For example, if the first heterologous DNA encodes an antibody light chain and the second heterologous DNA encodes an antibody heavy chain, then the hybrid virus vector may express an antibody comprising equal numbers of heavy and light chains on its surface.




The hybrid virus vector is then incubated with the mixture of magnetically labeled cells having the antigen-bearing moiety on their surface and non-magnetically labeled cells which do not have the antigen-bearing moiety on their surface. Owing to interactions between the antigen and the subunits of the protein expressed on the surface of the hybrid virus vector, the hybrid virus vector binds with the magnetically labeled cells, and may therefore be isolated from the mixture of cells by isolating magnetically labeled cells from the mixture.




As described herein, hybrid virus vector particles are isolated from the magnetically labeled cells. The isolated hybrid virus vectors may be used as a source for obtaining either the multi-subunit protein or the hybrid heterologous DNA (which encodes the subunits of the protein), using standard methods.




The invention includes proteins and DNA encoding the same which are generated using the methods described herein. To isolate DNA encoding an antibody, for example, DNA is extracted from antibody expressing phage obtained according to the methods of the invention. Such extraction techniques are well known in the art and are described, for example, in Sambrook et al. (supra).




The invention includes a number of isolated or substantially purified DNAs encoding antigen-binding proteins, such as Rh(D)-binding proteins. For example, a DNA having a nucleotide sequence comprising at least one of SEQ ID NOs: 70-138 and 182-224, as described herein, is included. The isolated or substantially purified nucleic acid may have a nucleotide sequence selected from the group consisting of SEQ ID NOs: 70-138 and 182-224.




An “isolated DNA”, as used herein, refers to a DNA sequence, segment, or fragment which has been purified from the sequences which flank it in a naturally occurring state, e.g., a DNA fragment which has been removed from the sequences which are normally adjacent to the fragment, e.g., the sequences adjacent to the fragment in a genome in which it naturally occurs. The term also applies to DNA which has been substantially purified from other components which naturally accompany the DNA, e.g., RNA or DNA or proteins which naturally accompany it in the cell.




The invention also includes a number of isolated or substantially purified proteins, such as Rh(D)-binding proteins. For example, a protein having an amino acid sequence comprising at least one of SEQ ID NOs: 1-69 and 139-181, as described herein, is included. The isolated or substantially purified protein may have an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-69 and 139-181. The protein may be an antigen-binding protein, such as an antibody which comprises a heavy chain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-28 and 139-153, a light chain having an amino acid sequence selected from the group consisting of SEQ ID NOs 29-69 and 154-181, or both. The protein may also be, for example, an antibody fusion protein.




An “isolated protein” as used herein, means a protein or polypeptide which has been separated from components which naturally accompany it in a cell. Typically, a protein or polypeptide is isolated when at least 10%, more preferably at least 20%, more preferably at least 50% of the total material (by volume, by wet or dry weight, or by mole percent or mole fraction) in a sample is the protein or polypeptide of interest.




The invention should also be construed to include DNAs which are substantially homologous to the DNA isolated according to the method of the invention. Preferably, DNA which is substantially homologous is about 50% homologous, more preferably about 70% homologous, even more preferably about 80% homologous and most preferably about 90% homologous to DNA obtained using the method of the invention.




“Homologous” as used herein, refers to the subunit sequence similarity between two polymeric molecules, e.g., between two nucleic acid molecules, e.g., two DNA molecules or two RNA molecules, or between two polypeptide molecules. When a subunit position in both of the two molecules is occupied by the same monomeric subunit, e.g., if a position in each of two DNA molecules is occupied by adenine, then they are homologous at that position. The homology between two sequences is a direct function of the number of matching or homologous positions, e.g., if half (e.g., five positions in a polymer ten subunits in length) of the positions in two compound sequences are homologous then the two sequences are 50% homologous, if 90% of the positions, e.g, 9 of 10, are matched or homologous, the two sequences share 90% homology. By way of example, the DNA sequences 3′ATTGCC 5′ and 3′TATGCG 5′ share 50% homology.




To obtain a substantially pure preparation of a protein comprising, for example, an antibody, generated using the methods of the invention, the protein may be extracted from the surface of the phage on which it is expressed. The procedures for such extraction are well known to those in the art of protein purification. Alternatively, a substantially pure preparation of a protein comprising, for example, an antibody, may be obtained by cloning an isolated DNA encoding the antibody into an expression vector and expressing the protein therefrom. Protein so expressed may be obtained using ordinary protein purification procedures well known in the art.




As used herein, the term “substantially pure” describes a compound, e.g., a protein or polypeptide which has been separated from components which naturally accompany it. Typically, a compound is substantially pure when at least 10%, more preferably at least 20%, more preferably at least 50%, more preferably at least 60%, more preferably at least 75%, more preferably at least 90%, and most preferably at least 99% of the total material (by volume, by wet or dry weight, or by mole percent or mole fraction) in a sample is the compound of interest. Purity can be measured by any appropriate method, e.g., in the case of polypeptides by column chromatography, gel electrophoresis or HPLC analysis. A compound, e.g., a protein, is also substantially purified when it is essentially free of naturally associated components or when it is separated from the native contaminants which accompany it in its natural state.




As used herein, amino acids are represented by the full name thereof, by the three letter code corresponding thereto, or by the one-letter code corresponding thereto, as indicated in the following table:




















Full Name




Three-Letter Code




One-Letter Code













Aspartic Acid




Asp




D







Glutamic Acid




Glu




E







Lysine




Lys




K







Arginine




Arg




R







Histidine




His




H







Tyrosine




Tyr




Y







Cysteine




Cys




C







Asparagine




Asn




N







Glutamine




Gln




Q







Serine




Ser




S







Threonine




Thr




T







Glycine




Gly




G







Alanine




Ala




A







Valine




Val




V







Leucine




Leu




L







Isoleucine




Ile




I







Methionine




Met




M







Proline




Pro




P







Phenylalanine




Phe




F







Tryptophan




Trp




W















The present invention also provides for analogs of proteins or peptides obtained according to the methods of the invention. Analogs can differ from naturally occurring proteins or peptides by conservative amino acid sequence differences or by modifications which do not affect sequence, or by both.




For example, conservative amino acid changes may be made, which although they alter the primary sequence of the protein or peptide, do not normally alter its function. Conservative amino acid substitutions typically include substitutions within the following groups:




glycine, alanine;




valine, isoleucine, leucine;




aspartic acid, glutamic acid;




asparagine, glutamine;




serine, threonine;




lysine, arginine;




phenylalanine, tyrosine.




Modifications (which do not normally alter primary sequence) include in vivo, or in vitro chemical derivatization of polypeptides, e.g., acetylation, or carboxylation. Also included are modifications of glycosylation, e.g., those made by modifying the glycosylation patterns of a polypeptide during its synthesis and processing or in further processing steps; e.g., by exposing the polypeptide to enzymes which affect glycosylation, e.g., mammalian glycosylating or deglycosylating enzymes. Also embraced are sequences which have phosphorylated amino acid residues, e.g., phosphotyrosine, phosphoserine, or phosphothreonine.




Also included in the invention are polypeptides which have been modified using ordinary molecular biological techniques so as to improve their resistance to proteolytic degradation or to optimize solubility properties. Analogs of such polypeptides include those containing residues other than naturally occurring L-amino acids, e.g., D-amino acids or non-naturally occurring synthetic amino acids. The peptides of the invention are not limited to products of any of the specific exemplary processes listed herein.




In addition to substantially full length polypeptides, the present invention provides for active fragments of the polypeptides. A specific polypeptide is considered to be active if it binds to an antigen-bearing moiety, for example, if a fragment of an antibody binds to its corresponding antigen in the same manner as the full length protein.




As used herein, the term “fragment,” as applied to a polypeptide, will ordinarily be at least about fifty contiguous amino acids, typically at least about one hundred contiguous amino acids, more typically at least about two hundred continuous amino acids and usually at least about three hundred contiguous amino acids in length.




The invention is further described in detail by reference to the following experimental examples. These examples are provided for purposes of illustration only, and are not intended to be limiting unless otherwise specified. Thus, the invention should in no way be construed as being limited to the following examples, but rather, should be construed to encompass any and all variations which become evident as a result of the teaching provided herein.




EXAMPLE 1




Isolation of Cell Surface-Specific Human Monoclonal Antibodies Using Phage Display and Magnetically-Activated Cell Sorting




The experiments described in this Example provide procedures and results for the isolation and production of anti-Rh(D) red blood cell antibodies using Fab/phage display.




A method is described in

FIG. 1

for the isolation of filamentous phage-displayed human monoclonal antibodies specific for non-purifiable cell surface expressed molecules. To optimize the capture of antigen-specific phage and minimize the binding of irrelevant phage antibodies, a simultaneous positive and negative selection strategy was employed. Cells bearing the antigen of interest are pre-coated with magnetic beads and are diluted into an excess of unmodified antigen-negative cells. Following incubation of the cell admixture with a Fab/phage library, the antigen positive cell population is retrieved using magnetically-activated cell sorting, and antigen-specific Fab/phage are eluted and propagated in bacterial culture. When this protocol was used with magnetically-labeled (Rh(D)-positive and excess non-labeled Rh(D)-negative human red blood cells and a Fab/phage library constructed from human peripheral blood lymphocytes, dozens of unique, clinically useful


γ1


κ and


γ1


λ anti-Rh(D) antibodies were isolated from a single alloimmunized individual.




The cell-surface selection method of the present invention is readily adaptable for use in other systems, such as for the identification of putative tumor-specific antigens, and provides a rapid (less than one month), high yield approach for isolating self-replicative antibody reagents directed at novel or conformationally-dependent cell-surface epitopes.




Creation of Fab/phage Display Libraries




Separate


γ1


κ and


γ1


λ phage libraries were constructed from 2×10


7


mononuclear cells derived from the peripheral blood from an Rh(D)-negative individual previously hyperimmunized with Rh(D)-positive red blood cells (RBCs). The phagemid vector pComb3 (Barbas, 1991, Proc. Natl. Acad. Sci. USA 88:7978-7982) was used to create the libraries utilizing previously published methods (Barbas et al., 1991, Combinatorial immunoglobulin libraries on the surface of phage (Phabs): Rapid selection of antigen-specific Fabs. Methods: A Companion to Methods in Enzymology 2:119-124; Siegel et al., 1994, Blood 83:2334-2344).




Briefly, cDNA was prepared from the mRNA of the donor cells and heavy chain and light chain immunoglobulin (Ig) cDNA segments were amplified using the polymerase chain reaction (PCR) and the battery of human Ig primers described by Kang et al. (1991, “Combinatorial Immunoglobulin Libraries on the Surface of Phage (Phabs): Rapid Selection of Antigen-Specific Fabs. Methods: A Companion to Methods” in Enzymology 2:111-118) supplemented by those of Silverman et al. (1995, J. Clin. Invest. 96:417-426). The heavy and light chain PCR products were cloned into pComb3 and electroporated into


E. coli


. Upon co-infection with VCSM13 helper phage (Stratagene, La Jolla, Calif.), Ig DNA was packaged into filamentous phage particles which express human Fab molecules fused to the gene III bacteriophage coat protein.




Panning Fab Phage Display Libraries for Anti-Rh(D) Clones




Rh(D)-positive RBCs were cell-surfaced biotinylated by incubating cells at a hematocrit of 10% with 500 μg/ml sulfo-NHS-LC-biotin (Pierce Chemical, Rockford, Ill.) for 40 minutes at room temperature (RT). Following 5 washes with phosphate-buffered saline (PBS), 8×10


6


biotinylated Rh(D)-positive RBCs were incubated with 10 μl of streptavidin-coated paramagnetic microbeads (MACS Streptavidin Microbeads, Mitenyi Biotec, Sunnyvale, Calif.) for 1 hour at RT in a total volume of 100 μl PBS. Non-reacted beads were removed by washing and then the magnetic bead-coated, Rh(D)-positive RBCs were mixed with a 10-fold excess (8×10


7


) of the Rh(D)-negative (unmodified) RBCs and ˜3×10


11


colony-forming units (cfu) of either the


γ1


κ and


γ1


λ Fab/phage libraries (prepared as described above) in a final volume of 40 μl PBS containing 2% non-fat dry milk (MPBS, Carnation, Nestle Food Products, Glendale, Calif.).




Following a 2 hour incubation at 37° C., the RBC/phage suspension was loaded at a flow rate of 10 μl/minute onto a MiniMACS magnetic type MS column (Mitenyi Biotec, Sunnyvale, Calif.) that was pre-equilibrated with 2% MPBS. This loading step was performed without a magnetic field around the column so as to prevent magnetic bead-coated RBCs from instantly adhering to the very top of the column, clogging it, and causing the trapping of Rh(D)negative non-biotinylated RBCs. Loading the RBC/phage incubation mixture in the absence of a magnetic field causes the antigen-negative and antigen-positive RBCs to distribute evenly throughout the column without running off since the excluded volume of the column is slightly greater than 40 μl. Once loaded, the column was placed in a magnetic field (MiniMACS magnetic separation unit, Mitenyi Biotec, Sunnyvale, Calif.) for 2 minutes to allow the Rh(D)-positive RBCs to adhere, and a series of 500 μl washes were performed with ice-cold MPBS followed by a final wash with PBS. A total of 3 washes were performed for the first 2 rounds of panning and a total of 6 washes were performed for all subsequent pannings. For each panning, the first wash was carried out at a flow rate of 10 μl/minute during which time the bulk of Rh(D)-negative RBCs washed off the column. All subsequent washes were performed at 200 μl/minute. Following the last wash, the column was removed from the magnetic field and the bead-coated/phage-coated Rh(D)-positive RBCs were flushed off the column with 500 μl PBS using the plunger from a 5 cc syringe (Becton-Dickinson, Franklin Lakes, N.J.).




The RBCs were immediately centrifuged for 5 seconds at 13,000×g and were then resuspended in 200 μl of 76 mM citrate, pH 2.4, to denature the Rh(D) antigen and elute bound phage. Following a 10 minute incubation period at RT with intermittent vortexing, the phage eluate and cellular debris were neutralized with 18 μl 2 M Tris base and were added to 10 ml of O.D.=1.0 XL1-Blue strain of


E. coli


(Stratagene, La Jolla, Calif.) grown in super broth (SB) (Barbas et al., 1991, supra) supplemented with 10 μg/ml tetracycline. After incubation for 15 minutes at RT, during which time the phage library enriched for Rh(D) binders was allowed to infect the bacterial culture, 10 ml of pre-warmed, 37° C. SB containing 40 μg/ml carbenicillin/10 μg/ml tetracycline was added to give final antibiotic concentrations of 20 μg/ml and 10 μg/ml, respectively. A small aliquot of culture (˜100 μl) was immediately removed and titered on Luria broth/carbenicillin plates to determine the number of phage contained in the total eluate. The balance of the culture was shaken at 37° C. for 1 hour at 300 RPM. Additional antibiotics, additional SB, and VCSM13 helper phage were subsequently added and the culture was grown overnight at 30° C. as described (Siegel et al., 1994, supra).




Phagemid particles were purified from the culture supernatant by polyethylene glycol 8000 (PEG) precipitation (Barbas et al., 1991, supra), resuspended in 1% bovine serum albumin (BSA)/PBS, and dialyzed overnight to remove residual PEG that may lyse RBCs during subsequent rounds of panning. Thus, the resultant phage preparation serves as the input for the next round of panning. The


γ1


κ and


γ1


λ phage libraries were panned separately to prevent any bias in light chain isotype replication possibly introduced by bacterial amplification.




Screening Polyclonal Fab/Phage Libraries and Individual Phage Colonies for Anti-Rh(D) Reactivity




The specificity of Fab/phage for the Rh(D) antigen was assessed using anti-M13 antibody as a bridging antibody to induce agglutination between RBCs that have bound anti-Rh(D) Fab/phage. One hundred μl aliquots of polyclonal Fab/phage from rounds of panning, or monoclonal Fab/phage derived from individual Fab/phage eluate clones, were incubated with 50 μl of a 3% suspension of RBCs of defined phenotype (i.e., Rh(D)-negative or -positive).




Following 1 hour incubation at 37° C., the RBCS were washed 3 times with 2 ml cold PBS to remove unbound Fab/phage. The resultant RBC pellets were resuspended in 100 μl of a 10 μg/ml solution of sheep anti-M13 antibody (5-Prime 3-Prime, Boulder, Col.) and transferred to the round-bottomed wells of a 96-well microtiter plate. Plates were left undisturbed (˜2 hours) and were then read. Wells having a negative reaction exhibit sharp ˜2 millimeter diameter RBC spots whereas in wells having positive reactions, i.e., agglutination, the RBCs in agglutinated wells form a thin carpet coating the entire floor of the well.




For hemagglutination assays utilizing mini-column gel cards (ID-Micro-Typing System, Ortho Diagnostics, Raritan, N.J.) (Lapierre et al., 1990, Transfusion 30:109-113), 25 μl of Fab/phage clones were mixed with 50 μl aliquots of RBCs (0.8% suspensions in Micro Typing System buffer, Ortho Diagnostics). The mixtures were placed in the reservoirs above the mini-columns which contain dextran-acrylamide beads previously suspended in 100 μl/ml anti-M13 antibody. After incubation at 37° C., the gel cards were centrifuged at 70×g for 10 minutes and were read.




Miscellaneous Methods




Preparation of fluorescently-labeled RBCs for flow cytometry was performed as described herein and samples were analyzed using a FACScan microfluorimeter equipped with Lysis II (Ver 1.1) software (Becton-Dickinson, Mountain View, Calif.). Plasmid DNA was prepared from bacterial clones (Qiawell Plus, Qiagen, Chatsworth, Calif.). Double-stranded DNA was sequenced using light chain or heavy chain Ig constant region reverse primers or unique pComb3 vector primers that anneal 5-prime to the respective Ig chain (Barbas et al., 1991, supra; Roben et al., 1995, J. Immunol. 154:6437-6445) and automated fluorescence sequencing (Applied Biosystems, Foster City, Calif.). Sequences were analyzed using MacVector Version 5.0 sequencing software (Oxford Molecular Group, Oxford, UK) and the Tomlinson database of Ig germline genes (Tomlinson et al., 1996, V Base Sequence Directory. MRC Center for Protein Engineering, Cambridge, UK).




Experimental Design for Cell Incubation and Separation Protocols




The experimental conditions described above for panning Fab/phage libraries for anti-RBC-reactive phage were determined after performing a series of initial studies aimed at optimizing the cell separation process and ultimate yield of antigen-specific Fab/phage. The main parameters investigated included:




Biotinylation Conditions were sought that would biotinylate the RBC surface in a manner such that a sufficient number of streptavidin-coated magnetic beads would bind to the cells causing the RBCs to be retained by a magnetic column. In this case, over-biotinylation that might destroy the antigenicity of the Rh(D) antigen or might make the cells non-specifically absorb antibody is to be avoided. To address this issue, Rh(D)-positive/Kell-negative RBCs (Kell being a RBC antigen; (Walker, ed. 1993, In:


Technical Manual


, 11


th


Ed., Bethesda, Md., American Association of Blood Banks) were incubated with a range of sulfo-NHS-LC-biotin concentrations and the degree of biotinylation was assessed by flow cytometry utilizing fluorescein-conjugated streptavidin.




To assess the degree of cell-surface biotinylation, 5 μl aliquots of 3% suspensions of Rh(D)-positive/Kell-negative RBCs biotinylated at varying biotin reagent concentrations were incubated with 200 μl of a 1/100 dilution of FITC-streptavidin (Jackson ImmunoResearch, Bar Harbor, Maine) for 30 min at 4° C. (FIG.


2


). The mixture was washed with phosphate buffered saline (PBS) and analyzed by flow microfluorimetry (-□-). Aliquots of cells were also analyzed for retention of Rh(D)-antigenicity (-Δ-) (i.e., specific staining) or for lack of non-specific staining (-◯-) by incubating the cells with 100 μl of either anti-Rh(D) or anti-Kell typing sera, respectively, washing the cells and then staining them with a 1/100 dilution of FITC-goat anti-human IgG (Jackson ImmunoResearch).




A linear, non-saturating response was observed (FIG.


2


). Retention of Rh(D) antigenicity was assessed using anti-Rh(D) typing serum and was found to be unaffected by the derivatization of cell-surface proteins with biotin at all biotin concentrations tested (FIG.


2


). Furthermore, the Kell-negative RBCs did not non-specifically adsorb anti-Kell antibodies.




Each biotinylated RBC sample was then incubated with an excess of streptavidin-coated magnetic microbeads and applied to a magnetic separation column. It was determined that as many as 10


8


RBCs could be retained by the column for RBC samples biotinylated with greater than or equal to 500 μg/ml biotin reagent. Since the actual RBC/phage panning experiments were designed to use only ˜10


7


Rh(D)-positive cells (see below), RBC biotinylation at 500 μg/ml was determined to be sufficient.




Concentration of Rh(D)-Positive and Rh(D)-Negative RBCs in Incubation Mixture




Prior to performing Fab/phage panning experiments, the ability of the magnetically-activated cell separation technique to separate Rh(D)-positive and Rh(D)-negative cells was assessed using anti-Rh(D) typing serum and flow cytometry (FIG.


3


). Streptavidin-microbead coated, biotinylated Rh(D)-positive RBCs (8×10


6


cells) were mixed with a 10-fold excess of Rh(D)-negative non-coated RBCs (8×10


7


cells) in a 40 μl volume of PBS containing 2% non-fat dry milk (MPBS) and the mixture was applied to a MiniMACS column. The column was washed and the bound cells were eluted as described herein. Aliquots of RBCs contained in the original admixture (panel a), the column wash (panel b), and the column eluate (panel c) were stained with anti-Rh(D) typing serum and FITC-goat anti-human IgG as described in FIG.


2


. The flow cytograms show that although ˜90% of the cells in the column load were Rh(D)-negative (panel a), nearly all of them washed off of the column (panel b), yielding a column eluate that was almost entirely Rh(D)-positive cells (panel c). Since only ˜6% of the final eluate comprise Rh(D)-negative cells (panel c), and Rh(D)-negative cells were initially present in a 10-fold excess to Rh(D)-positive cells, only ˜0.6% of the initial antigen-negative immunosorbent cells contaminated the final antigen-positive preparation. This efficiency of the cell separation was deemed adequate for subsequent panning experiments with Fab/phage.




In the above-described experiment, to avoid clogging the magnetic separation column, it was necessary to load the column in the absence of a magnetic field. This necessitated a reaction volume of less than or equal to 40 μl so that none of the material would run off the column. On theoretical grounds (Kretzschmar et al., 1995, Anal. Biochem. 224:413-419), one can calculate the appropriate concentration of cells required in a 40 μl volume to capture greater than 50% of Fab/phage specific for a given cell surface antigen. Such a calculation is a function of the number of antigen sites per cell and the dissociation constant (K


D


) of the bound Fab/phage. Using a value of ˜100,000 Rh(D) antigen sites per RBC (phenotype “—D—/—D—”) (Mollison et al., 1993, In:


Blood Transfusion in Clinical Medicine


, Oxford, Blackwell Scientific Publications) and the desired Fab/phage affinity in the K


D


=10


−8


to 10


−9


M range, then 8×10


6


Rh(D)-positive RBCs in a 40 μl reaction volume would be required. Given this number of Rh(D)-positive cells, a 10-fold excess of Rh(D)-negative RBCs was found to be the maximum amount of antigen-negative cells that could be effectively separated from antigen-positive RBCs by the magnetic column (FIG.


3


).




Construction and Panning of Fab/phage Libraries






γ1


κ and


γ1


λ phage libraries were prepared as described herein and were found to contain 7×10


7


and 3×10


8


independent transformants, respectively. Table 1 tabulates the panning results for the libraries.




An RBC agglutination assay utilizing anti-M13 secondary antibody as bridging antibody was used to detect anti-Rh(D) Fab/phage activity in the panned polyclonal libraries and the individual randomly-picked Fab/phage clones (FIG.


4


). The results shown are a representative example of the assay depicting negative reactivity to Rh(D)-negative RBCs and strongly positive reactivity to Rh(D)-positive RBCs for the


γ1


κ library (panning #2) out to a dilution of 1/2048.




In the case of the


γ1


κ library, significant enrichment for binding phage appears to occur after only one round of panning, whereas significant enrichment for the


γ1


λ library occurs during the second round. This is reflected by both the sharp increase in the percent of phage bound during a given round of panning as well as the ability of the polyclonal


γ1


κ and


γ1


λ Fab/phage libraries to agglutinate Rh(D)-positive RBCs after 1 and 2 rounds of panning, respectively (Table 1, FIG.


4


).




Monoclonal Fab/phage were prepared from randomly-picked individual bacterial colonies obtained during each round of panning. It was apparent that by the third round of panning, all clones have anti-Rh(D) specificity (Table 1). To confirm that these Fab/phage have anti-Rh(D) specificity and are not binding to other unrelated antigens that may coincidentally be present on the particular Rh(D)-positive RBC and absent on the particular Rh(D)-negative RBC used in the agglutination assays, clones were screened against a panel of 11 Rh(D)-negative and-positive RBCs of varying blood group specificities to verify their anti-Rh(D) specificity (Walker, 1993, supra).




Clonal Analysis at the Genetic Level




To investigate the genetic diversity among the randomly picked anti-Rh(D) clones, plasmid DNA was prepared from each of the clones and the corresponding heavy and light chain Ig nucleotide sequences were identified. In Table 2 there is listed a number of attributes for each clone including the name of the most closely-related germline heavy or light chain Ig gene. More detailed analysis at the nucleotide level revealed that among all of the anti-Rh(D) binding clones, there were a large number of unique heavy and light chain DNA sequences (Table 3). Because of the random shuffling of heavy and light chain gene segments which occurs during the creation of a Fab/phage display library (Barbas et al., 1991, supra), it is evident that these heavy chains and light chains combined to form nearly 50 different anti-Rh(D) antibodies.




A detailed multiple alignment analysis of the predicted amino acid sequences revealed a total of twenty-five unique heavy chain, eighteen unique kappa light chain and twenty-three unique lambda light chain proteins. Due to the combinatorial effect during library construction, these heavy and light chain gene segments paired to produce fifty unique Fab antibodies (20


γ1κ


and 30


γ1λ


). Of interest, all twenty five unique heavy chains and nearly all of the eighteen unique kappa light chains were derived from only 5V


H


III or four VκI germline genes, respectively, while the lambda light chains were derived from a more diverse set of germline genes. Analysis of heavy and light chain nucleotide sequences from over sixty negative clones from the non-panned libraries were performed to verify the heterogeneity in variable region family representation before selection. Clones representing V


H


families I (13%), III (36%), IV (31%), V(15%) and VI (5%); Vκ families I (43%), II (14%), III (29%) and IV (14%); and Vγ families I (48%), II (4%), III (9%), IV (4%), V (9%), VI (17%) and VII (9%) were present.




Clonal Analysis at the Protein Level




To investigate the diversity in fine specificity (Rh(D) antigen epitope specificity) among the anti-Rh(D) clones, agglutination experiments were performed with selected clones and with sets of rare Rh(D)-positive RBCs which were obtained from individuals whose RBCs produce Rh(D) antigen lacking certain epitopes. Examining the pattern of agglutination of a particular anti-Rh(D) antibody with such sets of mutant RBCs enables the identification of the specific epitope on Rh(D) to which the antibody is directed (Mollison et al., 1993, supra). A representative example of such an experiment is shown in FIG.


5


and the Rh(D) epitopes for selected anti-Rh(D) Fab/phage clones are tabulated in Table 2.




Agglutination experiments were performed with anti-Rh(D)-negative RBCs (rr), Rh(D)-positive RBCs (R


2


R


2


), and “partial” Rh(D)-positive RBCs (mosaics IIIa, IVa, Va, VI, VII). The results shown are a representative example of the assay for 5 randomly-picked anti-Rh(D) Fab/phage clones (FIG.


5


).












TABLE 1a













γ1


κFAB/PHAGE LIBRARY PANNING RESULTS






















AGGLU








φINPUT




φOUTPUT




% BOUND


4







T




BINDERS/






PANNING


1






(CFUs)


2






(CFUs)


3






(× 10


−4


)




ENRICHMENT


5






TITER


6






TOTAL (%)


7






















0








0




0/16 (0)






1




2.94 × 10


11






6.04 × 10


5






2.1





1/16 




0/16 (0)






2




2.15 × 10


11






1.68 × 10


7






78.3




38.0 x




1/2048




15/15 (100)






3




1.72 × 10


11






1.44 × 10


8






840.0




10.7 x




1/2048




12/12 (100)






















TABLE 1a













γ1


κFAB/PHAGE LIBRARY PANNING RESULTS






















AGGLU








φINPUT




φOUTPUT




% BOUND


4







T




BINDERS/






PANNING


1






(CFUs)


2






(CFUs)


3






(× 10


−4


)




ENRICHMENT


5






TITER


6






TOTAL (%)


7






















0








0




0/16 (0)






1




2.94 × 10


11






6.04 × 10


5






2.1





1/16 




0/16 (0)






2




2.15 × 10


11






1.68 × 10


7






78.3




38.0 x




1/2048




15/15 (100)






3




1.72 × 10


11






1.44 × 10


8






840.0




10.7 x




1/2048




12/12 (100)






















TABLE 2a











ANALYSIS OF


γ1


κFAB/PHAGE CLONES


















AGGL




VH





V


κ










CLONE


1






U


2






FAM


3






VH GENE


4






FAM


5






V


ρ


GENE


6






D EPITOPE


7






















KPO-1




neg




3




DP-47/V3-23




4




DPK24/VklVKlobeck







KPO-2




neg




3




DP-31/V3-9P




3




DPK22/A27






KPO-3




neg




3




DP-58/hv3d1EG




4




DPK24/VklVKlobeck






KPO-4




neg




4




3d279d+









no light chain






KPO-5




neg




3




DP-29/12-2




1




LFVK431






KPO-6




neg




4




DP-79/4d154




1




DPK9/012






KPO-7




neg




3




V3-48/hv3d1




4




DPK24/VklVKlobeck






KPO-8




neg




4




DP-70/4d68




2




DPK18/A17






KPO-9




neg




1




DP-14/V1-18




1




DPK9/012






KPO-10




neg




4




DP-70/4d68




1




DPK9/012






KPO-11




neg




5




DP-73/V5-51




1




DPK9/012






KPO-12




neg




3




DP-54/V3-7




2




DPK18/A17






KPO-13




neg




3




V3-48/hv3d1




1




Vb′






KPO-14




neg




6




DP-74/VH-VI




1




DPK6/Vb″






KPO-15




neg




3




DP-46/3d216




3




Vg/38K






KPO-16




neg




6




DP-74/VH-VI




1




DPK9/012






KP1-1




neg




4




V71-4+




3




DPK22/A27






KP1-2




neg




4




3d279d+




1




DPK8/Vd+






KP1-3




neg




1




4M28




1




DPK9/012






KP1-4




neg




4




DP-79/4d154




3




Vg/38K






KP1-5




neg




3




DP-38/9-1




3




DPK22/A27






KP1-6




neg




4




DP-70/4d68




1




L12a/PCRdil6-5






KP1-7




neg




5




DP-73/V5-51




2




DPK15/A19






KP1-8




neg




4




DP-70/4d68




3




DPK22/A27






KP1-9




neg









no heavy chain









no light chain






KP1-10




neg









no heavy chain




3




DPK22/A27






KP1-11




neg




1




DP-15/V1-8+




1




DPK9/012






KP1-12




neg




3




b28e









no light chain






KP1-13




neg




3




DP-47/V3-23




4




DPK24/VklVKlobeck






KP1-14




neg




3




DP-31/V3-9P




3




DPK21/humkv328h5






KP1-15




neg




1




DP-7/21-2




4




DPK24/VklVKlobeck






KP1-16




neg




5




DP-73/V51




3




DPK22/A27






KP2-1




pos




3




DP-50/hv3019b9




1




DPK9/012




epD6/7






KP2-2




pos




3




DP-50/hv3019b9




1




DPK9/012




epD6/7






KP2-3




pos




3




DP-50/hv3019b9




1




DPK9/012




epD6/7






KP2-4




pos




3




b28m




1




DPK9/012




epD2






KP2-5




pos




3




b28m




1




DPK9/012




epD1






KP2-6




pos




3




DP-50/hv3019b9




1




DPK9/012




epD6/7






KP2-7




pos




3




DP-50/hv3019b9




1




DPK9/012




epD5






KP2-8




pos




3




DP-50/hv3019b9




1




DPK9/012






KP2-9




pos




3




DP-50/hv3019b9




1




DPK9/012




epD2






KP2-10




pos




3




DP-50/hv3019b9




1




DPK9/012




epD2






KP2-11




pos




3




DP-50/hv3019b9




1




DPK9/012




epD2






KP2-12




pos




3




DP-50/hv3019b9




1




DPK9/012




epD1






KP2-13




pos




3




DP-50/hv3019b9




1




DPK9/012




epD6/7






KP2-14




pos




3




DP-50/hv3019b9




2




DPK15/A19




epD2






KP2-15




pos




3




DP-50/hv3019b9




1




DPK9/012




epD6/7






KP3-1




pos




3




DP-50/hv3019b9




1




DPK9/012






KP3-2




pos




3




DP-50/hv3019b9




1




DPK9/012




epD6/7






KP3-3




pos




3




DP-50/hv3019b9




1




DPK9/012






KP3-4




pos




3




DP-49/1.9111




1




DPK9/012




epD5






KP3-5




pos




3




DP-50/hv3019b9




1




DPK9/012






KP3-6




pos




3




DP-50/hv3019b9




1




A30/SG3+




epD6/7






KP3-7




pos




3




DP-50/hv3019b9




1




DPK8/Vd+




epD6/7






KP3-8




pos




3




DP-50/hv3019b9




1




DPK9/012




epD6/7






KP3-9




pos




3




DP-50/hv3019b9




1




DPK9/012






KP3-10




pos




3




DP-50/hv3019b9




1




DPK9/012






KP3-11




pos




3




DP-50/hv3019b9




1




DPK9/012






KP3-12




pos




3




DP-46/3d216




1




DPK9/012













1


nomenclature: prefix “KPO” denotes “


γ1


κFab/phage library, panning 0”, “KP1” denotes “


γ1


κFab/phage library, panning 1”, etc.












2


agglutination negative or positive against Rh(D)-positive RBC












3


Ig heavy chain variable region gene family per Tomlinson et al., supra












4


closest related Ig heavy chain variable region gene per Tomlinson et al. supra












5


Ig light chain variable region gene family per Tomlinson et al., supra












6


closest related Ig light chain variable region gene per Tomlinson et al., supra












7


Rh(D) epitope as defined by rare RBC agglutination pattern (see FIG. 5 and text)





















TABLE 2b











ANALYSIS OF


τ1


ρFAB/PHAGE CLONES



















VH





V


ρ










CLONE


1






U


2






FAM


3






VH GENE


4






FAM


5






V


κ


GENE


6






D EPITOPE


7






















LPO-1




neg




4




DP-65/3d75d




1




DPL7/IGLV1S2







LPO-4




neg




4




DP-70/4d68




6




IGLV8A1






LPO-3




neg




6




DP-74/VH-VI




7




DPL18/VL7.1






LPO-4




neg




3




DP-29/12-2




1




DPL3/Iv122






LPO-5




neg




3




DP-38/9-1




6




IGLV6S1/LV6SW-G






LPO-6




neg




1




4M28




1




DPL3/Iv122






LPO-7




neg




1




8M27




1




DPL2/Iv1L1






LPO-8




neg




5




DP-58/V5-51




6




IGLV6S1/LV6SW-G






LPO-9




neg




5




DP-73/V5-51




1




DPL7/1GLV1S2






LPO-10




neg




3




DP-38/9-1




1




DPL2/Iv1L1






LPO-11




neg




3




DP-31/V3-9P




3




DPL23/VLIII.1






LPO-12




neg









no heavy chain




1




DPL7/1GLV1S2






LPO-13




neg




3




DP-47/V3-23









no light chain






LPO-14




neg




4




DP-71/3d197d




6




IGLV6S1/LV6SW-G






LPO-15




neg




4




DP-70/4d68




4




IGLV8A1






LPO-16




neg




3




DP-54/V3-7




7




DPL19






LP2-1




pos




3




DP-50/hv3019b9




1




DPL2/Iv1L1




epD2






LP2-2




pos




3




DP-77/WHG16




1




DPL3/Iv122






LP2-3




pos




3




DP-49/1.9111




1




DPL3/Iv122




epD1






LP2-4




neg




4




3d279d+




1




DPL2/Iv1L1






LP2-5




pos




3




DP-49/1.9111




3




DPL16/IGLV3S1




epD5






LP2-6




pos




3




DP-50/hv3019b9




1




DPL7/IGLV1S2




epd2






LP2-7




pos




3




b28m




1




DPL7/IGLV1S2




epD2






LP2-8




pos




3




DP-49/1.9111




3




IGLV3S2=Iv318




epD1






LP2-9




pos




3




DP-50/hv3019b9




3




DPL16/IGLV3S1




epD2






LP2-10




pos




3




DP-77/WHG16




1




DPL3/LV122






LP2-11




neg




1




DP-75-VI-2




1




DPL5/LV117d






LP2-12




pos




3




DP-77/WHG16




1




DPL2/LV1L1




epD2






LP2-13




pos




3




COS-8/hv3005f3




4




IGLV8A1






LP2-14




pos




3




DP-49/1.9111




1




DPL7/IGLV1S2




epD5






LP2-15




pos




3




DP-50/hv3019b9




3




DPL16/IGLV3S1






LP2-16




pos




3




DP-49/1.9111




2




Iv2046




epd1






LP2-17




pos




3




DP-77/WHG16=V3-21+




1




DPL3/Iv122




epD3/9






LP2-18




pos




3




DP-49/1.9111




2




VL2.1˜DPL10/Iv2066




epD1






LP2-19




pos




3




DP-50/hv3019b9




3




DPL16/1GLV3S1




epD2






LP2-20




neg




3




V3-49+




3




DPL16/1GLV3S1






LP2-21




pos




3




DP-50/hv3019b9




7




DPLIS/VL7.1




epD6/7






LP2-22




pos




3




DP-49/1.9111




2




Iv2046






LP2-23




pos




3




DP-49/1.9111




3




DPL16/IGLV3S1




epD5






LP2-24




pos




3




DP-77/WHG16




1




DPL3/Iv122






LP2-25




pos




3




DP-50/v3019b9




7




DPL18/VL7.1




epD6/7






LP2-26




pos




3




DP-49/1.9111




3




DPL16/IGLV3S1






LP2-27




neg




3




COS-6/DA-8




2




VL2.1






LP2-28




pos




3




COS-8/hv3005f3




4




IGLV8A1






LP2-29




pos




3




DP-49/1.9111





DPL13






LP2-30




pos




3




DP-50/hv3019b9




3




DPL16/IGLV3S1






LP2-31




pos




3




DP-50/hv3019b9




7




DPL18/VL7.1






LP2-32




pos




3




DP-49/1.9111




1




DPL2/Iv1L1






LP2-33




pos




3




DP-50/hv3019b9




7




DPL18/VL7.1






LP2-34




pos




3




DP-50/hv3019b9




7




DPL18/VL7.1






LP2-35




pos




3




DP-50/hv3019b9




3




DPL16/1GLV3S1






LP2-36




pos




3




DP-50/hv3019b9




3




DPL16/IGLV3S1






LP3-1




pos




3




DP-50/hv3019b9




3




DPL16/IGLV3S1




epD2






LP3-2




pos




3




DP-49/1.9111




3




DPL16/IGLV3S1




epD1






LP3-3




pos




3




DP-49/1.9111




3




DPL16/IGLV3S1






LP3-4




pos




3




DP-50/hv3019b9




7




DPL18/VL7.1




epD6/7






LP3-5




pos




3




DP-49/1.9111




1




DPL5/LV117d




epD5






LP3-6




pos




3




DP-49/1.9111




1




DPL5/LV117d




epD1






LP3-7




pos




3




DP-77/WHG16




1




DPL2/Iv1L1




epD5






LP3-8




pos




3




b28m




1




DPL7/IGLVIS2




epD2






LP3-9




pos




3




DP-50/hv3019b9




3




DPL16/IGLV3S1




epD2






LP3-10




pos




3




DP-50/hv3019b9




3




DPL16/IGLV3S1






LP3-11




pos




3




DP-50/hv3019b9




3




DPLI6/IGLV3S1




epD2






LP3-12




pos




3




COS-8/hv3005f3




4




IGLV8A1




epD6/7






LP3-13




pos




3




DP-50/hv3019b9




1




DPL2/Iv1L1




epD2






LP3-14




pos




3




DP-49/1.9111




3




DPL16/IGLV3S1






LP3-15




pos




3




DP-77/WHG16




1




DPL3/Iv122




epD1






LP3-16




pos




3




DP-49/1.9111




1




DPL2/Iv1L1




epD5






LP3-17




pos




3




DP-50/hv3019b9




3




DPL16/IGLV3S1






LP3-18




pos




3




DP-50/hv3019b9




3




DPL16/IGLV3S1






LP3-19




pos




3




DP-50/hv3019b9




3




DPL16/IGLV3S1




epD5






LP3-20




pos




3




DP-50/hv3019b9




1




DPL2/Iv1L1






LP3-21




pos




3




DP-49/1.911




1




DPL3/Iv122






LP3-22




pos




3




COS-8/hv3005f3




1




DPL2/Iv1L1






LP3-23




pos




3




DP-49/1.9111




3




DPL16/IGLV3S1






LP3-24




pos




3




DP-50/hv3019b9




3




DPL16/IGLV3S1













1


nomenclature: prefix “LPO” denotes “


γ1


λFab/phage library, panning 0”, “LP1” denotes “


γ1


λFab/phage library, panning 1”, etc.












2


agglutination negative or positive against Rh(D)-positive RBC












3


Ig heavy chain variable region gene family per Tomlinson et al., supra












4


closest related Ig heavy chain variable region gene per Tomlinson et al. supra












5


Ig light chain variable region gene family per Tomlinson et al., supra












6


closest related Ig light chain variable region gene per Tomlinson et al., supra












7


Rh(D) epitope as defined by rare RBC agglutination pattern (see FIG. 5 and text)





















TABLE 3









SUMMARY OF FAB/PHAGE CLONAL ANALYSIS


























Number of unique heavy chains




25







Number of unique κ light chains




18







Number of unique λ light chains




23







Number of


γ1


κ antibodies




20







Number of


γ1


λ antibodies




30







Number Rh(D) epitope specificities represented




 5















Use of Fab/Phage Antibodies as Blood Bank Typing Reagents




The ability of the anti-Rh(D) Fab/phage preparations to accurately distinguish Rh(D)-negative from Rh(D)-positive RBCs in microplate hemagglutination assays (

FIGS. 4 and 5

) provided evidence that a gel test (Lapierre et al., 1990, Transfusion 30:109-1130) used by blood banks to phenotype RBCs using conventional antisera could be adapted for use with Fab/phage.




The gel test comprises a plastic card of approximately 5×7 cm, containing 6 mini-columns each filed with about 20 μl of dextran-acrylamide beads suspended in anti-human globulin (Coombs reagent). Red cells to be typed are incubated with the desired human anti-sera and are centrifuged through the gel. RBCs which are positive for antigens to which the antisera is directed agglutinate as they encounter the anti-human globulin and become trapped in or above the gel matrix. Unreactive RBCs sediment through the gel particles and form a pellet at the bottom of the microtube. Because the gel test offers a number of advantages over traditional blood banking methods for RBC phenotyping including decreased reagent volumes, the elimination of a cell washing step and a more objective interpretation of results, many blood bank facilities have adapted this new technology. As shown in

FIG. 6

, anti-Rh-(D) Fab/phage can be used with gel cards that are modified to contain anti-M13 antibody.




To perform the assay, Rh(D)-negative or -positive red blood cells were incubated with dilutions of anti-Rh(D) Fab/phage (


γ1


κ library, panning #2) and were centrifuged into micro-columns containing beads suspended in anti-M13 antibody. Undiluted Fab/phage stock had a titer of 5×10


12


cfu/ml similar to that in the microplate settling assay (FIG.


4


). Because the volume of Fab/phage used in this assay is one-fourth of that in the microplate assay, the amount of Fab/phage present in the 1/625 dilution is approximately equal to that present in the 1/2048 dilution in FIG.


4


. Therefore, the number of Fab/phage required to yield a positive result is essentially equivalent in both assays.




In other assays which were performed as just described, when anti-M13 antibody was eliminated from the assay, no agglutination of red blood cells was observed. In addition, anti-IgG antibody does not react with recombinant Fabs expressed on the surface of the bacteriophage. Only Rh-positive cells which were reacted with anti-Rh phage were agglutinated when anti-M13 antibody was present in the assay. It should be noted that when high concentrations of anti-M13 antibody were used, even Rh-negative cells appeared to be agglutinated. This is an artifact resulting from the cross-linking of unbound (i.e., non-reacted) phage which becomes crosslinked in the presence of high amounts of anti-M13 antibody and forms a semi-impenetrable mat through which not all the Rh-negative cells can traverse. In the experiments described herein, an anti-M13 concentration of about 100 μg/ml was considered to be optimal for agglutination and for the prevention of false positive results. Depending on the precise concentrations of reagents and cells used in the assay, the concentration of anti-M13 may deviate from this number.




To assess the relative sensitivity of an anti-M13 modified Micro Typing System, the columns of the Micro Typing System cards had added to them 100 μg/ml of anti-M13 antibody. Rh-negative or Rh-positive red blood cells were incubated with undiluted or with five-fold serial dilutions (1/5, 1/25, 1/125, 1/625 and 1/3125) of anti-Rh phage antibodies. The cards were centrifuged and samples were assessed for agglutination. The modified Micro Typing System card assay was capable of detecting anti-Rh agglutination at a dilution of between 1/625 and 1/3125.




Procedures for Isolation of Tumor-Specific Antibodies




Fab/phage specific for tumor cells are useful for in vitro diagnosis (lab assays of biopsy, fluid, or blood samples), in vivo labeling of tumor/metastasis (coupling of antibody to imaging probe), or for treatment of malignancy (coupling of antibodies to chemical or radioactive toxins). Tumor-specific antibodies are also useful for the identification of novel antigens or markers on tumor cells which may form the basis for anti-tumor vaccines. Further, tumor-specific antibodies useful for the generation of anti-idiotypic antibodies may also form the basis for anti-tumor vaccines.




Anti-tumor antibodies are generated essentially as described herein for the generation of anti-Rh antibodies. Tumor cells, for example, but not limited to, malignant melanoma cells, are cell-surface biotinylated, labeled with streptavidin-magnetic microbeads, and are then mixed with excess normal melanocytes. Fab/phage libraries are generated from peripheral blood lymphocytes of melanoma patients who possess therapeutically useful anti-tumor antibodies. A number of melanoma patients who have “cured” themselves apparently have done so by mounting a humoral (ie., antibody) immune response. These Fab/phage libraries are incubated with the admixture of cells. Fab/phage which are directed against epitopes specific for malignant cells will bind to the malignant cells and may then be isolated utilizing the magnetic column panning approach.




Isolation of Fab/Phage that Identify Bacterial Virulence Factors




The approach described herein may be used to isolate Fab/phage capable of detecting differences between the virulent bacteria and their nonpathogenic counterparts. In this case, the virulent strain of bacteria is magnetically labeled, diluted with the non-pathogenic counterpart, and an Fab/phage library which is generated from lymphocytes obtained from individuals infected with the virulent strain is added. Fab/phage which are isolated in this manner may be useful for the identification of novel bacterial antigens against which antibacterial compounds and/or vaccines may be developed.




EXAMPLE 2




Genetic and Immunological Properties of Phage-Displayed Human Anti-Rh(D) Antibodies




Clinically, the human Rh(D) antigen is the most important red blood cell (RBC) membrane protein in transfusion medicine. The alloimmune response against Rh(D) produces high affinity IgG antibodies which cause hemolytic transfusion reactions and hemolytic disease of the newborn (HDN). The prophylactic use of Rh(D)-immune globulin in pregnant Rh(D)-negative women has been a major advance in the prevention of HDN, yet the mechanism by which the drug exerts its immune modulatory effect is not well understood.




Monoclonal antibodies derived from the B cells of Rh(D)-immune globulin donors have defined several dozen Rh(D) epitopes (Scott, 1996, Transfus. Clin. Biol. 3:333). Paradoxically, the Rh(D) antigen, a circa 30 kD transmembrane protein, has minimal extracellular mass and presents a very limited surface area for epitope expression. Because molecular cloning of a large repertoire of anti-Rh(D) antibodies has not previously been performed, these observations remain non-reconciled.




Rational development of recombinant formulations of Rh(D)-immune globulin would be facilitated by molecular cloning of a large number of anti-Rh(D) antibodies. Such cloning would also aid in the design of therapeutic agents that block antibody binding. Furthermore, comprehensive genetic analysis of anti-Rh(D) antibodies within a given alloimmunized individual would serve as a paradigm for human immune repertoire development, an area of which limited information is currently available. Previously, no more than 8 IgG anti-Rh(D) human monoclonal antibodies have been derived from a single individual (Boucher et al., 1997, Blood 89:3277).




In Example 1, a technique useful for isolating Fab/phage antibodies directed against antigens expressed on cell surfaces was described. Using this technique and intact human red blood cells (RBCs), highly diverse γ


1


κ and γ


1


λ. Fab/phage libraries against the Rh(D) antigen from the B cells of a single Rh(D)-immune globulin donor were generated.




In this Example, a detailed genetic and serological analysis of 53 unique anti-Rh(D) antibodies derived from 83 randomly chosen clones is presented. These data demonstrate extensive genetic homology between antibodies directed against different Rh(D) epitopes. Evidence is provided herein that antibodies directed against different epitopes can be clonally related. Finally, a model is described which reconciles the serological diversity of anti-Rh(D) antibodies with the topological constraints imposed by the Rh(D) antigen.




The materials and methods used in the experiments presented in this Example are now described.




Production of Monoclonal Anti-Rh(D) Phage-Displayed and Soluble Fab Molecules




Methods for the isolation of human anti-Rh(D)-specific antibodies from γ


1


κ and γ


1


λ Fab/phage display libraries using the pComb3H phagemid vector and a cell-surface panning protocol have been described (Siegel et al., 1997, J. Immunol. Meth. 206:73). Soluble anti-Rh(D) Fab preparations for inhibition studies were produced from bacterial cultures transfected with plasmid DNA from which the M13 gene III coat protein sequence had been excised as described (Siegel et al., 1994, Blood 83:2334; Barbas et al., 1991, Methods: A Companion to Meth. Enzymol. 2:119). Cultures were grown by shaking at 300 RPM at 37° C. in superbroth (30 g/L tryptone, 20 g/L yeast, 10 g/L MOPS, pH 7.00) containing 20 mM MgCl


2


and 50 mg/ml carbenicillin to an OD


600


of 0.5. Isopropyl-β-D-thiogalactopyranoside (IPTG) was added to 1 mM and cultures were shaken overnight at 30° C. Bacterial pellets were harvested and resuspended in {fraction (1/50)}th of the initial culture volume with osmotic shock buffer (500 mM sucrose, 1 mM EDTA, 100 mM Tris, pH 8.00), incubated for 30′ at 4° C., and centrifuged at 16,000×g for 15′ at 4° C. Fab-containing supernatants were dialyzed against PBS and used in agglutination experiments without further purification.




Anti-Rh(D) Antibody Binding Assays




The binding of anti-Rh(D) Fab/phage or soluble Fab molecules to normal or partial Rh(D) antigens was assessed by indirect agglutination assays as described (Siegel et al., 1994, Blood 83:2334; Siegel et al., 1997, J. Immunol. Meth. 206:73). Briefly, 100 μl aliquots of phage-displayed Fabs or soluble Fabs were incubated with 50 μl of a 3% suspension of RBCs. Following a one-hour incubation at 37° C., the RBCs were washed 3 times with 2 ml of cold PBS to remove unbound antibody. The resulting RBC pellets were resuspended in 100 μl of a 10 μg/ml solution of sheep anti-M 13 antibody (5 Prime-3 Prime, Boulder, Col.) for Fab/phage experiments or goat anti-human κ or λ light chain antibody (Tago, Burlingame, Calif.) for γ


1


κ or γ


1


λ soluble Fab experiments, respectively. The RBC suspensions were transferred to the round-bottomed wells of a 96-well microplate and left undisturbed for 2 hours. Negative reactions show sharp ˜2 millimeter diameter RBC spots whereas the RBCs in agglutinated wells form a thin carpet coating the entire floor of the well (Siegel et al., 1997, J. Immunol. Meth. 206:73). Agglutination titers for recombinant antibodies were determined by performing serial 2-fold dilutions in 1% BSA/PBS. Typically, Fab/phage had agglutination titers of 1/1024 to 1/2048 (where “neat” is defined as 5×10


12


cfu/ml; Siegel et al., 1997, J. Immunol. Meth. 206:73) and soluble Fabs had agglutination titers of 1/64 to 1/128 when prepared as described above.




For determining Rh(D) epitope specificity for anti-Rh(D) Fab/phage antibodies, the following reference Rh(D) variant cells were used: O/D


IIIa


Cce, G positive; B/D


IIIc


Cce; A/D


IVa


ce; A/D


IVa


ce; O/D


IVa


ce; O/D


IVb


Cce; B/D


IVb


Cce, Go


a


negative, Rh32 negative; O/D


Va


Cce; O/D


Va


cEe, D


w


positive; O/D


VI


Cce; B/D


VI


Cce; AB/D


VI


Cce; A/D


VI


cEe; O/D


VII


Cce; and O/D


VII


Cce. Each Fab/phage antibody was tested on at least 3 separate occasions against at least 2 different examples of each variant cell type and identical epitope assignments were obtained each time. For antibodies that demonstrated not-previously-described patterns of reactivity or repeatedly weak reactivity against one type of cell, monoclonal Fab/phage were prepared on a least 4 separate occasions to verify the patterns of reactivity.




For inhibition studies, the ability of antibodies with different Rh(D) epitope specificities to compete with each other for binding was assessed by preparing stocks of each clone in both a soluble Fab form and a phage-displayed form. Pair-wise combinations of soluble Fabs and Fab/phage were prepared and added to Rh(D)-positive RBCs. The resulting incubation mixes comprised 50 μl of a 3% suspension of RBCs, 100 μl of undiluted soluble Fab, and 100 μl of Fab/phage diluted to its highest agglutinating titer. Following a 1-hour incubation at 37° C., RBCs were washed, resuspended in anti-M13 antibody, and placed in microplate wells as described above. That the amount of soluble Fab present in an incubation mixture was sufficient to compete away a Fab/phage that shared the same binding site was determined by verifying that each soluble Fab preparation could block its own Fab/phage.




Inhibition experiments were also performed using pair-wise combinations of soluble Fabs instead of soluble Fab and Fab/phage combinations. In this type of experiment, pairs of soluble Fabs specific for different epitopes were chosen such that one Fab contained a λ light chain and the other a κ light chain. Incubations with RBCs were performed with one Fab in excess and the other in limiting amounts. Blocking of the latter antibody was assessed using a secondary antibody (anti-λ or anti-κ) specific for its light chain isotype.




Nucleotide Sequencing and Analysis




Plasmid DNA for sequencing was prepared using the Qiawell™ system (Qiagen, Chatsworth Calif.). Double-stranded DNA was sequenced using light chain or heavy chain immunoglobulin constant region reverse primers or a set of unique pComb3H vector primers that anneal 5′ to the respective immunoglobulin chain (Barbas et al., 1991, Methods: A Companion to Meth. Enzymol. 2:119; Roben et al., 1995, J. Immunol. 154:6437) and automated fluorescence sequencing (Applied Biosystems, Foster City, Calif.). Sequence analysis and variable region germline assignments were performed using DNAplot (Althaus et al., 1996, DNAPLOT, http://www.mrc_cpe.cam.ac.uk/imt_doc/DNAsearch.html) and the V Base Directory of Human V Gene Sequences (March 97 update; Tomlinson et al., 1996, V Base Directory of Human V Gene Sequences, http://www.mrc_cpe.cam.ac.uk/imt_doc/vbase_home_page.html). Germline assignments were corroborated with the MacVector (v. 6.0) software package (Oxford Molecular Group, Oxford, UK) against the same database. Multiple sequence alignments and predictions of isoelectric point were calculated using the Pileup and Isoelectric programs of the GCG software package (v. 8.0.1; GCG, Madison Wis.). Statistical analysis was performed with Statview (Abacus Concepts, Berkeley Calif.).




The results of the experiments presented in this Example are now described.




Sequence Analysis of Anti-Rh(D) Heavy and Light Chains




Example 1 describes the use of Fab/phage display and cell-surface panning to isolate a large array of anti-Rh(D) antibodies from the peripheral blood lymphocytes of a single hyperimmunized donor. Separate γ


1


κ and γ


1


λ Fab/phage display libraries were constructed and contained 7×10


7


and 3×10


8


independent transformants, respectively, based on electroporation efficiency. Each library was panned independently using a simultaneous positive/negative selection strategy with magnetically-labeled Rh(D)-positive RBCs and unmodified Rh(D)-negative RBCs as described. Following two rounds of panning, 32 of 36 γ


1


λ and 15 of 15 γ


1


κ clones were positive for anti-Rh(D) activity. After the third round of panning, 24 out of 24 γ


1


λ and 12 out of 12 γ


1


κ clones were positive. Nucleotide sequencing of the 83 positive clones revealed a total of 28 unique heavy and 41 unique light chains. Due to combinatorial effects during phage display library construction, heavy and light chain gene segments paired to produce 53 unique Fab antibodies.




Anti-Rh(D) Heavy Chains




All of the heavy chain sequences used V


H


III family-encoded gene products, as indicated in

FIGS. 7 and 8

. Several heavy chain sequences shared identical VDJ joining regions, and 12 unique VDJ rearrangements were identified. These rearrangements were designated VDJ1 through VDJ12. Alignment of these sequences against the V Base Directory of Human V Gene Sequences revealed that only four V


H


III genes were used by these antibodies: VH3-21, VH3-30, VH3-33, and VH 3-30.3. VH3-21 was used by 1 of the 12 VDJs and 2 of the 28 clones; VH3-30 was used by 1 VDJ and 6 clones; VH3-33 was used by 9 VDJs and 19 clones; and VH3-30.3 was used by 1 VDJ and 1 clone. Interestingly, VH3-30, VH3-33, and VH3-30.3 comprise a set of closely related genes (>98% homology;

FIG. 8B

) and their next nearest neighbor, VH3-07, is only 90% homologous (FIG.


8


C). Hereafter, these three genes are referred to as the “VH3-33 superspecies”. Heavy chain E1 differed from VH3-21 by six mutations and differed from VH3-48 by ten mutations; hence, it was assigned to the former germline gene. Because there were no common mutations among the VH3-33 clones, it is highly probable that the donor possessed the VH3-33 germline gene. However, we could not formally rule out gene duplication with allelic variants of VH3-33 or the existence of variant alleles of the other germline genes in the donor. The isolation of clones sharing multiple VDJ joining regions strongly suggests that cloning artifacts cannot account for the V


H


restrictions observed.




Neither J


H


nor D segments showed restriction. At least 9 different D segments were used and J


H


gene utilization comprised J


H


6 (5 VDJs and 9 clones), J


H


4 (4 VDJs and 10 clones), J


H


3 (2 VDJs and 8 clones) and J


H


5 (1 VDJ and 1 clone). All four V


H


genes were Chothia class 1-3 (Chothia et al., 1992, J. Mol. Biol. 227:799), and the CDR3s showed a narrow range of length from 15 to 19 residues.




Because rearranged heavy chain genes demonstrate extensive diversity, clones sharing identical VDJ rearrangements are generally considered to have arisen from the same clone. Based upon nucleotide alignment with the germline genes, the ontogeny tree in

FIG. 9

was constructed for the 12 VDJs and 28 clones. By using the most parsimonious mutation scheme (i.e. postulating the minimum number of mutations), putative intermediate antibodies were derived for several of the VDJs and were designated Ca, Cb, Da, Db, and Dc (FIGS.


8


A and


9


). Compared with the isolated heavy chain clones, which had between 6 and 23 nucleotide differences from their germline counterparts, these putative intermediates had between 3 and 12 mutations from germline. Based upon the ontogeny tree, the number of independent mutations could be tabulated among the clones. The most commonly mutated residues were 52a and 58 (7 independent mutations), followed by residues 30, 31 and 50 (6 mutations), and residue 55 (5 mutations). In the VH3-33 superspecies, residues 52a and 58 in CDR2 are tyrosine residues and residue 52a was mutated to phenylalanine in 6 of the 11 VDJs derived from VH3-33 superspecies V


H


genes. Mutations at residue 58 comprised glutamate (3), aspartate (2), histidine (1) and asparagine (1). The AGY serines at residues 30, 31 and 55 were mutated to a number of different amino acids, although the AGY serine at 82b was conserved in all clones. The valine at residue 50 in the VH3-33 superspecies also had a diverse set of mutations. This distribution of “hot spots” is similar to that seen with non-productive rearrangements as previously reported by Dörner et al (1997, J. Immunol. 158:2779).




Anti-Rh(D) Light Chains




Seventeen of the 18 κ light chains were from the V


κ


I family and the remaining light chain originated from a V


κ


II family member germline gene (FIG.


10


). Only four V


κ


germline genes were used (15 clones were derived from DPK9 alone), and the κ light chain clones had between 1 and 49 mutations from their corresponding V


κ


germline genes. All five of the known J


κ


genes were used and were each joined to the DPK9 gene in one or more clones. Because the light chains showed considerably less diversity in their joining regions than the heavy chains, it was difficult to assign common clonal origins. However, an ontogeny tree was constructed by grouping common V and J gene segments along with common mutations. Based upon this analysis, the 18κ chains comprised at least 10 different recombination events.




λ light chains were restricted by their J


λ


gene usage but showed no restriction in their use of V


λ


genes (FIG.


11


). The 23λ light chains all used the J


λ


2Vasicek gene but were derived from V


λ


I (12 clones), V


λ


III (5), V


λ


VII (3), V


λ


II (2) and V


λ


IV (1) family genes. The number of mutations ranged from 2 to 41 from the nearest germline V


λ


gene. Based upon common joining regions and mutations, these 23 1 light chains were derived from at least 13 different B cells.




Assessment of the Diversity of the Non-Panned Libraries




In order to determine whether the apparent restriction in gene usage of the anti-Rh(D) antibodies could have been due to pre-selection factors (i.e. cloning artifacts), the diversity of the non-panned γ


1


κ and γ


1


λ Fab/phage libraries was assessed. By sequencing 39 randomly-picked clones, we determined that there were no duplicate heavy or light chain sequences, and that there was significant heterogeneity in V gene family representation before selection (FIG.


12


). In fact, the variable region gene family distribution was not unlike that found by other investigators for IgG-secreting lymphocytes in adult peripheral blood (Stollar, 1995, Ann. NY Acad. Sci. 764:547). Furthermore, of the 14 V


H


III-encoded negative clones, only one used a VH3-33 superspecies germline gene (VH3-30.3); the other 13 were encoded by VH3-07 (3), 3-09 (2), 3-15 (2), 3-48 (2), 3-72 (2), 3-23 (1), and DP-58 (1). Therefore, the restriction of the 83 anti-Rh(D) clones to the VH3-33, 3-30, 3-30.3 and 3-21 genes is significant and not a result of skewed representation of certain germline genes within the originally constructed γ


1


κ and γ


1


λ Fab/phage libraries.




Heavy and Light Chain Contribution to Rh(D) Epitope Specificity




Because of the conformational dependency of Rh(D) antigenicity, Rh(D) “epitopes” have been classically defined through the use of RBCs obtained from rare individuals whose cells appear to produce Rh(D) antigens “lacking” certain epitopes. Examining the pattern of agglutination of a particular anti-Rh(D) monoclonal antibody with such sets of partial Rh(D) RBCs enables one to categorize that antibody's fine specificity.




Monoclonal Fab/phage preparations were prepared in triplicate for each of the 53 anti-Rh(D) clones and tested against a panel of Rh(D) category cells IIIa/c, IVa, IVb, Va, VI, and VII. This panel of cells can differentiate between the Rh(D) epitope specificities as described by Lomas et al. (1989, Vox Sang 57:261; designated epitopes epD1, epD2, epD3, epD4, epD5, and epD6/7). Agglutination experiments using the Fab/phage clones demonstrated five different patterns of reactivity, including a new pattern which had not been described in the original study by Lomas et al. or in the more recently-described (Scott, 1996, Transfus. Clin. Biol. 3:333; Stollar, 1995, Ann. N.Y. Acad. Sci. 764:547) 9-, 30-, or 37-epitope systems (as indicated by the data depicted in FIGS.


13


and


14


). Although nearly all Fab/phage gave unequivocal agglutination reactions, a few antibodies gave repeatedly weak patterns of reactivity against one of the panel cells. For these reactions, monoclonal Fab/phage were prepared on at least 4 separate occasions to verify the patterns of reactivity.




The most commonly-recognized epitope was epD6/7, against which 13 of the clones described herein were directed. Interestingly, monoclonal anti-Rh(D) clones isolated using conventional tissue culture methods are most often specific for epD6/7 (Mollison et al., 1993, In:


Blood Transfusions in Clinical Medicine


, 9th ed., Blackwell Scientific, Oxford, U.K.). EpD2, epD1, and epD3 were recognized by 10, 7, and 2 clones, respectively. Six clones agglutinated cells of categories IIIa/c, IVa, and VII, but not of categories IVb, Va, and VI, and were designated anti-“epDX”. This pattern is identical to epD1, except that the IVa cell is agglutinated. Three clones gave intermediate reactions with cell IVa, but otherwise showed patterns consistent with epDX or epD1. These clones were designated epDX


1


or epD1


X


depending on whether this reactivity against cell IVa was stronger or weaker, respectively (see FIG.


14


). Similarly, reaction patterns for epD1 and epD2 differ by a positive reaction with the category Va cell; therefore, one clone was given epD2


1


specificity because it gave only moderate reactivity against that cell. Such variable reactions against one or more partial Rh(D) cells have been observed for anti-Rh(D) monoclonal antibodies produced through conventional tissue culture methods (Tippett et al., 1996, Vox Sang. 70:123).




Because of the reassortment of heavy and light chain gene segments that occurs during the construction of a phage display library, a number of clones were isolated that shared either a heavy (e.g. E1) or light (e.g. M3) chain sequence (FIG.


14


). Some heavy chains were found to have paired with both κ and λ light chains (e.g. C1, D20) and each demonstrated anti-Rh(D) specificity. Interestingly, some heavy chains (e.g. E1, D12) mapped to different epitopes depending upon the light chains with which they were paired. In particular, the light chains of two such clones, E1/M2 and E1/M3, differed by only three amino acid residues (

FIG. 11

) and these differences appear to confer specificity for epD2 vs. epD3.




Inhibition Studies




To investigate the topological relationships among the Rh(D) epitopes, inhibition studies were performed. Gorick et al. (1988, Vox Sang. 55:165) used pairs of non-labeled and


125


I-labeled anti-Rh(D) monoclonal antibodies to demonstrate that antibodies to at least three different Rh(D) epitopes (subsequently identified as epD1, D6 and D7; Lomas et al., 1989, Vox Sang. 57:261) could inhibit one another. Recombinant antibodies to five Rh(D) epitopes were used to confirm and extend those findings (FIG.


15


). In one series of experiments, the ability to express each antibody in both a soluble Fab as well as phage-displayed form was exploited to determine whether a soluble Fab directed against one epitope would inhibit the agglutination induced by an Fab/phage directed against a different epitope. Reciprocal pairs of soluble Fab and Fab/phage specific for epD1, epD2, epD3, epD6/7, and epDX were tested. All ten combinations showed mutual inhibition patterns (illustrated in

FIG. 15A

for an anti-epD3/anti-epD6/7 combination). To show that this inhibition was not due to non-specific factors, a control with an irrelevant RBC-binding recombinant antibody (an anti-blood group B antibody) was performed (FIG.


15


B). That sufficient inhibitory amounts of soluble Fab was present were first verified by demonstrating that each soluble Fab could inhibit its own Fab/phage (

FIGS. 15A and 15B

; samples on diagonal). Similar results were obtained using pairs of soluble Fabs which differed in their light chain isotype composition (FIG.


15


C).




Isoelectric Point Analysis of Anti-Rh(D) Antibodies




The restriction in V


H


germline gene usage to only four V


H


III family members was intriguing in light of their ability to confer specificity to a number of Rh(D) epitopes. V


H


germline gene segments used to encode anti-Rh(D) antibodies are among the most cationic segments available in the human V


H


repertoire which may be used to account for the relatively high pI of polyclonal anti-Rh(D)-containing antisera (Boucher et al., 1997, Blood 89:3277; Abelson et al., 1959, J. Immunol. 83:49; Frame et al., 1969, Immunology 16:277). Although the cationic nature of the antibodies may be important for binding to Rh(D), a constitutive net positive charge may be necessary to permeate the highly negative RBC ζ potential, thus permitting antibody to contact antigen (Mollison et al., 1993, In:


Blood Transfusion in Clinical Medicine


, 9th ed., Blackwell Scientific, Oxford, U.K.). In either case, analysis of the predicted pI for the 28 heavy chains and 41 light chains isolated here showed an interesting phenomenon for the heavy chains, as compared with the light chains. Using the pI interval scale of Boucher et al. (1997, Blood 89:3277), the average pI of the four germline V


H


segments used to encode the 28 heavy chains is high (9.87±0.15), significantly higher than that of 39 randomly-picked, non-Rh(D) binding clones from the original non-panned libraries (9.24±0.80, P<10


−5


). Similar to the results of Boucher et al., the addition of D and J


H


segments and the introduction of somatic mutation did not significantly change the pI of the average anti-Rh(D) heavy chain (9.81±0.33, P<0.37). However, for the light chains, the average pI of their germline counterparts was not cationic, but the light chains became so through the addition of J


L


segments and somatic mutation. Overall, for all 18κ and 23λ light chains, paired t-test analyses before and after somatic mutation showed a significant increase in net positive charge when comparing gerrnline V


L


(6.63±1.47) with expressed V


L


(7.28±1.51, P<10


−3


) or germline V


L


J


L


(7.43±1.47) with expressed V


L


J


L


(8.55±1.35, P<10


−7


). There was no significant increase in a similar analysis of 16 non-Rh(D) binding clones (P<0.59 and P<0.19, respectively). Examination of the light chain sequences listed in

FIGS. 10 and 11

revealed that this increase in pI resulted from mutations that not only introduced positively-charged residues, but also eliminated some negatively-charged residues. There were 31 such events, 29 (91%) of which occurred in the light chain CDR regions.




Conventional and Phage-Displayed Anti-Rh(D) Monoclonal Antibodies




The phage-display derived anti-Rh(D) clones were compared with those produced by conventional tissue culture techniques (EBV-transformation and cell fusion). Despite the relatively small number of previously-published sequences for IgG anti-Rh(D) antibodies (N=21) and the fact that they were derived from over 10 different donors, there was surprisingly good correlation between the two groups, as indicated in Table 3. Both cohorts demonstrated a predominance of V


H


III-family encoded germline genes, particularly those of the VH3-33 superspecies. CDR3 regions had similar lengths ranging from 15-19 residues for Fab/phage antibodies and 16-20 for conventional monoclonal antibodies, although one heterohybridoma was an outlier, having a CDR3 length of 28 residues. κ light chains were biased towards V


κ


1 family members and λ light chains demonstrated the preferential use of the J


λ


2Vasicek gene. The only qualitative discrepancy was in V


λ


family usage where Fab/phage clones demonstrated a slight preference for V


λ


I vs. V


λ


III family members for conventional monoclonal antibodies. However, in both cohorts, DPL16 was used more often than any other λ light chain gene.












TABLE 3











Comparison of IgG Fab/phage library-derived anti-Rh(D) monoclonal






antibodies prepared as described herein with those previously produced by






conventional tissue culture methods













Attribute




Previously Published*




Current Study


















Heavy Chains





(by clone)†





(by VDJ)






VH3 family derived




12/21 (57%)




28/28 (100%)





12/12 (100%)






VH3-33 superspecies‡/VH3




10/12 (83%)




26/28 (93%)





11/12 (92%)






VH3-33/VH3




9/12 (75%)




19/28 (68%)





9/12 (75%)






VH3-21/VH3




1/12 (8%)




2/28 (7%)





1/12(8%)






VH4-34 derived




2/21 (10%)




0/28 (0%)





0/12 (0%)






JH6 usage




15/21 (71%)




9/28 (32%)





5/12 (42%)






CDR3 length




16-20 (28§)





15-19






κ Light Chains






Vκ1 family derived/total ρ




8/12 (67%)





17/18 (94%)






Jκ1 usage/total ρ




4/12 (33%)





6/18 (33%)






Jκ2 usage/total ρ




4/12 (33%)





6/18 (33%)






λ Light Chains






Vλ1 family derived/total λ




2/8 (25%)





12/23 (52%)






Vλ3 family derived/total λ




5/8 (63%)





5/23 (22%)






DPL16 derived/V13 family




3/5 (60%)





4/5 (80%)






Jλ2Vasicek usage/total λ




6/8 (75%)





23/23 (100%)











Notes for Table 3










*Compiled from a total of 21 sequences of IgG anti-Rh(D) antibodies isolated from multiple subjects originally published by Bye et., Hughes-Jones et al., Chouchane et al., and Boucher et al. and available from Genbank. One light chain (Oak-3) was not available in Genbank and was not included in the assessment.










†For heavy chains, left column tabulates each clone separately; right column tabulates clones on the basis ofshared V-D-J joining regions










‡VH3-33 superspecies defined as the group of VH3 family germline genes comprising VH3-33, VH3-30, and VH30.3.










§CDR3 length outlier













It has been suggested in the literature that the VH4-34 (VH4.21) germline gene, a gene used by many autoantibodies and cold agglutinins, may play an important role in the immune response to Rh(D) (Silberstein et al., 1991, Blood 78:2377; Pascuel et al., 1991, J. Immunol. 146:4385; Silverman et al., 1988, J. Exp. Med. 168:2361; Thompson et al., 1991, Scand. J. Immunol. 34:509). However, these conclusions arose from the analysis of IgM monoclonal antibodies and only 2 of the 21 published anti-Rh(D) IgG sequences used VH4-34 (Bye et al., 1992, J. Clin. Invest. 90:2481). In a related series of experiments, aliquots of the γ


1


κ and γ1λ libraries obtained after the second and third rounds of selection were pooled and then panned against the VH4-34 specific rat anti-idiotypic monoclonal antibody (9G4; Stevenson et al., 1989, Br. J. Haematol. 72:9). Although VH4-34 encoded antibodies were successfully enriched, the Fab/phage were not specific for Rh(D) and displayed serological characteristics similar to those of cold agglutinins.




Rh(D) Epitopes and Significance of Antibody Sequences




Since the initial report by Argall et al. in 1953 (J. Lab. Clin. Med. 41:895), it has been recognized that rare individuals who type as Rh(D)-positive can produce allo-anti-Rh(D) antibodies in response to Rh(D) immunization by transfusion or pregnancy. This phenomenon was explained by hypothesizing that the Rh(D) antigen is a “mosaic structure” and that these individuals were producing alloantibodies to parts of the mosaic they lack. By systematically examining patterns of reactivity between their cells and sera, RBCs expressing partial Rh(D) antigens were divided into categories, each presumed to have a different abnormality in their Rh(D) antigen. Through the subsequent use of index panels of monoclonal anti-Rh(D) antibodies, a series of epitopes were defined of which the number and combination varied from one Rh(D) category to another. As new monoclonal antibodies were produced, their reactivity profiles against these partial Rh(D) RBCs became the standard method for determining Rh(D) antibody epitope specificity. Molecular analyses of partial Rh(D) phenotypes have shown that the Rh(D) genes in these individuals have either undergone intergenic recombination with the highly homologous Rh(CE) gene, or, less commonly, have sustained point mutation(s) (Cartron et al., 1996, Transfus. Clin. Biol. 3:497).




As noted earlier, to investigate the topological relationships among Rh(D) epitopes, Gorick et al. performed competition experiments with Rh(D) monoclonal antibodies and observed varying degrees of inhibition (Gorick et al., 1988, Vox Sang. 55:165). These results, when combined with those of Lomas et al. (1989, Vox Sang. 57:261), suggested a model for Rh(D) in which epitopes are spatially distinct yet demonstrate a certain degree of overlap as illustrated in FIG.


16


A. This model explained how antibodies to two different Rh(D) epitopes (in this case epD2 and epD3) could inhibit each other's binding to wild type Rh(D), and how a change in the structure of Rh(D) in category VI RBCs (asterisk in

FIG. 16A

) would cause the loss of epD2. However, based upon this concept of Rh(D) epitopes as distinct domains, one would expect that antibodies against different epitopes of Rh(D) would be structurally and genetically distinct as well. Thus, it was surprising that the anti-Rh(D) clones described herein demonstrated such marked restriction in gene usage. For example, only two superspecies of V


H


genes were used despite specificities for 4 of the original 6 Rh(D) epitopes described by Lomas et al. (1989, Vox Sang. 57:261). Furthermore, multiple specificities could arise from a single heavy chain depending upon the light chain with which it was paired (e.g. E1 with M2, M3, L3, or L4). In addition, other clones repeatedly demonstrated variable weak reactivity against certain Rh(D) category RBCs that would affect the epitope specificities to which they were assigned (e.g. C1 with O1, M1, or J5).




Several hypotheses could account for these findings. The most simplistic interpretation is that the heavy chain does not directly interact with the antigen, but rather is responsible for bringing the antibody in close proximity with the antigen. The specific interactions between the light chain and the antigen would then determine the epitope specificity for that antibody. In this regard, the data presented herein are consistent with the observations of Boucher et al. (1997, Blood 89:3277) on the relative cationic nature of anti-Rh(D) heavy chains. However, because it was determined during the studies described herein that light chains become cationic during somatic mutation, the charge of the entire antibody may play a role in its ability to bind, resulting in the selection and expansion of particular B-cell clones.




A more compelling hypothesis is that Rh(D) epitopes do not differ spatially but differ only in the number and arrangement of contact residues presented, as illustrated in FIG.


16


B. In other words, the “footprints” of most, if not all, anti-Rh(D) antibodies are essentially identical to one another. The genetic events which produce partial Rh(D) molecules result in the loss of certain critical key points of contact necessary for some antibodies to bind; alternatively, they result in the formation of new structures that interfere with the binding of other anti-Rh(D) immunoglobulins. For example, the introduction of a “ledge” in Rh(D) category VI cells (asterisk in

FIG. 16B

) does not interfere with the binding of an anti-epD3 antibody, but does prevent the binding of anti-epD2. Therefore, category VI RBCs are said to have epD3 but “lack” epD2.




This model is consistent with the inhibition experiments described herein (e.g.

FIG. 15

) and with those of Gorick et al. (1988, Vox Sang. 55:165) and offers an explanation for the marked restriction in heavy chain gene usage. This model also reconciles a mechanism by which one heavy chain (e.g. E1) can confer binding to multiple epitopes and why some of the recombinant anti-Rh(D) antibodies described herein, as well as some conventionally-produced monoclonal antibodies (e.g. Tippett et al., 1996, Vox Sang. 70:123), display variable reactivity against certain categories of partial Rh(D) RBCs. From the antigen's perspective, this model explains how a single point mutation in Rh(D) can result in the loss of multiple Rh(D) epitopes (such as T283I in category HMi RBCs) and how the residues associated with the expression of some epitopes appear to be distributed among nearly all the extracellular loops of Rh(D). It also provides an understanding as to how ≧37 “epitopes” can fit on the relatively small extracellularly-exposed surface of the Rh(D) molecule.




This concept of “coincident” epitopes is best exemplified by comparing the E1/M2 and E1/M3 clones described herein. The only difference between the reactivity of E1/M2 and E1/M3 is the ability of the latter antibody to agglutinate Rh(D) category VI cells, as depicted in FIG.


13


. Hence, E1/M2 is classified as an anti-epD2 and E1/M3 as an anti-epD3 antibody. Light chains M2 and M3 differ by only 3 residues: D82A, G95aA, and W96V, as indicated in FIG.


11


. Therefore, some combination of these three residues confers reactivity against category VI cells. In other words, epD2 and epD3, as seen by the E1/M2 and E1/M3 antibodies, differ by the binding constraints imposed by at most three mutations. If the model depicted in

FIG. 16A

were correct and the epitopes were independent, these mutations would have to cause enough structural alteration in the antibody combining site so that a completely separate epitope on the same antigen would be recognized. It would seem unlikely that these 3 mutations could cause such a change, especially given the lack of internal homology domains in Rh(D). Therefore, it is concluded that it is far more plausible that the footprints of these 2 antibodies are essentially identical, and that one or more of these mutations (e.g. the tryptophan in CDR3 of M2) prevent(s) the interaction of E1/M2 with category VI RBCs. Since other clones demonstrate that the light chain can confer specificity against epD1, epD2, or epD3 (with the E1 heavy chain); epD1 or epDX (with C5); and epD1, epD2, and epD6/7 (with D12), we suggest that all 5 of these epitopes have similar antibody combining sites.




Immunologic and Clinical Implications of Proposed Model




The model depicted in

FIG. 16B

leads to additional predictions concerning the Rh(D) immune response beyond simply clarifying what is meant by an Rh(D) epitope. It is commonly stated in the transfusion medicine literature that individuals whose RBCs express partial Rh(D) antigens are free to make antibodies to the Rh(D) epitopes they lack (Mollison et al., 1993, In:


Blood Transfusion in Clinical Medicine


, 9th ed. Blackwell Scientific, Oxford, U.K.). Therefore, an individual who produces category VI RBCs should be able to make anti-epD2 but not anti-epD3. If these epitopes were truly independent, then the immune repertoire of the anti-epD2 antibodies made by a category VI individual would be similar to those produced by an Rh(D)-negative person. However, to the immune system, epD2 and epD3 are not independent.




It is herein postulated that somatic mutation of an anti-epD3 antibody can change its fine specificity to that of epD2 (or vice-versa, see FIG.


16


C). Suppose that the preferred way of making an anti-epD2 antibody is through an anti-epD3 intermediate. To an Rh(D)-negative individual, this process can take place unimpeded. However, in a category VI individual, this route would be unfavorable because an anti-epD3 antibody would be self-reactive. As a result, such an individual would have to make anti-epD2 antibodies by alternative routes or by tolerating some degree of auto-reactivity in the process. With respect to the latter point, it is of interest to note that a transient production of auto-anti-Rh(D) frequently precedes or accompanies the early production of allo-anti-Rh(D) in individuals who express partial Rh(D) antigens (Chown et al., 1963, Vox Sang. 8:420; Macpherson et al., 1966, J. Clin. Pathol. 45:748; Beard et al., 1971, Med. Genet. 8:317; Cook 1971, Br. J. Haematol. 20:369; Holland et al., Transfusion 13:363 (Abstract); Issit, 1985, In:


Applied Blood Group Serology


, 3rd ed., Montgomery Scientific, Miami Fla.). It is predicted, therefore, that the anti-epD2 antibodies from a category VI individual would be different in composition (i.e. gene usage) and quite possibly quantitatively depressed as compared to an Rh(D)-negative individual. This may be analogous to the antibodies of the ABO blood group system in which it has been observed that anti-A and anti-B titers in blood group O individuals are significantly higher than in blood group B or A individuals, respectively (Ichikawa, 1959, Jap. J. Med. Sci. Biol. 12:1). Blood group O individuals are unconstrained in creating their anti-A and anti-B immune repertoires while individuals who produce A or B antigens (2 nearly identical structures) must do so in a manner that avoids self-reactivity.




In the case of antibodies E1/M2 and E1/M3, they appear to have arisen from a common precursor B cell rather than directly from each other (FIG.


11


). To test the framework of the hypothesis presented herein, i.e. somatic mutation resulting in “epitope migration” of an antibody, one may construct the precursors and potential intermediates between the M2 and M3 light chains and then determine what Rh(D) epitope specificities (if any) they express. This concept of epitope migration has been previously reported for murine anti-cryptococcal and anti-type II collagen antibodies (Mukherjee etal., 1995, J. Exp. Med. 181:405; Mo et al., 1996, J. Immunol. 157:2440).




If the model proposed herein for Rh(D) epitopes is correct, then the question of the number of epitopes may be obsolete. There may be as many epitopes as can be differentiated by the number of cell categories, i.e. 2


n


epitopes where n is the number of distinct partial Rh(D) RBCs.




A more important question is the interrelationships between the various epitopes. For example, are some epitopes “further away” than others—not in the topological sense, but in terms of the number of mutational hits an antibody needs to receive in order to change its serologic reactivity. Furthermore, does the humoral immune response in a partial Rh(D) individual differ from that in an Rh(D)-negative individual in the manner predicted by this model? One may find that allo-anti-Rh(D) antibodies made by partial Rh(D) individuals are not as clinically significant, i.e. capable of inducing hemolysis. This may explain why hemolytic disease of the newborn due to anti-Rh(D) produced by pregnant individuals with partial Rh(D) phenotypes is so rare even when taking into account the low prevalence of the partial Rh(D) phenotypes (Mollison et al., 1993, In:


Blood Transfusion in Clinical Medicine


, 9th ed. Blackwell Scientific, Oxford, U.K.). A better understanding of the immune response to Rh(D) in these patients may alleviate concerns regarding the need to identify such individuals to ensure that they only receive Rh(D)-negative blood products for transfusion and Rh(D)-immune globulin during pregnancy (Jones et al., 1995, Trans. Med. 5:171). Furthermore, with respect to the design of recombinant Rh(D)-immune globulin for use in Rh(D)-negative patients, it may not be necessary to formulate cocktails of monoclonal antibodies containing multiple Rh(D) epitope specificities.




Sequence Data




Genbank accession numbers for anti-Rh(D) heavy chains are as follows:




B01, AF044419; C01, AF044420; C03, AF044421; C04, AF044422; C05, AF044423; C08, AF044424; C10, AF044425; D01, AF044426; D03, AF044427; D04, AF044428; D05, AF044429; D07, AF044430; D08, AF044431; D09, AF044432; D10, AF044433; D11, AF044434; D12, AF044435; D13, AF044436; D14, AF044437; D15, AF044438; D16, AF044439; D17, AF044440; D18, AF044441; D20, AF044442; D30, AF044443; D31, AF044444; E01, AF044445; E03, AF044446.




Genbank accession numbers for anti-Rh(D) κ light chains are as




follows: F01, AF044447; G01, AF044448; H01, AF044449; I01, AF044450; I02, AF044451; I03, AF044452; I04, AF044453; I05, AF044454; I06, AF044455; I07, AF044456; I08, AF044457; I09, AF044458; I10, AF044459; I11, AF044460; I12, AF044461; I13, AF044462; I15, AF044463; I16, AF044464.




Genbank accession numbers for anti-Rh(D) λ light chains are as follows: J01, AF044465; J02, AF044466; J04, AF044467; J05, AF044468; K01, AF044469; K02, AF044470; K03, AF044471; L01, AF044472; L03, AF044473; L04, AF044474; L05, AF044475; M01, AF044476; M02, AF044477; M03, AF044478; N01, AF044479; N02, AF044480; O01, AF044481; O02, AF044482; O03, AF044483; P01, AF044484; Q01, AF044485; R01, AF044486; S01, AF044487.




Amino Acid Sequences of Anti-Rh(D) Heavy and Light Chains




The amino acid sequences of various anti-Rh(D) chains are represented using single letter amino acid codes, as described herein.




The amino acid sequence of the anti-Rh(D) chain B01 is




EVQLLESGGGVVQPGRSLRLSCAASGFTFRSYAMHWVRQAPGKGLEWVAAT AYDGKNKYYADSVKGRFTISRDNSKNTLFLQMNSLRAEDTAVFYCARGGFYY DSSGYYGLRHYFDSWGQGTLVTVSS (SEQ ID NO: 1).




The amino acid sequence of the anti-Rh(D) chain C01 is




EVQLLESGGGVVQPGRSLRLSCAASGFSFSSYGMHWVRQAPGKGLEWVSVIS YDGHHKNYADSVKGRFTISRDNSKKTLYLQMNSLRPEDTAVYYCANLRGEVT RRASVPFDIWGPGTMVTVSS (SEQ ID NO: 2).




The amino acid sequence of the anti-Rh(D) chain C03 is




EVQLLESGGGVVQHGRSLRLSCAASGFSFSSYGMHWVRQAPGKGLEWVSVIS YDGHHKNYADSVKGRFTISRDNSKKTLYLQMNSLRPEDTAVYYCANLRGEVT RRASVPFDIWGPGTMVTVSS (SEQ ID NO: 3).




The amino acid sequence of the anti-Rh(D) chain C04 is




EVQLLESGGGVVQPGRSLRLSCAASGFSFSTYGMHWVRQAPGKGLEWVSVIS YDGHNKNYADSVKGRFTISRDNSKKTLYLQMNSLRPEDTAVYYCANLRGEVT RRASIPFDIWGQGTMVTVSS (SEQ ID NO: 4).




The amino acid sequence of the anti-Rh(D) chain C05 is




EVQLLESGGGVVQPGRSLRLSCAASGFSFSSYGMHWVRQAPGKGLEWVAVIS YDGTNKYFADSVKGRFTISRDNSKKTLYLQMTSLRPEDTAVYFCANLRGEVTR RASVPLDIWGQGTMVTVSS (SEQ ID NO: 5).




The amino acid sequence of the anti-Rh(D) chain C08 is




EVQLLESGGGVVQPGRSLRLSCAASGFSFSSYGMHWVRQAPGKGLEWVAVIS YDGTNKYFADSVKGRFTISRDNSKKTLYLQMTSLRPEDTAVYFCANLRGEVTR RASVPLDIWGQGTMVTVSS (SEQ ID NO: 6).




The amino acid sequence of the anti-Rh(D) chain C10 is




EVQLLESGGGVVQPGRSLRLSCAASGFSFSSYGMHWVRQAPGKGLEWVSVIS YDGHHKNYADSVKGRFTISRDNSKKTLYLQMNSLRPEDTAVYYCANLRGEVT RRASVPFDIWGPGTLVTVSS (SEQ ID NO: 7).




The amino acid sequence of the anti-Rh(D) chain D01 is




EVQLLESGGGVVQPGRSLRLSCVVSGFTFNNYGMHWVRQAPGKGLEWVAVI WFDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARENQIK LWSRYLYYFDYWGQGTLVTVSS (SEQ ID NO: 8).




The amino acid sequence of the anti-Rh(D) chain D03 is




EVQLLESGGGVVQPGRSLRLSCAASGFTFSTYGMHWVRQAPGKGLEWVAVI WFDGSNKEYADSVKGRFTVSRDNSKNTLYLQMNSLRAEDTAVYYCAREEVV RGVILWSRKFDYWGQGTLVTVSS (SEQ ID NO: 9).




The amino acid sequence of the anti-Rh(D) chain D04 is




EVQLLESGGGVAQPGRSLRLSCVASGFSLRSYGMHWVRQAPGKGLEWVADI WFDGSNKDYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDWRV RAFSSGWLSAFDIWGQGTMVTVSS (SEQ ID NO: 10).




The amino acid sequence of the anti-Rh(D) chain D05 is




EVQLLEESGGGVAQPGRSLRLSCVASGFSLRSYGMHWVRQAPGKGLEWVADI WFDGSNKDYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDWRV RAFSSGWLSAFDIWGQGTTVSVSS (SEQ ID NO: 11).




The amino acid sequence of the anti-Rh(D) chain D07 is




EVQLLESGGGVVQPGRSLRLSCAVSGFTLTNYGMHWVRQAPGKGLEWVAHV WYDGSKTEYADSVKGRFAVSRDKSKNTLFLQMNSLTAEDTAIYYCARERREK VYILFYSWLDRWGQGTLVTVSS (SEQ ID NO: 12).




The amino acid sequence of the anti-Rh(D) chain D08 is




EVQLLEESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGRGLEWVALI WYDGGNKEYADSVKGRFSISRDNSKNTLYLQVNSLRADDTAVYYCARDQRA AAGIFYYSRMDVWGQGTTVTVSS (SEQ ID NO: 13).




The amino acid sequence of the anti-Rh(D) chain D09 is




EVQLLESGGGVVQPGRSLRLSCEASKFTLYNYGMHWVRQAPGKGLEWVAFI WFDGSNKYYEDSVKGRFTVSRDNSKNTLYLQMNSLRAEDTAVYYCAREGSK KVALSRYYYYMDVWGQGTTVTVSS(SEQ ID NO: 14).




The amino acid sequence of the anti-Rh(D) chain D10 is




EVQLLESGGGVVQPGRSLRLSCEASKFTLYNYGMHWVRQAPGKGLEWVAFI WFDGSNKYYEDSVKGRFTVSRDNSKNTLYLQMNSLRAEDTAVYYCAREVSK KVALSRYYYYMDVWGQGTTVTVSS (SEQ ID NO: 15).




The amino acid sequence of the anti-Rh(D) chain D11 is




EVQLLESGGGVVQPGRSLRLSCEASKFTLYNYGMHWVRQAPGEGLEWVAFIW FDGSNKYYADSVKGRFTVSRDNSKNTLYLQMNSLRAEDTAVYYCAREVSKKL ALSRYYYYMDVWGQGTTVTVSS (SEQ ID NO: 16).




The amino acid sequence of the anti-Rh(D) chain D12 is




EVQLLESGGGVVQPGRSLRLACAASGFSFRSYGMHWVRQAPGRGLEWVAFT WFDGSNKYYVDSVKGRFTISRDNSKNTLYLEMNSLRVDDTAVYYCAREASML RGISRYYYAMDVWGPGTTVTVSS (SEQ ID NO: 17).




The amino acid sequence of the anti-Rh(D) chain D13 is




EVQLLESGGGVVQPGRSLRLSCAASGFTFSTYGMHWVRQAPGKGLEWVAVI WFDGSNRDYAESVKGRFTISRDKSKNTLYLQMNSLRAEDSAVYYCARENVAR GGGGVRYKYYFDYWGQGTLVTVSS (SEQ ID NO: 18).




The amino acid sequence of the anti-Rh(D) chain D14 is




EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYGMHWVRQAPGKGLEWVAVIW FDGSKRDYAESVKGRFTISRDNSKNTLYLQMNSLRAEDSAVYYCARENVARG GGGIRYKYYFDYWGQGTLVTVSS (SEQ ID NO: 19).




The amino acid sequence of the anti-Rh(D) chain D15 is




EVQLLESGGGVVQPGRSLRLSCVVSGFTFNNYGMHWVRQAPGKGLEWVAVI WFDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARENQIK LWSRYLYYFDYWGQGTLVTVSS (SEQ ID NO: 20).




The amino acid sequence of the anti-Rh(D) chain D16 is




EVQLLESGGGVVQPGRSLRLSCVVSGFTFNNYGMHWVRQAPGKGLEWVAVI WFDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARENQIK LWSRYLYYFDYWGQGTLVTVSS (SEQ ID NO: 21).




The amino acid sequence of the anti-Rh(D) chain D17 is




EVQLLESGGGVVQPGRSLRLSCVVSGFTFNNYGMHWVRQAPGKGLEWVAVI WFDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARENQIK LWSRYLYYFDYWGQGTLVTVSS (SEQ ID NO: 22).




The amino acid sequence of the anti-Rh(D) chain D18 is




EVQLLESGGGVVQPGRSLRLSCVVSGFTFNNYGMHWVRQASGKGLEWVAVI WFDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARENQIK LWSRYLYYFDYWGQGTLVTVSS (SEQ ID NO: 23).




The amino acid sequence of the anti-Rh(D) chain D20 is




EVQLLESGGGVVQPGRSLRLSCAASGFTFSTYGMHWVRQAPGKGLEWVAVI WFDGSNKEYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREEVVR GVILWSRKFDYWGQGTLVTVSS (SEQ ID NO: 24).




The amino acid sequence of the anti-Rh(D) chain D30 is




EVQLLESGGGVVQPGRSLRLSCAASGFTFSSYGMRWVRQAPGKGLEWVAVV YYDGSNKHYSDSVKGRFTISRDNSKNTLYLQMDSLRAEDTAVYYCARERNFR SGYSRYYYGMDVWGPGTTVTVSS (SEQ ID NO: 25).




The amino acid sequence of the anti-Rh(D) chain D31 is




EVQLLESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVV YYDGSNKHYSDSVKGRFTISRDNSKNTLYLQMDSLRAEDTAVYYCARERNFR SGYSRYYYGMDVWGPGTTVTVSS (SEQ ID NO: 26).




The amino acid sequence of the anti-Rh(D) chain E01 is




EVQLLESGGGLVKPGGSLRLSCAASGFTFSSYSMHWVRQAPGKGLEWVSSISN SNTYIYYADAVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSRYSNFL RWVRSDGMDVWGQGTTVIVSS (SEQ ID NO: 27).




The amino acid sequence of the anti-Rh(D) chain E03 is




EVQLLESGVESGGGLVKPGGSLRLSCAASGFTFSSYSMHWVRQGPGKGLEWV SSISNSNTYIYYADAVKGRFTISRDNAKNSLYLQMNSLRAEHTAVYYCARDSR YSNFLRWVRSDGMDVWGQGTTVIVSS (SEQ ID NO: 28).




The amino acid sequence of the anti-Rh(D) chain F01 is




AELTQSPSSLSASVGDRVTITCRASQGFRNDLGWYQQKPGKAPKRLIYATSSLQ SGVPSRFSGSGSGTEFTLTINSLQPEDSATYYCLQHNSFPWTFGQGTKVEIKR (SEQ ID NO: 29).




The amino acid sequence of the anti-Rh(D) chain G01 is




AELTQSPLSLPVTPGEPASISCRSSQSLLHSSGFNFLDWYLQKPGQSPQLLIYMG SNRASGVPDRFSGSGSGTDFTLKINRVEAEDVGVYYCMQALQFPLTFGGGTKV EIKR (SEQ ID NO: 30).




The amino acid sequence of the anti-Rh(D) chain H01 is




AELTQSPSFLSASVGDRVTITCRASQGITSYLAWYQQKPGKAPKLLIYAASTLQ SGVPSRFSGSGSGTEFTLTIASLQPDDFATYYCQQLNNYPPFTFGPGTKVDIKR (SEQ ID NO: 31).




The amino acid sequence of the anti-Rh(D) chain I01 is




AELTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQS GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPPYTFGQGTKLEIKR (SEQ ID NO: 32).




The amino acid sequence of the anti-Rh(D) chain I02 is




AELTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQS GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTLWTFGQGTKVEIKR (SEQ ID NO: 33).




The amino acid sequence of the anti-Rh(D) chain I03 is




AELTQSPSSLSASVADRVTITCRTSRNINRYLNWYQQKPGKAPKLLIYAASSLQ SGVPSRFSGSGSGTDFTLTITSLQPEDFATYYCQQSYSTPFTFGPGTKVDLKR (SEQ ID NO: 34).




The amino acid sequence of the anti-Rh(D) chain I04 is




AELTQSPSSLSASVGDRVTITCRASQNIRRSLNWYQQKPGKAPKLLIYAASSLQ SGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSSNTPWTFGQGTKVEIKR (SEQ ID NO: 35).




The amino acid sequence of the anti-Rh(D) chain I05 is




AELTQSPSSLSASVGDRVTITCRASQSIRRYLNWYQHKPGKAPKLLIFAASSLQS GVPSRFTGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPQTFGQGTKVEIKR (SEQ ID NO: 36).




The amino acid sequence of the anti-Rh(D) chain I06 is




AELTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQS GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPITFGQGTRLEIKR (SEQ ID NO: 37).




The amino acid sequence of the anti-Rh(D) chain I07 is




AELTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQS GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPRTFGGGTKVEIKR (SEQ ID NO: 38).




The amino acid sequence of the anti-Rh(D) chain I08 is




AELTQSPFSLSASVGDRVTITCRASQTISRSLNWYQHKPGEAPKLLIYAASSLQR GVPPRFSGSGSGTDFTLTISSLQPEDFATYFCQQSVRIPYSFGQGTKLEIKR (SEQ ID NO: 39).




The amino acid sequence of the anti-Rh(D) chain I09 is




AELTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQS GVPSRFSGSGSGTDSTLTIS SLQPEDFATYYCQQLNSYPYTFGQGTKLEIKR (SEQ ID NO: 40).




The amino acid sequence of the anti-Rh(D) chain I10 is




AELTQSPSSLSASVGDRVTITCRASQNISSYLNWYQQKPGKAPKLLIYAASSLQ SGVLSRFSGSGSGTDFTLTIS SLQPEDFATYYCQQSYSTPPYSFGQGTKLEIKR (SEQ ID NO: 41).




The amino acid sequence of the anti-Rh(D) chain I11 is




AELTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPTLLINAASSLQS GVPSRFSGSGSGTDFTLTISSLQPEDFAIYYCQQRETFGQGTKLEIKR (SEQ ID NO: 42).




The amino acid sequence of the anti-Rh(D) chain I12 is




AELTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQS GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPPYTFGQGTKLEIKR (SEQ ID NO: 43).




The amino acid sequence of the anti-Rh(D) chain I13 is




AELTQSPSSLSASVGDRVTITCRASQSISRYLNWYQQKPGKAPKLLIYAASSLQ SGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYGTPHSFGRGTKLEIKR (SEQ ID NO: 44).




The amino acid sequence of the anti-Rh(D) chain I15 is




AELTQSPSSLSASVGDRVTITCRANQNIRRSLNWYQQKPGKAPNLLIYAASTLQ GGVPSRFSGSGSGTDFTLTISSLQLADFATYYCQQTSATPWTFGQGTKVEIKR (SEQ ID NO: 45).




The amino acid sequence of the anti-Rh(D) chain I16 is




AELTQSPSSLPASVGDRVTITCRASQTIGFNLNWYQQTSGKPPKLLIYGVSKLQ NGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQQTNDALWTFGQGTKVEVRR (SEQ ID NO: 46).




The amino acid sequence of the anti-Rh(D) chain J01 is




AELQDPVVSVALGQTVRITCQGDGLRSYYASWYQQKPGQAPKLVMYGRNNR PSGIPGRFSGSSSGQTAALTITGTQAEDEADYYCQSRATSGNPVVFGGGTKLTV L (SEQ ID NO: 47).




The amino acid sequence of the anti-Rh(D) chain J02 is




AELQDPVVSVALGQTVRITCQGDGLRSYYASWYQQKPGQAPKLVMYGRNNR PSGIPDRFSGSSSGQTAALTITGTQAEDEADYYCQSRATSGNPVVFGGGTKLTV L (SEQ ID NO: 48).




The amino acid sequence of the anti-Rh(D) chain J04 is




AELQDPVVSVALGQTVRITCQGDSLRSYYASWYQQKPGQAPVLVIYGKNSRPS GIPDRFSGSSSGNTASLTITGAQAEDEADYYCSSRGSPHVAFGGGTKLTVL (SEQ ID NO: 49).




The amino acid sequence of the anti-Rh(D) chain J05 is




AELQDPVVSVALGQTVKITCQGDSLRKYYASWYQQKPGQAPVLVFYARNSRP SGIPDRFSGSNSGTTASLTIAGARAEDEADYYCHSRDSNGHHRVFGGGTKLTV L (SEQ ID NO: 50).




The amino acid sequence of the anti-Rh(D) chain K01 is




AELTQEPSLTVSPGGTVTLTCASSTGAVTSRYFPNWFQQKPGQAPRPLIYSASN KHSWTPARFSGSLLGGKAALTLSGVQPEDEAEYYCLLYYSGAWVFGGGTKLT VL(SEQ ID NO: 51).




The amino acid sequence of the anti-Rh(D) chain K02 is




AELTQEPSLTVSPGGTVTLTCASSTGAVTSRYFPNWFQQKPGQAPRPLIYSASN KHSWTPARFSGSLLGGKAALTLSGVQPEDEAEYYCLLYYSGAWVFGGGTKLT VL (SEQ ID NO: 52).




The amino acid sequence of the anti-Rh(D) chain K03 is




AELTQPPSLTVSPGGTVTLTCASSTGAVTSRYFPNWFQQKPGQAPRALIYGSNN KHSWTPARFSGSLLGGKAALTLSGVQPEDEAEYYCLLFYAGAWAFGGWTKLT VL (SEQ ID NO: 53).




The amino acid sequence of the anti-Rh(D) chain L01 is




AELTQPPSASGTPGQRVTISCSGGSSNIASNTVNWYQQLPGTAPKLLIYSNNQR PSGVPDRFSGSKSGTSATLVITGLQTGDEADYYCGTWDHSRSGAVFGGGTKLT VL (SEQ ID NO: 54).




The amino acid sequence of the anti-Rh(D) chain L03 is




AELTQPPSASGTPGQRVTISCSGSSSNIGNNHVSWYQQLPGMAPKLLIYSNGQR PSGVPDRFSGSKSGTSASLAISGLQSEDEADYYCAAWHDSLYGPVFGGGTKLT VL (SEQ ID NO: 55).




The amino acid sequence of the anti-Rh(D) chain L04 is




AELTQPPSASGTPGQRVSISCSGSSSNIGSNTVNWYQQLPGTAPKLLISTNNQGP SGVPDRFSGSKSGTSSSLAISGLRSEAEDDYYCAAWDDTLNGVVFGGGTKLTV L (SEQ ID NO: 56).




The amino acid sequence of the anti-Rh(D) chain L05 is




AELTQPPSASGTPGLRVTISCSGSSSNIGSNIVNWYQQLPGTAPKLLIFSNNKRPS GVPDRFSGSKSGTSASLAISGLQSEDEADYYCATWDDSLNGRVFGGGTKLTVL (SEQ ID NO: 57).




The amino acid sequence of the anti-Rh(D) chain M01 is




AELTQPPSASGTPGQRVTISCSGSNFNIGSNYVFWYQHVPGTAPKLLIYNNNQR PSGVPDRLSGSKSGASASLAINGLRSDDEADYYCTGWDDRLSGLIFGGGPKVT VL (SEQ ID NO: 58).




The amino acid sequence of the anti-Rh(D) chain M02 is




AELTQPPSASGTPGQRVTISCSGSSSNIGSNYVYWYQQLPGTAPKLLIYRNNQR PSGVPDRFSGSKSGTSASLAISGLRSEDEADYYCAAWDDSLSGWVFGGGTKLT VL (SEQ ID NO: 59).




The amino acid sequence of the anti-Rh(D) chain M03 is




AELTQPPSASGTPGQRVTISCSGSSSNIGSNYVYWYQQLPGTAPKLLIYRNNQR PSGVPDRFSGSKSGTSASLAISGLRSEAEADYYCAAWDDSLSAVVFGGGTKLT VLL (SEQ ID NO: 60).




The amino acid sequence of the anti-Rh(D) chain N01 is




AELTQPPSVSAAPGQKVTISCSGSSSNIDSNYVSWYQQLPGTAPKLLIFDNYRRP SGIPDRFSGSKSGTSATLGITGLQTGDEADYYCATWDDSLNGRVFGGGTKLTV L (SEQ ID NO: 61).




The amino acid sequence of the anti-Rh(D) chain N02 is




AELTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKR PSGIPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWDSSLSAGRVRRMFGGG TKLTVLG (SEQ ID NO: 62).




The amino acid sequence of the anti-Rh(D) chain O01 is




AELTQPPSVSGAPGQRVTISCTGSSSNIGAPYGVHWYQQFPGTAPKLVIYNDNN RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDSSLSGRVFGGGTKLT VL (SEQ ID NO: 63).




The amino acid sequence of the anti-Rh(D) chain O02 is




AELTQPPSVSGAPGQTVTISCTGSSSSIGARYDVHWYQHLPGTAPKLLIYGNHN RPSGVPDRFSGSKSGTSASLAITGLQAEDEAEYYCQSYDNSLSGSSVFFGGGTK LTVL (SEQ ID NO: 64).




The amino acid sequence of the anti-Rh(D) chain O03 is




AELTQPPSGAPGQTVTISCTGSSSNIGAGYDVHWYQQLPGTAPKLLIYGNSNRP SGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDSSLSGPYVVFGGGTKLT VL (SEQ ID NO: 65).




The amino acid sequence of the anti-Rh(D) chain P01 is




AELTQPPSVSVAPRQTARITCGGDKIGSNTVHWYRQMSGQAPVLVIYEDKKRP PGIPERFSGSTSGTTATLSISGAQVEDEADYYCYSRDNSGDQRRVFGAGTKLTV L (SEQ ID NO: 66).




The amino acid sequence of the anti-Rh(D) chain Q01 is




AELTQPPSATASLGGSVKLTCILQSGHRNYAVAWHHQEAGKGPRFLMTVTND GRHIKGDGIPDRFSGSASGAERYLSISGLQSEDEGDYYCQTWGTGMHVFGGGT KLTVL (SEQ ID NO: 67).




The amino acid sequence of the anti-Rh(D) chain R01 is




AELTQPPSASGSPGQSVTISCTGASSDVGAYKHVSWYQQHPGKAPKLLTHEGT KRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSFAGNSVIFGGGTKLT VL (SEQ ID NO: 68).




The amino acid sequence of the anti-Rh(D) chain S01 is




AELTQPPSVSGSPGQSITISCSDVGNYNLVSWYQQYPGKAPKLIIYEGSKRPSGV SSRFSGSRSGNTASLTISGLQAEDEADYHCCSYAISSRIFGGGTKLTVL (SEQ ID NO: 69).




Nucleotide Sequences of Anti-Rh(D) Heavy and Light Chains




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain B01 is




GAGGTGCAGCTGCTCGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTC CCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGGAGCTATGCTATG CACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGCTAC AGCATATGATGGAAAAAATAAATACTACGCAGACTCCGTGAAGGGCCGAT TCACCATCTCCAGAGACAATTCCAAGAACACGCTGTTTCTGCAAATGAACA GCCTGAGAGCTGAGGACACGGCTGTGTTTTACTGTGCGAGAGGCGGATTTT ACTATGATAGTAGTGGTTATTACGGCTTGAGGCACTACTTTGACTCCTGGG GCCAGGGAACCCTGGTCACCGTCTCCTCA (SEQ ID NO: 70).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain C01 is




GAGGTGCAGCTGCTCGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTC CCTGAGACTCTCCTGTGCAGCCTCTGGATTCTCCTTCAGTAGCTATGGCATG CACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGTCAGTTATA TCATATGATGGACATCATAAAAACTATGCAGACTCCGTGAAGGGCCGATTC ACCATCTCCAGAGACAATTCCAAGAAAACGCTGTACCTGCAAATGAACAGC CTGAGACCTGAGGACACGGCTGTATATTACTGTGCGAACCTAAGGGGGGA AGTAACTCGTCGTGCGTCTGTTCCCTTTGATATCTGGGGCCCAGGGACAAT GGTCACCGTCTCTTCA (SEQ ID NO: 71).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain C03 is




GAGGTGCAGCTGCTCGAGTCGGGGGGAGGTGTGGTCCAGCATGGGAGGTC CCTGAGACTGTCCTGTGCAGCCTCTGGATTCTCCTTCAGTAGCTATGGCATG CACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGTCAGTTATA TCATATGATGGACATCATAAAAACTATGCAGACTCCGTGAAGGGCCGATTC ACCATCTCCAGAGACAATTCCAAGAAAACGCTGTACCTGCAAATGAACAGC CTGAGACCTGAGGACACGGCTGTATATTACTGTGCGAACCTAAGGGGGGA AGTAACTCGTCGTGCGTCTGTTCCCTTTGATATATGGGGCCCAGGGACAAT GGTCACCGTGTCTTCA (SEQ ID NO: 72).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain C04 is




GAGGTGCAGCTGCTCGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTC CCTGAGACTCTCCTGTGCAGCCTCTGGATTCTCCTTCAGTACCTATGGCATG CACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGTCAGTTATA TCATATGATGGACATAATAAAAACTATGCAGACTCCGTGAAGGGCCGATTC ACCATCTCCAGAGACAATTCCAAGAAAACGCTGTACCTGCAAATGAACAGC CTGAGACCTGAGGACACGGCTGTGTATTACTGTGCGAACCTAAGGGGGGA AGTAACTCGTCGTGCGTCTATTCCTTTTGATATCTGGGGCCAAGGGACAAT GGTCACCGTCTCTTCA (SEQ ID NO: 73).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain C05 is




GAGGTGCAGCTGCTCGAGTCGGGGGGAGGCGTGGTCCAGCCTGGGAGGTC CCTGAGACTCTCCTGTGCAGCCTCTGGATTCAGCTTCAGTAGTTATGGCATG CACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTAT ATCGTATGATGGAACTAATAAATACTTTGCAGACTCCGTGAAGGGCCGATT CACCATCTCCAGAGACAATTCCAAGAAAACGCTGTATCTGCAAATGACCAG CCTGAGACCTGAGGACACGGCTGTGTATTTCTGTGCGAACCTAAGGGGGGA AGTAACTCGTCGTGCGTCCGTACCTCTTGATATCTGGGGCCAAGGGACAAT GGTCACCGTCTCTTCA (SEQ ID NO: 74).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain C08 is




GAGGTGCAGCTGCTCGAGTCGGGGGGAGGCGTGGTCCAGCCTGGGAGGTC CCTGAGACTCTCCTGTGCAGCCTCTGGATTCAGCTTCAGTAGTTATGGCATG CACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTAT ATCGTATGATGGAACTAATAAATACTTTGCAGACTCCGTGAAGGGCCGATT CACCATCTCCAGAGACAATTCCAAGAAAACGCTGTATCTGCAAATGACCAG CCTGAGACCTGAGGACACGGCTGTGTATTTCTGTGCGAACCTAAGGGGGGA AGTAACTCGTCGTGCGTCTGTACCTCTTGATATCTGGGGCCAAGGGACAAT GGTCACCGTCTCTTCA (SEQ ID NO: 75).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain C10 is




GAGGTGCAGCTGCTCGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTC CCTGAGACTCTCCTGTGCAGCCTCTGGATTCTCCTTCAGTAGCTATGGCATG CACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGTCAGTTATA TCATATGATGGACATCATAAAAACTATGCAGACTCCGTGAAGGGCCGATTC ACCATCTCCAGAGACAATTCCAAGAAAACGCTGTACCTGCAAATGAACAGC CTGAGACCTGAGGACACGGCTGTATATTACTGTGCGAACCTAAGGGGGGA AGTAACTCGTCGTGCGTCTGTTCCCTTTGATATCTGGGGCCCAGGGACATTG GTCACCGTCTCTTCA (SEQ ID NO: 76).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain D01 is




GAGGTGCAGCTGCTCGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTC CCTGAGACTCTCCTGTGTAGTGTCTGGTTTCACCTTCAATAACTATGGCATG CACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTATT TGGTTTGATGGAAGTAATAAATACTATGCAGACTCCGTGAAGGGCCGATTC ACCATCTCCAGAGACAATTCCAAGAACACACTGTACCTGCAAATGAACAGC CTGAGAGCCGAGGACACGGCTGTATATTACTGTGCGAGAGAGAACCAGAT AAAGCTATGGTCCCGATACCTTTACTACTTTGATTACTGGGGCCAGGGAAC CCTGGTCACCGTCTCCTCA (SEQ ID NO: 77).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain D03 is




GAGGTGCAGCTGCTCGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTC CCTGAGACTCTCCTGTGCAGCGTCTGGATTCACCTTCAGTACCTATGGCATG CACTGGGTCCGCCAGGCTCCAGGCAAGGGACTGGAGTGGGTGGCAGTTAT ATGGTTTGATGGAAGTAATAAGGAATATGCAGACTCCGTGAAGGGCCGATT CACCGTCTCCAGAGACAATTCCAAGAACACGCTGTATCTACAAATGAACAG CCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGAAGAAGTGG TTCGGGGAGTTATCTTATGGTCTCGGAAGTTTGACTACTGGGGCCAGGGAA CCCTGGTCACCGTCTCCTCA (SEQ ID NO: 78).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain D04 is




GAGGTGCAGCTGCTCGAGTCGGGGGGAGGCGTGGCCCAGCCTGGGAGGTC CCTGAGACTCTCCTGTGTAGCGTCTGGATTCAGCCTCAGGAGCTATGGCAT GCACTGGGTCCGCCAGGCTCCTGGCAAGGGGCTGGAGTGGGTGGCAGATA TATGGTTTGATGGAAGTAATAAAGATTATGCAGACTCCGTGAAGGGCCGAT TCACCATCTCCAGAGACAATTCCAAGAACACGTTGTATCTTCAAATGAACA GCCTGAGAGCCGAGGATACGGCTGTGTATTATTGTGCGAGAGATTGGAGGG TGCGGGCCTTTAGTAGTGGCTGGTTAAGTGCTTTTGATATCTGGGGCCAAG GGACAATGGTCACCGTCTCCTCA (SEQ ID NO: 79).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain D05 is




GAGGTGCAGCTGCTCGAGGAGTCTGGGGGAGGCGTGGCCCAGCCTGGGAG GTCCCTGAGACTCTCCTGTGTAGCGTCTGGATTCAGCCTCAGGAGCTATGG CATGCACTGGGTCCGCCAGGCTCCTGGCAAGGGGCTGGAGTGGGTGGCAG ATATATGGTTTGATGGAAGTAATAAAGATTATGCAGACTCCGTGAAGGGCC GATTCACCATCTCCAGAGACAATTCCAAGAACACGTTGTATCTTCAAATGA ACAGCCTGAGAGCCGAGGACACGGCTGTGTATTATTGTGCGAGAGATTGGA GGGTGCGGGCCTTTAGTAGTGGCTGGTTAAGTGCTTTTGATATCTGGGGCC AAGGGACCACGGTCAGCGTCTCCTCA (SEQ ID NO: 80).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain D07 is




GAGGTGCAGCTGCTCGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTC CCTGAGACTCTCCTGTGCAGTGTCTGGATTCACCCTAACTAATTATGGCATG CACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCACATGT CTGGTATGATGGAAGTAAAACAGAATATGCAGACTCCGTCAAGGGCCGATT CGCCGTCTCCAGAGACAAATCCAAGAACACACTGTTTCTGCAAATGAACAG CCTGACAGCCGAGGACACGGCTATTTATTACTGTGCGAGAGAGAGGAGAG AGAAAGTCTATATATTGTTCTACTCGTGGCTCGACCGCTGGGGCCAGGGAA CCCTGGTCACCGTCTCCTCA (SEQ ID NO: 81).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain D08 is




GAGGTGCAGCTGCTCGAGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAG GTCCCTGAGACTCTCCTGTGCAGCGTCTGGGTTCACCTTCAGTAGCTATGGC ATGCACTGGGTCCGCCAGGCTCCAGGCAGGGGGCTGGAGTGGGTGGCTCTT ATATGGTACGATGGAGGTAACAAAGAGTATGCAGACTCCGTGAAGGGCCG CTTCAGCATCTCCAGAGACAATTCCAAGAACACTCTGTATCTGCAAGTGAA CAGCCTGAGAGCCGACGACACGGCTGTCTATTACTGTGCGAGAGACCAGA GAGCAGCAGCGGGTATCTTTTATTATTCCCGTATGGACGTCTGGGGCCAAG GGACCACGGTCACCGTCTCCTCA (SEQ ID NO: 82).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain D09 is




GAGGTGCAGCTGCTCGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTC CCTGAGACTCTCCTGTGAAGCGTCTAAATTCACCCTCTACAATTATGGCATG CACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCATTTATA TGGTTTGATGGAAGTAATAAATACTATGAAGACTCCGTGAAGGGCCGATTC ACCGTCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGC CTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGAAGGATCTAA GAAGGTGGCACTTTCTAGGTATTACTATTATATGGACGTCTGGGGCCAGGG GACCACGGTCACTGTCTCGTCA (SEQ ID NO: 83).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain D10 is




GAGGTGCAGCTGCTCGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTC CCTGAGACTCTCCTGTGAAGCGTCTAAATTCACCCTCTACAATTATGGCATG CACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCATTTATA TGGTTTGATGGAAGTAATAAATACTATGAAGACTCCGTGAAGGGCCGATTC ACCGTCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGC CTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGAAGTATCTAAG AAGGTGGCACTTTCTAGGTATTACTACTATATGGACGTCTGGGGCCAGGGG ACCACGGTCACTGTCTCCTCA (SEQ ID NO: 84).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain D11 is




GAGGTGCAGCTGCTCGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTC CCTGAGACTCTCCTGTGAAGCGTCTAAATTCACCCTCTACAATTATGGCATG CACTGGGTCCGCCAGGCTCCAGGCGAAGGGCTGGAGTGGGTGGCATTTATA TGGTTTGATGGAAGTAATAAATACTATGCAGACTCCGTGAAGGGCCGATTC ACCGTCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGC CTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGAAGTATCTAAG AAGCTGGCACTTTCTAGGTACTACTACTATATGGACGTCTGGGGCCAGGGG ACCACGGTCACTGTCTCCTCA (SEQ ID NO: 85).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain D12 is




GAGGTGCAGCTGCTCGAGTCGGGGGGAGGCGTGGTCCAGCCTGGGAGGTC CCTGAGACTCGCCTGTGCAGCGTCTGGATTCAGCTTCAGGAGCTATGGCAT GCACTGGGTCCGCCAGGCTCCAGGCAGGGGGCTGGAGTGGGTGGCATTTAC ATGGTTTGATGGAAGCAATAAATATTATGTAGACTCCGTGAAGGGCCGATT CACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGGAAATGAACAG CCTGAGAGTCGATGACACGGCTGTATATTACTGTGCGAGAGAGGCGTCTAT GCTTCGCGGAATTAGCAGATACTACTACGCGATGGACGTCTGGGGCCCAGG GACCACGGTCACCGTCTCCTCA (SEQ ID NO: 86).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain D13 is




GAGGTGCAGCTGCTCGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTC CCTGAGACTCTCCTGTGCAGCGTCTGGATTCACCTTCAGTACTTATGGCATG CACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTAT ATGGTTTGATGGAAGTAACAGAGACTATGCAGAGTCCGTGAAGGGCCGATT CACCATCTCCAGAGACAAGTCCAAGAACACACTGTATCTGCAAATGAACAG CCTGAGAGCCGAGGACTCGGCTGTGTATTATTGTGCGAGAGAAAATGTGGC TCGTGGGGGGGGGGGCGTTCGATACAAGTACTACTTTGACTACTGGGGCCA GGGAACCCTGGTCACCGTCTCCTCA (SEQ ID NO: 87).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain D14 is




GAGGTGCAGCTGCTCGAGTCGGGGGGAGGCTTGGTACAGCCTGGGGGGTC CCTGAGACTCTCCTGTGCAGCGTCTGGATTCACCTTCAGTACTTATGGCATG CACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTAT ATGGTTTGATGGAAGTAAGAGAGACTATGCAGAGTCCGTGAAGGGCCGATT CACCATCTCCAGAGACAACTCCAAGAACACACTGTATCTGCAAATGAACAG CCTGAGAGCCGAGGACTCGGCTGTGTATTACTGTGCGAGAGAAAATGTGGC TCGTGGGGGGGGGGGCATTCGATACAAGTACTACTTTGACTACTGGGGCCA GGGAACCCTGGTCACCGTCTCCTCA (SEQ ID NO: 88).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain D15 is




GAGGTGCAGCTGCTCGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTC CCTGAGACTCTCCTGTGTAGTGTCTGGATTCACCTTCAATAACTATGGCATG CACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTATT TGGTTTGATGGAAGTAATAAATACTATGCAGACTCCGTGAAGGGCCGATTC ACCATCTCCAGAGACAATTCCAAGAACACACTGTACCTGCAAATGAACAGC CTGAGAGCCGAGGACACGGCTGTATATTACTGTGCGAGAGAGAACCAGAT AAAGCTATGGTCCCGATACCTTTACTACTTTGACTACTGGGGCCAGGGAAC CCTGGTCACCGTCTCCTCA (SEQ ID NO: 89).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain D16 is




GAGGTGCAGCTGCTCGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTC CCTGAGACTCTCCTGTGTAGTGTCTGGTTTCACCTTCAATAACTATGGCATG CACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTATT TGGTTTGATGGAAGTAATAAATACTATGCAGACTCCGTGAAGGGCCGATTC ACCATCTCCAGAGACAATTCCAAGAACACACTGTACCTGCAAATGAACAGC CTGAGAGCCGAGGACACGGCTGTATATTACTGTGCGAGAGAGAACCAGAT AAAGCTATGGTCCCGATACCTTTACTACTTTGACTACTGGGGCCAGGGAAC CCTGGTCACCGTCTCCTCA (SEQ ID NO: 90).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain D17 is




GAGGTGCAGCTGCTCGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTC CCTGAGACTCTCCTGTGTAGTGTCTGGTTTCACCTTCAATAACTATGGCATG CACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTATT TGGTTTGATGGAAGTAATAAATACTATGCAGACTCCGTGAAGGGCCGATTC ACCATCTCCAGAGACAATTCCAAGAACACACTGTACCTGCAAATGAACAGC CTGAGAGCCGAGGACACGGCTGTATATTACTGTGCGAGAGAGAACCAGAT AAAGCTATGGTCCCGATACCTTTACTACTTTGACTACTGGGGCCAGGGAAC CCTGGTCACCGTCTCCTCC (SEQ ID NO: 91).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain D18 is




GAGGTGCAGCTGCTCGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTC CCTGAGACTCTCCTGTGTAGTGTCTGGTTTCACCTTCAATAACTATGGCATG CACTGGGTCCGCCAGGCTTCAGGCAAGGGGTTGGAGTGGGTGGCAGTTATT TGGTTTGATGGAAGTAATAAATACTATGCAGACTCCGTGAAGGGCCGATTC ACCATCTCCAGAGACAATTCCAAGAACACACTGTACCTGCAAATGAACAGC CTGAGAGCCGAGGACACGGCTGTATATTACTGTGCGAGAGAGAACCAGAT AAAGCTATGGTCCCGATACCTTTACTACTTTGACTACTGGGGCCAGGGAAC CCTGGTCACCGTGTCCTCA (SEQ ID NO: 92).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain D20 is




GAGGTGCAGCTGCTCGAGTCGGGGGGAGGCGTGGTCCAGCCTGGGAGGTC CCTGAGACTCTCCTGTGCAGCGTCTGGATTCACCTTCAGTACCTATGGCATG CACTGGGTCCGCCAGGCTCCAGGCAAGGGACTGGAGTGGGTGGCAGTTAT ATGGTTTGATGGAAGTAATAAGGAATATGCAGACTCCGTGAAGGGCCGATT CACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTACAAATGAACAG CCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGAAGAAGTGG TTCGGGGAGTTATCTTATGGTCTCGGAAGTTTGACTACTGGGGCCAGGGAA CCCTGGTCACCGTCTCCTCA (SEQ ID NO: 93).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain D30 is




GAGGTGCAGCTGCTCGAGTCGGGGGGAGGCGTGGTCCAGCCTGGGAGGTC CCTGAGACTCTCCTGTGCAGCGTCTGGATTCACCTTCAGTAGCTATGGCATG CGCTGGGTCCGGCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTGT CTACTATGATGGAAGTAACAAACACTATTCAGACTCCGTGAAGGGCCGATT CACCATCTCCAGAGACAACTCCAAGAACACGCTGTATCTACAAATGGACAG CCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGAAAGAAATTT TCGGAGTGGTTATTCCCGCTACTACTACGGTATGGACGTCTGGGGCCCAGG GACCACGGTCACCGTCTCCTCA (SEQ ID NO: 94).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain D31 is




GAGGTGCAGCTGCTCGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTC CCTGAGACTCTCCTGTGCAGCGTCTGGATTCACCTTCAGTAGCTATGGCATG CACTGGGTCCGGCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTGT CTACTATGATGGAAGTAACAAACACTATTCAGACTCCGTGAAGGGCCGATT CACCATCTCCAGAGACAACTCCAAGAACACGCTGTATCTACAAATGGACAG CCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGAAAGAAATTT TCGGAGTGGTTATTCCCGCTACTACTACGGTATGGACGTCTGGGGCCCAGG GACCACGGTCACCGTCTCCTCA (SEQ ID NO: 95).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain E01 is




GAGGTGCAGCTGCTCGAGTCTGGGGGAGGCCTGGTCAAGCCTGGGGGGTC CCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAGCTATAGCATG CACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCATCCATT AGTAATAGTAATACTTACATATACTACGCAGACGCAGTGAAGGGCCGATTC ACCATCTCCAGAGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGC CTGAGAGCCGAGGACACGGCTGTGTACTACTGTGCGAGAGATTCTAGATAC AGTAATTTCCTCCGTTGGGTTCGGAGCGACGGTATGGACGTCTGGGGCCAA GGGACCACGGTCATCGTCTCCTCA (SEQ ID NO: 96).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain E03 is




GAGGTGCAGCTGCTCGAGTCTGGGGTGGAGTCTGGGGGAGGCCTGGTCAA GCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGT AGCTATAGCATGCACTGGGTCCGCCAGGGTCCAGGGAAGGGGCTGGAGTG GGTCTCATCCATTAGTAATAGTAATACTTACATATACTACGCAGACGCAGT GAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACTCACTGTATCT GCAAATGAACAGCCTGAGAGCCGAGCACACGGCTGTGTACTACTGTGCGA GAGATTCTAGATACAGTAATTTCCTCCGTTGGGTTCGGAGCGACGGTATGG ACGTCTGGGGCCAAGGGACCACGGTCATCGTCTCCTCA (SEQ ID NO: 97).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain F01 is




GCCGAGCTCACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGA GTCACCATCACTTGCCGGGCAAGTCAGGGCTTTAGAAATGATTTAGGCTGG TATCAGCAGAAACCAGGGAAAGCCCCTAAGCGCCTGATCTATGCTACATCC AGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACA GAATTCACTCTCACAATCAACAGCCTGCAGCCTGAAGATTCTGCAACTTAT TACTGTCTACAGCATAATAGTTTCCCGTGGACGTTCGGCCAAGGGACCAAG GTGGAAATCAAACGA (SEQ ID NO: 98).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain G01 is




GCCGAGCTCACTCAGTCTCCACTCTCCCTGCCCGTCACCCCTGGAGAGCCG GCCTCCATCTCCTGCAGGTCTAGTCAGAGCCTCCTGCATAGTAGTGGATTCA ACTTTTTGGATTGGTACCTGCAGAAGCCAGGGCAGTCTCCACAGCTCCTGA TCTATATGGGTTCTAATCGGGCCTCCGGGGTCCCTGACAGGTTCAGTGGCA GTGGATCAGGCACAGATTTTACACTGAAAATCAACAGAGTGGAGGCTGAG GATGTTGGGGTTTATTACTGCATGCAAGCTCTACAATTTCCTCTCACTTTCG GCGGAGGGACCAAGGTGGAGATCAAACGA (SEQ ID NO: 99).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain H01 is




GCCGAGCTCACCCAGTCTCCATCCTTCCTGTCTGCATCTGTAGGAGACAGA GTCACCATCACTTGCCGGGCCAGTCAGGGCATTACGAGTTATTTAGCCTGG TATCAGCAAAAACCAGGGAAAGCCCCTAAGCTCCTAATCTATGCTGCATCC ACTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACA GAATTCACTCTCACAATCGCCAGCCTGCAGCCTGATGATTTTGCAACTTATT ACTGTCAACAGCTTAATAATTACCCCCCTTTCACTTTCGGCCCTGGGACCAA AGTGGATATCAAACGA (SEQ ID NO: 100).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain I01 is




GCCGAGCTCACCCAGTCTCCATCCTCCCTATCTGCATCTGTAGGAGACAGA GTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCAGCTATTTAAATTGG TATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCATCC AGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACA GATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGCAACTTACT ACTGTCAACAGAGTTACAGTACCCCTCCGTACACTTTTGGCCAGGGGACCA AGCTGGAGATCAAACGA (SEQ ID NO: 101).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain I02 is




GCCGAGCTCACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGA GTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCAGCTATTTAAATTGG TATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCATCC AGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACA GATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGCAACTTACT ACTGTCAACAGAGTTACAGTACCCTGTGGACGTTCGGCCAAGGGACCAAGG TGGAAATCAAACGA (SEQ ID NO: 102).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain I03 is




GCCGAGCTCACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGCGGACAGA GTCACCATCACTTGCCGGACAAGTCGGAACATTAACAGATACTTAAATTGG TATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATTTATGCTGCATCC AGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACA GATTTCACTCTCACCATCACCAGTCTGCAACCTGAAGATTTTGCCACTTACT ACTGTCAACAGAGTTACAGTACCCCTTTCACTTTCGGCCCTGGGACCAAAG TGGATCTCAAACGA (SEQ ID NO: 103).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain I04 is




GCCGAGCTCACTCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGA GTCACCATCACTTGCCGGGCAAGTCAGAACATTAGGAGGTCTTTAAATTGG TATCAACAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCATCC AGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACA GATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGCAACTTACT ACTGTCAGCAGAGTTCCAATACCCCGTGGACGTTCGGCCAAGGGACCAAGG TGGAAATCAAACGA (SEQ ID NO: 104).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain I05 is




GCCGAGCTCACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGA GTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGGAGGTATTTAAATTGG TATCAGCACAAACCAGGGAAAGCCCCTAAGCTCCTGATCTTTGCTGCATCC AGTTTGCAAAGTGGGGTCCCATCAAGGTTCACTGGCAGTGGATCTGGGACA GATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGCAACTTACT ACTGTCAACAGAGTTACAGTACCCCTCAAACGTTCGGCCAAGGGACCAAGG TGGAAATCAAACGA (SEQ ID NO: 105).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain I06 is




GCCGAGCTCACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGA GTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCAGCTATTTAAATTGG TATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCCGCATCC AGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACA GATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGCAACTTACT ACTGTCAACAGAGTTACAGTACCCCGATCACCTTCGGCCAAGGGACACGAC TGGAGATTAAACGA (SEQ ID NO: 106).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain I07 is




GCCGAGCTCACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGA GTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCAGCTATTTAAATTGG TATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCATCC AGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACA GATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGCAACTTACT ACTGTCAACAGAGTTACAGTACCCCTCGAACTTTCGGCGGAGGGACCAAGG TGGAGATCAAACGA (SEQ ID NO: 107).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain I08 is




GCCGAGCTCACCCAGTCTCCATTCTCCCTGTCTGCATCTGTCGGAGACAGA GTCACCATAACTTGCCGGGCAAGTCAGACCATTAGCAGGTCTTTAAATTGG TATCAGCATAAACCAGGGGAAGCCCCTAAGCTCCTGATCTATGCTGCATCC AGTCTGCAGCGTGGGGTCCCACCCAGGTTCAGTGGCAGTGGATCTGGGACA GATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGACTTTGCGACTTACT TCTGTCAACAGAGTGTCAGAATCCCGTACAGTTTTGGCCAGGGGACCAAGC TGGAGATCAAACGA (SEQ ID NO: 108).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain I09 is




GCCGAGCTCACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGA GTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCAGCTATTTAAATTGG TATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCATCC AGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACA GATTCCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGCAACTTATT ACTGTCAACAGCTTAATAGTTACCCGTACACTTTTGGCCAGGGGACCAAGC TGGAGATCAAACGA (SEQ ID NO: 109).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain I10 is




GCCGAGCTCACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGA GTCACCATCACTTGCCGGGCAAGTCAGAACATTAGCAGCTATTTAAATTGG TATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCATCC AGTTTGCAAAGTGGGGTCCTATCAAGGTTCAGTGGCAGTGGATCTGGGACA GATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGCAACTTACT ACTGTCAACAGAGTTACAGTACCCCTCCGTATAGTTTTGGCCAGGGGACCA AGCTGGAGATCAAACGA (SEQ ID NO: 110).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain I11 is




GCCGAGCTCACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGA GTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCAGCTATTTAAATTGG TATCAGCAGAAACCAGGGAAAGCCCCTACGCTCCTGATCAATGCTGCATCC AGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACA GATTTCACTCTCACCATTAGCAGTCTGCAACCTGAAGATTTCGCAATTTACT ACTGTCAACAGAGAGAAACTTTTGGCCAGGGGACCAAGCTGGAGATCAAA CGA (SEQ ID NO: 111).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain I12 is




GCCGAGCTCACCCAGTCTCCATCCTCCCTATCTGCATCTGTAGGAGACAGA GTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCAGCTATTTAAATTGG TATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCATCC AGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACA GATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGCAACTTACT ACTGTCAACAGAGTTACAGTACCCCTCCGTACACTTTTGGCCAGGGGACCA AGCTGGAGATCAAACGA (SEQ ID NO: 112).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain I13 is




GCCGAGCTCACCCAGTCTCCATCCTCCCTGTCTGCCTCTGTAGGAGACAGA GTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCAGGTATTTAAATTGG TATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCATCC AGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACA GATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGCAACTTACT ACTGTCAACAGAGTTACGGTACCCCTCACAGTTTTGGCCGGGGGACCAAGC TGGAGATCAAACGA (SEQ ID NO: 113).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain I15 is




GCCGAGCTCACCCAGTCTCCTTCCTCCCTGTCTGCATCTGTAGGAGACAGA GTCACCATCACTTGCCGGGCAAATCAGAACATTCGTAGATCTTTAAATTGG TATCAGCAGAAACCAGGGAAAGCCCCTAACCTCCTGATCTATGCTGCATCC ACATTGCAAGGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACA GATTTCACTCTCACCATCAGCAGTCTGCAACTTGCGGATTTTGCAACTTACT ACTGTCAACAGACTTCCGCTACCCCGTGGACGTTCGGCCAAGGGACCAAGG TGGAAATCAAACGA (SEQ ID NO: 114).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain I16 is




GCCGAGCTCACCCAGTCTCCATCGTCCCTGCCTGCATCTGTGGGAGACAGA GTCACCATCACTTGCCGGGCAAGTCAGACTATTGGTTTTAATTTAAATTGGT ATCAGCAAACATCTGGGAAGCCCCCTAAACTCCTAATCTATGGTGTTTCCA AGTTGCAAAATGGGGTCCCTTCACGGTTCAGTGGCAGTGGGTCCGGGACGG AATTCACCCTCACAATCAGCAGTCTGCAGCCTGAGGATTTTGCGACTTATTA TTGTCAACAGACTAACGATGCGTTGTGGACGTTCGGCCAAGGGACCAAAGT GGAAGTCAGACGA (SEQ ID NO: 115).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain J01 is




GCCGAGCTCCAGGACCCTGTTGTGTCTGTGGCCTTGGGACAGACAGTCAGG ATCACTTGCCAAGGAGACGGCCTCAGAAGTTATTATGCAAGCTGGTACCAG CAGAAGCCGGGACAGGCCCCGAAACTTGTCATGTACGGTAGAAACAACCG GCCCTCAGGGATCCCAGGCCGATTCTCTGGCTCCAGCTCAGGGCAGACAGC TGCCTTGACCATCACGGGGACTCAGGCGGAGGATGAGGCTGACTATTACTG TCAGTCCCGTGCCACCAGCGGTAACCCTGTGGTGTTCGGCGGAGGGACTAA GCTGACCGTCCTG (SEQ ID NO: 116).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain J02 is




GCCGAGCTCCAGGACCCTGTTGTGTCTGTGGCCTTGGGACAGACAGTCAGG ATCACTTGCCAAGGAGACGGCCTCAGAAGTTATTATGCAAGCTGGTACCAG CAGAAGCCGGGACAGGCCCCGAAACTTGTCATGTACGGTAGAAACAACCG GCCCTCAGGGATCCCAGACCGATTCTCTGGCTCCAGCTCAGGGCAGACAGC TGCCTTGACCATCACGGGGACTCAGGCGGAGGATGAGGCTGACTATTACTG TCAGTCCCGTGCCACCAGCGGTAACCCTGTGGTGTTCGGCGGAGGGACTAA GCTGACCGTCCTG (SEQ ID NO: 117).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain J04 is




GCCGAGCTCCAGGACCCTGTTGTGTCTGTGGCCTTGGGACAGACAGTCAGG ATCACATGCCAAGGAGACAGCCTCAGAAGCTATTATGCAAGCTGGTACCAG CAGAAGCCAGGACAGGCCCCTGTACTTGTCATCTATGGTAAAAACAGCCGG CCCTCAGGGATCCCAGACCGATTCTCTGGCTCCAGCTCAGGAAACACAGCT TCGTTGACCATCACTGGGGCTCAGGCGGAAGATGAGGCGGACTATTATTGT AGTTCGCGGGGCAGCCCCCACGTGGCATTCGGCGGAGGGACCAAACTGAC CGTCCTG (SEQ ID NO: 118).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain J05 is




GCCGAGCTCCAGGACCCTGTTGTGTCTGTGGCCTTGGGACAGACAGTCAAG ATCACATGCCAGGGAGACAGCCTCAGAAAGTATTATGCAAGCTGGTACCA GCAGAAGCCAGGACAGGCCCCTGTGCTTGTCTTCTATGCTAGAAATAGCCG GCCCTCAGGGATCCCAGACCGATTCTCTGGCTCCAACTCAGGAACCACAGC TTCCTTGACCATCGCTGGGGCTCGGGCGGAAGATGAGGCTGACTATTACTG TCACTCCCGGGACAGCAATGGTCACCATCGGGTGTTCGGCGGAGGGACCAA GCTGACCGTCCTA (SEQ ID NO: 119).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain K01 is




GCCGAGCTCACTCAGGAGCCCTCACTGACTGTGTCCCCAGGAGGGACAGTC ACTCTCACCTGTGCTTCCAGCACTGGAGCAGTCACCAGTCGTTACTTTCCAA ACTGGTTCCAGCAGAAACCTGGACAAGCACCCAGGCCACTGATTTATAGTG CAAGCAACAAACACTCCTGGACCCCTGCCCGGTTCTCAGGCTCCCTCCTTG GGGGCAAAGCTGCCCTGACACTGTCAGGTGTGCAGCCTGAGGACGAGGCT GAGTATTACTGCCTGCTCTACTATAGTGGTGCTTGGGTGTTCGGCGGAGGG ACCAAGTTGACCGTCCTT (SEQ ID NO: 120).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain K02 is




GCCGAGCTCACTCAGGAGCCCTCACTGACTGTGTCCCCAGGAGGGACAGTC ACTCTCACCTGTGCTTCCAGCACTGGAGCAGTCACCAGTCGTTACTTTCCAA ACTGGTTCCAGCAGAAACCTGGACAAGCACCCAGGCCACTGATTTATAGTG CAAGCAACAAACACTCCTGGACCCCTGCCCGGTTCTCAGGCTCCCTCCTTG GGGGCAAAGCTGCCCTGACACTGTCAGGTGTGCAGCCTGAGGACGAGGCT GAGTATTACTGCCTGCTCTACTATAGTGGTGCTTGGGTGTTCGGCGGAGGG ACCAAGCTGACCGTCCTA (SEQ ID NO: 121).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain K03 is




GCCGAGCTCACTCAGCCACCCTCACTGACTGTGTCCCCAGGAGGGACAGTC ACTCTCACCTGTGCTTCCAGCACTGGAGCAGTCACCAGTCGTTACTTTCCAA ACTGGTTCCAGCAGAAACCTGGCCAGGCACCCAGGGCACTGATTTATGGTT CAAACAACAAACACTCCTGGACCCCTGCCCGGTTCTCAGGCTCCCTCCTTG GGGGCAAAGCTGCCCTGACACTGTCAGGTGTGCAGCCTGAGGACGAGGCG GAGTATTACTGCCTGCTCTTCTATGCTGGTGCTTGGGCGTTCGGCGGATGGA CCAAGCTGACCGTCCTA (SEQ ID NO: 122).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain L01 is




GCCGAGCTCACGCAGCCGCCCTCAGCGTCTGGGACCCCCGGGCAGAGGGT CACCATCTCTTGTTCTGGAGGCAGCTCCAACATCGCAAGTAATACTGTAAA CTGGTACCAGCAACTCCCAGGAACGGCCCCCAAACTCCTCATCTATAGTAA TAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCAAGTCTGG CACCTCAGCCACCCTGGTCATCACCGGGCTCCAGACTGGGGACGAGGCCGA TTATTACTGCGGAACATGGGATCACAGCCGGAGTGGTGCGGTGTTCGGCGG AGGGACCAAACTGACCGTCTTA (SEQ ID NO: 123).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain L03 is




GCCGAGCTCACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTC ACCATCTCTTGTTCTGGCAGTAGCTCCAACATCGGAAATAATCATGTAAGC TGGTACCAGCAACTCCCAGGAATGGCCCCCAAACTCCTCATCTATTCTAAT GGTCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCAAGTCTGGC ACCTCAGCCTCCCTGGCCATCAGCGGCCTCCAGTCTGAGGATGAGGCTGAT TATTATTGTGCAGCATGGCATGACAGCCTCTATGGTCCGGTGTTCGGCGGA GGGACCAAGCTGACCGTCCTC (SEQ ID NO: 124).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain L04 is




GCCGAGCTCACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTC AGCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAGTAATACTGTAAAC TGGTACCAGCAGCTCCCAGGAACAGCCCCCAAACTCCTCATCTCTACTAAT AATCAGGGGCCCTCAGGAGTCCCTGACCGATTCTCTGGCTCCAAGTCTGGC ACCTCATCCTCCCTGGCCATCAGTGGGCTCCGGTCAGAGGCTGAGGATGAT TATTACTGTGCAGCATGGGATGACACCCTGAATGGTGTGGTATTCGGCGGA GGGACCAAACTGACCGTCCTA (SEQ ID NO: 125).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain L05 is




GCCGAGCTCACTCAGCCACCCTCAGCGTCTGGGACTCCCGGGCTGAGGGTC ACCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAGTAATATTGTAAAC TGGTACCAGCAGCTCCCAGGAACGGCCCCCAAACTCCTCATCTTTAGTAAT AATAAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCAAGTCTGGC ACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGATGAGGCTGAT TATTACTGTGCTACATGGGATGACAGCCTGAATGGTCGGGTGTTCGGCGGA GGGACCAAGCTGACCGTCCTA (SEQ ID NO: 126).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain M01 is




GCCGAGCTCACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGCGGGTC ACCATCTCTTGTTCTGGGAGCAACTTCAACATCGGAAGTAATTATGTATTCT GGTACCAGCATGTTCCAGGAACGGCCCCAAAACTCCTCATCTATAATAATA ATCAACGCCCCTCTGGGGTCCCTGACCGACTCTCTGGCTCCAAGTCTGGCG CCTCAGCCTCCCTGGCCATCAATGGGCTCCGGTCCGATGATGAGGCTGATT ATTACTGTACAGGATGGGATGACCGCCTGAGTGGCCTGATTTTCGGCGGAG GGCCAAAAGTGACCGTCCTA (SEQ ID NO: 127).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain M02 is




GCCGAGCTCACGCAGCCGCCCTCAGCGTCTGGGACCCCCGGGCAGAGGGT CACCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAGTAATTATGTATAT TGGTACCAGCAGCTCCCAGGAACGGCCCCCAAACTCCTCATCTATAGGAAT AATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCAAGTCTGGC ACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCGAGGATGAGGCTGAT TATTACTGTGCAGCATGGGATGACAGCCTGAGTGGTTGGGTGTTCGGCGGA GGGACCAAGCTGACCGTCCTA (SEQ ID NO: 128).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain M03 is




GCCGAGCTCACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTC ACCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAGTAATTATGTATACT GGTACCAGCAGCTCCCAGGAACGGCCCCCAAACTCCTCATCTATAGGAATA ATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCAAGTCTGGCA CCTCAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCGAGGCTGAGGCTGATT ATTACTGTGCGGCATGGGATGACAGCCTGAGTGCCGTGGTATTCGGCGGAG GGACCAAACTGACCGTCCTA (SEQ ID NO: 129).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain N01 is




GCCGAGCTCACGCAGCCGCCCTCAGTGTCTGCGGCCCCAGGACAGAAGGTC ACCATCTCCTGCTCTGGAAGCAGCTCCAACATTGACAGTAACTATGTATCCT GGTACCAGCAGCTCCCAGGAACAGCCCCCAAACTCCTCATTTTTGACAATT ATAGGCGACCCTCAGGGATTCCTGACCGATTCTCAGGCTCCAAGTCTGGCA CGTCAGCCACCCTGGGCATCACCGGACTCCAGACTGGGGACGAGGCCGATT ATTACTGTGCAACATGGGATGACAGCCTGAATGGTCGGGTGTTCGGCGGAG GGACCAAGCTGACCGTCCTA (SEQ ID NO: 130).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain N02 is




GCCGAGCTCACGCAGCCGCCCTCAGTGTCTGCGGCCCCAGGACAGAAGGTC ACCATCTCCTGCTCTGGAAGCAGCTCCAACATTGGGAATAATTATGTGTCCT GGTACCAGCAACTCCCAGGAACAGCCCCCAAACTCCTCATTTATGACAATA ATAAGCGACCCTCAGGGATTCCTGACCGATTCTCTGGCTCCAAGTCTGGCA CGTCAGCCACCCTGGGCATCACCGGACTCCAGACTGGGGACGAGGCCGATT ATTACTGCGGAACATGGGATAGCAGCCTGAGTGCTGGCCGCGTTCGGCGGA TGTTCGGCGGAGGGACCAAGTTGACCGTCCTGGGT (SEQ ID NO: 131).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain O01 is




GCCGAGCTCACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCAGAGGGT CACCATCTCCTGCACTGGGAGCAGCTCCAACATCGGGGCACCTTATGGTGT ACACTGGTACCAGCAGTTTCCAGGAACAGCCCCCAAACTCGTCATCTACAA TGACAACAATCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCAAGTC TGGCACCTCAGCCTCCCTGGCCATCACTGGGCTCCAGGCTGAGGATGAGGC TGATTATTACTGCCAGTCCTATGACAGCAGCCTGAGTGGAAGGGTGTTCGG CGGAGGGACCAAGCTGACCGTCCTA (SEQ ID NO: 132).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain O02 is




GCCGAGCTCACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCAGACGGTC ACCATCTCCTGCACTGGGAGCAGCTCCAGCATCGGGGCACGTTATGATGTA CACTGGTACCAACACCTTCCAGGAACAGCCCCCAAACTCCTCATCTATGGT AACCACAATCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCAAGTCT GGCACCTCAGCCTCCCTGGCCATCACTGGGCTCCAGGCTGAGGATGAGGCT GAATATTATTGCCAGTCCTATGACAACAGCCTGAGTGGTTCGTCTGTCTTTT TCGGCGGAGGGACCAAGCTGACCGTCCTA (SEQ ID NO: 133).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain O03 is




GCCGAGCTCACGCAGCCGCCCTCTGGGGCCCCAGGCCAGACGGTCACCATC TCCTGCACTGGGAGCAGCTCCAACATCGGGGCAGGTTATGATGTACACTGG TACCAGCAGCTTCCAGGAACAGCCCCCAAACTCCTCATCTATGGTAACAGC AATCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCAAGTCTGGCACC TCAGCCTCCCTGGCCATCACTGGGCTCCAGGCTGAGGATGAGGCTGATTAT TACTGCCAGTCCTATGACAGCAGCCTGAGTGGTCCCTATGTGGTATTCGGC GGAGGGACCAAGCTGACCGTCCTA (SEQ ID NO: 134).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain P01 is




GCCGAGCTCACTCAGCCACCCTCGGTGTCAGTGGCCCCAAGACAGACGGCC AGGATTACCTGTGGGGGGGACAAAATCGGAAGTAACACTGTGCATTGGTA CCGGCAGATGTCAGGCCAGGCCCCTGTTCTGGTCATCTATGAAGACAAAAA ACGACCCCCCGGGATCCCTGAGAGATTCTCTGGTTCCACCTCAGGGACAAC GGCCACCTTGAGTATCAGTGGGGCCCAGGTTGAGGATGAAGCTGACTACTA CTGTTATTCAAGAGACAACAGTGGTGATCAGAGAAGGGTGTTCGGCGCAG GGACCAAGCTGACCGTCCTA (SEQ ID NO: 135).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain Q01 is




GCCGAGCTCACTCAGCCACCCTCCGCCACTGCCTCCCTGGGAGGCTCGGTC AAACTCACCTGCATTCTGCAGAGTGGCCACAGAAATTACGCCGTCGCTTGG CATCACCAAGAAGCAGGGAAGGGCCCGCGATTTTTGATGACGGTTACCAAT GATGGCAGGCACATCAAGGGGGACGGGATCCCTGATCGCTTCTCAGGCTCC GCCTCTGGGGCTGAACGCTACCTCTCCATCTCCGGCCTCCAGTCTGAGGAT GAGGGTGACTACTACTGTCAGACCTGGGGCACTGGCATGCATGTGTTCGGC GGAGGGACCAAACTGACCGTCCTA (SEQ ID NO: 136).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain R01 is




GCCGAGCTCACTCAGCCTCCCTCCGCGTCCGGGTCTCCTGGACAGTCAGTC ACCATCTCCTGCACTGGAGCCAGCAGTGACGTTGGTGCTTATAAGCACGTC TCCTGGTACCAACAACACCCAGGCAAAGCCCCCAAACTCCTGACTCATGAG GGCACTAAGCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGCTCCAAGTCT GGCAACACGGCCTCCCTGACCGTCTCTGGGCTCCAGGCTGAGGATGAGGCT GATTATTACTGCAGCTCATTTGCAGGTAATTCCGTGATATTCGGCGGAGGG ACCAAGCTGACCGTCCTA (SEQ ID NO: 137).




The nucleotide sequence of the portion of the clone encoding the anti-Rh(D) chain S01 is




GCCGAGCTCACTCAGCCTCCCTCCGTGTCTGGGTCTCCTGGACAGTCGATC ACCATCTCCTGCAGTGATGTTGGGAATTATAACCTTGTCTCCTGGTACCAAC AGTACCCAGGCAAGGCCCCCAAACTCATAATTTATGAGGGCAGTAAGCGG CCCTCAGGGGTTTCTAGTCGCTTCTCTGGCTCCAGGTCTGGCAACACGGCCT CCCTGACAATCTCTGGGCTCCAGGCTGAGGACGAGGCTGATTATCACTGCT GCTCATATGCAATTAGTAGCAGGATTTTCGGCGGAGGGACCAAGCTGACCG TCCTA (SEQ ID NO: 138).




EXAMPLE 3




Isolation of Anti-Rh(D) Monoclonal Antibodies to Conventional and Novel Epitopes Using a Heavy Chain/Light Chain Shuffling Approach




In view of the results obtained in Examples 1 and 2 herein, heavy and light chains of antibodies of various Rh(D) epitope specificities were randomly recombined in order to generate anti-Rh(D) antibodies having additional patterns of reactivity with Rh(D) variant cells. Using this approach, plasmid DNA obtained from the Fab/phage display libraries described in panning rounds 2 and 3 of Example 1 was randomly recombined to generate a “shuffled” Fab/phage display library. When the Rh(D) specificity of antibodies of this “shuffled” library was determine, it was found that many of these antibodies exhibited novel epitope specificity. Significantly, antibody clones having novel Rh(D) epitope specificity were identified, including clones which bind to wild type and certain partial D type red blood cells but which do not bind to D category III red blood cells. The experiments described in this Example therefore demonstrate that the methods described in this specification may be used to generate antibody clones useful for diagnostic and therapeutic applications in humans.




The materials and methods used in the experiments described in this Example are now described.




Creation of Shuffled Fab/Phage Display Library




Two microgram aliquots of DNA obtained from libraries LP2, LP3, KP2, and KP3 (described herein in Example 1) were digested using the restriction endonucleases SpeI and XhoI (15 and 60 units, respectively) in order to dissociate DNA segments encoding individual (full length) heavy chains from library plasmids encoding individual (full length) light chains. Endonuclease/DNA mixtures were incubated overnight at 37° C. After the restriction endonucleases were removed using standard phenol/chloroform and chloroform extraction techniques, the DNA was precipitated using ethanol.




Equivalent amounts of DNA from each of the four libraries (500 nanograms total) were mixed, and then the heavy chain-encoding DNA fragments were re-ligated into the library plasmids encoding individual light chains. This ligation was performed overnight at 20° C. in the presence of 3.5 units of T4 DNA ligase in a total reaction volume of 70 microliters. This treatment generated re-ligated library plasmids encoding a light chain and a heavy chain, wherein the light chain and the heavy chain were not necessarily encoded by a single plasmid in the original library DNA. For this reason, the library of re-ligated plasmids was designated a “shuffled” library.




Three microliters of shuffled library suspension were mixed with an aliquot of XL1-Blue electrocompetent cells (obtained from Stratagene, La Jolla, Calif.), and the cells were electroporated according to standard methods. Electroporated cells were cultured on plates containing Luria broth comprising 100 micrograms per milliliter carbenicillin.




Anti-Rh(D) Specificity of “Shuffled” Library Antibodies




Fifty-six randomly chosen colonies were selected, and monoclonal Fab/phage preparations were separately produced from each of these individual colonies, using the methods described herein in Example 1. Rh(D) specificity was determined by indirect agglutination using anti-M13 antibody, as described herein in Examples 1 and 2. Plasmid DNA was separately prepared from each of the Fab/phage preparations which exhibited Rh(D) specificity, and the DNA sequences encoding the heavy and light chains expressed by each preparation were determined as described herein.




The results of the experiments presented in this Example are now described.




Anti-Rh(D) Specificity of “Shuffled” Library Antibodies




Of the 56 randomly-chosen “shuffled” library clones, 34 (61%) demonstrated specificity for Rh(D). The Rh(D) epitope specificity, the agglutination pattern, and the heavy and light chain sequences of these 34 clones are listed in Table 4. Of these 34 clones, 19 exhibited specificity for previously-described Rh(D) epitopes (e.g. epD 1, epD 2, epD 6/7, and epD X), and one bound too weakly to wild-type Rh(D)-positive red blood cells to characterize is epitope specificity (i.e. clone SH44). However, 14 of the clones identified in Table 4 exhibited novel Rh(D) epitope specificity. Some of these 14 antibody clones comprised a heavy chain, a light chain, or both, that were identified herein in Examples 1 or 2. However, half (17/34) of the heavy chain sequences and about 80% (28/34) of the light chain sequences had not been identified in Examples 1 or 2.




The Rh(D)-specific antibody clones isolated from the “shuffled” library are useful for characterizing and classifying patient red blood cells that express variant forms of the Rh(D) antigen. Of particular interest are clones SH18, SH20, and SH46. These three clones agglutinate wild type red blood cells and certain partial D-type red blood cells, but do not agglutinate D category III red blood cells (a.k.a. partial Rh(D)III cells). It is believed that all previously-characterized human monoclonal anti-Rh(D) antibodies agglutinate D category III red blood cells. Therefore these three clones are particularly useful for differentiating D category III red blood cells from other types of red blood cells.




From a clinical perspective, it has heretofore only been possible to retrospectively identify D category III red blood cells in a patient after they have been erroneously presumed to have wild-type Rh(D)-positive cells. For example, transfusion of an individual having D category III red blood cells with wild-type Rh(D) cells induces production of anti-Rh(D) alloantibodies in the individual. Previously, the presence of D category III red blood cells in patients could only be determined by the production of such anti-Rh(D) alloantibodies in a transfusion recipient who does not naturally harbor D category III red blood cells. Although providing transfused blood comprising D category III red blood cells to a patient who does not naturally harbor such cells will not necessarily cause immediate harm to the patient, the patient thereby becomes alloimmunized against D category III red blood cells. Such alloimmunized individuals may develop complications including hemolytic transfusion reactions or hemolytic disease of the newborn.












TABLE 4











Analysis of Anti-RH(D) Clones Obtained by Chain Shuffling.
















HEAVY CHAIN




LIGHT CHAIN




AGGLUTINATION PATTERN‡




Rh(D)





















CLONE




SEQUENCE†




SEQUENCE†




wt




III




IVa




IVb




V




V1




VII




SPECIFICITY









SH04




SEQ ID NOs: 24/93




SEQ ID NOs: 35/104




+




+




+




+




+




0




+




epD 6/7






SH08




SEQ ID NOs: 12/81




SBQ ID NOs: 154/197




+




+




+




+




+




0




+




epD 6/7






SH10




SEQ ID NOs: 139/182




SEQ ID NOs: 47/116




+




0




0




0




0




0




0




novel






SH12




SEQ ID NOs: 9/78




SEQ ID NOs: 155/198




+




+




+




+




+




0




+




epD 6/7






SH13




SEQ ID NOs: 26/95




SEQ ID NOs: 156/199




+




0




0




0




0




0




0




novel






SH14




SEQ ID NOs: 24/93




SEQ ID NOs: 157/200




+




+




+




+




+




0




+




epD 6/7






SH16




SEQ ID NOs: 140/183




SEQ ID NOs: 158/201




+




0




+




+




0




0




0




novel






SH17




SEQ ID NOs: 141/184




SEQ ID NOs: 47/116




+




+




0




0




0




0




+




epD 1






SH18




SEQ ID NOs: 142/185




SEQ ID NOs: 159/202




+




0




+




+




0




0




0




novel






SH20




SEQ ID NOs: 143/186




SEQ ID NOs: 160/203




+




0




+




+




+




0




0




novel






SH21




SEQ ID NOs: 9/78




SEQ ID NOs: 161/204




+




+




+




0




+




0




0




novel






SH24




SEQ ID NOs: 144/187




SEQ ID NOs: 162/205




+




0




0




0




0




0




0




novel






SH25




SEQ ID NOs: 145/188




SEQ ID NOs: 35/104




+




+




0




0




+




0




+




epD 2






SH26




SEQ ID NOs: 21/90




SEQ ID NOs: 163/206




+




+




+




0




0




0




0




novel






SH28




SEQ ID NOs: 146/189




SEQ ID NOs: 164/207




+




+




0




0




+




0




+




epD 2






SH30




SEQ ID NOs: 12/81




SEQ ID NOs: 165/208




+




+




+




+




+




0




+




epD 6/7






SH32




SEQ ID NOs: 147/190




SEQ ID NOs: 166/209




+




0




0




0




0




0




0




novel






SH34




SEQ ID NOs: 5/74




SEQ ID NOs: 167/210




+




+




0




0




0




0




+




epD 1






SH36




SEQ ID NOs: 14/83




SEQ ID NOs: 168/211




+




0




0




0




0




0




0




novel






SH37




SEQ ID NOs: 148/191




SEQ ID NOs: 50/119




+




+




+




0




0




0




+




epD X §






SH39




SEQ ID NOs: 149/192




SEQ ID NOs: 169/212




+




0




0




0




0




0




0




novel






SH41




SEQ ID NOs: 24/93




SEQ ID NOs: 170/213




+




+




+




+




+




0




+




epD6/7






SH44




SEQ ID NOs: 150/193




SEQ ID NOs: 171/214




+










not determined






SH46




SEQ ID NOs: 13/82




SEQ ID NOs: 172/215




+




0




+




+




0




0




0




novel






SH47




SEQ ID NOs: 151/194




SEQ ID NOs: 173/216




+




+




0




0




+




0




+




epD 2






SH48




SEQ ID NOs: 6/75




SEQ ID NOs: 174/217




+




+




0




0




0




0




+




epD 1






SH49




SEQ ID NOs: 17/86




SEQ ID NOs: 175/218




+




+




0




0




0




0




+




epD 1






SH50




SEQ ID NOs: 146/189




SEQ ID NOs: 176/219




+




+




0




0




0




0




+




epD 1






SH51




SEQ ID NOs: 17/86




SEQ ID NOs: 177/220




+




+




0




0




+




0




+




epD 2






SH52




SEQ ID NOs: 24/93




SEQ ID NOs: 178/221




+




+




0




0




0




0




+




epD 1






SH53




SEQ ID NOs: 146/189




SEQ ID NOs: 47/116




+




0




0




0




0




0




0




novel






SH54




SEQ ID NOs: 152/195




SEQ ID NOs: 179/222




+




+




0




0




0




0




+




epD 1






SH55




SEQ ID NOs: 21/90




SEQ ID NOs: 180/223




+




+




0




0




+




0




+




epD 2






SH56




SEQ ID NOs: 153/196




SEQ ID NOs: 181/224




+




+




0




0




0




0




0




novel











Notes for Table 4










†“SEQ ID NOs: A/B” means that the chain had amino acid sequence “A” and was encoded by nucleotide sequence “B”.










‡ “+” means agglutination occurred; “0” means agglutination did not occur.










*weak










§ as discussed in Example 2.













Amino Acid Sequences of Anti-Rh(D) Heavy and Light Chains




The amino acid sequences of various anti-Rh(D) antibody chains were as follows, and are represented using single letter amino acid codes.




The amino acid sequence of the heavy chain of anti-Rh(D) antibody clone SH10 is




EVQLLEESGGGVVQPGRSLRLSCAASGFTFSRNGMHWVRQAPGKGLEWVAFI WFDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRADDTAVYYCAREEALF RGLTRWSYGMDVWGQGTTVSVSS (SEQ ID NO: 139).




The amino acid sequence of the heavy chain of anti-Rh(D) antibody clone SH16 is




EVQLLESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGRGLEWVALIW YDGGNKEYADSVKGRFSISRDNSKNTLYLQVNSLRADDTAVYYCARDQRAA AGIFYYSRMDVWGQGTTVTVSS (SEQ ID NO: 140).




The amino acid sequence of the heavy chain of anti-Rh(D) antibody clone SH17 is




EVQLLESGGGLVQPGGSLRLSCGASGIPFVSSWMAWVRQAPGKGLEWVANIK QDGSKKNYVDSVEGRFTISRDNAKNSLYLQMDSLRAEDTRIYYCARDSLTCFD YWGQGALVTVSS (SEQ ID NO: 141).




The amino acid sequence of the heavy chain of anti-Rh(D) antibody clone SH18 is




EVQLLESGGGVVQPGRSLRLSCAASGFTFRSYAMHWVRQAPGKGLEWVAAT AYDGKNKYYADSVKGRFTISRDNSMNTLFLQMNSLRAEDTAVFYCARGGFYY DSSGYYGLRHYFDSWGQGTLVTVSS (SEQ ID NO: 142).




The amino acid sequence of the heavy chain of anti-Rh(D) antibody clone SH20 is




EVQLLEESGGGVVQPGRSLRLSCAASGFTFRSYAMHWVRQAPGKGLEWVAVI SYDGSTIYYADSVKGRFTISRANSKNTLFLQMNSLRTEDTAVYYCTRGGFYYD SSGYYGLRHYFDYWGQGTLVTVSS (SEQ ID NO: 143).




The amino acid sequence of the heavy chain of anti-Rh(D) antibody clone SH24 is




EVQLLESGGGVAQPGRSLRLSCVASGFSLRSYGMHWVRQAPGKGLEWVADI WFDGSNKDYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDWRV RAFSSGWLSAFDIWGQGTMVTVSS (SEQ ID NO: 144).




The amino acid sequence of the heavy chain of anti-Rh(D) antibody clone SH25




EVQLLEESGGGVVQPGRSLRLACAASGFSFRSYGMHWVRQAPGRGLEWVAFT WFDGSNKYYVDSVKGRFTISRDNSKNTLYLEMNSLRVDDTAVYYCAREAPML RGISRYYYAMDVWGPGTTVTVSS (SEQ ID NO: 145).




The amino acid sequence of the heavy chain of each of anti-Rh(D) antibody clones SH28, SH50, and SH53 is




EVQLLESGGGGVQPGRSLRLSCAASGFTFNSYAMYWVRQPPGKGLEWVAAIW YDGSNKEYADFVKGRFTISRDNSKNTLSLQMNSLRDEDTAVYYCAREANLLR GWSRYYYGMDVWGQGTTVTVSS (SEQ ID NO: 146).




The amino acid sequence of the heavy chain of anti-Rh(D) antibody clone SH32 is




EVQLLESGGGVVQPGRSLRLSCEASKFTLYNYGMHWVRQAPGKGLEWVAFI WFDGSNKYYEDSVKGRFTVSRDNSKNTLYLQMNSLRAEDTAVYYCARELSK KVALSRYYYYMDVWGQGTTVTVSS (SEQ ID NO: 147).




The amino acid sequence of the heavy chain of anti-Rh(D) antibody clone SH37 is




EVQLLESGGGVVQPGRSLRLSCEASKFTLYNYGMHWVRQAPGKGLEWVAFI WFDGSNKYYEDSVKGRFTVSRDNSKNTLYLQMNSLRAEDTAVYYCARELSK KVALSRYYYYMDVWGQGTTVTVSS (SEQ ID NO: 148).




The amino acid sequence of the heavy chain of anti-Rh(D) antibody clone SH39 is




EVQLLEQSGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVI WFDGSNKEYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREEVVR GVILWSRKFDYWGQGTLVTVSS (SEQ ID NO: 149).




The amino acid sequence of the heavy chain of anti-Rh(D) antibody clone SH44 is




EVQLLESGGGVAQPGRSLRLSCVASGFSLRSYGMHWVRQAPGKGLEWVADI WFDGSNKDYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDWRV RAFSSGWLSAFDIWGQGTMVTVSS (SEQ ID NO: 150).




The amino acid sequence of the heavy chain of anti-Rh(D) antibody clone SH47 is




EVQLLESGGGVVQPGRSLRLSCAASGFSFSNYAMHWVRQAPGKGLEWVAVTS FDGSIKDYADSVKGRFTISRDNSKNTLYLQMNSLRDEDTAVYYCARERGMIVV VRRRNAFDIWGQGTMVTVSS (SEQ ID NO: 151).




The amino acid sequence of the heavy chain of anti-Rh(D) antibody clone SH54 is




EVQLLESGGGVVQPGRSLRLSCAASGFTFSRNGMHWVRQAPGKGLEWVAFIW FDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRADDTAVYYCAREEALFR GLTRWSYGMDVWGQGTTVSVSS (SEQ ID NO: 152).




The amino acid sequence of the heavy chain of anti-Rh(D) antibody clone SH56 is




EVQLLESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVV YYDGSNKHYSDSVKGRFTIFRDNSKNTLYLQMDSLRAEDTAVYYCARERNFR SGYSRYYYGMDVWGPGTTVTVSS (SEQ ID NO: 153).




The amino acid sequence of the light chain of anti-Rh(D) antibody clone SH8 is




AELTQSPSSLAASVGDRVTITCRANQTIRTSLNWYQQRPGKAPNLLIYGASRLH SGVPSRFSGGISGADFTLTISSLQPEDFATYYCQQTYGYSRTFGQGTKVDIKR (SEQ ID NO: 154).




The amino acid sequence of the light chain of anti-Rh(D) antibody clone SH12 is




AELTQSPFSLSASVGDRVTITCRASHNIYRSLNWFQHKPGEAPKLLVYAASSLQ RGVPTRFSGSGSGTDFTLTISSLQPEDSATYFCQQSVTFPYTFGQGTKLEIRR (SEQ ID NO: 155).




The amino acid sequence of the light chain of anti-Rh(D) antibody clone SH13 is




AELTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLRS GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPYTFGQGTKLEIKR (SEQ ID NO: 156).




The amino acid sequence of the light chain of anti-Rh(D) antibody clone SH14 is




AELTQSPSSLSASVGDRVTITCRASQNIRRSLNWYQHKPGRAPRLLIYAASTLQ SGVPSRFRGSGSGTDFTLTINSLQPADFATYYCQQSSNTPWTFGHGTKVEIKR (SEQ ID NO: 157).




The amino acid sequence of the light chain of anti-Rh(D) antibody clone SH16 is




AELTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQS GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPPTFGGGTKVEIKR (SEQ ID NO: 158).




The amino acid sequence of the light chain of anti-Rh(D) antibody clone SH18 is




AELTQSPSSLSASVGDRVTITCRASQSISIALNWYQQRPGKAPKLLMYATSTLQ SGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYNKPTFGPGTKVDIKR (SEQ ID NO: 159).




The amino acid sequence of the light chain of anti-Rh(D) antibody clone SH20 is




AELTQSPFSLSASVGDRVTITCRASQSISRSLNWYQHKPGEAPKLLIYAASSLQR GVPPRFSGSGSGTDFTLTISSLQPEDFATYFCQQSVRIPYSFGQGTKLEIKR (SEQ ID NO: 160).




The amino acid sequence of the light chain of anti-Rh(D) antibody clone SH21 is




AELTQSPSFLSASVGDRVTITCRASQGIRSYLAWYQQKPGKAPKLLIYAASTLQ SGVPSRFSGSGSGTEFTLTIASLQPDDFATYYCQQLNNYPPFTFGPGTKVDIKR (SEQ ID NO: 161).




The amino acid sequence of the light chain of anti-Rh(D) antibody clone SH24 is




AELTQSPSSLSASVGDRVTITCRASQSISTYLNWYQQRPGKAPNLLIYAASTLQ RGVPSRFTGSGSGTDFTLTISSLQPEDFATYYCQQSYTTLWTFGQGTKMEIRR (SEQ ID NO: 162).




The amino acid sequence of the light chain of anti-Rh(D) antibody clone SH26 is




AELTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQS GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSFRRYSFGQGTKLEIKR (SEQIDNO: 163).




The amino acid sequence of the light chain of anti-Rh(D) antibody clone SH28 is




AELTQSPSSLSASVGDRVTITCRADQNIRRSLNWFQQKPGKAPKLLIYAASSLQ SGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSSSTPWTFGRGTKVEIKR (SEQ ID NO: 164).




The amino acid sequence of the light chain of anti-Rh(D) antibody clone SH30 is




AELTQSPSSLSASVGDRVTITCRASQSIRRSLNWYQQSPGKTPKLLIYAASSLQS GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTLTFGGGTKVEIKR (SEQ ID NO: 165).




The amino acid sequence of the light chain of anti-Rh(D) antibody clone SH32 is




AELTQEPSLTVSPGGTVTLTCASSTGAVTSRYFPNWFQQKPGQAPRALIYGSNN KHSWTPARFSGSLLGGKAALTLSGVQPEDEAEYYCLLFYAGAWAFGGGTKLT VL (SEQ ID NO: 166).




The amino acid sequence of the light chain of anti-Rh(D) antibody clone SH34 is




AELTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASGLQ SGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPPYTFGQGTKLEIKR (SEQ ID NO: 167).




The amino acid sequence of the light chain of anti-Rh(D) antibody clone SH36 is




AELTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKSPKLLIYAASSLQS GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPPAFGPGTKVDIKR (SEQ ID NO: 168).




The amino acid sequence of the light chain of anti-Rh(D) antibody clone SH39 is




AELTQSPSSLSASVGDRVTITCRASQTIGRYLNWYQQRPGKAPKLLVYAVSSLQ SGAPSRFSGSGSGTHFTLTITSLQPEDFATYFCQQSYSSPFTFGQGTKVEIKR (SEQ ID NO: 169).




The amino acid sequence of the light chain of anti-Rh(D) antibody clone SH41 is




AELTQSPSSLSASVGDRVTITCRASQNIRRSLNWYQHKPGRAPRLLIYAASTLQ SGVPSRFRGSGSGTDFTLTINSLQPADFATYYCQQSSNTPWTFGHGTKVEIKR (SEQ ID NO: 170).




The amino acid sequence of the light chain of anti-Rh(D) antibody clone SH44 is




AELTQSPSSLSASVGDRVIITCRASQTIPRFLNWYQQKPGKAPVLLIHSISSLQSG VPSRFSASGSGTEFTLTISSLQPEDFATYYCQQSYSNLSFGPGTTVDIRR (SEQ ID NO: 171).




The amino acid sequence of the light chain of anti-Rh(D) antibody clone SH46 is




AELTQSPSSLSASVGDRVTITCRASQYISSYLNWYQQKPGKAPNLLIYAASSLQ SGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQTYSSPSTFGPGTKVDIKR (SEQ ID NO: 172).




The amino acid sequence of the light chain of anti-Rh(D) antibody clone SH47 is




AELTQSPSSLSASVGDRVTITCRASQSISNYLNWYQQKPGKAPNLLIYAASSLQ SGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSYPRTFGQGTKVEIRR (SEQ ID NO: 173).




The amino acid sequence of the light chain of anti-Rh(D) antibody clone SH48 is




AELTQSPSSLSASVGDRVTITCRASQYISSYLNWYQQKPGKAPNLLIYAASSLQ SGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQTYSSPSTFGPGTKVDIKR (SEQ ID NO: 174).




The amino acid sequence of the light chain of anti-Rh(D) antibody clone SH49 is




AELTQSPSSLSASVGDRVTVTCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQ SGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPWTFGQGTKVEIKR (SEQ ID NO: 175).




The amino acid sequence of the light chain of anti-Rh(D) antibody clone SH50 is




AELTQSPSSLSASVGDRVTVTCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQ SGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPWTFGQGTKVEIKR (SEQ ID NO: 176).




The amino acid sequence of the light chain of anti-Rh(D) antibody clone SH51 is




AELTQSPSFLSASVGDRVTITCRASQGIRSYLAWYQQKPGKAPKLLIYAASTLQ SGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQQLNNYPPFTFGPGTKVDIKR (SEQ ID NO: 177).




The amino acid sequence of the light chain of anti-Rh(D) antibody clone SH52 is




AELTQSPGTLSLSPGERATLSCRASQSISSSYLAWYQQKPGQAPRLLIYGASSRA TGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPWTFGQGTKVEIKR (SEQ ID NO: 178).




The amino acid sequence of the light chain of anti-Rh(D) antibody clone SH54 is




AELTQSPSSMSASVGDRVTITCRASQSIGTYLNWYQQKPGKAPKLLIYAASSLQ SGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPWTFGQGTKVEIKR (SEQ ID NO: 179).




The amino acid sequence of the light chain of anti-Rh(D) antibody clone SH55 is




AELTQPPSASGTPGQRVTISCSGSSSNIGSKYVYWYQQLPGTAPKLLIYSNNQR PSGVPDRFSAFKSGTSASLAITGLQAEDEANYYCQSYDSGLSGWVFGGGTKLT VL (SEQ ID NO: 180).




The amino acid sequence of the light chain of anti-Rh(D) antibody clone SH56 is




AELTQSPSSLSASVGDRVTITCRASQSISRYLNWYQQKPGKAPKLLIYAASSLQ SGVPSRFSGSGSGTDFALTISSLLPEDFATYYCQQGYSTPPYSFGQGTKLEIKR (SEQ ID NO: 181).




Nucleotide Sequences of Anti-Rh(D) Heavy and Light Chains




The nucleotide sequences encoding various anti-Rh(D) antibody clone chains were as follows.




The nucleotide sequence encoding the heavy chain of anti-Rh(D) antibody clone SH10 is




GAGGTGCAGCTGCTCGAGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAG GTCCCTGAGACTCTCCTGTGCAGCGTCTGGGTTCACCTTCAGTAGGAATGG CATGCACTGGGTCCGCCAGGCTCCTGGCAAGGGGCTGGAGTGGGTGGCATT TATATGGTTTGATGGAAGTAATAAATACTATGCAGACTCCGTGAAGGGCCG ATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAA CAGCCTGAGAGCCGACGACACGGCTGTGTATTACTGTGCGAGAGAGGAGG CTCTGTTTCGGGGACTTACTCGGTGGTCCTACGGCATGGACGTCTGGGGCC AAGGGACCACGGTCAGCGTCTCCTCA (SEQ ID NO: 182).




The nucleotide sequence encoding the heavy chain of anti-Rh(D) antibody clone SH16 is




GAGGTGCAGCTGCTCGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTC CCTGAGACTCTCCTGTGCAGCGTCTGGGTTCACCTTCAGTAGCTATGGCATG CACTGGGTCCGCCAGGCTCCAGGCAGGGGGCTGGAGTGGGTGGCTCTTATA TGGTACGATGGAGGTAACAAAGAGTATGCAGACTCCGTGAAGGGCCGCTT CAGCATCTCCAGAGACAACTCCAAGAACACTCTGTATCTGCAAGTGAACAG CCTGAGAGCCGACGACACGGCTGTCTATTACTGTGCGAGAGACCAGAGAG CAGCAGCGGGTATCTTTTATTATTCCCGTATGGACGTCTGGGGCCAAGGGA CCACGGTCACCGTCTCCTCA (SEQ ID NO: 183).




The nucleotide sequence encoding the heavy chain of anti-Rh(D) antibody clone SH17 is




GAGGTGCAGCTGCTCGAGTCTGGGGGAGGCTTGGTCCAGCCGGGGGGGTC CCTGAGACTCTCCTGTGGTGCCTCTGGAATCCCCTTTGTTTCCTCTTGGATG GCCTGGGTCCGCCAGGCCCCAGGGAAGGGGCTGGAGTGGGTGGCCAACAT AAAACAAGATGGAAGTAAGAAAAACTATGTGGACTCTGTGGAGGGCCGAT TCACCATCTCCAGAGACAACGCGAAGAACTCACTTTATCTGCAAATGGACA GCCTGAGAGCCGAGGACACGCGGATATATTACTGTGCGCGAGATTCACTTA CTTGTTTTGACTACTGGGGCCAGGGAGCCCTGGTCACCGTCTCCTCA (SEQ ID NO: 184).




The nucleotide sequence encoding the heavy chain of anti-Rh(D) antibody clone SH18 is




GAGGTGCAGCTGCTCGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTC CCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGGAGCTATGCTATG CACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGCTAC AGCATATGATGGAAAAAATAAATACTACGCAGACTCCGTGAAGGGCCGAT TCACCATCTCCAGAGACAATTCCATGAACACGCTGTTTCTGCAAATGAACA GCCTGAGAGCTGAGGACACGGCTGTGTTTTACTGTGCGAGAGGCGGATTTT ACTATGATAGTAGTGGTTATTACGGCTTGAGGCACTACTTTGACTCCTGGG GCCAGGGAACCCTGGTCACCGTCTCCTCA (SEQ ID NO: 185).




The nucleotide sequence encoding the heavy chain of anti-Rh(D) antibody clone SH20 is




GAGGTGCAGCTGCTCGAGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAG GTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGAAGTTATGCT ATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCGGT TATATCATATGATGGAAGTACTATATACTACGCAGACTCCGTGAAGGGCCG ATTCACCATCTCCAGAGCCAATTCCAAGAACACGCTGTTTCTGCAAATGAA CAGCCTCAGAACTGAGGACACGGCTGTATATTACTGTACGAGAGGGGGGTT TTACTATGACAGTAGTGGTTATTACGGGTTGAGGCACTACTTTGACTACTGG GGCCAGGGAACCCTGGTCACCGTCTCTTCA (SEQ ID NO: 186).




The nucleotide sequence encoding the heavy chain of anti-Rh(D) antibody clone SH24 is




GAGGTGCAGCTGCTCGAGTCGGGGGGAGGCGTGGCCCAGCCTGGGAGGTC CCTGAGACTCTCCTGTGTAGCGTCTGGATTCAGCCTCAGGAGCTATGGCAT GCACTGGGTCCGCCAGGCTCCTGGCAAGGGGCTGGAGTGGGTGGCAGATA TATGGTTTGATGGAAGTAATAAAGATTATGCAGACTCCGTGAAGGGCCGAT TCACCATCTCCAGAGACAATTCCAAGAACACGTTGTATCTTCAAATGAACA GCCTGAGAGCCGAGGACACGGCTGTGTATTATTGTGCGAGAGATTGGAGG GTGCGGGCCTTTAGTAGTGGCTGGTTAAGTGCTTTTGATATCTGGGGCCAA GGGACAATGGTCACCGTCTCTTCA (SEQ ID NO: 187).




The nucleotide sequence encoding the heavy chain of anti-Rh(D) antibody clone SH25 is




GAGGTGCAGCTGCTCGAGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAG GTCCCTGAGACTCGCCTGTGCAGCGTCTGGATTCAGCTTCAGGAGCTATGG CATGCACTGGGTCCGCCAGGCTCCAGGCAGGGGGCTGGAGTGGGTGGCATT TACATGGTTTGATGGAAGCAATAAATATTATGTAGACTCCGTGAAGGGCCG ATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGGAAATGAA CAGCCTGAGAGTCGATGACACGGCTGTATATTACTGTGCGAGAGAGGCGCC TATGCTTCGCGGAATTAGCAGATACTACTACGCGATGGACGTCTGGGGCCC AGGGACCACGGTCACCGTCTCCTCA (SEQ ID NO: 188).




The nucleotide sequence encoding the heavy chain of each of anti-Rh(D) antibody clones SH28, SH50, and SH53 is




GAGGTGCAGCTGCTCGAGTCTGGGGGAGGCGGGGTCCAGCCTGGGAGGTC CCTGCGACTCTCCTGTGCGGCGTCTGGATTCACCTTCAATAGTTATGCCATG TACTGGGTCCGCCAGCCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGCTATA TGGTATGATGGAAGTAATAAAGAATATGCAGATTTTGTGAAGGGCCGCTTC ACCATCTCCAGAGACAATTCCAAGAACACGCTGTCTCTGCAAATGAACAGC CTGAGAGACGAGGACACGGCTGTGTATTACTGTGCGAGAGAGGCGAATCT CCTCCGTGGCTGGTCTCGATACTACTACGGTATGGACGTCTGGGGCCAAGG GACCACGGTCACCGTCTCCTCA (SEQ ID NO: 189).




The nucleotide sequence encoding the heavy chain of anti-Rh(D) antibody clone SH32 is




GAGGTGCAGCTGCTCGAGTCGGGGGGAGGCGTGGTCCAGCCTGGGAGGTC CCTGAGACTCTCCTGTGAAGCGTCTAAATTCACCCTCTACAATTATGGCATG CACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCATTTATA TGGTTTGATGGAAGTAATAAATACTATGAAGACTCCGTGAAGGGCCGATTC ACCGTCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGC CTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGAACTATCTAAG AAGGTGGCACTTTCTAGGTATTACTACTATATGGACGTCTGGGGCCAGGGG ACCACGGTCACTGTCTCGTCA (SEQ ID NO: 190).




The nucleotide sequence encoding the heavy chain of anti-Rh(D) antibody clone SH37 is




GAGGTGCAGCTGCTCGAGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAG GTCCCTGAGACTCTCCTGTGCAGTGTCTGGATTCACCCTAACTAATTATGGC ATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCACA TGTCTGGTATGATGGAAGTAAAACAGAATACGCAGACTCCGTCAAGGGCC GATTCGCCGTCTCCAGAGACAAATCCAAGAACACACTGTTTCTGCAAATGA ACAGCCTGACAGCCGAGGACACGGCTATTTATTACTGTGCGAGAGAGAGG AGAGAGAAAGTCTATATATTGTTCTACTCGTGGCTCGACCGCTGGGGCCAG GGAACCCTGGTCACCGTCTCCTCA (SEQ ID NO: 191).




The nucleotide sequence encoding the heavy chain of anti-Rh(D) antibody clone SH39 is




GAGGTGCAGCTGCTCGAGCAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAG GTCCCTGAGACTCTCCTGTGCAGCGTCTGGATTCACCTTCAGTAGCTATGGC ATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGACTGGAGTGGGTGGCAGT TATATGGTTTGATGGAAGTAATAAGGAATATGCAGACTCCGTGAAGGGCCG ATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTACAAATGAA CAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGAAGAAG TGGTTCGGGGAGTTATCTTATGGTCTCGGAAGTTTGACTACTGGGGCCAGG GAACCCTGGTCACCGTCTCCTCA (SEQ ID NO: 192).




The nucleotide sequence encoding the heavy chain of anti-Rh(D) antibody clone SH44 is




GAGGTGCAGCTGCTCGAGTCGGGGGGAGGCGTGGCCCAGCCTGGGAGGTC CCTGAGACTCTCCTGTGTAGCGTCTGGATTCAGCCTCAGGAGCTATGGCAT GCACTGGGTCCGCCAGGCTCCTGGCAAGGGGCTGGAGTGGGTGGCAGATA TATGGTTTGATGGAAGTAATAAAGATTATGCAGACTCCGTGAAGGGCCGAT TCACCATCTCCAGAGACAATTCCAAGAACACGTTGTATCTTCAAATGAACA GCCTGAGAGCCGAGGATACGGCTGTGTATTATTGTGCGAGAGATTGGAGGG TGCGGGCCTTTAGTAGTGGCTGGTTAAGTGCTTTTGATATCTGGGGCCAAG GGACAATGGTCACCGTCTCTTCA (SEQ ID NO: 193).




The nucleotide sequence encoding the heavy chain of anti-Rh(D) antibody clone SH47 is




GAGGTGCAGCTGCTCGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTC CCTGCGACTCTCTTGTGCAGCCTCTGGATTCAGCTTCAGTAACTATGCTATG CACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTAC ATCATTTGATGGAAGCATTAAAGACTACGCAGACTCCGTGAAGGGCCGATT CACCATCTCCAGAGACAATTCCAAGAACACACTATATCTGCAAATGAACAG CCTGAGAGATGAGGACACGGCTGTATATTACTGTGCGAGAGAGCGGGGGA TGATAGTCGTGGTCCGTCGCAGAAATGCTTTTGATATTTGGGGCCAAGGGA CAATGGTCACCGTCTCTTCA (SEQ ID NO: 194).




The nucleotide sequence encoding the heavy chain of anti-Rh(D) antibody clone SH54 is




GAGGTGCAGCTGCTCGAGTCGGGGGGAGGCGTGGTCCAGCCTGGGAGGTC CCTGAGACTCTCCTGTGCAGCGTCTGGGTTCACCTTCAGTAGGAATGGCAT GCACTGGGTCCGCCAGGCTCCTGGCAAGGGGCTGGAGTGGGTGGCATTTAT ATGGTTTGATGGAAGTAATAAATACTATGCAGACTCCGTGAAGGGCCGATT CACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAG CCTGAGAGCCGACGACACGGCTGTGTATTACTGTGCGAGAGAGGAGGCTCT GTTTCGGGGACTTACTCGGTGGTCCTACGGTATGGACGTCTGGGGCCAAGG GACCACGGTCAGCGTCTCCTCA (SEQ ID NO: 195).




The nucleotide sequence encoding the heavy chain of anti-Rh(D) antibody clone SH56 is




GAGGTGCAGCTGCTCGAGTCGGGGGGAGGCGTGGTCCAGCCTGGGAGGTC CCTGAGACTCTCCTGTGCAGCGTCTGGATTCACCTTCAGTAGCTATGGCATG CACTGGGTCCGGCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTGT CTACTATGATGGAAGTAACAAACACTATTCAGACTCCGTGAAGGGCCGATT CACCATCTTCAGAGACAACTCCAAGAACACGCTGTATCTACAAATGGACAG CCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGAAAGAAATTT TCGGAGTGGTTATTCCCGCTACTACTACGGTATGGACGTCTGGGGCCCAGG GACCACGGTCACCGTCTCCTCA (SEQ ID NO: 196).




The nucleotide sequence encoding the light chain of anti-Rh(D) antibody clone SH8 is




GCCGAGCTCACCCAGTCTCCATCCTCCCTGGCTGCGTCTGTCGGAGACAGA GTCACCATCACTTGCCGGGCAAATCAGACCATCAGAACCTCTTTAAATTGG TATCAACAAAGACCTGGGAAAGCCCCTAACCTCCTGATCTATGGTGCATCC AGGTTGCATAGTGGGGTCCCATCAAGGTTTAGTGGCGGTATTTCTGGGGCA GACTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGCAACTTACT ACTGTCAGCAGACTTACGGTTATTCTCGAACGTTCGGCCAAGGGACCAAGG TGGATATCAAACGA (SEQ ID NO: 197).




The nucleotide sequence encoding the light chain of anti-Rh(D) antibody clone SH12 is




GCCGAGCTCACCCAGTCTCCATTCTCCCTGTCTGCATCTGTAGGAGACAGA GTCACCATAACTTGCCGGGCAAGTCACAACATTTACAGGTCTTTAAATTGG TTTCAGCATAAACCAGGGGAAGCCCCTAAGCTCCTGGTCTATGCTGCATCC AGTCTGCAGCGTGGGGTCCCAACCAGGTTCAGTGGCAGTGGATCTGGGACA GATTTCACTCTCACCATCAGCAGTCTTCAACCTGAAGACTCTGCGACTTACT TCTGTCAACAGAGTGTCACATTCCCCTACACTTTTGGCCAGGGGACCAAGC TGGAGATCAGACGA (SEQ ID NO: 198).




The nucleotide sequence encoding the light chain of anti-Rh(D) antibody clone SH13 is




GCCGAGCTCACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGA GTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCAGCTATTTAAATTGG TATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCATCC AGTTTGCGAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACA GATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGCAACTTACT ACTGTCAACAGAGTTACAGTACCCCCTACACTTTTGGCCAGGGGACCAAGC TGGAGATCAAACGA (SEQ ID NO: 199).




The nucleotide sequence encoding the light chain of anti-Rh(D) antibody clone SH14 is




GCCGAGCTCACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGA GTCACCATCACTTGCCGGGCAAGTCAGAACATTAGGAGGTCTTTAAATTGG TATCAACACAAACCAGGGAGAGCCCCTAGACTCCTGATCTATGCTGCATCC ACTTTGCAAAGTGGGGTCCCATCAAGGTTCAGGGGCAGTGGATCTGGGACA GATTTCACTCTCACCATCAACAGTCTGCAACCTGCAGATTTTGCAACTTACT ACTGTCAGCAGAGTTCCAATACCCCGTGGACGTTCGGCCATGGGACCAAGG TGGAAATCAAACGA (SEQ ID NO: 200).




The nucleotide sequence encoding the light chain of anti-Rh(D) antibody clone SH16 is




GCCGAGCTCACCCAGTCTCCATCCTCCCTGTCTGCCTCTGTAGGAGACAGA GTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCAGCTATTTAAATTGG TATCAACAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCATCC AGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACA GATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGCAACTTACT ACTGTCAACAGAGTTACAGTACCCCTCCAACTTTCGGCGGAGGGACCAAGG TGGAGATCAAACGA (SEQ ID NO: 201).




The nucleotide sequence encoding the light chain of anti-Rh(D) antibody clone SH18 is




GCCGAGCTCACCCAGTCTCCATCCTCCCTCTCTGCATCTGTAGGAGACAGA GTCACCATCACTTGCCGGGCAAGTCAGAGTATTAGCATCGCTTTAAATTGG TATCAGCAGAGACCAGGGAAAGCCCCTAAGCTCCTGATGTATGCTACATCC ACTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACA GATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGCAACTTACT ACTGTCAACAATATTACAATAAACCTACTTTCGGCCCTGGGACCAAGGTGG ATATCAAACGA (SEQ ID NO: 202).




The nucleotide sequence encoding the light chain of anti-Rh(D) antibody clone SH20 is




GCCGAGCTCACCCAGTCTCCATTCTCCCTGTCTGCATCTGTCGGAGACAGA GTCACCATAACTTGCCGGGCAAGTCAGAGCATTAGCAGGTCTTTAAATTGG TATCAACATAAACCAGGGGAAGCCCCTAAGCTCCTGATCTATGCTGCATCC AGTCTGCAGCGTGGGGTCCCACCCAGGTTCAGTGGCAGTGGATCTGGGACA GATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGACTTTGCGACTTACT TCTGTCAACAGAGTGTCAGAATCCCGTACAGTTTTGGCCAGGGGACCAAGC TGGAGATCAAACGA (SEQ ID NO: 203).




The nucleotide sequence encoding the light chain of anti-Rh(D) antibody clone SH21 is




GCCGAGCTCACCCAGTCTCCATCCTTCCTGTCTGCATCTGTAGGAGACAGA GTCACCATCACTTGCCGGGCCAGTCAGGGCATTAGGAGTTATTTAGCCTGG TATCAGCAAAAACCAGGGAAAGCCCCTAAGCTCCTAATCTATGCTGCATCC ACTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACA GAATTCACTCTCACAATCGCCAGCCTGCAGCCTGATGATTTTGCAACTTATT ACTGTCAACAGCTTAATAATTACCCCCCTTTCACTTTCGGCCCTGGGACCAA AGTGGATATCAAACGA (SEQ ID NO: 204).




The nucleotide sequence encoding the light chain of anti-Rh(D) antibody clone SH24 is




GCCGAGCTCACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGA GTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCACCTATTTAAATTGG TATCAGCAGAGACCAGGGAAAGCCCCTAACCTCCTGATCTATGCTGCATCC ACTTTGCAAAGGGGGGTCCCATCAAGGTTCACTGGCAGTGGATCTGGGACA GATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGCAACTTACT ACTGTCAACAGAGTTACACTACCCTGTGGACGTTCGGCCAAGGGACCAAGA TGGAAATCAGACGA (SEQ ID NO: 205).




The nucleotide sequence encoding the light chain of anti-Rh(D) antibody clone SH26 is




GCCGAGCTCACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGA GTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCAGCTATTTAAATTGG TATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCATCC AGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACA GATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGCAACTTACT ACTGTCAACAGAGTTACAGTTTCCGAAGGTACAGTTTTGGCCAGGGGACCA AGCTGGAGATCAAACGA (SEQ ID NO: 206).




The nucleotide sequence encoding the light chain of anti-Rh(D) antibody clone SH28 is




GCCGAGCTCACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGA GTCACCATCACTTGCCGGGCAGATCAGAACATTAGGAGGTCTTTAAATTGG TTTCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCATCC AGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACA GATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGCAACTTACT ACTGTCAACAGAGTTCCAGTACCCCGTGGACGTTCGGCCGAGGGACCAAGG TGGAAATCAAACGA (SEQ ID NO: 207).




The nucleotide sequence encoding the light chain of anti-Rh(D) antibody clone SH30 is




GCCGAGCTCACCCAGTCTCCATCCTCCCTGTCTGCATCTGTTGGAGACAGA GTCACCATCACTTGCCGGGCAAGTCAGAGCATTCGGAGGTCTTTAAATTGG TATCAGCAGAGTCCAGGGAAAACCCCTAAGCTCCTGATCTATGCTGCATCC AGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACA GATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGCAACTTACT ACTGTCAACAGAGTTACAGTACCCTCACTTTCGGCGGAGGGACCAAGGTGG AGATCAAACGA (SEQ ID NO: 208).




The nucleotide sequence encoding the light chain of anti-Rh(D) antibody clone SH32 is




GCCGAGCTCACTCAGGAGCCCTCACTGACTGTGTCCCCAGGAGGGACAGTC ACTCTCACCTGTGCTTCCAGCACTGGAGCAGTCACCAGTCGTTACTTTCCAA ACTGGTTCCAGCAGAAACCTGGCCAGGCACCCAGGGCACTGATTTATGGTT CAAACAACAAACACTCCTGGACCCCTGCCCGGTTCTCAGGCTCCCTCCTTG GGGGCAAAGCTGCCCTGACACTGTCAGGTGTGCAGCCTGAGGACGAGGCG GAGTATTACTGCCTGCTCTTCTATGCTGGTGCTTGGGCGTTCGGCGGAGGG ACCAAGCTGACCGTCCTA (SEQ ID NO: 209).




The nucleotide sequence encoding the light chain of anti-Rh(D) antibody clone SH34 is




GCCGAGCTCACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGA GTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCAGCTATTTAAATTGG TATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCATCC GGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACA GATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGCAACTTACT ACTGTCAACAGAGTTACAGTACCCCCCCGTACACTTTTGGCCAGGGGACCA AGCTGGAGATCAAACGA (SEQ ID NO: 210).




The nucleotide sequence encoding the light chain of anti-Rh(D) antibody clone SH36 is




GCCGAGCTCACTCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGA GTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCAGCTATTTAAATTGG TATCAGCAGAAACCAGGGAAATCCCCTAAGCTCCTGATCTATGCTGCATCC AGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACA GATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGCAACTTACT ACTGTCAACAGAGTTACAGTACCCCTCCGGCTTTCGGCCCTGGGACCAAAG TGGATATCAAACGA (SEQ ID NO: 211).




The nucleotide sequence encoding the light chain of anti-Rh(D) antibody clone SH39 is




GCCGAGCTCACCCAGTCTCCATCCTCCCTGTCTGCATCTGTGGGAGACAGA GTCACCATCACTTGCCGGGCAAGTCAGACCATTGGGAGGTATTTAAATTGG TATCAGCAGAGGCCAGGGAAAGCCCCCAAACTCCTGGTATATGCTGTGTCC AGTTTGCAAAGTGGGGCCCCATCAAGGTTCAGTGGCAGTGGCTCTGGGACA CATTTCACTCTCACCATCACCAGTCTGCAACCTGAAGATTTTGCAACTTACT TCTGCCAACAGAGTTACAGTTCTCCTTTCACTTTTGGCCAGGGGACCAAGGT TGAGATCAAACGA (SEQ ID NO: 212).




The nucleotide sequence encoding the light chain of anti-Rh(D) antibody clone SH41 is




GCCGAGCTCACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGA GTCACCATCACTTGCCGGGCAAGTCAGAACATTAGGAGGTCTTTAAATTGG TATCAACACAAACCAGGGAGAGCCCCTAGACTCCTGATCTATGCTGCATCC ACTTTGCAAAGTGGGGTCCCATCAAGGTTCAGGGGCAGTGGATCTGGGACA GATTTCACTCTCACCATCAACAGTCTGCAACCTGCAGATTTTGCAACTTACT ACTGTCAGCAGAGTTCCAATACCCCGTGGACGTTCGGCCATGGGACCAAGG TGGAAATCAAACGA (SEQ ID NO: 213).




The nucleotide sequence encoding the light chain of anti-Rh(D) antibody clone SH44 is




GCCGAGCTCACCCAGTCTCCATCGTCCCTGTCTGCATCTGTAGGAGACAGA GTCATCATCACTTGCCGGGCAAGTCAGACCATTCCCAGGTTCTTGAATTGGT ATCAACAGAAGCCTGGAAAAGCCCCTGTTCTCCTGATTCATAGTATATCCA GTTTACAAAGTGGGGTCCCATCAAGGTTCAGTGCCAGTGGATCTGGGACAG AGTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTCGCAACTTACTA CTGCCAACAGAGTTACAGTAATCTCTCTTTCGGCCCTGGGACCACAGTGGA TATTAGACGA (SEQ ID NO: 214).




The nucleotide sequence encoding the light chain of anti-Rh(D) antibody clone SH46 is




GCCGAGCTCACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGA GTCACCATCACTTGCCGGGCAAGTCAGTACATTAGCAGCTATTTAAATTGG TATCAGCAGAAACCAGGGAAAGCCCCTAATCTCCTGATCTATGCTGCATCC AGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACA GATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGCAACTTACT ACTGTCAACAGACTTACAGTTCCCCTAGCACTTTCGGCCCTGGGACCAAAG TGGATATCAAACGA (SEQ ID NO: 215).




The nucleotide sequence encoding the light chain of anti-Rh(D) antibody clone SH47 is




GCCGAGCTCACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGA GTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCAACTATTTAAATTGG TATCAGCAGAAACCAGGAAAAGCCCCTAACCTCCTGATCTATGCTGCATCC AGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACA GATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGCAACTTACT ACTGTCAACAGAGTTACAGTTATCCTCGCACGTTCGGCCAAGGGACCAAGG TGGAGATCAGACGA (SEQ ID NO: 216).




The nucleotide sequence encoding the light chain of anti-Rh(D) antibody clone SH48 is




GCCGAGCTCACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGA GTCACCATCACTTGCCGGGCAAGTCAGTACATTAGCAGCTATTTAAATTGG TATCAGCAGAAACCAGGGAAAGCCCCTAATCTCCTGATCTATGCTGCATCC AGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACA GATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGCAACTTACT ACTGTCAACAGACTTACAGTTCCCCTAGCACTTTCGGCCCTGGGACCAAAG TGGATATCAAACGA (SEQ ID NO: 217).




The nucleotide sequence encoding the light chain of anti-Rh(D) antibody clone SH49 is




GCCGAGCTCACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGA GTCACCGTCACTTGCCGGGCAAGTCAGAGCATTAGCAGCTATTTAAATTGG TATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCATCC AGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACA GATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGCAACTTACT ACTGTCAACAGAGTTACAGTACCCCGTGGACGTTCGGCCAAGGGACCAAG GTGGAAATCAAACGA (SEQ ID NO: 218).




The nucleotide sequence encoding the light chain of anti-Rh(D) antibody clone SH50 is




GCCGAGCTCACCCAGTCTCCATCGTCCCTGTCTGCATCTGTAGGAGACAGA GTCACCATCACTTGCCGGACAAGTCAGAGCATTGGCACCTATTTAAATTGG TATCAACAAAAACCAGGGAAAGCCCCTAAACTCCTGATCTATGCTGCATCC AATGTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCGGTGGATCTGGGACA GGTTTCTCTCTCATCATCAGCAGTCTGCAACCTGAAGATTTAGCAATTTACT ACTGCCAACAGAGCTACAGTGTCCCTCCGTACAGCTTTGGCCCGGGGACCA AGCTGGAGATCAAACGA (SEQ ID NO: 219).




The nucleotide sequence encoding the light chain of anti-Rh(D) antibody clone SH51 is




GCCGAGCTCACACAGTCTCCATCCTTCCTGTCTGCATCTGTAGGAGACAGA GTCACCATCACTTGCCGGGCCAGTCAGGGCATAAGGAGTTATTTAGCCTGG TATCAGCAAAAACCAGGGAAAGCCCCTAAGCTCCTAATCTATGCTGCATCC ACTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACA GAATTCACTCTCACAATCAGCAGCCTGCAGCCTGAAGATTTTGCAACTTATT ACTGTCAACAGCTTAATAATTACCCCCCTTTCACTTTCGGCCCTGGGACCAA AGTGGATATCAAACGA (SEQ ID NO: 220).




The nucleotide sequence encoding the light chain of anti-Rh(D) antibody clone SH52 is




GCCGAGCTCACACAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGGGAAAGA GCCACCCTCTCCTGCAGGGCCAGTCAGAGTATTAGCAGCAGCTACTTAGCC TGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGCA TCCAGCAGGGCCACTGGCATCCCAGACAGATTCAGTGGCAGTGGGTCTGGG ACAGACTTCACTCTCACCATCAGCAGACTGGAGCCTGAAGATTTTGCAGTG TATTACTGTCAGCAGTATGGTAGCTCACCGTGGACGTTCGGCCAAGGGACC AAGGTGGAAATCAAACGA (SEQ ID NO: 221).




The nucleotide sequence encoding the light chain of anti-Rh(D) antibody clone SH54 is




GCCGAGCTCACCCAGTCTCCATCCTCCATGTCTGCATCTGTAGGAGACAGA GTCACCATCACTTGCCGGGCAAGTCAGAGCATTGGCACTTATTTAAATTGG TATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCATCC AGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACA GATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGCAACTTACT ACTGTCAACAGAGTTACAGTACCCCGTGGACGTTCGGCCAAGGGACCAAG GTGGAAATCAAACGA (SEQ ID NO: 222).




The nucleotide sequence encoding the light chain of anti-Rh(D) antibody clone SH55 is




GCCGAGCTCACGCAGCCGCCCTCAGCGTCTGGGACCCCCGGGCAGAGGGT CACCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAGTAAATATGTATA CTGGTACCAGCAACTCCCAGGAACGGCCCCCAAACTCCTCATTTATAGTAA TAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGCCTTCAAGTCTGG CACCTCAGCCTCCCTGGCCATCACTGGGCTCCAGGCTGAGGATGAGGCTAA TTATTACTGCCAGTCCTATGACAGCGGCCTGAGTGGCTGGGTGTTCGGCGG CGGGACCAAGCTGACCGTCCTA (SEQ ID NO: 223).




The nucleotide sequence encoding the light chain of anti-Rh(D) antibody clone SH56 is




GCCGAGCTCACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGA GTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCAGGTATTTAAATTGG TATCAGCAGAAACCAGGGAAAGCCCCCAAGCTCCTGATCTATGCTGCATCC AGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACA GATTTCGCTCTCACCATCAGCAGTCTGCTACCTGAAGATTTTGCAACTTACT ACTGTCAACAGGGTTACAGTACCCCTCCGTACAGTTTTGGCCAGGGGACCA AGCTGGAGATCAAACGA (SEQ ID NO: 224).




The disclosures of each and every patent, patent application and publication cited herein are hereby incorporated herein by reference in their entirety.




While this invention has been disclosed with reference to specific embodiments, it is apparent that other embodiments and variations of this invention may be devised by others skilled in the art without departing from the true spirit and scope of the invention. The appended claims are intended to be construed to include all such embodiments and equivalent variations.







224




1


128


PRT


Homo sapiens




anti-Rh(D) chain B01





1
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Arg Ser Tyr
20 25 30
Ala Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Ala Thr Ala Tyr Asp Gly Lys Asn Lys Tyr Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Phe
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Phe Tyr Cys
85 90 95
Ala Arg Gly Gly Phe Tyr Tyr Asp Ser Ser Gly Tyr Tyr Gly Leu Arg
100 105 110
His Tyr Phe Asp Ser Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120 125




2


124


PRT


Homo sapiens




anti-Rh(D) chain C01





2
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Phe Ser Ser Tyr
20 25 30
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ser Val Ile Ser Tyr Asp Gly His His Lys Asn Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Lys Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Asn Leu Arg Gly Glu Val Thr Arg Arg Ala Ser Val Pro Phe Asp
100 105 110
Ile Trp Gly Pro Gly Thr Met Val Thr Val Ser Ser
115 120




3


124


PRT


Homo sapiens




anti-Rh(D) chain C03





3
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Val Val Gln His Gly Arg
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Phe Ser Ser Tyr
20 25 30
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ser Val Ile Ser Tyr Asp Gly His His Lys Asn Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Lys Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Asn Leu Arg Gly Glu Val Thr Arg Arg Ala Ser Val Pro Phe Asp
100 105 110
Ile Trp Gly Pro Gly Thr Met Val Thr Val Ser Ser
115 120




4


124


PRT


Homo sapiens




anti-Rh(D) chain C04





4
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Phe Ser Thr Tyr
20 25 30
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ser Val Ile Ser Tyr Asp Gly His Asn Lys Asn Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Lys Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Asn Leu Arg Gly Glu Val Thr Arg Arg Ala Ser Ile Pro Phe Asp
100 105 110
Ile Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser
115 120




5


124


PRT


Homo sapiens




anti-Rh(D) chain C04





5
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Phe Ser Ser Tyr
20 25 30
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Val Ile Ser Tyr Asp Gly Thr Asn Lys Tyr Phe Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Lys Thr Leu Tyr
65 70 75 80
Leu Gln Met Thr Ser Leu Arg Pro Glu Asp Thr Ala Val Tyr Phe Cys
85 90 95
Ala Asn Leu Arg Gly Glu Val Thr Arg Arg Ala Ser Val Pro Leu Asp
100 105 110
Ile Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser
115 120




6


124


PRT


Homo sapiens




anti-Rh(D) chain C08





6
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Phe Ser Ser Tyr
20 25 30
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Val Ile Ser Tyr Asp Gly Thr Asn Lys Tyr Phe Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Lys Thr Leu Tyr
65 70 75 80
Leu Gln Met Thr Ser Leu Arg Pro Glu Asp Thr Ala Val Tyr Phe Cys
85 90 95
Ala Asn Leu Arg Gly Glu Val Thr Arg Arg Ala Ser Val Pro Leu Asp
100 105 110
Ile Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser
115 120




7


124


PRT


Homo sapiens




anti-Rh(D) chain C10





7
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Phe Ser Ser Tyr
20 25 30
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ser Val Ile Ser Tyr Asp Gly His His Lys Asn Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Lys Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Asn Leu Arg Gly Glu Val Thr Arg Arg Ala Ser Val Pro Phe Asp
100 105 110
Ile Trp Gly Pro Gly Thr Leu Val Thr Val Ser Ser
115 120




8


125


PRT


Homo sapiens




anti-Rh(D) chain D01





8
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Ser Cys Val Val Ser Gly Phe Thr Phe Asn Asn Tyr
20 25 30
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Val Ile Trp Phe Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Glu Asn Gln Ile Lys Leu Trp Ser Arg Tyr Leu Tyr Tyr Phe
100 105 110
Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120 125




9


125


PRT


Homo sapiens




anti-Rh(D) chain D03





9
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Thr Tyr
20 25 30
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Val Ile Trp Phe Asp Gly Ser Asn Lys Glu Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Val Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Glu Glu Val Val Arg Gly Val Ile Leu Trp Ser Arg Lys Phe
100 105 110
Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120 125




10


126


PRT


Homo sapiens




anti-Rh(D) chain D04





10
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Val Ala Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Ser Cys Val Ala Ser Gly Phe Ser Leu Arg Ser Tyr
20 25 30
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Asp Ile Trp Phe Asp Gly Ser Asn Lys Asp Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Asp Trp Arg Val Arg Ala Phe Ser Ser Gly Trp Leu Ser Ala
100 105 110
Phe Asp Ile Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser
115 120 125




11


127


PRT


Homo sapiens




anti-Rh(D) chain D05





11
Glu Val Gln Leu Leu Glu Glu Ser Gly Gly Gly Val Ala Gln Pro Gly
1 5 10 15
Arg Ser Leu Arg Leu Ser Cys Val Ala Ser Gly Phe Ser Leu Arg Ser
20 25 30
Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp
35 40 45
Val Ala Asp Ile Trp Phe Asp Gly Ser Asn Lys Asp Tyr Ala Asp Ser
50 55 60
Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu
65 70 75 80
Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr
85 90 95
Cys Ala Arg Asp Trp Arg Val Arg Ala Phe Ser Ser Gly Trp Leu Ser
100 105 110
Ala Phe Asp Ile Trp Gly Gln Gly Thr Thr Val Ser Val Ser Ser
115 120 125




12


125


PRT


Homo sapiens




anti-Rh(D) chain D07





12
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Val Ser Gly Phe Thr Leu Thr Asn Tyr
20 25 30
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala His Val Trp Tyr Asp Gly Ser Lys Thr Glu Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Ala Val Ser Arg Asp Lys Ser Lys Asn Thr Leu Phe
65 70 75 80
Leu Gln Met Asn Ser Leu Thr Ala Glu Asp Thr Ala Ile Tyr Tyr Cys
85 90 95
Ala Arg Glu Arg Arg Glu Lys Val Tyr Ile Leu Phe Tyr Ser Trp Leu
100 105 110
Asp Arg Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120 125




13


126


PRT


Homo sapiens




anti-Rh(D) chain D08





13
Glu Val Gln Leu Leu Glu Glu Ser Gly Gly Gly Val Val Gln Pro Gly
1 5 10 15
Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser
20 25 30
Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly Arg Gly Leu Glu Trp
35 40 45
Val Ala Leu Ile Trp Tyr Asp Gly Gly Asn Lys Glu Tyr Ala Asp Ser
50 55 60
Val Lys Gly Arg Phe Ser Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu
65 70 75 80
Tyr Leu Gln Val Asn Ser Leu Arg Ala Asp Asp Thr Ala Val Tyr Tyr
85 90 95
Cys Ala Arg Asp Gln Arg Ala Ala Ala Gly Ile Phe Tyr Tyr Ser Arg
100 105 110
Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
115 120 125




14


126


PRT


Homo sapiens




anti-Rh(D) chain D09





14
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Ser Cys Glu Ala Ser Lys Phe Thr Leu Tyr Asn Tyr
20 25 30
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Phe Ile Trp Phe Asp Gly Ser Asn Lys Tyr Tyr Glu Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Val Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Glu Gly Ser Lys Lys Val Ala Leu Ser Arg Tyr Tyr Tyr Tyr
100 105 110
Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
115 120 125




15


126


PRT


Homo sapiens




anti-Rh(D) chain D10





15
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Ser Cys Glu Ala Ser Lys Phe Thr Leu Tyr Asn Tyr
20 25 30
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Phe Ile Trp Phe Asp Gly Ser Asn Lys Tyr Tyr Glu Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Val Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Glu Gly Ser Lys Lys Val Ala Leu Ser Arg Tyr Tyr Tyr Tyr
100 105 110
Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
115 120 125




16


126


PRT


Homo sapiens




anti-Rh(D) chain D11





16
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Ser Cys Glu Ala Ser Lys Phe Thr Leu Tyr Asn Tyr
20 25 30
Gly Met His Trp Val Arg Gln Ala Pro Gly Glu Gly Leu Glu Trp Val
35 40 45
Ala Phe Ile Trp Phe Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Val Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Glu Val Ser Lys Lys Leu Ala Leu Ser Arg Tyr Tyr Tyr Tyr
100 105 110
Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
115 120 125




17


126


PRT


Homo sapiens




anti-Rh(D) chain D12





17
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Ala Cys Ala Ala Ser Gly Phe Ser Phe Arg Ser Tyr
20 25 30
Gly Met His Trp Val Arg Gln Ala Pro Gly Arg Gly Leu Glu Trp Val
35 40 45
Ala Phe Thr Trp Phe Asp Gly Ser Asn Lys Tyr Tyr Val Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Glu Met Asn Ser Leu Arg Val Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Glu Ala Ser Met Leu Arg Gly Ile Ser Arg Tyr Tyr Tyr Ala
100 105 110
Met Asp Val Trp Gly Pro Gly Thr Thr Val Thr Val Ser Ser
115 120 125




18


127


PRT


Homo sapiens




anti-Rh(D) chain D13





18
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Thr Tyr
20 25 30
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Val Ile Trp Phe Asp Gly Ser Asn Arg Asp Tyr Ala Glu Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Lys Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Ser Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Glu Asn Val Ala Arg Gly Gly Gly Gly Val Arg Tyr Lys Tyr
100 105 110
Tyr Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120 125




19


127


PRT


Homo sapiens




anti-Rh(D) chain D14





19
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Thr Tyr
20 25 30
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Val Ile Trp Phe Asp Gly Ser Lys Arg Asp Tyr Ala Glu Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Ser Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Glu Asn Val Ala Arg Gly Gly Gly Gly Ile Arg Tyr Lys Tyr
100 105 110
Tyr Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120 125




20


125


PRT


Homo sapiens




anti-Rh(D) chain D15





20
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Ser Cys Val Val Ser Gly Phe Thr Phe Asn Asn Tyr
20 25 30
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Val Ile Trp Phe Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Glu Asn Gln Ile Lys Leu Trp Ser Arg Tyr Leu Tyr Tyr Phe
100 105 110
Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120 125




21


125


PRT


Homo sapiens




anti-Rh(D) chain D16





21
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Ser Cys Val Val Ser Gly Phe Thr Phe Asn Asn Tyr
20 25 30
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Val Ile Trp Phe Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Glu Asn Gln Ile Lys Leu Trp Ser Arg Tyr Leu Tyr Tyr Phe
100 105 110
Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120 125




22


125


PRT


Homo sapiens




anti-Rh(D) chain D17





22
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Ser Cys Val Val Ser Gly Phe Thr Phe Asn Asn Tyr
20 25 30
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Val Ile Trp Phe Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Glu Asn Gln Ile Lys Leu Trp Ser Arg Tyr Leu Tyr Tyr Phe
100 105 110
Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120 125




23


125


PRT


Homo sapiens




anti-Rh(D) chain D18





23
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Ser Cys Val Val Ser Gly Phe Thr Phe Asn Asn Tyr
20 25 30
Gly Met His Trp Val Arg Gln Ala Ser Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Val Ile Trp Phe Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Glu Asn Gln Ile Lys Leu Trp Ser Arg Tyr Leu Tyr Tyr Phe
100 105 110
Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120 125




24


125


PRT


Homo sapiens




anti-Rh(D) chain D20





24
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Thr Tyr
20 25 30
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Val Ile Trp Phe Asp Gly Ser Asn Lys Glu Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Glu Glu Val Val Arg Gly Val Ile Leu Trp Ser Arg Lys Phe
100 105 110
Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120 125




25


126


PRT


Homo sapiens




anti-Rh(D) chain D30





25
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30
Gly Met Arg Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Val Val Tyr Tyr Asp Gly Ser Asn Lys His Tyr Ser Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asp Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Glu Arg Asn Phe Arg Ser Gly Tyr Ser Arg Tyr Tyr Tyr Gly
100 105 110
Met Asp Val Trp Gly Pro Gly Thr Thr Val Thr Val Ser Ser
115 120 125




26


126


PRT


Homo sapiens




anti-Rh(D) chain D31





26
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Val Val Tyr Tyr Asp Gly Ser Asn Lys His Tyr Ser Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asp Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Glu Arg Asn Phe Arg Ser Gly Tyr Ser Arg Tyr Tyr Tyr Gly
100 105 110
Met Asp Val Trp Gly Pro Gly Thr Thr Val Thr Val Ser Ser
115 120 125




27


127


PRT


Homo sapiens




anti-Rh(D) chain E01is





27
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30
Ser Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ser Ser Ile Ser Asn Ser Asn Thr Tyr Ile Tyr Tyr Ala Asp Ala Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Asp Ser Arg Tyr Ser Asn Phe Leu Arg Trp Val Arg Ser Asp
100 105 110
Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val Ile Val Ser Ser
115 120 125




28


131


PRT


Homo sapiens




anti-Rh(D) chain E03





28
Glu Val Gln Leu Leu Glu Ser Gly Val Glu Ser Gly Gly Gly Leu Val
1 5 10 15
Lys Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr
20 25 30
Phe Ser Ser Tyr Ser Met His Trp Val Arg Gln Gly Pro Gly Lys Gly
35 40 45
Leu Glu Trp Val Ser Ser Ile Ser Asn Ser Asn Thr Tyr Ile Tyr Tyr
50 55 60
Ala Asp Ala Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys
65 70 75 80
Asn Ser Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu His Thr Ala
85 90 95
Val Tyr Tyr Cys Ala Arg Asp Ser Arg Tyr Ser Asn Phe Leu Arg Trp
100 105 110
Val Arg Ser Asp Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val Ile
115 120 125
Val Ser Ser
130




29


107


PRT


Homo sapiens




anti-Rh(D) chain F01





29
Ala Glu Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp
1 5 10 15
Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Phe Arg Asn Asp Leu
20 25 30
Gly Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile Tyr
35 40 45
Ala Thr Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser
50 55 60
Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Asn Ser Leu Gln Pro Glu
65 70 75 80
Asp Ser Ala Thr Tyr Tyr Cys Leu Gln His Asn Ser Phe Pro Trp Thr
85 90 95
Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg
100 105




30


112


PRT


Homo sapiens




anti-Rh(D) chain G01





30
Ala Glu Leu Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly Glu
1 5 10 15
Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu His Ser Ser
20 25 30
Gly Phe Asn Phe Leu Asp Trp Tyr Leu Gln Lys Pro Gly Gln Ser Pro
35 40 45
Gln Leu Leu Ile Tyr Met Gly Ser Asn Arg Ala Ser Gly Val Pro Asp
50 55 60
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile Asn
65 70 75 80
Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln Ala Leu
85 90 95
Gln Phe Pro Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys Arg
100 105 110




31


108


PRT


Homo sapiens




anti-Rh(D) chain H01





31
Ala Glu Leu Thr Gln Ser Pro Ser Phe Leu Ser Ala Ser Val Gly Asp
1 5 10 15
Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Thr Ser Tyr Leu
20 25 30
Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr
35 40 45
Ala Ala Ser Thr Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser
50 55 60
Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ala Ser Leu Gln Pro Asp
65 70 75 80
Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Leu Asn Asn Tyr Pro Pro Phe
85 90 95
Thr Phe Gly Pro Gly Thr Lys Val Asp Ile Lys Arg
100 105




32


108


PRT


Homo sapiens




anti-Rh(D) chain I01





32
Ala Glu Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp
1 5 10 15
Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Tyr Leu
20 25 30
Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr
35 40 45
Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser
50 55 60
Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu
65 70 75 80
Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Tyr Ser Thr Pro Pro Tyr
85 90 95
Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg
100 105




33


107


PRT


Homo sapiens




anti-Rh(D) chain I02





33
Ala Glu Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp
1 5 10 15
Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Tyr Leu
20 25 30
Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr
35 40 45
Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser
50 55 60
Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu
65 70 75 80
Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Tyr Ser Thr Leu Trp Thr
85 90 95
Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg
100 105




34


107


PRT


Homo sapiens




anti-Rh(D) chain I03





34
Ala Glu Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Ala Asp
1 5 10 15
Arg Val Thr Ile Thr Cys Arg Thr Ser Arg Asn Ile Asn Arg Tyr Leu
20 25 30
Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr
35 40 45
Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser
50 55 60
Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Thr Ser Leu Gln Pro Glu
65 70 75 80
Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Tyr Ser Thr Pro Phe Thr
85 90 95
Phe Gly Pro Gly Thr Lys Val Asp Leu Lys Arg
100 105




35


107


PRT


Homo sapiens




anti-Rh(D) chain I04





35
Ala Glu Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp
1 5 10 15
Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asn Ile Arg Arg Ser Leu
20 25 30
Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr
35 40 45
Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser
50 55 60
Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu
65 70 75 80
Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Ser Asn Thr Pro Trp Thr
85 90 95
Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg
100 105




36


107


PRT


Homo sapiens




anti-Rh(D) chain I05





36
Ala Glu Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp
1 5 10 15
Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Arg Arg Tyr Leu
20 25 30
Asn Trp Tyr Gln His Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Phe
35 40 45
Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Thr Gly Ser
50 55 60
Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu
65 70 75 80
Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Tyr Ser Thr Pro Gln Thr
85 90 95
Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg
100 105




37


107


PRT


Homo sapiens




anti-Rh(D) chain I06





37
Ala Glu Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp
1 5 10 15
Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Tyr Leu
20 25 30
Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr
35 40 45
Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser
50 55 60
Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu
65 70 75 80
Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Tyr Ser Thr Pro Ile Thr
85 90 95
Phe Gly Gln Gly Thr Arg Leu Glu Ile Lys Arg
100 105




38


107


PRT


Homo sapiens




anti-Rh(D) chain I07





38
Ala Glu Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp
1 5 10 15
Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Tyr Leu
20 25 30
Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr
35 40 45
Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser
50 55 60
Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu
65 70 75 80
Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Tyr Ser Thr Pro Arg Thr
85 90 95
Phe Gly Gly Gly Thr Lys Val Glu Ile Lys Arg
100 105




39


107


PRT


Homo sapiens




anti-Rh(D) chain I08





39
Ala Glu Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp
1 5 10 15
Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Tyr Leu
20 25 30
Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr
35 40 45
Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser
50 55 60
Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu
65 70 75 80
Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Tyr Ser Thr Pro Arg Thr
85 90 95
Phe Gly Gly Gly Thr Lys Val Glu Ile Lys Arg
100 105




40


107


PRT


Homo sapiens




anti-Rh(D) chain I09





40
Ala Glu Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp
1 5 10 15
Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Tyr Leu
20 25 30
Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr
35 40 45
Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser
50 55 60
Gly Ser Gly Thr Asp Ser Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu
65 70 75 80
Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Leu Asn Ser Tyr Pro Tyr Thr
85 90 95
Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg
100 105




41


108


PRT


Homo sapiens




anti-Rh(D) chain I10





41
Ala Glu Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp
1 5 10 15
Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asn Ile Ser Ser Tyr Leu
20 25 30
Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr
35 40 45
Ala Ala Ser Ser Leu Gln Ser Gly Val Leu Ser Arg Phe Ser Gly Ser
50 55 60
Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu
65 70 75 80
Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Tyr Ser Thr Pro Pro Tyr
85 90 95
Ser Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg
100 105




42


103


PRT


Homo sapiens




anti-Rh(D) chain I11





42
Ala Glu Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp
1 5 10 15
Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Tyr Leu
20 25 30
Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Thr Leu Leu Ile Asn
35 40 45
Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser
50 55 60
Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu
65 70 75 80
Asp Phe Ala Ile Tyr Tyr Cys Gln Gln Arg Glu Thr Phe Gly Gln Gly
85 90 95
Thr Lys Leu Glu Ile Lys Arg
100




43


108


PRT


Homo sapiens




anti-Rh(D) chain I12





43
Ala Glu Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp
1 5 10 15
Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Tyr Leu
20 25 30
Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr
35 40 45
Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser
50 55 60
Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu
65 70 75 80
Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Tyr Ser Thr Pro Pro Tyr
85 90 95
Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg
100 105




44


107


PRT


Homo sapiens




anti-Rh(D) chain I13





44
Ala Glu Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp
1 5 10 15
Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Arg Tyr Leu
20 25 30
Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr
35 40 45
Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser
50 55 60
Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu
65 70 75 80
Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Tyr Gly Thr Pro His Ser
85 90 95
Phe Gly Arg Gly Thr Lys Leu Glu Ile Lys Arg
100 105




45


107


PRT


Homo sapiens




anti-Rh(D) chain I15





45
Ala Glu Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp
1 5 10 15
Arg Val Thr Ile Thr Cys Arg Ala Asn Gln Asn Ile Arg Arg Ser Leu
20 25 30
Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Asn Leu Leu Ile Tyr
35 40 45
Ala Ala Ser Thr Leu Gln Gly Gly Val Pro Ser Arg Phe Ser Gly Ser
50 55 60
Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Leu Ala
65 70 75 80
Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Thr Ser Ala Thr Pro Trp Thr
85 90 95
Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg
100 105




46


107


PRT


Homo sapiens




anti-Rh(D) chain I16





46
Ala Glu Leu Thr Gln Ser Pro Ser Ser Leu Pro Ala Ser Val Gly Asp
1 5 10 15
Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Thr Ile Gly Phe Asn Leu
20 25 30
Asn Trp Tyr Gln Gln Thr Ser Gly Lys Pro Pro Lys Leu Leu Ile Tyr
35 40 45
Gly Val Ser Lys Leu Gln Asn Gly Val Pro Ser Arg Phe Ser Gly Ser
50 55 60
Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu
65 70 75 80
Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Thr Asn Asp Ala Leu Trp Thr
85 90 95
Phe Gly Gln Gly Thr Lys Val Glu Val Arg Arg
100 105




47


106


PRT


Homo sapiens




anti-Rh(D) chain J01





47
Ala Glu Leu Gln Asp Pro Val Val Ser Val Ala Leu Gly Gln Thr Val
1 5 10 15
Arg Ile Thr Cys Gln Gly Asp Gly Leu Arg Ser Tyr Tyr Ala Ser Trp
20 25 30
Tyr Gln Gln Lys Pro Gly Gln Ala Pro Lys Leu Val Met Tyr Gly Arg
35 40 45
Asn Asn Arg Pro Ser Gly Ile Pro Gly Arg Phe Ser Gly Ser Ser Ser
50 55 60
Gly Gln Thr Ala Ala Leu Thr Ile Thr Gly Thr Gln Ala Glu Asp Glu
65 70 75 80
Ala Asp Tyr Tyr Cys Gln Ser Arg Ala Thr Ser Gly Asn Pro Val Val
85 90 95
Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
100 105




48


106


PRT


Homo sapiens




anti-Rh(D) chain J02





48
Ala Glu Leu Gln Asp Pro Val Val Ser Val Ala Leu Gly Gln Thr Val
1 5 10 15
Arg Ile Thr Cys Gln Gly Asp Gly Leu Arg Ser Tyr Tyr Ala Ser Trp
20 25 30
Tyr Gln Gln Lys Pro Gly Gln Ala Pro Lys Leu Val Met Tyr Gly Arg
35 40 45
Asn Asn Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser
50 55 60
Gly Gln Thr Ala Ala Leu Thr Ile Thr Gly Thr Gln Ala Glu Asp Glu
65 70 75 80
Ala Asp Tyr Tyr Cys Gln Ser Arg Ala Thr Ser Gly Asn Pro Val Val
85 90 95
Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
100 105




49


104


PRT


Homo sapiens




anti-Rh(D) chain J04





49
Ala Glu Leu Gln Asp Pro Val Val Ser Val Ala Leu Gly Gln Thr Val
1 5 10 15
Arg Ile Thr Cys Gln Gly Asp Ser Leu Arg Ser Tyr Tyr Ala Ser Trp
20 25 30
Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr Gly Lys
35 40 45
Asn Ser Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser Gly Ser Ser Ser
50 55 60
Gly Asn Thr Ala Ser Leu Thr Ile Thr Gly Ala Gln Ala Glu Asp Glu
65 70 75 80
Ala Asp Tyr Tyr Cys Ser Ser Arg Gly Ser Pro His Val Ala Phe Gly
85 90 95
Gly Gly Thr Lys Leu Thr Val Leu
100




50


106


PRT


Homo sapiens




anti-Rh(D) chain J05





50
Ala Glu Leu Gln Asp Pro Val Val Ser Val Ala Leu Gly Gln Thr Val
1 5 10 15
Lys Ile Thr Cys Gln Gly Asp Ser Leu Arg Lys Tyr Tyr Ala Ser Trp
20 25 30
Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Phe Tyr Ala Arg
35 40 45
Asn Ser Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser Gly Ser Asn Ser
50 55 60
Gly Thr Thr Ala Ser Leu Thr Ile Ala Gly Ala Arg Ala Glu Asp Glu
65 70 75 80
Ala Asp Tyr Tyr Cys His Ser Arg Asp Ser Asn Gly His His Arg Val
85 90 95
Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
100 105




51


108


PRT


Homo sapiens




anti-Rh(D) chain K01





51
Ala Glu Leu Thr Gln Glu Pro Ser Leu Thr Val Ser Pro Gly Gly Thr
1 5 10 15
Val Thr Leu Thr Cys Ala Ser Ser Thr Gly Ala Val Thr Ser Arg Tyr
20 25 30
Phe Pro Asn Trp Phe Gln Gln Lys Pro Gly Gln Ala Pro Arg Pro Leu
35 40 45
Ile Tyr Ser Ala Ser Asn Lys His Ser Trp Thr Pro Ala Arg Phe Ser
50 55 60
Gly Ser Leu Leu Gly Gly Lys Ala Ala Leu Thr Leu Ser Gly Val Gln
65 70 75 80
Pro Glu Asp Glu Ala Glu Tyr Tyr Cys Leu Leu Tyr Tyr Ser Gly Ala
85 90 95
Trp Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
100 105




52


108


PRT


Homo sapiens




anti-Rh(D) chain K02





52
Ala Glu Leu Thr Gln Glu Pro Ser Leu Thr Val Ser Pro Gly Gly Thr
1 5 10 15
Val Thr Leu Thr Cys Ala Ser Ser Thr Gly Ala Val Thr Ser Arg Tyr
20 25 30
Phe Pro Asn Trp Phe Gln Gln Lys Pro Gly Gln Ala Pro Arg Pro Leu
35 40 45
Ile Tyr Ser Ala Ser Asn Lys His Ser Trp Thr Pro Ala Arg Phe Ser
50 55 60
Gly Ser Leu Leu Gly Gly Lys Ala Ala Leu Thr Leu Ser Gly Val Gln
65 70 75 80
Pro Glu Asp Glu Ala Glu Tyr Tyr Cys Leu Leu Tyr Tyr Ser Gly Ala
85 90 95
Trp Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
100 105




53


108


PRT


Homo sapiens




anti-Rh(D) chain K03





53
Ala Glu Leu Thr Gln Pro Pro Ser Leu Thr Val Ser Pro Gly Gly Thr
1 5 10 15
Val Thr Leu Thr Cys Ala Ser Ser Thr Gly Ala Val Thr Ser Arg Tyr
20 25 30
Phe Pro Asn Trp Phe Gln Gln Lys Pro Gly Gln Ala Pro Arg Ala Leu
35 40 45
Ile Tyr Gly Ser Asn Asn Lys His Ser Trp Thr Pro Ala Arg Phe Ser
50 55 60
Gly Ser Leu Leu Gly Gly Lys Ala Ala Leu Thr Leu Ser Gly Val Gln
65 70 75 80
Pro Glu Asp Glu Ala Glu Tyr Tyr Cys Leu Leu Phe Tyr Ala Gly Ala
85 90 95
Trp Ala Phe Gly Gly Trp Thr Lys Leu Thr Val Leu
100 105




54


109


PRT


Homo sapiens




anti-Rh(D) chain L01





54
Ala Glu Leu Thr Gln Pro Pro Ser Ala Ser Gly Thr Pro Gly Gln Arg
1 5 10 15
Val Thr Ile Ser Cys Ser Gly Gly Ser Ser Asn Ile Ala Ser Asn Thr
20 25 30
Val Asn Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu Ile
35 40 45
Tyr Ser Asn Asn Gln Arg Pro Ser Gly Val Pro Asp Arg Phe Ser Gly
50 55 60
Ser Lys Ser Gly Thr Ser Ala Thr Leu Val Ile Thr Gly Leu Gln Thr
65 70 75 80
Gly Asp Glu Ala Asp Tyr Tyr Cys Gly Thr Trp Asp His Ser Arg Ser
85 90 95
Gly Ala Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
100 105




55


109


PRT


Homo sapiens




anti-Rh(D) chain L03





55
Ala Glu Leu Thr Gln Pro Pro Ser Ala Ser Gly Thr Pro Gly Gln Arg
1 5 10 15
Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Asn Asn His
20 25 30
Val Ser Trp Tyr Gln Gln Leu Pro Gly Met Ala Pro Lys Leu Leu Ile
35 40 45
Tyr Ser Asn Gly Gln Arg Pro Ser Gly Val Pro Asp Arg Phe Ser Gly
50 55 60
Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Ser Gly Leu Gln Ser
65 70 75 80
Glu Asp Glu Ala Asp Tyr Tyr Cys Ala Ala Trp His Asp Ser Leu Tyr
85 90 95
Gly Pro Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
100 105




56


109


PRT


Homo sapiens




anti-Rh(D) chain L04





56
Ala Glu Leu Thr Gln Pro Pro Ser Ala Ser Gly Thr Pro Gly Gln Arg
1 5 10 15
Val Ser Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Ser Asn Thr
20 25 30
Val Asn Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu Ile
35 40 45
Ser Thr Asn Asn Gln Gly Pro Ser Gly Val Pro Asp Arg Phe Ser Gly
50 55 60
Ser Lys Ser Gly Thr Ser Ser Ser Leu Ala Ile Ser Gly Leu Arg Ser
65 70 75 80
Glu Ala Glu Asp Asp Tyr Tyr Cys Ala Ala Trp Asp Asp Thr Leu Asn
85 90 95
Gly Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
100 105




57


109


PRT


Homo sapiens




anti-Rh(D) chain L05





57
Ala Glu Leu Thr Gln Pro Pro Ser Ala Ser Gly Thr Pro Gly Leu Arg
1 5 10 15
Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Ser Asn Ile
20 25 30
Val Asn Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu Ile
35 40 45
Phe Ser Asn Asn Lys Arg Pro Ser Gly Val Pro Asp Arg Phe Ser Gly
50 55 60
Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Ser Gly Leu Gln Ser
65 70 75 80
Glu Asp Glu Ala Asp Tyr Tyr Cys Ala Thr Trp Asp Asp Ser Leu Asn
85 90 95
Gly Arg Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
100 105




58


109


PRT


Homo sapiens




anti-Rh(D) chain M01





58
Ala Glu Leu Thr Gln Pro Pro Ser Ala Ser Gly Thr Pro Gly Gln Arg
1 5 10 15
Val Thr Ile Ser Cys Ser Gly Ser Asn Phe Asn Ile Gly Ser Asn Tyr
20 25 30
Val Phe Trp Tyr Gln His Val Pro Gly Thr Ala Pro Lys Leu Leu Ile
35 40 45
Tyr Asn Asn Asn Gln Arg Pro Ser Gly Val Pro Asp Arg Leu Ser Gly
50 55 60
Ser Lys Ser Gly Ala Ser Ala Ser Leu Ala Ile Asn Gly Leu Arg Ser
65 70 75 80
Asp Asp Glu Ala Asp Tyr Tyr Cys Thr Gly Trp Asp Asp Arg Leu Ser
85 90 95
Gly Leu Ile Phe Gly Gly Gly Pro Lys Val Thr Val Leu
100 105




59


109


PRT


Homo sapiens




anti-Rh(D) chain M02





59
Ala Glu Leu Thr Gln Pro Pro Ser Ala Ser Gly Thr Pro Gly Gln Arg
1 5 10 15
Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Ser Asn Tyr
20 25 30
Val Tyr Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu Ile
35 40 45
Tyr Arg Asn Asn Gln Arg Pro Ser Gly Val Pro Asp Arg Phe Ser Gly
50 55 60
Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Ser Gly Leu Arg Ser
65 70 75 80
Glu Asp Glu Ala Asp Tyr Tyr Cys Ala Ala Trp Asp Asp Ser Leu Ser
85 90 95
Gly Trp Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
100 105




60


110


PRT


Homo sapiens




anti-Rh(D) chain M03





60
Ala Glu Leu Thr Gln Pro Pro Ser Ala Ser Gly Thr Pro Gly Gln Arg
1 5 10 15
Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Ser Asn Tyr
20 25 30
Val Tyr Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu Ile
35 40 45
Tyr Arg Asn Asn Gln Arg Pro Ser Gly Val Pro Asp Arg Phe Ser Gly
50 55 60
Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Ser Gly Leu Arg Ser
65 70 75 80
Glu Ala Glu Ala Asp Tyr Tyr Cys Ala Ala Trp Asp Asp Ser Leu Ser
85 90 95
Ala Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Leu
100 105 110




61


109


PRT


Homo sapiens




anti-Rh(D) chain N01





61
Ala Glu Leu Thr Gln Pro Pro Ser Val Ser Ala Ala Pro Gly Gln Lys
1 5 10 15
Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Asp Ser Asn Tyr
20 25 30
Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu Ile
35 40 45
Phe Asp Asn Tyr Arg Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser Gly
50 55 60
Ser Lys Ser Gly Thr Ser Ala Thr Leu Gly Ile Thr Gly Leu Gln Thr
65 70 75 80
Gly Asp Glu Ala Asp Tyr Tyr Cys Ala Thr Trp Asp Asp Ser Leu Asn
85 90 95
Gly Arg Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
100 105




62


114


PRT


Homo sapiens




anti-Rh(D) chain N02





62
Ala Glu Leu Thr Gln Pro Pro Ser Val Ser Ala Ala Pro Gly Gln Lys
1 5 10 15
Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Asn Asn Tyr
20 25 30
Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu Ile
35 40 45
Tyr Asp Asn Asn Lys Arg Pro Ser Gly Ile Pro Asp Arg Phe Ser Gly
50 55 60
Ser Lys Ser Gly Thr Ser Ala Thr Leu Gly Ile Thr Gly Leu Gln Thr
65 70 75 80
Gly Asp Glu Ala Asp Tyr Tyr Cys Gly Thr Trp Asp Ser Ser Leu Ser
85 90 95
Ala Gly Arg Val Arg Arg Met Phe Gly Gly Gly Thr Lys Leu Thr Val
100 105 110
Leu Gly




63


110


PRT


Homo sapiens




anti-Rh(D) chain O01





63
Ala Glu Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln Arg
1 5 10 15
Val Thr Ile Ser Cys Thr Gly Ser Ser Ser Asn Ile Gly Ala Pro Tyr
20 25 30
Gly Val His Trp Tyr Gln Gln Phe Pro Gly Thr Ala Pro Lys Leu Val
35 40 45
Ile Tyr Asn Asp Asn Asn Arg Pro Ser Gly Val Pro Asp Arg Phe Ser
50 55 60
Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu Gln
65 70 75 80
Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Ser Ser Leu
85 90 95
Ser Gly Arg Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
100 105 110




64


112


PRT


Homo sapiens




anti-Rh(D) chain O02





64
Ala Glu Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln Thr
1 5 10 15
Val Thr Ile Ser Cys Thr Gly Ser Ser Ser Ser Ile Gly Ala Arg Tyr
20 25 30
Asp Val His Trp Tyr Gln His Leu Pro Gly Thr Ala Pro Lys Leu Leu
35 40 45
Ile Tyr Gly Asn His Asn Arg Pro Ser Gly Val Pro Asp Arg Phe Ser
50 55 60
Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu Gln
65 70 75 80
Ala Glu Asp Glu Ala Glu Tyr Tyr Cys Gln Ser Tyr Asp Asn Ser Leu
85 90 95
Ser Gly Ser Ser Val Phe Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
100 105 110




65


110


PRT


Homo sapiens




anti-Rh(D) chain O03





65
Ala Glu Leu Thr Gln Pro Pro Ser Gly Ala Pro Gly Gln Thr Val Thr
1 5 10 15
Ile Ser Cys Thr Gly Ser Ser Ser Asn Ile Gly Ala Gly Tyr Asp Val
20 25 30
His Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu Ile Tyr
35 40 45
Gly Asn Ser Asn Arg Pro Ser Gly Val Pro Asp Arg Phe Ser Gly Ser
50 55 60
Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu Gln Ala Glu
65 70 75 80
Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Ser Ser Leu Ser Gly
85 90 95
Pro Tyr Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
100 105 110




66


108


PRT


Homo sapiens




anti-Rh(D) chain P01





66
Ala Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Arg Gln Thr
1 5 10 15
Ala Arg Ile Thr Cys Gly Gly Asp Lys Ile Gly Ser Asn Thr Val His
20 25 30
Trp Tyr Arg Gln Met Ser Gly Gln Ala Pro Val Leu Val Ile Tyr Glu
35 40 45
Asp Lys Lys Arg Pro Pro Gly Ile Pro Glu Arg Phe Ser Gly Ser Thr
50 55 60
Ser Gly Thr Thr Ala Thr Leu Ser Ile Ser Gly Ala Gln Val Glu Asp
65 70 75 80
Glu Ala Asp Tyr Tyr Cys Tyr Ser Arg Asp Asn Ser Gly Asp Gln Arg
85 90 95
Arg Val Phe Gly Ala Gly Thr Lys Leu Thr Val Leu
100 105




67


110


PRT


Homo sapiens




anti-Rh(D) chain Q01





67
Ala Glu Leu Thr Gln Pro Pro Ser Ala Thr Ala Ser Leu Gly Gly Ser
1 5 10 15
Val Lys Leu Thr Cys Ile Leu Gln Ser Gly His Arg Asn Tyr Ala Val
20 25 30
Ala Trp His His Gln Glu Ala Gly Lys Gly Pro Arg Phe Leu Met Thr
35 40 45
Val Thr Asn Asp Gly Arg His Ile Lys Gly Asp Gly Ile Pro Asp Arg
50 55 60
Phe Ser Gly Ser Ala Ser Gly Ala Glu Arg Tyr Leu Ser Ile Ser Gly
65 70 75 80
Leu Gln Ser Glu Asp Glu Gly Asp Tyr Tyr Cys Gln Thr Trp Gly Thr
85 90 95
Gly Met His Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
100 105 110




68


108


PRT


Homo sapiens




anti-Rh(D) chain R01





68
Ala Glu Leu Thr Gln Pro Pro Ser Ala Ser Gly Ser Pro Gly Gln Ser
1 5 10 15
Val Thr Ile Ser Cys Thr Gly Ala Ser Ser Asp Val Gly Ala Tyr Lys
20 25 30
His Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu Leu
35 40 45
Thr His Glu Gly Thr Lys Arg Pro Ser Gly Val Pro Asp Arg Phe Ser
50 55 60
Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Val Ser Gly Leu Gln
65 70 75 80
Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Ser Ser Phe Ala Gly Asn Ser
85 90 95
Val Ile Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
100 105




69


104


PRT


Homo sapiens




anti-Rh(D) chain S01





69
Ala Glu Leu Thr Gln Pro Pro Ser Val Ser Gly Ser Pro Gly Gln Ser
1 5 10 15
Ile Thr Ile Ser Cys Ser Asp Val Gly Asn Tyr Asn Leu Val Ser Trp
20 25 30
Tyr Gln Gln Tyr Pro Gly Lys Ala Pro Lys Leu Ile Ile Tyr Glu Gly
35 40 45
Ser Lys Arg Pro Ser Gly Val Ser Ser Arg Phe Ser Gly Ser Arg Ser
50 55 60
Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu Gln Ala Glu Asp Glu
65 70 75 80
Ala Asp Tyr His Cys Cys Ser Tyr Ala Ile Ser Ser Arg Ile Phe Gly
85 90 95
Gly Gly Thr Lys Leu Thr Val Leu
100




70


384


DNA


Homo sapiens




anti-Rh(D) chain B01





70
gaggtgcagc tgctcgagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60
tcctgtgcag cctctggatt caccttcagg agctatgcta tgcactgggt ccgccaggct 120
ccaggcaagg ggctggagtg ggtggcagct acagcatatg atggaaaaaa taaatactac 180
gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgttt 240
ctgcaaatga acagcctgag agctgaggac acggctgtgt tttactgtgc gagaggcgga 300
ttttactatg atagtagtgg ttattacggc ttgaggcact actttgactc ctggggccag 360
ggaaccctgg tcaccgtctc ctca 384




71


372


DNA


Homo sapiens




anti-Rh(D) chain C03





71
gaggtgcagc tgctcgagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60
tcctgtgcag cctctggatt ctccttcagt agctatggca tgcactgggt ccgccaggct 120
ccaggcaagg ggctggagtg ggtgtcagtt atatcatatg atggacatca taaaaactat 180
gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa aacgctgtac 240
ctgcaaatga acagcctgag acctgaggac acggctgtat attactgtgc gaacctaagg 300
ggggaagtaa ctcgtcgtgc gtctgttccc tttgatatct ggggcccagg gacaatggtc 360
accgtctctt ca 372




72


372


DNA


Homo sapiens




anti-Rh(D) chain C01





72
gaggtgcagc tgctcgagtc ggggggaggt gtggtccagc atgggaggtc cctgagactg 60
tcctgtgcag cctctggatt ctccttcagt agctatggca tgcactgggt ccgccaggct 120
ccaggcaagg ggctggagtg ggtgtcagtt atatcatatg atggacatca taaaaactat 180
gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa aacgctgtac 240
ctgcaaatga acagcctgag acctgaggac acggctgtat attactgtgc gaacctaagg 300
ggggaagtaa ctcgtcgtgc gtctgttccc tttgatatat ggggcccagg gacaatggtc 360
accgtgtctt ca 372




73


372


DNA


Homo sapiens




anti-Rh(D) chain C04





73
gaggtgcagc tgctcgagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60
tcctgtgcag cctctggatt ctccttcagt acctatggca tgcactgggt ccgccaggct 120
ccaggcaagg ggctggagtg ggtgtcagtt atatcatatg atggacataa taaaaactat 180
gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa aacgctgtac 240
ctgcaaatga acagcctgag acctgaggac acggctgtgt attactgtgc gaacctaagg 300
ggggaagtaa ctcgtcgtgc gtctattcct tttgatatct ggggccaagg gacaatggtc 360
accgtctctt ca 372




74


372


DNA


Homo sapiens




anti-Rh(D) chain C05





74
gaggtgcagc tgctcgagtc ggggggaggc gtggtccagc ctgggaggtc cctgagactc 60
tcctgtgcag cctctggatt cagcttcagt agttatggca tgcactgggt ccgccaggct 120
ccaggcaagg ggctggagtg ggtggcagtt atatcgtatg atggaactaa taaatacttt 180
gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa aacgctgtat 240
ctgcaaatga ccagcctgag acctgaggac acggctgtgt atttctgtgc gaacctaagg 300
ggggaagtaa ctcgtcgtgc gtccgtacct cttgatatct ggggccaagg gacaatggtc 360
accgtctctt ca 372




75


372


DNA


Homo sapiens




anti-Rh(D) chain C08





75
gaggtgcagc tgctcgagtc ggggggaggc gtggtccagc ctgggaggtc cctgagactc 60
tcctgtgcag cctctggatt cagcttcagt agttatggca tgcactgggt ccgccaggct 120
ccaggcaagg ggctggagtg ggtggcagtt atatcgtatg atggaactaa taaatacttt 180
gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa aacgctgtat 240
ctgcaaatga ccagcctgag acctgaggac acggctgtgt atttctgtgc gaacctaagg 300
ggggaagtaa ctcgtcgtgc gtctgtacct cttgatatct ggggccaagg gacaatggtc 360
accgtctctt ca 372




76


372


DNA


Homo sapiens




anti-Rh(D) chain C10





76
gaggtgcagc tgctcgagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60
tcctgtgcag cctctggatt ctccttcagt agctatggca tgcactgggt ccgccaggct 120
ccaggcaagg ggctggagtg ggtgtcagtt atatcatatg atggacatca taaaaactat 180
gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa aacgctgtac 240
ctgcaaatga acagcctgag acctgaggac acggctgtat attactgtgc gaacctaagg 300
ggggaagtaa ctcgtcgtgc gtctgttccc tttgatatct ggggcccagg gacattggtc 360
accgtctctt ca 372




77


375


DNA


Homo sapiens




anti-Rh(D) chain D01





77
gaggtgcagc tgctcgagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60
tcctgtgtag tgtctggttt caccttcaat aactatggca tgcactgggt ccgccaggct 120
ccaggcaagg ggctggagtg ggtggcagtt atttggtttg atggaagtaa taaatactat 180
gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacactgtac 240
ctgcaaatga acagcctgag agccgaggac acggctgtat attactgtgc gagagagaac 300
cagataaagc tatggtcccg atacctttac tactttgatt actggggcca gggaaccctg 360
gtcaccgtct cctca 375




78


375


DNA


Homo sapiens




anti-Rh(D) chain D03





78
gaggtgcagc tgctcgagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60
tcctgtgcag cgtctggatt caccttcagt acctatggca tgcactgggt ccgccaggct 120
ccaggcaagg gactggagtg ggtggcagtt atatggtttg atggaagtaa taaggaatat 180
gcagactccg tgaagggccg attcaccgtc tccagagaca attccaagaa cacgctgtat 240
ctacaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagaagaa 300
gtggttcggg gagttatctt atggtctcgg aagtttgact actggggcca gggaaccctg 360
gtcaccgtct cctca 375




79


378


DNA


Homo sapiens




anti-Rh(D) chain D04





79
gaggtgcagc tgctcgagtc ggggggaggc gtggcccagc ctgggaggtc cctgagactc 60
tcctgtgtag cgtctggatt cagcctcagg agctatggca tgcactgggt ccgccaggct 120
cctggcaagg ggctggagtg ggtggcagat atatggtttg atggaagtaa taaagattat 180
gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgttgtat 240
cttcaaatga acagcctgag agccgaggat acggctgtgt attattgtgc gagagattgg 300
agggtgcggg cctttagtag tggctggtta agtgcttttg atatctgggg ccaagggaca 360
atggtcaccg tctcctca 378




80


381


DNA


Homo sapiens




anti-Rh(D) chain D05





80
gaggtgcagc tgctcgagga gtctggggga ggcgtggccc agcctgggag gtccctgaga 60
ctctcctgtg tagcgtctgg attcagcctc aggagctatg gcatgcactg ggtccgccag 120
gctcctggca aggggctgga gtgggtggca gatatatggt ttgatggaag taataaagat 180
tatgcagact ccgtgaaggg ccgattcacc atctccagag acaattccaa gaacacgttg 240
tatcttcaaa tgaacagcct gagagccgag gacacggctg tgtattattg tgcgagagat 300
tggagggtgc gggcctttag tagtggctgg ttaagtgctt ttgatatctg gggccaaggg 360
accacggtca gcgtctcctc a 381




81


375


DNA


Homo sapiens




anti-Rh(D) chain D07





81
gaggtgcagc tgctcgagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60
tcctgtgcag tgtctggatt caccctaact aattatggca tgcactgggt ccgccaggct 120
ccaggcaagg ggctggagtg ggtggcacat gtctggtatg atggaagtaa aacagaatat 180
gcagactccg tcaagggccg attcgccgtc tccagagaca aatccaagaa cacactgttt 240
ctgcaaatga acagcctgac agccgaggac acggctattt attactgtgc gagagagagg 300
agagagaaag tctatatatt gttctactcg tggctcgacc gctggggcca gggaaccctg 360
gtcaccgtct cctca 375




82


378


DNA


Homo sapiens




anti-Rh(D) chain D08





82
gaggtgcagc tgctcgagga gtctggggga ggcgtggtcc agcctgggag gtccctgaga 60
ctctcctgtg cagcgtctgg gttcaccttc agtagctatg gcatgcactg ggtccgccag 120
gctccaggca gggggctgga gtgggtggct cttatatggt acgatggagg taacaaagag 180
tatgcagact ccgtgaaggg ccgcttcagc atctccagag acaattccaa gaacactctg 240
tatctgcaag tgaacagcct gagagccgac gacacggctg tctattactg tgcgagagac 300
cagagagcag cagcgggtat cttttattat tcccgtatgg acgtctgggg ccaagggacc 360
acggtcaccg tctcctca 378




83


378


DNA


Homo sapiens




anti-Rh(D) chain D09





83
gaggtgcagc tgctcgagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60
tcctgtgaag cgtctaaatt caccctctac aattatggca tgcactgggt ccgccaggct 120
ccaggcaagg ggctggagtg ggtggcattt atatggtttg atggaagtaa taaatactat 180
gaagactccg tgaagggccg attcaccgtc tccagagaca attccaagaa cacgctgtat 240
ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagaagga 300
tctaagaagg tggcactttc taggtattac tattatatgg acgtctgggg ccaggggacc 360
acggtcactg tctcgtca 378




84


378


DNA


Homo sapiens




anti-Rh(D) chain D10





84
gaggtgcagc tgctcgagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60
tcctgtgaag cgtctaaatt caccctctac aattatggca tgcactgggt ccgccaggct 120
ccaggcaagg ggctggagtg ggtggcattt atatggtttg atggaagtaa taaatactat 180
gaagactccg tgaagggccg attcaccgtc tccagagaca attccaagaa cacgctgtat 240
ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagaagta 300
tctaagaagg tggcactttc taggtattac tactatatgg acgtctgggg ccaggggacc 360
acggtcactg tctcctca 378




85


378


DNA


Homo sapiens




anti-Rh(D) chain D11





85
gaggtgcagc tgctcgagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60
tcctgtgaag cgtctaaatt caccctctac aattatggca tgcactgggt ccgccaggct 120
ccaggcgaag ggctggagtg ggtggcattt atatggtttg atggaagtaa taaatactat 180
gcagactccg tgaagggccg attcaccgtc tccagagaca attccaagaa cacgctgtat 240
ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagaagta 300
tctaagaagc tggcactttc taggtactac tactatatgg acgtctgggg ccaggggacc 360
acggtcactg tctcctca 378




86


378


DNA


Homo sapiens




anti-Rh(D) chain D12





86
gaggtgcagc tgctcgagtc ggggggaggc gtggtccagc ctgggaggtc cctgagactc 60
gcctgtgcag cgtctggatt cagcttcagg agctatggca tgcactgggt ccgccaggct 120
ccaggcaggg ggctggagtg ggtggcattt acatggtttg atggaagcaa taaatattat 180
gtagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat 240
ctggaaatga acagcctgag agtcgatgac acggctgtat attactgtgc gagagaggcg 300
tctatgcttc gcggaattag cagatactac tacgcgatgg acgtctgggg cccagggacc 360
acggtcaccg tctcctca 378




87


381


DNA


Homo sapiens




anti-Rh(D) chain D13





87
gaggtgcagc tgctcgagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60
tcctgtgcag cgtctggatt caccttcagt acttatggca tgcactgggt ccgccaggct 120
ccaggcaagg ggctggagtg ggtggcagtt atatggtttg atggaagtaa cagagactat 180
gcagagtccg tgaagggccg attcaccatc tccagagaca agtccaagaa cacactgtat 240
ctgcaaatga acagcctgag agccgaggac tcggctgtgt attattgtgc gagagaaaat 300
gtggctcgtg gggggggggg cgttcgatac aagtactact ttgactactg gggccaggga 360
accctggtca ccgtctcctc a 381




88


381


DNA


Homo sapiens




anti-Rh(D) chain D14





88
gaggtgcagc tgctcgagtc ggggggaggc ttggtacagc ctggggggtc cctgagactc 60
tcctgtgcag cgtctggatt caccttcagt acttatggca tgcactgggt ccgccaggct 120
ccaggcaagg ggctggagtg ggtggcagtt atatggtttg atggaagtaa gagagactat 180
gcagagtccg tgaagggccg attcaccatc tccagagaca actccaagaa cacactgtat 240
ctgcaaatga acagcctgag agccgaggac tcggctgtgt attactgtgc gagagaaaat 300
gtggctcgtg gggggggggg cattcgatac aagtactact ttgactactg gggccaggga 360
accctggtca ccgtctcctc a 381




89


375


DNA


Homo sapiens




anti-Rh(D) chain D15





89
gaggtgcagc tgctcgagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60
tcctgtgtag tgtctggatt caccttcaat aactatggca tgcactgggt ccgccaggct 120
ccaggcaagg ggctggagtg ggtggcagtt atttggtttg atggaagtaa taaatactat 180
gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacactgtac 240
ctgcaaatga acagcctgag agccgaggac acggctgtat attactgtgc gagagagaac 300
cagataaagc tatggtcccg atacctttac tactttgact actggggcca gggaaccctg 360
gtcaccgtct cctca 375




90


375


DNA


Homo sapiens




anti-Rh(D) chain D16





90
gaggtgcagc tgctcgagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60
tcctgtgtag tgtctggttt caccttcaat aactatggca tgcactgggt ccgccaggct 120
ccaggcaagg ggctggagtg ggtggcagtt atttggtttg atggaagtaa taaatactat 180
gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacactgtac 240
ctgcaaatga acagcctgag agccgaggac acggctgtat attactgtgc gagagagaac 300
cagataaagc tatggtcccg atacctttac tactttgact actggggcca gggaaccctg 360
gtcaccgtct cctca 375




91


375


DNA


Homo sapiens




anti-Rh(D) chain D17





91
gaggtgcagc tgctcgagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60
tcctgtgtag tgtctggttt caccttcaat aactatggca tgcactgggt ccgccaggct 120
ccaggcaagg ggctggagtg ggtggcagtt atttggtttg atggaagtaa taaatactat 180
gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacactgtac 240
ctgcaaatga acagcctgag agccgaggac acggctgtat attactgtgc gagagagaac 300
cagataaagc tatggtcccg atacctttac tactttgact actggggcca gggaaccctg 360
gtcaccgtct cctcc 375




92


375


DNA


Homo sapiens




anti-Rh(D) chain D18





92
gaggtgcagc tgctcgagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60
tcctgtgtag tgtctggttt caccttcaat aactatggca tgcactgggt ccgccaggct 120
tcaggcaagg ggttggagtg ggtggcagtt atttggtttg atggaagtaa taaatactat 180
gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacactgtac 240
ctgcaaatga acagcctgag agccgaggac acggctgtat attactgtgc gagagagaac 300
cagataaagc tatggtcccg atacctttac tactttgact actggggcca gggaaccctg 360
gtcaccgtgt cctca 375




93


375


DNA


Homo sapiens




anti-Rh(D) chain D20





93
gaggtgcagc tgctcgagtc ggggggaggc gtggtccagc ctgggaggtc cctgagactc 60
tcctgtgcag cgtctggatt caccttcagt acctatggca tgcactgggt ccgccaggct 120
ccaggcaagg gactggagtg ggtggcagtt atatggtttg atggaagtaa taaggaatat 180
gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat 240
ctacaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagaagaa 300
gtggttcggg gagttatctt atggtctcgg aagtttgact actggggcca gggaaccctg 360
gtcaccgtct cctca 375




94


378


DNA


Homo sapiens




anti-Rh(D) chain D30





94
gaggtgcagc tgctcgagtc ggggggaggc gtggtccagc ctgggaggtc cctgagactc 60
tcctgtgcag cgtctggatt caccttcagt agctatggca tgcgctgggt ccggcaggct 120
ccaggcaagg ggctggagtg ggtggcagtt gtctactatg atggaagtaa caaacactat 180
tcagactccg tgaagggccg attcaccatc tccagagaca actccaagaa cacgctgtat 240
ctacaaatgg acagcctgag agccgaggac acggctgtgt attactgtgc gagagaaaga 300
aattttcgga gtggttattc ccgctactac tacggtatgg acgtctgggg cccagggacc 360
acggtcaccg tctcctca 378




95


378


DNA


Homo sapiens




anti-Rh(D) chain D31





95
gaggtgcagc tgctcgagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60
tcctgtgcag cgtctggatt caccttcagt agctatggca tgcactgggt ccggcaggct 120
ccaggcaagg ggctggagtg ggtggcagtt gtctactatg atggaagtaa caaacactat 180
tcagactccg tgaagggccg attcaccatc tccagagaca actccaagaa cacgctgtat 240
ctacaaatgg acagcctgag agccgaggac acggctgtgt attactgtgc gagagaaaga 300
aattttcgga gtggttattc ccgctactac tacggtatgg acgtctgggg cccagggacc 360
acggtcaccg tctcctca 378




96


381


DNA


Homo sapiens




anti-Rh(D) chain E01





96
gaggtgcagc tgctcgagtc tgggggaggc ctggtcaagc ctggggggtc cctgagactc 60
tcctgtgcag cctctggatt caccttcagt agctatagca tgcactgggt ccgccaggct 120
ccagggaagg ggctggagtg ggtctcatcc attagtaata gtaatactta catatactac 180
gcagacgcag tgaagggccg attcaccatc tccagagaca acgccaagaa ctcactgtat 240
ctgcaaatga acagcctgag agccgaggac acggctgtgt actactgtgc gagagattct 300
agatacagta atttcctccg ttgggttcgg agcgacggta tggacgtctg gggccaaggg 360
accacggtca tcgtctcctc a 381




97


393


DNA


Homo sapiens




anti-Rh(D) chain E03





97
gaggtgcagc tgctcgagtc tggggtggag tctgggggag gcctggtcaa gcctgggggg 60
tccctgagac tctcctgtgc agcctctgga ttcaccttca gtagctatag catgcactgg 120
gtccgccagg gtccagggaa ggggctggag tgggtctcat ccattagtaa tagtaatact 180
tacatatact acgcagacgc agtgaagggc cgattcacca tctccagaga caacgccaag 240
aactcactgt atctgcaaat gaacagcctg agagccgagc acacggctgt gtactactgt 300
gcgagagatt ctagatacag taatttcctc cgttgggttc ggagcgacgg tatggacgtc 360
tggggccaag ggaccacggt catcgtctcc tca 393




98


321


DNA


Homo sapiens




anti-Rh(D) chain F01





98
gccgagctca cccagtctcc atcctccctg tctgcatctg taggagacag agtcaccatc 60
acttgccggg caagtcaggg ctttagaaat gatttaggct ggtatcagca gaaaccaggg 120
aaagccccta agcgcctgat ctatgctaca tccagtttgc aaagtggggt cccatcaagg 180
ttcagcggca gtggatctgg gacagaattc actctcacaa tcaacagcct gcagcctgaa 240
gattctgcaa cttattactg tctacagcat aatagtttcc cgtggacgtt cggccaaggg 300
accaaggtgg aaatcaaacg a 321




99


336


DNA


Homo sapiens




anti-Rh(D) chain G01





99
gccgagctca ctcagtctcc actctccctg cccgtcaccc ctggagagcc ggcctccatc 60
tcctgcaggt ctagtcagag cctcctgcat agtagtggat tcaacttttt ggattggtac 120
ctgcagaagc cagggcagtc tccacagctc ctgatctata tgggttctaa tcgggcctcc 180
ggggtccctg acaggttcag tggcagtgga tcaggcacag attttacact gaaaatcaac 240
agagtggagg ctgaggatgt tggggtttat tactgcatgc aagctctaca atttcctctc 300
actttcggcg gagggaccaa ggtggagatc aaacga 336




100


324


DNA


Homo sapiens




anti-Rh(D) chain H01





100
gccgagctca cccagtctcc atccttcctg tctgcatctg taggagacag agtcaccatc 60
acttgccggg ccagtcaggg cattacgagt tatttagcct ggtatcagca aaaaccaggg 120
aaagccccta agctcctaat ctatgctgca tccactttgc aaagtggggt cccatcaagg 180
ttcagcggca gtggatctgg gacagaattc actctcacaa tcgccagcct gcagcctgat 240
gattttgcaa cttattactg tcaacagctt aataattacc cccctttcac tttcggccct 300
gggaccaaag tggatatcaa acga 324




101


324


DNA


Homo sapiens




anti-Rh(D) chain I01





101
gccgagctca cccagtctcc atcctcccta tctgcatctg taggagacag agtcaccatc 60
acttgccggg caagtcagag cattagcagc tatttaaatt ggtatcagca gaaaccaggg 120
aaagccccta agctcctgat ctatgctgca tccagtttgc aaagtggggt cccatcaagg 180
ttcagtggca gtggatctgg gacagatttc actctcacca tcagcagtct gcaacctgaa 240
gattttgcaa cttactactg tcaacagagt tacagtaccc ctccgtacac ttttggccag 300
gggaccaagc tggagatcaa acga 324




102


321


DNA


Homo sapiens




anti-Rh(D) chain I02





102
gccgagctca cccagtctcc atcctccctg tctgcatctg taggagacag agtcaccatc 60
acttgccggg caagtcagag cattagcagc tatttaaatt ggtatcagca gaaaccaggg 120
aaagccccta agctcctgat ctatgctgca tccagtttgc aaagtggggt cccatcaagg 180
ttcagtggca gtggatctgg gacagatttc actctcacca tcagcagtct gcaacctgaa 240
gattttgcaa cttactactg tcaacagagt tacagtaccc tgtggacgtt cggccaaggg 300
accaaggtgg aaatcaaacg a 321




103


321


DNA


Homo sapiens




anti-Rh(D) chain I03





103
gccgagctca cccagtctcc atcctccctg tctgcatctg tagcggacag agtcaccatc 60
acttgccgga caagtcggaa cattaacaga tacttaaatt ggtatcagca gaaaccaggg 120
aaagccccta agctcctgat ttatgctgca tccagtttgc aaagtggggt cccatcaagg 180
ttcagtggca gtggatctgg gacagatttc actctcacca tcaccagtct gcaacctgaa 240
gattttgcca cttactactg tcaacagagt tacagtaccc ctttcacttt cggccctggg 300
accaaagtgg atctcaaacg a 321




104


321


DNA


Homo sapiens




anti-Rh(D) chain I04





104
gccgagctca ctcagtctcc atcctccctg tctgcatctg taggagacag agtcaccatc 60
acttgccggg caagtcagaa cattaggagg tctttaaatt ggtatcaaca gaaaccaggg 120
aaagccccta agctcctgat ctatgctgca tccagtttgc aaagtggggt cccatcaagg 180
ttcagtggca gtggatctgg gacagatttc actctcacca tcagcagtct gcaacctgaa 240
gattttgcaa cttactactg tcagcagagt tccaataccc cgtggacgtt cggccaaggg 300
accaaggtgg aaatcaaacg a 321




105


321


DNA


Homo sapiens




anti-Rh(D) chain I05





105
gccgagctca cccagtctcc atcctccctg tctgcatctg taggagacag agtcaccatc 60
acttgccggg caagtcagag cattaggagg tatttaaatt ggtatcagca caaaccaggg 120
aaagccccta agctcctgat ctttgctgca tccagtttgc aaagtggggt cccatcaagg 180
ttcactggca gtggatctgg gacagatttc actctcacca tcagcagtct gcaacctgaa 240
gattttgcaa cttactactg tcaacagagt tacagtaccc ctcaaacgtt cggccaaggg 300
accaaggtgg aaatcaaacg a 321




106


321


DNA


Homo sapiens




anti-Rh(D) chain I06





106
gccgagctca cccagtctcc atcctccctg tctgcatctg taggagacag agtcaccatc 60
acttgccggg caagtcagag cattagcagc tatttaaatt ggtatcagca gaaaccaggg 120
aaagccccta agctcctgat ctatgccgca tccagtttgc aaagtggggt cccatcaagg 180
ttcagtggca gtggatctgg gacagatttc actctcacca tcagcagtct gcaacctgaa 240
gattttgcaa cttactactg tcaacagagt tacagtaccc cgatcacctt cggccaaggg 300
acacgactgg agattaaacg a 321




107


321


DNA


Homo sapiens




anti-Rh(D) chain I07





107
gccgagctca cccagtctcc atcctccctg tctgcatctg taggagacag agtcaccatc 60
acttgccggg caagtcagag cattagcagc tatttaaatt ggtatcagca gaaaccaggg 120
aaagccccta agctcctgat ctatgctgca tccagtttgc aaagtggggt cccatcaagg 180
ttcagtggca gtggatctgg gacagatttc actctcacca tcagcagtct gcaacctgaa 240
gattttgcaa cttactactg tcaacagagt tacagtaccc ctcgaacttt cggcggaggg 300
accaaggtgg agatcaaacg a 321




108


321


DNA


Homo sapiens




anti-Rh(D) chain I08





108
gccgagctca cccagtctcc attctccctg tctgcatctg tcggagacag agtcaccata 60
acttgccggg caagtcagac cattagcagg tctttaaatt ggtatcagca taaaccaggg 120
gaagccccta agctcctgat ctatgctgca tccagtctgc agcgtggggt cccacccagg 180
ttcagtggca gtggatctgg gacagatttc actctcacca tcagcagtct gcaacctgaa 240
gactttgcga cttacttctg tcaacagagt gtcagaatcc cgtacagttt tggccagggg 300
accaagctgg agatcaaacg a 321




109


321


DNA


Homo sapiens




anti-Rh(D) chain I09





109
gccgagctca cccagtctcc atcctccctg tctgcatctg taggagacag agtcaccatc 60
acttgccggg caagtcagag cattagcagc tatttaaatt ggtatcagca gaaaccaggg 120
aaagccccta agctcctgat ctatgctgca tccagtttgc aaagtggggt cccatcaagg 180
ttcagtggca gtggatctgg gacagattcc actctcacca tcagcagtct gcaacctgaa 240
gattttgcaa cttattactg tcaacagctt aatagttacc cgtacacttt tggccagggg 300
accaagctgg agatcaaacg a 321




110


324


DNA


Homo sapiens




anti-Rh(D) chain I10





110
gccgagctca cccagtctcc atcctccctg tctgcatctg taggagacag agtcaccatc 60
acttgccggg caagtcagaa cattagcagc tatttaaatt ggtatcagca gaaaccaggg 120
aaagccccta agctcctgat ctatgctgca tccagtttgc aaagtggggt cctatcaagg 180
ttcagtggca gtggatctgg gacagatttc actctcacca tcagcagtct gcaacctgaa 240
gattttgcaa cttactactg tcaacagagt tacagtaccc ctccgtatag ttttggccag 300
gggaccaagc tggagatcaa acga 324




111


309


DNA


Homo sapiens




anti-Rh(D) chain I11





111
gccgagctca cccagtctcc atcctccctg tctgcatctg taggagacag agtcaccatc 60
acttgccggg caagtcagag cattagcagc tatttaaatt ggtatcagca gaaaccaggg 120
aaagccccta cgctcctgat caatgctgca tccagtttgc aaagtggggt cccatcaagg 180
ttcagtggca gtggatctgg gacagatttc actctcacca ttagcagtct gcaacctgaa 240
gatttcgcaa tttactactg tcaacagaga gaaacttttg gccaggggac caagctggag 300
atcaaacga 309




112


324


DNA


Homo sapiens




anti-Rh(D) chain I12





112
gccgagctca cccagtctcc atcctcccta tctgcatctg taggagacag agtcaccatc 60
acttgccggg caagtcagag cattagcagc tatttaaatt ggtatcagca gaaaccaggg 120
aaagccccta agctcctgat ctatgctgca tccagtttgc aaagtggggt cccatcaagg 180
ttcagtggca gtggatctgg gacagatttc actctcacca tcagcagtct gcaacctgaa 240
gattttgcaa cttactactg tcaacagagt tacagtaccc ctccgtacac ttttggccag 300
gggaccaagc tggagatcaa acga 324




113


321


DNA


Homo sapiens




anti-Rh(D) chain I13





113
gccgagctca cccagtctcc atcctccctg tctgcctctg taggagacag agtcaccatc 60
acttgccggg caagtcagag cattagcagg tatttaaatt ggtatcagca gaaaccaggg 120
aaagccccta agctcctgat ctatgctgca tccagtttgc aaagtggggt cccatcaagg 180
ttcagtggca gtggatctgg gacagatttc actctcacca tcagcagtct gcaacctgaa 240
gattttgcaa cttactactg tcaacagagt tacggtaccc ctcacagttt tggccggggg 300
accaagctgg agatcaaacg a 321




114


321


DNA


Homo sapiens




anti-Rh(D) chain I15





114
gccgagctca cccagtctcc ttcctccctg tctgcatctg taggagacag agtcaccatc 60
acttgccggg caaatcagaa cattcgtaga tctttaaatt ggtatcagca gaaaccaggg 120
aaagccccta acctcctgat ctatgctgca tccacattgc aaggtggggt cccatcaagg 180
ttcagtggca gtggatctgg gacagatttc actctcacca tcagcagtct gcaacttgcg 240
gattttgcaa cttactactg tcaacagact tccgctaccc cgtggacgtt cggccaaggg 300
accaaggtgg aaatcaaacg a 321




115


321


DNA


Homo sapiens




anti-Rh(D) chain I16





115
gccgagctca cccagtctcc atcgtccctg cctgcatctg tgggagacag agtcaccatc 60
acttgccggg caagtcagac tattggtttt aatttaaatt ggtatcagca aacatctggg 120
aagcccccta aactcctaat ctatggtgtt tccaagttgc aaaatggggt cccttcacgg 180
ttcagtggca gtgggtccgg gacggaattc accctcacaa tcagcagtct gcagcctgag 240
gattttgcga cttattattg tcaacagact aacgatgcgt tgtggacgtt cggccaaggg 300
accaaagtgg aagtcagacg a 321




116


318


DNA


Homo sapiens




anti-Rh(D) chain J01





116
gccgagctcc aggaccctgt tgtgtctgtg gccttgggac agacagtcag gatcacttgc 60
caaggagacg gcctcagaag ttattatgca agctggtacc agcagaagcc gggacaggcc 120
ccgaaacttg tcatgtacgg tagaaacaac cggccctcag ggatcccagg ccgattctct 180
ggctccagct cagggcagac agctgccttg accatcacgg ggactcaggc ggaggatgag 240
gctgactatt actgtcagtc ccgtgccacc agcggtaacc ctgtggtgtt cggcggaggg 300
actaagctga ccgtcctg 318




117


318


DNA


Homo sapiens




anti-Rh(D) chain J02





117
gccgagctcc aggaccctgt tgtgtctgtg gccttgggac agacagtcag gatcacttgc 60
caaggagacg gcctcagaag ttattatgca agctggtacc agcagaagcc gggacaggcc 120
ccgaaacttg tcatgtacgg tagaaacaac cggccctcag ggatcccaga ccgattctct 180
ggctccagct cagggcagac agctgccttg accatcacgg ggactcaggc ggaggatgag 240
gctgactatt actgtcagtc ccgtgccacc agcggtaacc ctgtggtgtt cggcggaggg 300
actaagctga ccgtcctg 318




118


312


DNA


Homo sapiens




anti-Rh(D) chain J04





118
gccgagctcc aggaccctgt tgtgtctgtg gccttgggac agacagtcag gatcacatgc 60
caaggagaca gcctcagaag ctattatgca agctggtacc agcagaagcc aggacaggcc 120
cctgtacttg tcatctatgg taaaaacagc cggccctcag ggatcccaga ccgattctct 180
ggctccagct caggaaacac agcttcgttg accatcactg gggctcaggc ggaagatgag 240
gcggactatt attgtagttc gcggggcagc ccccacgtgg cattcggcgg agggaccaaa 300
ctgaccgtcc tg 312




119


318


DNA


Homo sapiens




anti-Rh(D) chain J05





119
gccgagctcc aggaccctgt tgtgtctgtg gccttgggac agacagtcaa gatcacatgc 60
cagggagaca gcctcagaaa gtattatgca agctggtacc agcagaagcc aggacaggcc 120
cctgtgcttg tcttctatgc tagaaatagc cggccctcag ggatcccaga ccgattctct 180
ggctccaact caggaaccac agcttccttg accatcgctg gggctcgggc ggaagatgag 240
gctgactatt actgtcactc ccgggacagc aatggtcacc atcgggtgtt cggcggaggg 300
accaagctga ccgtccta 318




120


324


DNA


Homo sapiens




anti-Rh(D) chain K01





120
gccgagctca ctcaggagcc ctcactgact gtgtccccag gagggacagt cactctcacc 60
tgtgcttcca gcactggagc agtcaccagt cgttactttc caaactggtt ccagcagaaa 120
cctggacaag cacccaggcc actgatttat agtgcaagca acaaacactc ctggacccct 180
gcccggttct caggctccct ccttgggggc aaagctgccc tgacactgtc aggtgtgcag 240
cctgaggacg aggctgagta ttactgcctg ctctactata gtggtgcttg ggtgttcggc 300
ggagggacca agttgaccgt cctt 324




121


324


DNA


Homo sapiens




anti-Rh(D) chain K02





121
gccgagctca ctcaggagcc ctcactgact gtgtccccag gagggacagt cactctcacc 60
tgtgcttcca gcactggagc agtcaccagt cgttactttc caaactggtt ccagcagaaa 120
cctggacaag cacccaggcc actgatttat agtgcaagca acaaacactc ctggacccct 180
gcccggttct caggctccct ccttgggggc aaagctgccc tgacactgtc aggtgtgcag 240
cctgaggacg aggctgagta ttactgcctg ctctactata gtggtgcttg ggtgttcggc 300
ggagggacca agctgaccgt ccta 324




122


324


DNA


Homo sapiens




anti-Rh(D) chain K03





122
gccgagctca ctcagccacc ctcactgact gtgtccccag gagggacagt cactctcacc 60
tgtgcttcca gcactggagc agtcaccagt cgttactttc caaactggtt ccagcagaaa 120
cctggccagg cacccagggc actgatttat ggttcaaaca acaaacactc ctggacccct 180
gcccggttct caggctccct ccttgggggc aaagctgccc tgacactgtc aggtgtgcag 240
cctgaggacg aggcggagta ttactgcctg ctcttctatg ctggtgcttg ggcgttcggc 300
ggatggacca agctgaccgt ccta 324




123


327


DNA


Homo sapiens




anti-Rh(D) chain L01





123
gccgagctca cgcagccgcc ctcagcgtct gggacccccg ggcagagggt caccatctct 60
tgttctggag gcagctccaa catcgcaagt aatactgtaa actggtacca gcaactccca 120
ggaacggccc ccaaactcct catctatagt aataatcagc ggccctcagg ggtccctgac 180
cgattctctg gctccaagtc tggcacctca gccaccctgg tcatcaccgg gctccagact 240
ggggacgagg ccgattatta ctgcggaaca tgggatcaca gccggagtgg tgcggtgttc 300
ggcggaggga ccaaactgac cgtctta 327




124


327


DNA


Homo sapiens




anti-Rh(D) chain L03





124
gccgagctca ctcagccacc ctcagcgtct gggacccccg ggcagagggt caccatctct 60
tgttctggca gtagctccaa catcggaaat aatcatgtaa gctggtacca gcaactccca 120
ggaatggccc ccaaactcct catctattct aatggtcagc ggccctcagg ggtccctgac 180
cgattctctg gctccaagtc tggcacctca gcctccctgg ccatcagcgg cctccagtct 240
gaggatgagg ctgattatta ttgtgcagca tggcatgaca gcctctatgg tccggtgttc 300
ggcggaggga ccaagctgac cgtcctc 327




125


327


DNA


Homo sapiens




anti-Rh(D) chain L04





125
gccgagctca ctcagccacc ctcagcgtct gggacccccg ggcagagggt cagcatctct 60
tgttctggaa gcagctccaa catcggaagt aatactgtaa actggtacca gcagctccca 120
ggaacagccc ccaaactcct catctctact aataatcagg ggccctcagg agtccctgac 180
cgattctctg gctccaagtc tggcacctca tcctccctgg ccatcagtgg gctccggtca 240
gaggctgagg atgattatta ctgtgcagca tgggatgaca ccctgaatgg tgtggtattc 300
ggcggaggga ccaaactgac cgtccta 327




126


327


DNA


Homo sapiens




anti-Rh(D) chain L05





126
gccgagctca ctcagccacc ctcagcgtct gggactcccg ggctgagggt caccatctct 60
tgttctggaa gcagctccaa catcggaagt aatattgtaa actggtacca gcagctccca 120
ggaacggccc ccaaactcct catctttagt aataataagc ggccctcagg ggtccctgac 180
cgattctctg gctccaagtc tggcacctca gcctccctgg ccatcagtgg gctccagtct 240
gaggatgagg ctgattatta ctgtgctaca tgggatgaca gcctgaatgg tcgggtgttc 300
ggcggaggga ccaagctgac cgtccta 327




127


327


DNA


Homo sapiens




anti-Rh(D) chain M01





127
gccgagctca ctcagccacc ctcagcgtct gggacccccg ggcagcgggt caccatctct 60
tgttctggga gcaacttcaa catcggaagt aattatgtat tctggtacca gcatgttcca 120
ggaacggccc caaaactcct catctataat aataatcaac gcccctctgg ggtccctgac 180
cgactctctg gctccaagtc tggcgcctca gcctccctgg ccatcaatgg gctccggtcc 240
gatgatgagg ctgattatta ctgtacagga tgggatgacc gcctgagtgg cctgattttc 300
ggcggagggc caaaagtgac cgtccta 327




128


327


DNA


Homo sapiens




anti-Rh(D) chain M02





128
gccgagctca cgcagccgcc ctcagcgtct gggacccccg ggcagagggt caccatctct 60
tgttctggaa gcagctccaa catcggaagt aattatgtat attggtacca gcagctccca 120
ggaacggccc ccaaactcct catctatagg aataatcagc ggccctcagg ggtccctgac 180
cgattctctg gctccaagtc tggcacctca gcctccctgg ccatcagtgg gctccggtcc 240
gaggatgagg ctgattatta ctgtgcagca tgggatgaca gcctgagtgg ttgggtgttc 300
ggcggaggga ccaagctgac cgtccta 327




129


327


DNA


Homo sapiens




anti-Rh(D) chain M03





129
gccgagctca ctcagccacc ctcagcgtct gggacccccg ggcagagggt caccatctct 60
tgttctggaa gcagctccaa catcggaagt aattatgtat actggtacca gcagctccca 120
ggaacggccc ccaaactcct catctatagg aataatcagc ggccctcagg ggtccctgac 180
cgattctctg gctccaagtc tggcacctca gcctccctgg ccatcagtgg gctccggtcc 240
gaggctgagg ctgattatta ctgtgcggca tgggatgaca gcctgagtgc cgtggtattc 300
ggcggaggga ccaaactgac cgtccta 327




130


327


DNA


Homo sapiens




anti-Rh(D) chain N01





130
gccgagctca cgcagccgcc ctcagtgtct gcggccccag gacagaaggt caccatctcc 60
tgctctggaa gcagctccaa cattgacagt aactatgtat cctggtacca gcagctccca 120
ggaacagccc ccaaactcct catttttgac aattataggc gaccctcagg gattcctgac 180
cgattctcag gctccaagtc tggcacgtca gccaccctgg gcatcaccgg actccagact 240
ggggacgagg ccgattatta ctgtgcaaca tgggatgaca gcctgaatgg tcgggtgttc 300
ggcggaggga ccaagctgac cgtccta 327




131


342


DNA


Homo sapiens




anti-Rh(D) chain N02





131
gccgagctca cgcagccgcc ctcagtgtct gcggccccag gacagaaggt caccatctcc 60
tgctctggaa gcagctccaa cattgggaat aattatgtgt cctggtacca gcaactccca 120
ggaacagccc ccaaactcct catttatgac aataataagc gaccctcagg gattcctgac 180
cgattctctg gctccaagtc tggcacgtca gccaccctgg gcatcaccgg actccagact 240
ggggacgagg ccgattatta ctgcggaaca tgggatagca gcctgagtgc tggccgcgtt 300
cggcggatgt tcggcggagg gaccaagttg accgtcctgg gt 342




132


330


DNA


Homo sapiens




anti-Rh(D) chain O01





132
gccgagctca cgcagccgcc ctcagtgtct ggggccccag ggcagagggt caccatctcc 60
tgcactggga gcagctccaa catcggggca ccttatggtg tacactggta ccagcagttt 120
ccaggaacag cccccaaact cgtcatctac aatgacaaca atcggccctc aggggtccct 180
gaccgattct ctggctccaa gtctggcacc tcagcctccc tggccatcac tgggctccag 240
gctgaggatg aggctgatta ttactgccag tcctatgaca gcagcctgag tggaagggtg 300
ttcggcggag ggaccaagct gaccgtccta 330




133


336


DNA


Homo sapiens




anti-Rh(D) chain O02





133
gccgagctca cgcagccgcc ctcagtgtct ggggccccag ggcagacggt caccatctcc 60
tgcactggga gcagctccag catcggggca cgttatgatg tacactggta ccaacacctt 120
ccaggaacag cccccaaact cctcatctat ggtaaccaca atcggccctc aggggtccct 180
gaccgattct ctggctccaa gtctggcacc tcagcctccc tggccatcac tgggctccag 240
gctgaggatg aggctgaata ttattgccag tcctatgaca acagcctgag tggttcgtct 300
gtctttttcg gcggagggac caagctgacc gtccta 336




134


330


DNA


Homo sapiens




anti-Rh(D) chain O03





134
gccgagctca cgcagccgcc ctctggggcc ccaggccaga cggtcaccat ctcctgcact 60
gggagcagct ccaacatcgg ggcaggttat gatgtacact ggtaccagca gcttccagga 120
acagccccca aactcctcat ctatggtaac agcaatcggc cctcaggggt ccctgaccga 180
ttctctggct ccaagtctgg cacctcagcc tccctggcca tcactgggct ccaggctgag 240
gatgaggctg attattactg ccagtcctat gacagcagcc tgagtggtcc ctatgtggta 300
ttcggcggag ggaccaagct gaccgtccta 330




135


324


DNA


Homo sapiens




anti-Rh(D) chain P01





135
gccgagctca ctcagccacc ctcggtgtca gtggccccaa gacagacggc caggattacc 60
tgtggggggg acaaaatcgg aagtaacact gtgcattggt accggcagat gtcaggccag 120
gcccctgttc tggtcatcta tgaagacaaa aaacgacccc ccgggatccc tgagagattc 180
tctggttcca cctcagggac aacggccacc ttgagtatca gtggggccca ggttgaggat 240
gaagctgact actactgtta ttcaagagac aacagtggtg atcagagaag ggtgttcggc 300
gcagggacca agctgaccgt ccta 324




136


330


DNA


Homo sapiens




anti-Rh(D) chain Q01





136
gccgagctca ctcagccacc ctccgccact gcctccctgg gaggctcggt caaactcacc 60
tgcattctgc agagtggcca cagaaattac gccgtcgctt ggcatcacca agaagcaggg 120
aagggcccgc gatttttgat gacggttacc aatgatggca ggcacatcaa gggggacggg 180
atccctgatc gcttctcagg ctccgcctct ggggctgaac gctacctctc catctccggc 240
ctccagtctg aggatgaggg tgactactac tgtcagacct ggggcactgg catgcatgtg 300
ttcggcggag ggaccaaact gaccgtccta 330




137


324


DNA


Homo sapiens




anti-Rh(D) chain R01





137
gccgagctca ctcagcctcc ctccgcgtcc gggtctcctg gacagtcagt caccatctcc 60
tgcactggag ccagcagtga cgttggtgct tataagcacg tctcctggta ccaacaacac 120
ccaggcaaag cccccaaact cctgactcat gagggcacta agcggccctc aggggtccct 180
gatcgcttct ctggctccaa gtctggcaac acggcctccc tgaccgtctc tgggctccag 240
gctgaggatg aggctgatta ttactgcagc tcatttgcag gtaattccgt gatattcggc 300
ggagggacca agctgaccgt ccta 324




138


312


DNA


Homo sapiens




anti-Rh(D) chain S01





138
gccgagctca ctcagcctcc ctccgtgtct gggtctcctg gacagtcgat caccatctcc 60
tgcagtgatg ttgggaatta taaccttgtc tcctggtacc aacagtaccc aggcaaggcc 120
cccaaactca taatttatga gggcagtaag cggccctcag gggtttctag tcgcttctct 180
ggctccaggt ctggcaacac ggcctccctg acaatctctg ggctccaggc tgaggacgag 240
gctgattatc actgctgctc atatgcaatt agtagcagga ttttcggcgg agggaccaag 300
ctgaccgtcc ta 312




139


127


PRT


Homo sapiens




anti-Rh(D) antibody clone SH10





139
Glu Val Gln Leu Leu Glu Glu Ser Gly Gly Gly Val Val Gln Pro Gly
1 5 10 15
Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Arg
20 25 30
Asn Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp
35 40 45
Val Ala Phe Ile Trp Phe Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser
50 55 60
Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu
65 70 75 80
Tyr Leu Gln Met Asn Ser Leu Arg Ala Asp Asp Thr Ala Val Tyr Tyr
85 90 95
Cys Ala Arg Glu Glu Ala Leu Phe Arg Gly Leu Thr Arg Trp Ser Tyr
100 105 110
Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val Ser Val Ser Ser
115 120 125




140


125


PRT


Homo sapiens




anti-Rh(D) antibody clone SH16





140
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30
Gly Met His Trp Val Arg Gln Ala Pro Gly Arg Gly Leu Glu Trp Val
35 40 45
Ala Leu Ile Trp Tyr Asp Gly Gly Asn Lys Glu Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Ser Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Val Asn Ser Leu Arg Ala Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Asp Gln Arg Ala Ala Ala Gly Ile Phe Tyr Tyr Ser Arg Met
100 105 110
Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
115 120 125




141


117


PRT


Homo sapiens




anti-Rh(D) antibody clone SH17





141
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Gly Ala Ser Gly Ile Pro Phe Val Ser Ser
20 25 30
Trp Met Ala Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Asn Ile Lys Gln Asp Gly Ser Lys Lys Asn Tyr Val Asp Ser Val
50 55 60
Glu Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr
65 70 75 80
Leu Gln Met Asp Ser Leu Arg Ala Glu Asp Thr Arg Ile Tyr Tyr Cys
85 90 95
Ala Arg Asp Ser Leu Thr Cys Phe Asp Tyr Trp Gly Gln Gly Ala Leu
100 105 110
Val Thr Val Ser Ser
115




142


128


PRT


Homo sapiens




anti-Rh(D) antibody clone SH18





142
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Arg Ser Tyr
20 25 30
Ala Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Ala Thr Ala Tyr Asp Gly Lys Asn Lys Tyr Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Met Asn Thr Leu Phe
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Phe Tyr Cys
85 90 95
Ala Arg Gly Gly Phe Tyr Tyr Asp Ser Ser Gly Tyr Tyr Gly Leu Arg
100 105 110
His Tyr Phe Asp Ser Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120 125




143


129


PRT


Homo sapiens




anti-Rh(D) antibody clone SH20





143
Glu Val Gln Leu Leu Glu Glu Ser Gly Gly Gly Val Val Gln Pro Gly
1 5 10 15
Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Arg Ser
20 25 30
Tyr Ala Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp
35 40 45
Val Ala Val Ile Ser Tyr Asp Gly Ser Thr Ile Tyr Tyr Ala Asp Ser
50 55 60
Val Lys Gly Arg Phe Thr Ile Ser Arg Ala Asn Ser Lys Asn Thr Leu
65 70 75 80
Phe Leu Gln Met Asn Ser Leu Arg Thr Glu Asp Thr Ala Val Tyr Tyr
85 90 95
Cys Thr Arg Gly Gly Phe Tyr Tyr Asp Ser Ser Gly Tyr Tyr Gly Leu
100 105 110
Arg His Tyr Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser
115 120 125
Ser




144


126


PRT


Homo sapiens




anti-Rh(D) antibody clone SH24





144
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Val Ala Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Ser Cys Val Ala Ser Gly Phe Ser Leu Arg Ser Tyr
20 25 30
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Asp Ile Trp Phe Asp Gly Ser Asn Lys Asp Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Asp Trp Arg Val Arg Ala Phe Ser Ser Gly Trp Leu Ser Ala
100 105 110
Phe Asp Ile Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser
115 120 125




145


127


PRT


Homo sapiens




anti-Rh(D) antibody clone SH25





145
Glu Val Gln Leu Leu Glu Glu Ser Gly Gly Gly Val Val Gln Pro Gly
1 5 10 15
Arg Ser Leu Arg Leu Ala Cys Ala Ala Ser Gly Phe Ser Phe Arg Ser
20 25 30
Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly Arg Gly Leu Glu Trp
35 40 45
Val Ala Phe Thr Trp Phe Asp Gly Ser Asn Lys Tyr Tyr Val Asp Ser
50 55 60
Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu
65 70 75 80
Tyr Leu Glu Met Asn Ser Leu Arg Val Asp Asp Thr Ala Val Tyr Tyr
85 90 95
Cys Ala Arg Glu Ala Pro Met Leu Arg Gly Ile Ser Arg Tyr Tyr Tyr
100 105 110
Ala Met Asp Val Trp Gly Pro Gly Thr Thr Val Thr Val Ser Ser
115 120 125




146


126


PRT


Homo sapiens




anti-Rh(D) antibody clone SH28, SH50, and SH53





146
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Gly Val Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Asn Ser Tyr
20 25 30
Ala Met Tyr Trp Val Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Ala Ile Trp Tyr Asp Gly Ser Asn Lys Glu Tyr Ala Asp Phe Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Ser
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Asp Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Glu Ala Asn Leu Leu Arg Gly Trp Ser Arg Tyr Tyr Tyr Gly
100 105 110
Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
115 120 125




147


126


PRT


Homo sapiens




anti-Rh(D) antibody clone SH32





147
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Ser Cys Glu Ala Ser Lys Phe Thr Leu Tyr Asn Tyr
20 25 30
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Phe Ile Trp Phe Asp Gly Ser Asn Lys Tyr Tyr Glu Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Val Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Glu Leu Ser Lys Lys Val Ala Leu Ser Arg Tyr Tyr Tyr Tyr
100 105 110
Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
115 120 125




148


126


PRT


Homo sapiens




anti-Rh(D) antibody clone SH37





148
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Ser Cys Glu Ala Ser Lys Phe Thr Leu Tyr Asn Tyr
20 25 30
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Phe Ile Trp Phe Asp Gly Ser Asn Lys Tyr Tyr Glu Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Val Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Glu Leu Ser Lys Lys Val Ala Leu Ser Arg Tyr Tyr Tyr Tyr
100 105 110
Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
115 120 125




149


126


PRT


Homo sapiens




anti-Rh(D) antibody clone SH39





149
Glu Val Gln Leu Leu Glu Gln Ser Gly Gly Gly Val Val Gln Pro Gly
1 5 10 15
Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser
20 25 30
Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp
35 40 45
Val Ala Val Ile Trp Phe Asp Gly Ser Asn Lys Glu Tyr Ala Asp Ser
50 55 60
Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu
65 70 75 80
Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr
85 90 95
Cys Ala Arg Glu Glu Val Val Arg Gly Val Ile Leu Trp Ser Arg Lys
100 105 110
Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120 125




150


126


PRT


Homo sapiens




anti-Rh(D) antibody clone SH44





150
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Val Ala Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Ser Cys Val Ala Ser Gly Phe Ser Leu Arg Ser Tyr
20 25 30
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Asp Ile Trp Phe Asp Gly Ser Asn Lys Asp Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Asp Trp Arg Val Arg Ala Phe Ser Ser Gly Trp Leu Ser Ala
100 105 110
Phe Asp Ile Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser
115 120 125




151


125


PRT


Homo sapiens




anti-Rh(D) antibody clone SH47





151
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Phe Ser Asn Tyr
20 25 30
Ala Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Val Thr Ser Phe Asp Gly Ser Ile Lys Asp Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Asp Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Glu Arg Gly Met Ile Val Val Val Arg Arg Arg Asn Ala Phe
100 105 110
Asp Ile Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser
115 120 125




152


126


PRT


Homo sapiens




anti-Rh(D) antibody clone SH54





152
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Arg Asn
20 25 30
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Phe Ile Trp Phe Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Glu Glu Ala Leu Phe Arg Gly Leu Thr Arg Trp Ser Tyr Gly
100 105 110
Met Asp Val Trp Gly Gln Gly Thr Thr Val Ser Val Ser Ser
115 120 125




153


126


PRT


Homo sapiens




anti-Rh(D) antibody clone SH56





153
Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Val Val Tyr Tyr Asp Gly Ser Asn Lys His Tyr Ser Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Phe Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asp Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Glu Arg Asn Phe Arg Ser Gly Tyr Ser Arg Tyr Tyr Tyr Gly
100 105 110
Met Asp Val Trp Gly Pro Gly Thr Thr Val Thr Val Ser Ser
115 120 125




154


107


PRT


Homo sapiens




anti-Rh(D) antibody clone SH8





154
Ala Glu Leu Thr Gln Ser Pro Ser Ser Leu Ala Ala Ser Val Gly Asp
1 5 10 15
Arg Val Thr Ile Thr Cys Arg Ala Asn Gln Thr Ile Arg Thr Ser Leu
20 25 30
Asn Trp Tyr Gln Gln Arg Pro Gly Lys Ala Pro Asn Leu Leu Ile Tyr
35 40 45
Gly Ala Ser Arg Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly Gly
50 55 60
Ile Ser Gly Ala Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu
65 70 75 80
Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Thr Tyr Gly Tyr Ser Arg Thr
85 90 95
Phe Gly Gln Gly Thr Lys Val Asp Ile Lys Arg
100 105




155


107


PRT


Homo sapiens




anti-Rh(D) antibody clone SH12





155
Ala Glu Leu Thr Gln Ser Pro Phe Ser Leu Ser Ala Ser Val Gly Asp
1 5 10 15
Arg Val Thr Ile Thr Cys Arg Ala Ser His Asn Ile Tyr Arg Ser Leu
20 25 30
Asn Trp Phe Gln His Lys Pro Gly Glu Ala Pro Lys Leu Leu Val Tyr
35 40 45
Ala Ala Ser Ser Leu Gln Arg Gly Val Pro Thr Arg Phe Ser Gly Ser
50 55 60
Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu
65 70 75 80
Asp Ser Ala Thr Tyr Phe Cys Gln Gln Ser Val Thr Phe Pro Tyr Thr
85 90 95
Phe Gly Gln Gly Thr Lys Leu Glu Ile Arg Arg
100 105




156


107


PRT


Homo sapiens




anti-Rh(D) antibody clone SH13





156
Ala Glu Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp
1 5 10 15
Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Tyr Leu
20 25 30
Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr
35 40 45
Ala Ala Ser Ser Leu Arg Ser Gly Val Pro Ser Arg Phe Ser Gly Ser
50 55 60
Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu
65 70 75 80
Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Tyr Ser Thr Pro Tyr Thr
85 90 95
Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg
100 105




157


107


PRT


Homo sapiens




anti-Rh(D) antibody clone SH14





157
Ala Glu Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp
1 5 10 15
Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asn Ile Arg Arg Ser Leu
20 25 30
Asn Trp Tyr Gln His Lys Pro Gly Arg Ala Pro Arg Leu Leu Ile Tyr
35 40 45
Ala Ala Ser Thr Leu Gln Ser Gly Val Pro Ser Arg Phe Arg Gly Ser
50 55 60
Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Asn Ser Leu Gln Pro Ala
65 70 75 80
Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Ser Asn Thr Pro Trp Thr
85 90 95
Phe Gly His Gly Thr Lys Val Glu Ile Lys Arg
100 105




158


107


PRT


Homo sapiens




anti-Rh(D) antibody clone SH16





158
Ala Glu Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp
1 5 10 15
Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Tyr Leu
20 25 30
Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr
35 40 45
Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser
50 55 60
Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu
65 70 75 80
Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Tyr Ser Thr Pro Pro Thr
85 90 95
Phe Gly Gly Gly Thr Lys Val Glu Ile Lys Arg
100 105




159


106


PRT


Homo sapiens




anti-Rh(D) antibody clone SH18





159
Ala Glu Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp
1 5 10 15
Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ile Ala Leu
20 25 30
Asn Trp Tyr Gln Gln Arg Pro Gly Lys Ala Pro Lys Leu Leu Met Tyr
35 40 45
Ala Thr Ser Thr Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser
50 55 60
Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu
65 70 75 80
Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Tyr Asn Lys Pro Thr Phe
85 90 95
Gly Pro Gly Thr Lys Val Asp Ile Lys Arg
100 105




160


107


PRT


Homo sapiens




anti-Rh(D) antibody clone SH20





160
Ala Glu Leu Thr Gln Ser Pro Phe Ser Leu Ser Ala Ser Val Gly Asp
1 5 10 15
Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Arg Ser Leu
20 25 30
Asn Trp Tyr Gln His Lys Pro Gly Glu Ala Pro Lys Leu Leu Ile Tyr
35 40 45
Ala Ala Ser Ser Leu Gln Arg Gly Val Pro Pro Arg Phe Ser Gly Ser
50 55 60
Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu
65 70 75 80
Asp Phe Ala Thr Tyr Phe Cys Gln Gln Ser Val Arg Ile Pro Tyr Ser
85 90 95
Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg
100 105




161


108


PRT


Homo sapiens




anti-Rh(D) antibody clone SH21





161
Ala Glu Leu Thr Gln Ser Pro Ser Phe Leu Ser Ala Ser Val Gly Asp
1 5 10 15
Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Arg Ser Tyr Leu
20 25 30
Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr
35 40 45
Ala Ala Ser Thr Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser
50 55 60
Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ala Ser Leu Gln Pro Asp
65 70 75 80
Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Leu Asn Asn Tyr Pro Pro Phe
85 90 95
Thr Phe Gly Pro Gly Thr Lys Val Asp Ile Lys Arg
100 105




162


107


PRT


Homo sapiens




anti-Rh(D) antibody clone SH24





162
Ala Glu Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp
1 5 10 15
Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Thr Tyr Leu
20 25 30
Asn Trp Tyr Gln Gln Arg Pro Gly Lys Ala Pro Asn Leu Leu Ile Tyr
35 40 45
Ala Ala Ser Thr Leu Gln Arg Gly Val Pro Ser Arg Phe Thr Gly Ser
50 55 60
Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu
65 70 75 80
Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Tyr Thr Thr Leu Trp Thr
85 90 95
Phe Gly Gln Gly Thr Lys Met Glu Ile Arg Arg
100 105




163


108


PRT


Homo sapiens




anti-Rh(D) antibody clone SH26





163
Ala Glu Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp
1 5 10 15
Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Tyr Leu
20 25 30
Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr
35 40 45
Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser
50 55 60
Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu
65 70 75 80
Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Tyr Ser Phe Arg Arg Tyr
85 90 95
Ser Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg
100 105




164


107


PRT


Homo sapiens




anti-Rh(D) antibody clone SH28





164
Ala Glu Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp
1 5 10 15
Arg Val Thr Ile Thr Cys Arg Ala Asp Gln Asn Ile Arg Arg Ser Leu
20 25 30
Asn Trp Phe Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr
35 40 45
Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser
50 55 60
Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu
65 70 75 80
Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Ser Ser Thr Pro Trp Thr
85 90 95
Phe Gly Arg Gly Thr Lys Val Glu Ile Lys Arg
100 105




165


106


PRT


Homo sapiens




anti-Rh(D) antibody clone SH30





165
Ala Glu Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp
1 5 10 15
Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Arg Arg Ser Leu
20 25 30
Asn Trp Tyr Gln Gln Ser Pro Gly Lys Thr Pro Lys Leu Leu Ile Tyr
35 40 45
Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser
50 55 60
Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu
65 70 75 80
Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Tyr Ser Thr Leu Thr Phe
85 90 95
Gly Gly Gly Thr Lys Val Glu Ile Lys Arg
100 105




166


108


PRT


Homo sapiens




anti-Rh(D) antibody clone SH32





166
Ala Glu Leu Thr Gln Glu Pro Ser Leu Thr Val Ser Pro Gly Gly Thr
1 5 10 15
Val Thr Leu Thr Cys Ala Ser Ser Thr Gly Ala Val Thr Ser Arg Tyr
20 25 30
Phe Pro Asn Trp Phe Gln Gln Lys Pro Gly Gln Ala Pro Arg Ala Leu
35 40 45
Ile Tyr Gly Ser Asn Asn Lys His Ser Trp Thr Pro Ala Arg Phe Ser
50 55 60
Gly Ser Leu Leu Gly Gly Lys Ala Ala Leu Thr Leu Ser Gly Val Gln
65 70 75 80
Pro Glu Asp Glu Ala Glu Tyr Tyr Cys Leu Leu Phe Tyr Ala Gly Ala
85 90 95
Trp Ala Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
100 105




167


108


PRT


Homo sapiens




anti-Rh(D) antibody clone SH34





167
Ala Glu Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp
1 5 10 15
Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Tyr Leu
20 25 30
Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr
35 40 45
Ala Ala Ser Gly Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser
50 55 60
Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu
65 70 75 80
Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Tyr Ser Thr Pro Pro Tyr
85 90 95
Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg
100 105




168


107


PRT


Homo sapiens




anti-Rh(D) antibody clone SH36





168
Ala Glu Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp
1 5 10 15
Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Tyr Leu
20 25 30
Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ser Pro Lys Leu Leu Ile Tyr
35 40 45
Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser
50 55 60
Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu
65 70 75 80
Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Tyr Ser Thr Pro Pro Ala
85 90 95
Phe Gly Pro Gly Thr Lys Val Asp Ile Lys Arg
100 105




169


107


PRT


Homo sapiens




anti-Rh(D) antibody clone SH39





169
Ala Glu Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp
1 5 10 15
Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Thr Ile Gly Arg Tyr Leu
20 25 30
Asn Trp Tyr Gln Gln Arg Pro Gly Lys Ala Pro Lys Leu Leu Val Tyr
35 40 45
Ala Val Ser Ser Leu Gln Ser Gly Ala Pro Ser Arg Phe Ser Gly Ser
50 55 60
Gly Ser Gly Thr His Phe Thr Leu Thr Ile Thr Ser Leu Gln Pro Glu
65 70 75 80
Asp Phe Ala Thr Tyr Phe Cys Gln Gln Ser Tyr Ser Ser Pro Phe Thr
85 90 95
Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg
100 105




170


107


PRT


Homo sapiens




anti-Rh(D) antibody clone SH41





170
Ala Glu Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp
1 5 10 15
Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asn Ile Arg Arg Ser Leu
20 25 30
Asn Trp Tyr Gln His Lys Pro Gly Arg Ala Pro Arg Leu Leu Ile Tyr
35 40 45
Ala Ala Ser Thr Leu Gln Ser Gly Val Pro Ser Arg Phe Arg Gly Ser
50 55 60
Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Asn Ser Leu Gln Pro Ala
65 70 75 80
Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Ser Asn Thr Pro Trp Thr
85 90 95
Phe Gly His Gly Thr Lys Val Glu Ile Lys Arg
100 105




171


106


PRT


Homo sapiens




anti-Rh(D) antibody clone SH44





171
Ala Glu Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp
1 5 10 15
Arg Val Ile Ile Thr Cys Arg Ala Ser Gln Thr Ile Pro Arg Phe Leu
20 25 30
Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Val Leu Leu Ile His
35 40 45
Ser Ile Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Ala Ser
50 55 60
Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu
65 70 75 80
Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Tyr Ser Asn Leu Ser Phe
85 90 95
Gly Pro Gly Thr Thr Val Asp Ile Arg Arg
100 105




172


107


PRT


Homo sapiens




anti-Rh(D) antibody clone SH46





172
Ala Glu Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp
1 5 10 15
Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Tyr Ile Ser Ser Tyr Leu
20 25 30
Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Asn Leu Leu Ile Tyr
35 40 45
Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser
50 55 60
Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu
65 70 75 80
Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Thr Tyr Ser Ser Pro Ser Thr
85 90 95
Phe Gly Pro Gly Thr Lys Val Asp Ile Lys Arg
100 105




173


107


PRT


Homo sapiens




anti-Rh(D) antibody clone SH47





173
Ala Glu Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp
1 5 10 15
Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Asn Tyr Leu
20 25 30
Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Asn Leu Leu Ile Tyr
35 40 45
Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser
50 55 60
Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu
65 70 75 80
Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Tyr Ser Tyr Pro Arg Thr
85 90 95
Phe Gly Gln Gly Thr Lys Val Glu Ile Arg Arg
100 105




174


107


PRT


Homo sapiens




anti-Rh(D) antibody clone SH48





174
Ala Glu Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp
1 5 10 15
Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Tyr Ile Ser Ser Tyr Leu
20 25 30
Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Asn Leu Leu Ile Tyr
35 40 45
Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser
50 55 60
Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu
65 70 75 80
Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Thr Tyr Ser Ser Pro Ser Thr
85 90 95
Phe Gly Pro Gly Thr Lys Val Asp Ile Lys Arg
100 105




175


107


PRT


Homo sapiens




anti-Rh(D) antibody clone SH49





175
Ala Glu Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp
1 5 10 15
Arg Val Thr Val Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Tyr Leu
20 25 30
Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr
35 40 45
Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser
50 55 60
Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu
65 70 75 80
Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Tyr Ser Thr Pro Trp Thr
85 90 95
Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg
100 105




176


107


PRT


Homo sapiens




anti-Rh(D) antibody clone SH50





176
Ala Glu Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp
1 5 10 15
Arg Val Thr Val Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Tyr Leu
20 25 30
Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr
35 40 45
Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser
50 55 60
Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu
65 70 75 80
Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Tyr Ser Thr Pro Trp Thr
85 90 95
Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg
100 105




177


108


PRT


Homo sapiens




anti-Rh(D) antibody clone SH51





177
Ala Glu Leu Thr Gln Ser Pro Ser Phe Leu Ser Ala Ser Val Gly Asp
1 5 10 15
Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Arg Ser Tyr Leu
20 25 30
Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr
35 40 45
Ala Ala Ser Thr Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser
50 55 60
Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu
65 70 75 80
Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Leu Asn Asn Tyr Pro Pro Phe
85 90 95
Thr Phe Gly Pro Gly Thr Lys Val Asp Ile Lys Arg
100 105




178


108


PRT


Homo sapiens




anti-Rh(D) antibody clone SH52





178
Ala Glu Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly Glu
1 5 10 15
Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Ile Ser Ser Ser Tyr
20 25 30
Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile
35 40 45
Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser Gly
50 55 60
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro
65 70 75 80
Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Gly Ser Ser Pro Trp
85 90 95
Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg
100 105




179


107


PRT


Homo sapiens




anti-Rh(D) antibody clone SH54





179
Ala Glu Leu Thr Gln Ser Pro Ser Ser Met Ser Ala Ser Val Gly Asp
1 5 10 15
Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Gly Thr Tyr Leu
20 25 30
Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr
35 40 45
Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser
50 55 60
Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu
65 70 75 80
Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Tyr Ser Thr Pro Trp Thr
85 90 95
Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg
100 105




180


109


PRT


Homo sapiens




anti-Rh(D) antibody clone SH55





180
Ala Glu Leu Thr Gln Pro Pro Ser Ala Ser Gly Thr Pro Gly Gln Arg
1 5 10 15
Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Ser Lys Tyr
20 25 30
Val Tyr Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu Ile
35 40 45
Tyr Ser Asn Asn Gln Arg Pro Ser Gly Val Pro Asp Arg Phe Ser Ala
50 55 60
Phe Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu Gln Ala
65 70 75 80
Glu Asp Glu Ala Asn Tyr Tyr Cys Gln Ser Tyr Asp Ser Gly Leu Ser
85 90 95
Gly Trp Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu
100 105




181


108


PRT


Homo sapiens




anti-Rh(D) antibody clone SH56





181
Ala Glu Leu Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp
1 5 10 15
Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Arg Tyr Leu
20 25 30
Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr
35 40 45
Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser
50 55 60
Gly Ser Gly Thr Asp Phe Ala Leu Thr Ile Ser Ser Leu Leu Pro Glu
65 70 75 80
Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Gly Tyr Ser Thr Pro Pro Tyr
85 90 95
Ser Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg
100 105




182


381


DNA


Homo sapiens




anti-Rh(D) antibody clone SH10





182
gaggtgcagc tgctcgagga gtctggggga ggcgtggtcc agcctgggag gtccctgaga 60
ctctcctgtg cagcgtctgg gttcaccttc agtaggaatg gcatgcactg ggtccgccag 120
gctcctggca aggggctgga gtgggtggca tttatatggt ttgatggaag taataaatac 180
tatgcagact ccgtgaaggg ccgattcacc atctccagag acaattccaa gaacacgctg 240
tatctgcaaa tgaacagcct gagagccgac gacacggctg tgtattactg tgcgagagag 300
gaggctctgt ttcggggact tactcggtgg tcctacggca tggacgtctg gggccaaggg 360
accacggtca gcgtctcctc a 381




183


375


DNA


Homo sapiens




anti-Rh(D) antibody clone SH16





183
gaggtgcagc tgctcgagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60
tcctgtgcag cgtctgggtt caccttcagt agctatggca tgcactgggt ccgccaggct 120
ccaggcaggg ggctggagtg ggtggctctt atatggtacg atggaggtaa caaagagtat 180
gcagactccg tgaagggccg cttcagcatc tccagagaca actccaagaa cactctgtat 240
ctgcaagtga acagcctgag agccgacgac acggctgtct attactgtgc gagagaccag 300
agagcagcag cgggtatctt ttattattcc cgtatggacg tctggggcca agggaccacg 360
gtcaccgtct cctca 375




184


351


DNA


Homo sapiens




anti-Rh(D) antibody clone SH17





184
gaggtgcagc tgctcgagtc tgggggaggc ttggtccagc cgggggggtc cctgagactc 60
tcctgtggtg cctctggaat cccctttgtt tcctcttgga tggcctgggt ccgccaggcc 120
ccagggaagg ggctggagtg ggtggccaac ataaaacaag atggaagtaa gaaaaactat 180
gtggactctg tggagggccg attcaccatc tccagagaca acgcgaagaa ctcactttat 240
ctgcaaatgg acagcctgag agccgaggac acgcggatat attactgtgc gcgagattca 300
cttacttgtt ttgactactg gggccaggga gccctggtca ccgtctcctc a 351




185


384


DNA


Homo sapiens




anti-Rh(D) antibody clone SH18





185
gaggtgcagc tgctcgagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60
tcctgtgcag cctctggatt caccttcagg agctatgcta tgcactgggt ccgccaggct 120
ccaggcaagg ggctggagtg ggtggcagct acagcatatg atggaaaaaa taaatactac 180
gcagactccg tgaagggccg attcaccatc tccagagaca attccatgaa cacgctgttt 240
ctgcaaatga acagcctgag agctgaggac acggctgtgt tttactgtgc gagaggcgga 300
ttttactatg atagtagtgg ttattacggc ttgaggcact actttgactc ctggggccag 360
ggaaccctgg tcaccgtctc ctca 384




186


387


DNA


Homo sapiens




anti-Rh(D) antibody clone SH20





186
gaggtgcagc tgctcgagga gtctggggga ggcgtggtcc agcctgggag gtccctgaga 60
ctctcctgtg cagcctctgg attcaccttc agaagttatg ctatgcactg ggtccgccag 120
gctccaggca aggggctgga gtgggtggcg gttatatcat atgatggaag tactatatac 180
tacgcagact ccgtgaaggg ccgattcacc atctccagag ccaattccaa gaacacgctg 240
tttctgcaaa tgaacagcct cagaactgag gacacggctg tatattactg tacgagaggg 300
gggttttact atgacagtag tggttattac gggttgaggc actactttga ctactggggc 360
cagggaaccc tggtcaccgt ctcttca 387




187


378


DNA


Homo sapiens




anti-Rh(D) antibody clone SH24





187
gaggtgcagc tgctcgagtc ggggggaggc gtggcccagc ctgggaggtc cctgagactc 60
tcctgtgtag cgtctggatt cagcctcagg agctatggca tgcactgggt ccgccaggct 120
cctggcaagg ggctggagtg ggtggcagat atatggtttg atggaagtaa taaagattat 180
gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgttgtat 240
cttcaaatga acagcctgag agccgaggac acggctgtgt attattgtgc gagagattgg 300
agggtgcggg cctttagtag tggctggtta agtgcttttg atatctgggg ccaagggaca 360
atggtcaccg tctcttca 378




188


381


DNA


Homo sapiens




anti-Rh(D) antibody clone SH25





188
gaggtgcagc tgctcgagga gtctggggga ggcgtggtcc agcctgggag gtccctgaga 60
ctcgcctgtg cagcgtctgg attcagcttc aggagctatg gcatgcactg ggtccgccag 120
gctccaggca gggggctgga gtgggtggca tttacatggt ttgatggaag caataaatat 180
tatgtagact ccgtgaaggg ccgattcacc atctccagag acaattccaa gaacacgctg 240
tatctggaaa tgaacagcct gagagtcgat gacacggctg tatattactg tgcgagagag 300
gcgcctatgc ttcgcggaat tagcagatac tactacgcga tggacgtctg gggcccaggg 360
accacggtca ccgtctcctc a 381




189


378


DNA


Homo sapiens




anti-Rh(D) antibody clone SH28, SH50, and SH53





189
gaggtgcagc tgctcgagtc tgggggaggc ggggtccagc ctgggaggtc cctgcgactc 60
tcctgtgcgg cgtctggatt caccttcaat agttatgcca tgtactgggt ccgccagcct 120
ccaggcaagg ggctggagtg ggtggcagct atatggtatg atggaagtaa taaagaatat 180
gcagattttg tgaagggccg cttcaccatc tccagagaca attccaagaa cacgctgtct 240
ctgcaaatga acagcctgag agacgaggac acggctgtgt attactgtgc gagagaggcg 300
aatctcctcc gtggctggtc tcgatactac tacggtatgg acgtctgggg ccaagggacc 360
acggtcaccg tctcctca 378




190


378


DNA


Homo sapiens




anti-Rh(D) antibody clone SH32





190
gaggtgcagc tgctcgagtc ggggggaggc gtggtccagc ctgggaggtc cctgagactc 60
tcctgtgaag cgtctaaatt caccctctac aattatggca tgcactgggt ccgccaggct 120
ccaggcaagg ggctggagtg ggtggcattt atatggtttg atggaagtaa taaatactat 180
gaagactccg tgaagggccg attcaccgtc tccagagaca attccaagaa cacgctgtat 240
ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagaacta 300
tctaagaagg tggcactttc taggtattac tactatatgg acgtctgggg ccaggggacc 360
acggtcactg tctcgtca 378




191


378


DNA


Homo sapiens




anti-Rh(D) antibody clone SH37





191
gaggtgcagc tgctcgagga gtctggggga ggcgtggtcc agcctgggag gtccctgaga 60
ctctcctgtg cagtgtctgg attcacccta actaattatg gcatgcactg ggtccgccag 120
gctccaggca aggggctgga gtgggtggca catgtctggt atgatggaag taaaacagaa 180
tacgcagact ccgtcaaggg ccgattcgcc gtctccagag acaaatccaa gaacacactg 240
tttctgcaaa tgaacagcct gacagccgag gacacggcta tttattactg tgcgagagag 300
aggagagaga aagtctatat attgttctac tcgtggctcg accgctgggg ccagggaacc 360
ctggtcaccg tctcctca 378




192


378


DNA


Homo sapiens




anti-Rh(D) antibody clone SH39





192
gaggtgcagc tgctcgagca gtctggggga ggcgtggtcc agcctgggag gtccctgaga 60
ctctcctgtg cagcgtctgg attcaccttc agtagctatg gcatgcactg ggtccgccag 120
gctccaggca agggactgga gtgggtggca gttatatggt ttgatggaag taataaggaa 180
tatgcagact ccgtgaaggg ccgattcacc atctccagag acaattccaa gaacacgctg 240
tatctacaaa tgaacagcct gagagccgag gacacggctg tgtattactg tgcgagagaa 300
gaagtggttc ggggagttat cttatggtct cggaagtttg actactgggg ccagggaacc 360
ctggtcaccg tctcctca 378




193


378


DNA


Homo sapiens




anti-Rh(D) antibody clone SH44





193
gaggtgcagc tgctcgagtc ggggggaggc gtggcccagc ctgggaggtc cctgagactc 60
tcctgtgtag cgtctggatt cagcctcagg agctatggca tgcactgggt ccgccaggct 120
cctggcaagg ggctggagtg ggtggcagat atatggtttg atggaagtaa taaagattat 180
gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgttgtat 240
cttcaaatga acagcctgag agccgaggat acggctgtgt attattgtgc gagagattgg 300
agggtgcggg cctttagtag tggctggtta agtgcttttg atatctgggg ccaagggaca 360
atggtcaccg tctcttca 378




194


375


DNA


Homo sapiens




anti-Rh(D) antibody clone SH47





194
gaggtgcagc tgctcgagtc tgggggaggc gtggtccagc ctgggaggtc cctgcgactc 60
tcttgtgcag cctctggatt cagcttcagt aactatgcta tgcactgggt ccgccaggct 120
ccaggcaagg ggctggagtg ggtggcagtt acatcatttg atggaagcat taaagactac 180
gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacactatat 240
ctgcaaatga acagcctgag agatgaggac acggctgtat attactgtgc gagagagcgg 300
gggatgatag tcgtggtccg tcgcagaaat gcttttgata tttggggcca agggacaatg 360
gtcaccgtct cttca 375




195


378


DNA


Homo sapiens




anti-Rh(D) antibody clone SH54





195
gaggtgcagc tgctcgagtc ggggggaggc gtggtccagc ctgggaggtc cctgagactc 60
tcctgtgcag cgtctgggtt caccttcagt aggaatggca tgcactgggt ccgccaggct 120
cctggcaagg ggctggagtg ggtggcattt atatggtttg atggaagtaa taaatactat 180
gcagactccg tgaagggccg attcaccatc tccagagaca attccaagaa cacgctgtat 240
ctgcaaatga acagcctgag agccgacgac acggctgtgt attactgtgc gagagaggag 300
gctctgtttc ggggacttac tcggtggtcc tacggtatgg acgtctgggg ccaagggacc 360
acggtcagcg tctcctca 378




196


378


DNA


Homo sapiens




anti-Rh(D) antibody clone SH56





196
gaggtgcagc tgctcgagtc ggggggaggc gtggtccagc ctgggaggtc cctgagactc 60
tcctgtgcag cgtctggatt caccttcagt agctatggca tgcactgggt ccggcaggct 120
ccaggcaagg ggctggagtg ggtggcagtt gtctactatg atggaagtaa caaacactat 180
tcagactccg tgaagggccg attcaccatc ttcagagaca actccaagaa cacgctgtat 240
ctacaaatgg acagcctgag agccgaggac acggctgtgt attactgtgc gagagaaaga 300
aattttcgga gtggttattc ccgctactac tacggtatgg acgtctgggg cccagggacc 360
acggtcaccg tctcctca 378




197


321


DNA


Homo sapiens




anti-Rh(D) antibody clone SH8





197
gccgagctca cccagtctcc atcctccctg gctgcgtctg tcggagacag agtcaccatc 60
acttgccggg caaatcagac catcagaacc tctttaaatt ggtatcaaca aagacctggg 120
aaagccccta acctcctgat ctatggtgca tccaggttgc atagtggggt cccatcaagg 180
tttagtggcg gtatttctgg ggcagacttc actctcacca tcagcagtct gcaacctgaa 240
gattttgcaa cttactactg tcagcagact tacggttatt ctcgaacgtt cggccaaggg 300
accaaggtgg atatcaaacg a 321




198


321


DNA


Homo sapiens




anti-Rh(D) antibody clone SH12





198
gccgagctca cccagtctcc attctccctg tctgcatctg taggagacag agtcaccata 60
acttgccggg caagtcacaa catttacagg tctttaaatt ggtttcagca taaaccaggg 120
gaagccccta agctcctggt ctatgctgca tccagtctgc agcgtggggt cccaaccagg 180
ttcagtggca gtggatctgg gacagatttc actctcacca tcagcagtct tcaacctgaa 240
gactctgcga cttacttctg tcaacagagt gtcacattcc cctacacttt tggccagggg 300
accaagctgg agatcagacg a 321




199


321


DNA


Homo sapiens




anti-Rh(D) antibody clone SH13





199
gccgagctca cccagtctcc atcctccctg tctgcatctg taggagacag agtcaccatc 60
acttgccggg caagtcagag cattagcagc tatttaaatt ggtatcagca gaaaccaggg 120
aaagccccta agctcctgat ctatgctgca tccagtttgc gaagtggggt cccatcaagg 180
ttcagtggca gtggatctgg gacagatttc actctcacca tcagcagtct gcaacctgaa 240
gattttgcaa cttactactg tcaacagagt tacagtaccc cctacacttt tggccagggg 300
accaagctgg agatcaaacg a 321




200


321


DNA


Homo sapiens




anti-Rh(D) antibody clone SH14





200
gccgagctca cccagtctcc atcctccctg tctgcatctg taggagacag agtcaccatc 60
acttgccggg caagtcagaa cattaggagg tctttaaatt ggtatcaaca caaaccaggg 120
agagccccta gactcctgat ctatgctgca tccactttgc aaagtggggt cccatcaagg 180
ttcaggggca gtggatctgg gacagatttc actctcacca tcaacagtct gcaacctgca 240
gattttgcaa cttactactg tcagcagagt tccaataccc cgtggacgtt cggccatggg 300
accaaggtgg aaatcaaacg a 321




201


321


DNA


Homo sapiens




anti-Rh(D) antibody clone SH16





201
gccgagctca cccagtctcc atcctccctg tctgcctctg taggagacag agtcaccatc 60
acttgccggg caagtcagag cattagcagc tatttaaatt ggtatcaaca gaaaccaggg 120
aaagccccta agctcctgat ctatgctgca tccagtttgc aaagtggggt cccatcaagg 180
ttcagtggca gtggatctgg gacagatttc actctcacca tcagcagtct gcaacctgaa 240
gattttgcaa cttactactg tcaacagagt tacagtaccc ctccaacttt cggcggaggg 300
accaaggtgg agatcaaacg a 321




202


318


DNA


Homo sapiens




anti-Rh(D) antibody clone SH18





202
gccgagctca cccagtctcc atcctccctc tctgcatctg taggagacag agtcaccatc 60
acttgccggg caagtcagag tattagcatc gctttaaatt ggtatcagca gagaccaggg 120
aaagccccta agctcctgat gtatgctaca tccactttgc aaagtggggt cccatcaagg 180
ttcagtggca gtggatctgg gacagatttc actctcacca tcagcagtct gcaacctgaa 240
gattttgcaa cttactactg tcaacaatat tacaataaac ctactttcgg ccctgggacc 300
aaggtggata tcaaacga 318




203


321


DNA


Homo sapiens




anti-Rh(D) antibody clone SH20





203
gccgagctca cccagtctcc attctccctg tctgcatctg tcggagacag agtcaccata 60
acttgccggg caagtcagag cattagcagg tctttaaatt ggtatcaaca taaaccaggg 120
gaagccccta agctcctgat ctatgctgca tccagtctgc agcgtggggt cccacccagg 180
ttcagtggca gtggatctgg gacagatttc actctcacca tcagcagtct gcaacctgaa 240
gactttgcga cttacttctg tcaacagagt gtcagaatcc cgtacagttt tggccagggg 300
accaagctgg agatcaaacg a 321




204


324


DNA


Homo sapiens




anti-Rh(D) antibody clone SH21





204
gccgagctca cccagtctcc atccttcctg tctgcatctg taggagacag agtcaccatc 60
acttgccggg ccagtcaggg cattaggagt tatttagcct ggtatcagca aaaaccaggg 120
aaagccccta agctcctaat ctatgctgca tccactttgc aaagtggggt cccatcaagg 180
ttcagcggca gtggatctgg gacagaattc actctcacaa tcgccagcct gcagcctgat 240
gattttgcaa cttattactg tcaacagctt aataattacc cccctttcac tttcggccct 300
gggaccaaag tggatatcaa acga 324




205


321


DNA


Homo sapiens




anti-Rh(D) antibody clone SH24





205
gccgagctca cccagtctcc atcctccctg tctgcatctg taggagacag agtcaccatc 60
acttgccggg caagtcagag cattagcacc tatttaaatt ggtatcagca gagaccaggg 120
aaagccccta acctcctgat ctatgctgca tccactttgc aaaggggggt cccatcaagg 180
ttcactggca gtggatctgg gacagatttc actctcacca tcagcagtct gcaacctgaa 240
gattttgcaa cttactactg tcaacagagt tacactaccc tgtggacgtt cggccaaggg 300
accaagatgg aaatcagacg a 321




206


324


DNA


Homo sapiens




anti-Rh(D) antibody clone SH26





206
gccgagctca cccagtctcc atcctccctg tctgcatctg taggagacag agtcaccatc 60
acttgccggg caagtcagag cattagcagc tatttaaatt ggtatcagca gaaaccaggg 120
aaagccccta agctcctgat ctatgctgca tccagtttgc aaagtggggt cccatcaagg 180
ttcagtggca gtggatctgg gacagatttc actctcacca tcagcagtct gcaacctgaa 240
gattttgcaa cttactactg tcaacagagt tacagtttcc gaaggtacag ttttggccag 300
gggaccaagc tggagatcaa acga 324




207


321


DNA


Homo sapiens




anti-Rh(D) antibody clone SH28





207
gccgagctca cccagtctcc atcctccctg tctgcatctg taggagacag agtcaccatc 60
acttgccggg cagatcagaa cattaggagg tctttaaatt ggtttcagca gaaaccaggg 120
aaagccccta agctcctgat ctatgctgca tccagtttgc aaagtggggt cccatcaagg 180
ttcagtggca gtggatctgg gacagatttc actctcacca tcagcagtct gcaacctgaa 240
gattttgcaa cttactactg tcaacagagt tccagtaccc cgtggacgtt cggccgaggg 300
accaaggtgg aaatcaaacg a 321




208


318


DNA


Homo sapiens




anti-Rh(D) antibody clone SH30





208
gccgagctca cccagtctcc atcctccctg tctgcatctg ttggagacag agtcaccatc 60
acttgccggg caagtcagag cattcggagg tctttaaatt ggtatcagca gagtccaggg 120
aaaaccccta agctcctgat ctatgctgca tccagtttgc aaagtggggt cccatcaagg 180
ttcagtggca gtggatctgg gacagatttc actctcacca tcagcagtct gcaacctgaa 240
gattttgcaa cttactactg tcaacagagt tacagtaccc tcactttcgg cggagggacc 300
aaggtggaga tcaaacga 318




209


324


DNA


Homo sapiens




anti-Rh(D) antibody clone SH32





209
gccgagctca ctcaggagcc ctcactgact gtgtccccag gagggacagt cactctcacc 60
tgtgcttcca gcactggagc agtcaccagt cgttactttc caaactggtt ccagcagaaa 120
cctggccagg cacccagggc actgatttat ggttcaaaca acaaacactc ctggacccct 180
gcccggttct caggctccct ccttgggggc aaagctgccc tgacactgtc aggtgtgcag 240
cctgaggacg aggcggagta ttactgcctg ctcttctatg ctggtgcttg ggcgttcggc 300
ggagggacca agctgaccgt ccta 324




210


324


DNA


Homo sapiens




anti-Rh(D) antibody clone SH34





210
gccgagctca cccagtctcc atcctccctg tctgcatctg taggagacag agtcaccatc 60
acttgccggg caagtcagag cattagcagc tatttaaatt ggtatcagca gaaaccaggg 120
aaagccccta agctcctgat ctatgctgca tccggtttgc aaagtggggt cccatcaagg 180
ttcagtggca gtggatctgg gacagatttc actctcacca tcagcagtct gcaacctgaa 240
gattttgcaa cttactactg tcaacagagt tacagtaccc ccccgtacac ttttggccag 300
gggaccaagc tggagatcaa acga 324




211


321


DNA


Homo sapiens




anti-Rh(D) antibody clone SH36





211
gccgagctca ctcagtctcc atcctccctg tctgcatctg taggagacag agtcaccatc 60
acttgccggg caagtcagag cattagcagc tatttaaatt ggtatcagca gaaaccaggg 120
aaatccccta agctcctgat ctatgctgca tccagtttgc aaagtggggt cccatcaagg 180
ttcagtggca gtggatctgg gacagatttc actctcacca tcagcagtct gcaacctgaa 240
gattttgcaa cttactactg tcaacagagt tacagtaccc ctccggcttt cggccctggg 300
accaaagtgg atatcaaacg a 321




212


321


DNA


Homo sapiens




anti-Rh(D) antibody clone SH39





212
gccgagctca cccagtctcc atcctccctg tctgcatctg tgggagacag agtcaccatc 60
acttgccggg caagtcagac cattgggagg tatttaaatt ggtatcagca gaggccaggg 120
aaagccccca aactcctggt atatgctgtg tccagtttgc aaagtggggc cccatcaagg 180
ttcagtggca gtggctctgg gacacatttc actctcacca tcaccagtct gcaacctgaa 240
gattttgcaa cttacttctg ccaacagagt tacagttctc ctttcacttt tggccagggg 300
accaaggttg agatcaaacg a 321




213


321


DNA


Homo sapiens




anti-Rh(D) antibody clone SH41





213
gccgagctca cccagtctcc atcctccctg tctgcatctg taggagacag agtcaccatc 60
acttgccggg caagtcagaa cattaggagg tctttaaatt ggtatcaaca caaaccaggg 120
agagccccta gactcctgat ctatgctgca tccactttgc aaagtggggt cccatcaagg 180
ttcaggggca gtggatctgg gacagatttc actctcacca tcaacagtct gcaacctgca 240
gattttgcaa cttactactg tcagcagagt tccaataccc cgtggacgtt cggccatggg 300
accaaggtgg aaatcaaacg a 321




214


318


DNA


Homo sapiens




anti-Rh(D) antibody clone SH44





214
gccgagctca cccagtctcc atcgtccctg tctgcatctg taggagacag agtcatcatc 60
acttgccggg caagtcagac cattcccagg ttcttgaatt ggtatcaaca gaagcctgga 120
aaagcccctg ttctcctgat tcatagtata tccagtttac aaagtggggt cccatcaagg 180
ttcagtgcca gtggatctgg gacagagttc actctcacca tcagcagtct gcaacctgaa 240
gatttcgcaa cttactactg ccaacagagt tacagtaatc tctctttcgg ccctgggacc 300
acagtggata ttagacga 318




215


321


DNA


Homo sapiens




anti-Rh(D) antibody clone SH46





215
gccgagctca cccagtctcc atcctccctg tctgcatctg taggagacag agtcaccatc 60
acttgccggg caagtcagta cattagcagc tatttaaatt ggtatcagca gaaaccaggg 120
aaagccccta atctcctgat ctatgctgca tccagtttgc aaagtggggt cccatcaagg 180
ttcagtggca gtggatctgg gacagatttc actctcacca tcagcagtct gcaacctgaa 240
gattttgcaa cttactactg tcaacagact tacagttccc ctagcacttt cggccctggg 300
accaaagtgg atatcaaacg a 321




216


321


DNA


Homo sapiens




anti-Rh(D) antibody clone SH47





216
gccgagctca cccagtctcc atcctccctg tctgcatctg taggagacag agtcaccatc 60
acttgccggg caagtcagag cattagcaac tatttaaatt ggtatcagca gaaaccagga 120
aaagccccta acctcctgat ctatgctgca tccagtttgc aaagtggggt cccatcaagg 180
ttcagtggca gtggatctgg gacagatttc actctcacca tcagcagtct gcaacctgaa 240
gattttgcaa cttactactg tcaacagagt tacagttatc ctcgcacgtt cggccaaggg 300
accaaggtgg agatcagacg a 321




217


321


DNA


Homo sapiens




anti-Rh(D) antibody clone SH48





217
gccgagctca cccagtctcc atcctccctg tctgcatctg taggagacag agtcaccatc 60
acttgccggg caagtcagta cattagcagc tatttaaatt ggtatcagca gaaaccaggg 120
aaagccccta atctcctgat ctatgctgca tccagtttgc aaagtggggt cccatcaagg 180
ttcagtggca gtggatctgg gacagatttc actctcacca tcagcagtct gcaacctgaa 240
gattttgcaa cttactactg tcaacagact tacagttccc ctagcacttt cggccctggg 300
accaaagtgg atatcaaacg a 321




218


321


DNA


Homo sapiens




anti-Rh(D) antibody clone SH49





218
gccgagctca cccagtctcc atcctccctg tctgcatctg taggagacag agtcaccgtc 60
acttgccggg caagtcagag cattagcagc tatttaaatt ggtatcagca gaaaccaggg 120
aaagccccta agctcctgat ctatgctgca tccagtttgc aaagtggggt cccatcaagg 180
ttcagtggca gtggatctgg gacagatttc actctcacca tcagcagtct gcaacctgaa 240
gattttgcaa cttactactg tcaacagagt tacagtaccc cgtggacgtt cggccaaggg 300
accaaggtgg aaatcaaacg a 321




219


324


DNA


Homo sapiens




anti-Rh(D) antibody clone SH50





219
gccgagctca cccagtctcc atcgtccctg tctgcatctg taggagacag agtcaccatc 60
acttgccgga caagtcagag cattggcacc tatttaaatt ggtatcaaca aaaaccaggg 120
aaagccccta aactcctgat ctatgctgca tccaatgtgc aaagtggggt cccatcaagg 180
ttcagtggcg gtggatctgg gacaggtttc tctctcatca tcagcagtct gcaacctgaa 240
gatttagcaa tttactactg ccaacagagc tacagtgtcc ctccgtacag ctttggcccg 300
gggaccaagc tggagatcaa acga 324




220


324


DNA


Homo sapiens




anti-Rh(D) antibody clone SH51





220
gccgagctca cacagtctcc atccttcctg tctgcatctg taggagacag agtcaccatc 60
acttgccggg ccagtcaggg cataaggagt tatttagcct ggtatcagca aaaaccaggg 120
aaagccccta agctcctaat ctatgctgca tccactttgc aaagtggggt cccatcaagg 180
ttcagcggca gtggatctgg gacagaattc actctcacaa tcagcagcct gcagcctgaa 240
gattttgcaa cttattactg tcaacagctt aataattacc cccctttcac tttcggccct 300
gggaccaaag tggatatcaa acga 324




221


321


DNA


Homo sapiens




anti-Rh(D) antibody clone SH52





221
gccgagctca cccagtctcc atcctccatg tctgcatctg taggagacag agtcaccatc 60
acttgccggg caagtcagag cattggcact tatttaaatt ggtatcagca gaaaccaggg 120
aaagccccta agctcctgat ctatgctgca tccagtttgc aaagtggggt cccatcaagg 180
ttcagtggca gtggatctgg gacagatttc actctcacca tcagcagtct gcaacctgaa 240
gattttgcaa cttactactg tcaacagagt tacagtaccc cgtggacgtt cggccaaggg 300
accaaggtgg aaatcaaacg a 321




222


321


DNA


Homo sapiens




anti-Rh(D) antibody clone SH54





222
gccgagctca cccagtctcc atcctccatg tctgcatctg taggagacag agtcaccatc 60
acttgccggg caagtcagag cattggcact tatttaaatt ggtatcagca gaaaccaggg 120
aaagccccta agctcctgat ctatgctgca tccagtttgc aaagtggggt cccatcaagg 180
ttcagtggca gtggatctgg gacagatttc actctcacca tcagcagtct gcaacctgaa 240
gattttgcaa cttactactg tcaacagagt tacagtaccc cgtggacgtt cggccaaggg 300
accaaggtgg aaatcaaacg a 321




223


327


DNA


Homo sapiens




anti-Rh(D) antibody clone SH55





223
gccgagctca cgcagccgcc ctcagcgtct gggacccccg ggcagagggt caccatctct 60
tgttctggaa gcagctccaa catcggaagt aaatatgtat actggtacca gcaactccca 120
ggaacggccc ccaaactcct catttatagt aataatcagc ggccctcagg ggtccctgac 180
cgattctctg ccttcaagtc tggcacctca gcctccctgg ccatcactgg gctccaggct 240
gaggatgagg ctaattatta ctgccagtcc tatgacagcg gcctgagtgg ctgggtgttc 300
ggcggcggga ccaagctgac cgtccta 327




224


324


DNA


Homo sapiens




anti-Rh(D) antibody clone SH56





224
gccgagctca cccagtctcc atcctccctg tctgcatctg taggagacag agtcaccatc 60
acttgccggg caagtcagag cattagcagg tatttaaatt ggtatcagca gaaaccaggg 120
aaagccccca agctcctgat ctatgctgca tccagtttgc aaagtggggt cccatcaagg 180
ttcagtggca gtggatctgg gacagatttc gctctcacca tcagcagtct gctacctgaa 240
gattttgcaa cttactactg tcaacagggt tacagtaccc ctccgtacag ttttggccag 300
gggaccaagc tggagatcaa acga 324






Claims
  • 1. An isolated protein having an amino acid sequence comprising a sequence selected from the group consisting of SEQ ID NOs: 1-69 and 139-181.
  • 2. The isolated protein of claim 1, wherein the protein is an antigen-binding protein.
  • 3. The isolated protein of claim 2, wherein the antigen is human Rh(D) protein.
  • 4. The isolated protein of claim 1, wherein the protein has an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-69 and 139-181.
  • 5. The isolated protein of claim 1, wherein the protein is substantially purified.
  • 6. The isolated protein of claim 1, wherein the protein has an amino acid sequence comprising a sequence selected from the group consisting of SEQ ID NOs: 1-27 and 139-153.
  • 7. The isolated protein of claim 6, wherein the protein has an amino acid sequence comprising a sequence selected from the group consisting of SEQ ID NOs: 1-27.
  • 8. The isolated protein of claim 6, wherein the protein has an amino acid sequence comprising a sequence selected from the group consisting of SEQ ID NOs: 139-153.
  • 9. The isolated protein of claim 1, wherein the protein has an amino acid sequence comprising a sequence selected from the group consisting of SEQ ID NOs: 28-69 and 154-181.
  • 10. The isolated protein of claim 9, wherein the protein has an amino acid sequence comprising a sequence selected from the group consisting of SEQ ID NOs: 28-44.
  • 11. The isolated protein of claim 9, wherein the protein has an amino acid sequence comprising a sequence selected from the group consisting of SEQ ID NOs: 45-61.
  • 12. The isolated protein of claim 9, wherein the protein has an amino acid sequence comprising a sequence selected from the group consisting of SEQ ID NOs: 62-69, and 154-163.
  • 13. The isolated protein of claim 9, wherein the protein has an amino acid sequence comprising a sequence selected from the group consisting of SEQ ID NOs: 164-181.
  • 14. The isolated protein of claim 4, wherein the protein has a sequence selected from the group consisting of SEQ ID NOs: 1-27 and 139-153.
  • 15. The isolated protein of claim 14, wherein the protein has a sequence selected from the group consisting of SEQ ID NOs: 1-27.
  • 16. The isolated protein of claim 14, wherein the protein has a sequence selected from the group consisting of SEQ ID NOs: 139-153.
  • 17. The isolated protein of claim 4, wherein the protein has a sequence selected from the group consisting of SEQ ID NOs: 28-69 and 154-181.
  • 18. The isolated protein of claim 17, wherein the protein has a sequence selected from the group consisting of SEQ ID NOs: 28-44.
  • 19. The isolated protein of claim 17, wherein the protein has a sequence selected from the group consisting of SEQ ID NOs: 45-61.
  • 20. The isolated protein of claim 17, wherein the protein has a sequence selected from the group consisting of SEQ ID NOs: 62-69, and 154-163.
  • 21. The isolated protein of claim 17, wherein the protein has a sequence selected from the group consisting of SEQ ID NOs: 164-181.
CROSS REFERENCE TO RELATED APPLICATION

This application is entitled to priority pursuant to 35 U.S.C. §119(e) to U.S. provisional patent application No. 60/081,380, which was filed on Apr. 10, 1998, and is a continuation-in-part of U.S. application Ser. No. 08/884,045, filed Jun. 27, 1997, which (now U.S. Pat. No. 5,876,925) application is entitled to priority under 35 U.S.C. §119(e) to U.S. Provisional Application No. 60/028,550, filed on Oct. 11,1996.

GOVERNMENT SUPPORT

This invention was supported in part by a grant from the U.S. Government (NIH Grant No. P50-HL54516) and the U.S. Government may therefore have certain rights in the invention.

US Referenced Citations (1)
Number Name Date Kind
5876925 Siegel Mar 1999
Foreign Referenced Citations (1)
Number Date Country
9407922 Apr 1994 WO
Non-Patent Literature Citations (47)
Entry
MP Search Result 2, Abstract and query match, Abstract of WO 94/07922, Apr. 1994.*
Barbas et al., 1991, Proc. Natl. Acad. Sci. USA 88:7978-7982.
Barbas and Lerner, 1991, Methods: A Companion to Meth. Enzymol. 2:119-124.
Barbas, 1995, Nature Medicine 1:837-839.
Boucher et al., 1997, Blood 89:3277-33286.
Burton and Barbas et al., 1994, Adv. Immunol. 57:191-280.
Bye et al., 1992, J. Clin. Invest. 90:2481-2490.
Chothia et al., 1992, J. Mol. Biol. 227:799-817.
Chown et al., 1963, Vox Sang. 8:420-429.
Coia et al., 1996, J. Immunol. Methods 192:13-23.
Cook 1971, Br. J. Haemaol. 20:369-375.
de Kruif et al. 1995, J. Mol. Biol.248:97-105.
de Kruif et al., 1995, Proc. Natl. Acad. Sci. USA 92:3938-3942.
Dörner et al, 1997, J. Immunol. 158:2779-2789.
Dziegiel et al., 1995, J. Immunol. Methods 182:7-19.
Frame et al., 1969, Immunology 16:277-283.
Gorick et al., 1988, Vox Sang. 55:165-170.
Hughes-Jones et al., 1994, Brit. J. of Haematology 88:180-186.
Kang et al., 1991, Methods: A Companion to Methods in Enzymology 2:111-118.
Kretzschmar et al., 1995, Anal. Biochem. 224:413-419.
Lapierre et al., 1990, Transfusion 30:109-1130.
Lomas et al., 1989, Vox Sang. 57:261-264.
Marks et al., 1991, J. Mol. Biol. 222:581-597.
Marks et al., 1993, Bio/Technology 11:1145-1149.
Mo et al., 1996, Immunol. 157:2440-2448.
Mollison et al., 1993, In: Blood Transfusion in Clinical Medicine, Oxford, Blackwell Scientific Publications (too voluminous to submit).
Mukherjee et al., 1995, J. Exp. Med. 181:405-409.
Pascual et al., 1991, J. Immunol. 146:4385-4391.
Pereira et al., 1997, J. Immunol. Methods 203:11-24.
Portolano et al., 1993, 151:2839-2851.
Roben et al., 1995, J. Immunol. 154:6437-6445.
Russell et al., 1993, Nucl. Acids Res. 21:1081-1085.
Russo et al., “The Use of Resealed Erythrocytes as Carriers and Bioreactors”, ed. Magnani and DeLoach, Plenum Press, New York and London.
Siegel, 1995, ann. NY Acad. Sci. 547-558.
Siegel and Silberstein, 1994, Structural analysis of red cell autoantibodies, Garratty (ed.) Immunobiology of Transfusion Medicine, Dekker, New York, New York; pp. 387-399.
Siegel et al., 1997, J. Immunol. Meth. 206:73-85.
Siegel and Silberstein, 1994, Blood 83:2334-2344.
Silberstein et al., 1991, Blood 78:2372-2386.
Silverman et al., 1988, J. Exp. Med. 168:2361-2366.
Silverman et al., 1995, J. Clin. Invest. 96:417-426.
Sternberg and Hoess, 1995, Proc. Natl. Acad. Sci. USA 92:1609-1613.
Stevenson et al., 1989, Br. J. Haematol. 72:9-15.
Stollar, 1995, Ann. NY Acad. Sci. 265-274.
Thompson et al., 1991, Scand. J. Immunol. 34:509-518.
Tippett et al., 1996, Vox Sang. 70:123-131.
Walker, ed. 1993, In: Technical Manual, 11th Ed., Bethesda, MD, American Association of Blood Banks (too voluminous to submit).
Winter et al., 1994, Annu. Rev. Immunol. 12:433-455.
Provisional Applications (2)
Number Date Country
60/081380 Apr 1998 US
60/028550 Oct 1996 US
Continuation in Parts (1)
Number Date Country
Parent 08/884045 Jun 1997 US
Child 09/240274 US