Ribonucleic acid purification

Information

  • Patent Grant
  • 11845772
  • Patent Number
    11,845,772
  • Date Filed
    Thursday, June 30, 2022
    a year ago
  • Date Issued
    Tuesday, December 19, 2023
    5 months ago
Abstract
Disclosed herein are methods for purifying RNA comprising poly A. Also disclosed herein are compositions such as surfaces and oligonucleotides for purifying RNA comprising polyA. Other embodiments are also disclosed. Commercially-available resins having polythymidine oligonucleotide ligands typically contain less than 30 thymidine (2′deoxy) residues and some commercial resin suppliers utilize a distribution of dT chain lengths, not of a discreet length.
Description
BACKGROUND

Commercially-available resins having polythymidine oligonucleotide ligands typically contain less than 30 thymidine (2′deoxy) residues and some commercial resin suppliers utilize a distribution of dT chain lengths, not of a discreet length. Commercially-available oligo dT resins are predominantly kit-based and are typically utilized for small scale (<1 mg) mRNA isolations on a bench top from crude cell/tissue extracts or blood. Commercially-available matrices typically consist of cellulose, latex particles, and magnetic beads containing dT ligands. These options are not generally viable for large scale chromatographic processes for cGMP manufacture of therapeutic mRNAs. In particular, cellulose resin produces significant quantities of leached ligand, contains significant amounts of fine particulates, and has poor flow properties; making it less than ideal for column chromatography. In terms of RNA quality and purity, commercially-available, cellulose based media has been found to yield eluted PolyA containing RNA with substantial endotoxin contamination as well as considerable enzyme and DNA template carryover and contamination. RNA produced using this commercially-available cellulose resin must generally be coupled with additional separation procedures to ensure RNA is of acceptable quality for pre-clinical studies and therapeutic use. Endotoxin contamination is detrimental to patient safety and therefore a process that introduces endotoxin into a drug substance is generally not viable for use in patients.


SUMMARY

Disclosed herein is a method for purifying an RNA transcript comprising a polyA tail, the method comprising: a) obtaining a first sample comprising the RNA transcript, wherein the first sample comprises at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% RNA transcript and at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% impurities, and wherein the percentage of RNA transcript and the percentage of impurities are the inverse of each other; b) contacting the first sample with a surface linked to a plurality of thymidines or derivatives thereof and/or a plurality of uracils or derivatives thereof (polyT/U) under conditions such that the RNA transcript binds to the surface; c) eluting the RNA transcript from the surface; and d) collecting the RNA transcript in a second sample, wherein the second sample comprises at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% RNA transcript and no more than less than 1%, 1%, 2%, 3%, 4%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% impurities, and wherein the percentage of RNA transcript and the percentage of impurities are the inverse of each other.


In some aspects, the method further comprises washing the surface with a solution after step b). In some aspects, the method further comprises preheating the first sample before step b). In some aspects, one or more steps are performed using a batch process.


In some aspects, the sample comprises DNA and the sample has not been subjected to DNase treatment. In some aspects, the one or more impurities comprise an RNA that does not comprise a polyA tail, a deoxyribonucleic acid (DNA), a carbohydrate, a toxin, a polypeptide, and/or a nucleotide. In some aspects, the DNA is plasmid DNA. In some aspects, the DNA is polymerase chain reaction (PCR) product DNA. In some aspects, the DNA comprises non-amplified DNA template. In some aspects, the toxin is lipopolysaccharide (LPS). In some aspects, the toxin is an endotoxin.


In some aspects, the surface is a resin. In some aspects, the surface comprises sepharose. In some aspects, the surface comprises agarose. In some aspects, polyT/U is 5 to 200 thymidines and/or uracils in length or 10 to 50 thymidines and/or uracils in length. In some aspects, polyT/U is 20 thymidines in length. In some aspects, polyT/U is linked directly to the surface. In some aspects, polyT/U is linked to the surface via a linker.


In some aspects, the contacting step is performed at a temperature of 65° C. In some aspects, the contacting step is performed at a rate of 100 cm/h.


In some aspects, the RNA transcript and polyT/U bind one another via non-covalent bonding. In some aspects, the first sample comprises a salt solution. In some aspects, the first sample comprises a sodium chloride solution.


In some aspects, the washing step comprises applying one or more solutions comprising a salt. In some aspects, the salt is NaCl or KCl.


In some aspects, the washing step comprises applying a first salt buffer and a second salt buffer, wherein the first salt buffer has a higher salt concentration than the second salt buffer, and wherein the first salt buffer is applied before the second salt buffer. In some aspects, first salt buffer comprises 0.5M NaCl, 10 mM Tris, and 1 mM EDTA, and has a pH of 7.4. In some aspects, the second salt buffer comprises 0.1M NaCl, 10 mM Tris, and 1 mM EDTA, and has a pH of 7.4. In some aspects, the first salt buffer is applied to the surface at a temperature of 65° C. or 25° C. In some aspects, the first salt buffer is applied to the surface twice, wherein the first application is at a first temperature of 65° C., and wherein the second application is at a second temperature of 25° C. In some aspects, the second salt buffer is applied to the surface at a temperature of 25° C.


In some aspects, the elution step is performed with an elution buffer. In some aspects, the elution buffer is salt-free. In some aspects, the elution buffer comprises 10 mM Tris and 1 mM EDTA, and has a pH of 7.4. In some aspects, the elution step is performed at a temperature of 65° C.


In some aspects, the RNA transcript is the product of in vitro transcription using a non-amplified DNA template. In some aspects, the RNA transcript is 100 to 10,000 nucleotides in length.


In some aspects, the method is repeated 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, or greater than 50 times with the same surface (or any integer between each of the indicated numeric values).


Also disclosed herein is a composition comprising a surface linked to a plurality of thymidines or derivatives thereof and/or a plurality of uracils or derivatives thereof (polyT/U), wherein the surface comprises a polymer, and wherein polyT/U is linked to the surface by a linker.


In some aspects, the polymer is a crosslinked, beaded-form of a polysaccharide polymer material extracted from seaweed. In some aspects, the polymer comprises agarose. In some aspects, the polymer comprises sepharose.


In some aspects, the linker comprises 5′-hexylamine. In some aspects, the linker is coupled to polyT/U via an amide bond.


In some aspects, polyT/U is 5 to 200 thymidines and/or uracils in length or 10 to 50 thymidines and/or uracils in length. In some aspects, polyT/U is 20 thymidines in length. In some aspects, polyT/U comprises one or more modifications. In some aspects, the modification comprises a 2′-O-methyl modification, a 2′-fluoro modification, or a locked nucleic acid (LNA) modification.


In some aspects, the surface is a resin. In some aspects, the resin has a pore size of 300 to 8000 Angstroms or 1000 to 4000 Angstroms.


In some aspects, the composition can be reused 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, or greater than 50 times (or any integer between each of the indicated numeric values).


Also disclosed herein is a method for making the composition of claim [0013], the method comprising: obtaining a surface attached to a first group; and contacting the surface with a polyT/U attached to a second group, wherein the first group and the second group are reactive with one another upon contact.


In some aspects, the first group is N-hydroxysuccinimidyl (NHS) ester. In some aspects, the second group is an amino group. In some aspects, the amino group is located at the 5′ end of polyT/U.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, and accompanying drawings, where:



FIG. 1a shows a schematic of poly T/U conjugation to NHS-activated Sepharose resin, where R is poly T/U. FIG. 1b shows a reaction used to synthesize a poly T/U resin conjugate with a 5′-hexylamine linker connected via a stable amide linkage (n can be any positive integer, e.g., 49 or 19).



FIG. 2 shows the general resin synthesis process overview.



FIG. 3 shows a general overview of the process used to purify polyadenylated RNA.



FIG. 4 shows gel electropherograms of binding assessment for 20mer dT Sepharose resin.



FIG. 5 shows poly dT column leaching analysis (LC-MS/MS based).



FIG. 6 shows a comparison of resin binding capacity between Applicant's poly dT resin and commercially-available dT resin upon reuse; (resin binding capacity vs. # of uses).



FIG. 7 shows endotoxin Levels in mRNA batches following purification using various poly dT resins.



FIG. 8 shows a 1.2% Agarose gel used to assess plasmid DNA removal in lot 12-04-111-I.



FIG. 9 shows Bioanalyzer electropherograms used to assess mRNA quality after dT sepharose purifications.



FIG. 10 shows a preparative UV Chromatogram from dT Sepharose Purification of 12-04-111-I.



FIG. 11 shows an RNA Quality Assessment of 12-04-1014 by Bioanalyzer chip based electrophoresis.



FIG. 12 shows a 1.2% agarose gel of 12-04-101-I Crude IVT Feedstock pre dT.



FIG. 13 shows a 1.2% agarose gel of 12-04-101-I Post dT Purification.



FIG. 14 shows yield data of 4 consecutive large scale purifications of lot 12-04-79-I.



FIG. 15 shows mRNA quality assessment data of 4 consecutive large scale purifications of lot 12-04-79-I via Bioanalyzer chip-based electrophoresis.



FIG. 16 shows a comparison of 20mer and 50mer polythymidine Sepharose resin.





DETAILED DESCRIPTION

Terms used in the claims and specification are defined as set forth below unless otherwise specified.


Polynucleotide. The term “polynucleotide” is interchangeable with nucleic acid, and includes any compound and/or substance that comprise a polymer of nucleotides. RNA transcripts produced by the method of the invention and DNA templates used in the methods of the invention are polynucleotides. Exemplary polynucleotides include, but are not limited to, ribonucleic acids (RNAs), deoxyribonucleic acids (DNAs), threose nucleic acids (TNAs), glycol nucleic acids (GNAs), peptide nucleic acids (PNAs), locked nucleic acids (LNAs, including LNA having a β-D-ribo configuration, α-LNA having an α-L-ribo configuration (a diastereomer of LNA), 2′-amino-LNA having a 2′-amino functionalization, and 2′-amino-α-LNA having a 2′-amino functionalization) or hybrids thereof.


RNA transcript. As used herein, an “RNA transcript” refers to a ribonucleic acid produced by an in vitro transcription reaction using a DNA template and an RNA polymerase. As described in more detail below, an RNA transcript typically includes the coding sequence for a gene of interest and a poly A tail. RNA transcript includes an mRNA. The RNA transcript can include modifications, e.g., modified nucleotides. As used herein, the term RNA transcript includes and is interchangeable with mRNA, modified mRNA “mmRNA” or modified mRNA, and primary construct. Modified RNA, e.g., RNA transcripts, e.g., mRNA, are disclosed in the following which is incorporated by reference for all purposes: U.S. patent application Ser. No. 13/791,922, “MODIFIED POLYNUCLEOTIDES FOR THE PRODUCTION OF BIOLOGICS AND PROTEINS ASSOCIATED WITH HUMAN DISEASE,” filed Mar. 9, 2013.


Gene of interest. As used herein, “gene of interest” refers to a polynucleotide which encodes a polypeptide or protein of interest. Depending on the context, the gene of interest refers to a deoxyribonucleic acid, e.g., a gene of interest in a DNA template which can be transcribed to an RNA transcript, or a ribonucleic acid, e.g., a gene of interest in an RNA transcript which can be translated to produce the encoded polypeptide of interest in vitro, in vivo, in situ or ex vivo. As described in more detail below, a polypeptide of interest includes but is not limited to, biologics, antibodies, vaccines, therapeutic proteins or peptides, etc.


DNA template. As used herein, a DNA template refers to a polynucleotide template for RNA polymerase. Typically a DNA template includes the sequence for a gene of interest operably linked to a RNA polymerase promoter sequence.


Operably linked: As used herein, the phrase “operably linked” refers to a functional connection between two or more molecules, constructs, transcripts, entities, moieties or the like. For example, a gene of interest operably linked to an RNA polymerase promoter allows transcription of the gene of interest.


Poly A tail. As used herein, “poly A tail” refers to a chain of adenine nucleotides. The term can refer to poly A tail that is to be added to an RNA transcript, or can refer to the poly A tail that already exists at the 3′ end of an RNA transcript. As described in more detail below, a poly A tail is typically 5-300 nucleotides in length.


In vitro: As used herein, the term “in vitro” refers to events that occur in an artificial environment, e.g., in a test tube or reaction vessel, in cell culture, in a Petri dish, etc., rather than within an organism (e.g., animal, plant, or microbe).


It must be noted that, as used in the specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise.


Compositions


Poly T/U


Described herein are surfaces linked to poly T/U oligonucleotides. The term “poly T/U oligonucleotide” or “poly T/U” or “poly U/T” refers to a nucleic acid comprising a plurality of thymidines and/or uracils, including, but not limited to, a uracil ribonucleic acid (RNA); a thymidine deoxyribonucleic acid (DNA); or a mixed ribonucleotide-deoxyribonucleotide, i.e., the poly T/U oligonucleotide can include ribose or deoxyribose sugars or a mixture of both. Included are analogs thereof and poly T/U of various lengths. Double and single stranded forms of the poly T/U oligonucleotides are provided. In one embodiment, poly T/U is a 20-mer dT oligonucleotide.


The poly T/U oligonucleotide can include other 5-carbon or 6-carbon sugars, such as, for example, arabinose, xylose, glucose, galactose, or deoxy derivatives thereof or other mixtures of sugars.


Poly T/U Lengths


In certain embodiments, the poly T/U oligonucleotide can refer to nucleic acid molecules of 2-2000 nucleotides in length or any integer therein. In one aspect, the length of poly T/U is designed to vary with the length of the target polyA sequence, the specificity required, the reaction and the hybridization and wash conditions. In some aspects, poly T/U can range from about 5 to about 200 bases or from about 15 to about 50 bases. In some aspects, poly T/U can be 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60 or greater than 60 bases in length.


Poly T/U Chemistries


In one aspect, one or more bases of poly T/U can be modified. In some aspects, poly T/U can be modified to increase stability of poly T/U. In some aspects, poly T/U can be modified to increase chemical stability of poly T/U. In some aspects, poly T/U can be modified to increase pH stability of poly T/U. In some aspects, poly T/U can be modified to increase thermal stability of poly T/U.


In certain embodiments, the poly T/U oligonucleotide and/or an oligonucleotide sequence complementary to the poly T/U oligonucleotide can comprise a 3 ‘-oligonucleotide modification, a 5’-oligonucleotide modification, a phosphorothioate, an LNA, a PNA, a morpholino, other alternative backbones, or combinations or derivatives thereof. Suitable poly T/U oligonucleotides can be composed of naturally occurring nucleosides adenosine, guanosine, cytidine, thymidine and uridine, modified nucleosides, substituted nucleosides or unsubstituted nucleosides, or combinations thereof. The nucleosides can also be unnatural nucleosides. The nucleosides can be joined by naturally occurring phosphodiester linkages or modified linkages. The nucleosides can also be joined by phosphorothioate linkages or methylphosphonate linkages.


In some aspects, poly T/U can include or be modified with one or more modifications such as: Poly dT (DNA), Poly Uridine (RNA), 2′O-Methyl Uridine RNA (MNA), 2′Fluoro Uridine RNA (FNA), Locked Nucleic Acid (LNA), Peptide Nucleic Acid (PNA), Additional 2′ modified RNAs, Carbohydrates or derivatives thereof, or any combination of any of the above chemistries.


In some aspects, the backbone of poly T/U can include phosphate, phoshorothioate, phosphorodithioate, and/or phosphonoacetate.


In some aspects, poly T/U can include pyrimidine derivatives such as thymidine analogs, uridine analogs, and/or heterocycle modifications. In some aspects, poly T/U can include purine derivaties or analogs such as those that help maintain hydrogen bonding patterns with adenosine.


In some aspects, poly T/U can be attached to a linker. In some aspects, the linker can be at the 5′ end of poly T/U. In some aspects, the linker can be at the 3′ end of poly T/U. In some aspects, the linker can be located internally within poly T/U. Internal linkers can include spacer derivatives with or without modifications or nucleoside derivatives with or without modifications. Linkers are described in more detail herein.


In some aspects, poly T/U can be attached to a spacer. Spacers are described in more detail herein.


Surfaces


Compositions and methods of the invention can use a surface linked to poly T/U. As used herein, the term “surface” refers to a part of a support structure (e.g., a substrate) that is accessible to contact with one or more reagents, poly T/U oligonucleotides, etc. The shape, form, materials, and modifications of the surface can be selected from a range of options depending on the application. In one embodiment, the surface is sepharose. In one embodiment, the surface is agarose.


The surface can be substantially flat or planar. Alternatively, the surface can be rounded or contoured. Exemplary contours that can be included on a surface are wells, depressions, pillars, ridges, channels or the like.


Exemplary materials that can be used as a surface include, but are not limited to acrylics, carbon (e.g., graphite, carbon-fiber), cellulose (e.g., cellulose acetate), ceramics, controlled-pore glass, cross-linked polysaccharides (e.g., agarose or SEPHAROSE™), gels, glass (e.g., modified or functionalized glass), gold (e.g., atomically smooth Au(111)), graphite, inorganic glasses, inorganic polymers, latex, metal oxides (e.g., SiO2, TiO2, stainless steel), metalloids, metals (e.g., atomically smooth Au(111)), mica, molybdenum sulfides, nanomaterials (e.g., highly oriented pyrolitic graphite (HOPG) nanosheets), nitrocellulose, NYLON™. optical fiber bundles, organic polymers, paper, plastics, polacryloylmorpholide, poly(4-methylbutene), polyethylene terephthalate), poly(vinyl butyrate), polybutylene, polydimethylsiloxane (PDMS), polyethylene, polyformaldehyde, polymethacrylate, polypropylene, polysaccharides, polystyrene, polyurethanes, polyvinylidene difluoride (PVDF), quartz, rayon, resins, rubbers, semiconductor material, silica, silicon (e.g., surface-oxidized silicon), sulfide, and TEFLON™. A single material or mixture of several different materials can form a surface useful in the invention.


In some aspects, a surface comprises a polymer.


In some aspects, a surface comprises Sepharose™. An example is shown below, where n is any positive integer:




embedded image


In some aspects, a surface comprises agarose. An example is shown below, where n is a positive integer:




embedded image


Structure of agarose: D-galactose and 3,6-anhydro-α-L-galactopyranose repeating Unit.


In some aspects, a surface comprises a Polystyrene based polymer. A Polystyrene divinyl benzene copolymer synthesis schematic is shown below:




embedded image


In some aspects, a surface comprises an Acrylic based polymer. Poly (methylmethacrylate) is an example shown below, wherein n is any positive integer:




embedded image


In some aspects, a surface comprises a Dextran based polymer. A Dextran example is shown below:




embedded image


In some aspects, a surface comprises silica. An example is shown below:




embedded image


In some aspects, a surface comprises a polyacrylamide. An example cross-linked to N—N-methylenebisacrylamide is shown below:




embedded image


In some aspects, a surface comprises tentacle based phases, e.g., methacrylate based.


A number of surfaces known in the art are suitable for use with the methods of the invention. Suitable surfaces comprise materials including but not limited to borosilicate glass, agarose, sepharose, magnetic beads, polystyrene, polyacrylamide, membranes, silica, semiconductor materials, silicon, organic polymers, ceramic, glass, metal, plastic polycarbonate, polycarbonate, polyethylene, polyethyleneglycol terephthalate, polymethylmethacrylate, polypropylene, polyvinylacetate, polyvinylchloride, polyvinylpyrrolidinone, and soda-lime glass.


In one embodiment, the surface is modified to contain channels, patterns, layers, or other configurations (e.g., a patterned surface). The surface can be in the form of a bead, box, column, cylinder, disc, dish (e.g., glass dish, PETRI dish), fiber, film, filter, microtiter plate (e.g., 96-well microtiter plate), multi-bladed stick, net, pellet, plate, ring, rod, roll, sheet, slide, stick, tray, tube, or vial. The surface can be a singular discrete body (e.g., a single tube, a single bead), any number of a plurality of surface bodies (e.g., a rack of 10 tubes, several beads), or combinations thereof (e.g., a tray comprises a plurality of microtiter plates, a column filled with beads, a microtiter plate filed with beads).


In some aspects, a surface can include a membrane based resin matrix. In some aspects, a surface can include a resin such as a porous resin or a non-porous resin. Examples of porous resins can include: Additional Agarose based resins (e.g., Cyanogen bromide activated sepharose (GE); WorkBeads™ 40 ACT and WorkBeads 40/10000 ACT (Bioworks)), Methacrylate: (Tosoh 650M derivatives etc.), Polystyrene Divinylbenzene (Life Tech Poros media/GE Source media), Fractogel, Polyacrylamide, Silica, Controlled pore glass, Dextran derivatives, Acrylamide derivatives, and/or Additional polymers; or any combination thereof.


In some aspects, a surface can include one or more pores. In some aspects, pore sizes can be from 300 to 8,000 Angstroms, e.g., 500 to 4,000 Angstroms in size.


In some aspects, a surface can include one or more particles. Examples of particle sizes are 5 um-500 um, 20 um-300 um, and 50 um-200 um. In some aspects, particle size can be 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, or 200 um.


Poly T/U can be immobilized, coated on, bound to, stuck, adhered, or attached to any of the forms of surfaces described herein (e.g., bead, box, column, cylinder, disc, dish (e.g., glass dish, PETR1 dish), fiber, film, filter, microtiter plate (e.g., 96-well microtiter plate), multi-bladed stick, net, pellet, plate, ring, rod, roll, sheet, slide, stick, tray, tube, or vial).


In one embodiment, the surface is modified to contain chemically modified sites that can be used to attach, either covalently or non-covalently, poly T/U to discrete sites or locations on the surface. “Chemically modified sites” in this context includes, but is not limited to, the addition of a pattern of chemical functional groups including amino groups, carboxy groups, oxo groups and thiol groups, that can be used to covalently attach poly T/U, which generally also contain corresponding reactive functional groups. Examples of surface functionalizations are: Amino derivatives, Thiol derivatives, Aldehyde derivatives, Formyl derivatives, Azide Derivatives (click chemistry), Biotin derivatives, Alkyne derivatives, Hydroxyl derivatives, Activated hydroxyls or derivatives, Carboxylate derivatives, activated carboxylate derivates, Activated carbonates, Activated esters, NHS Ester (succinimidyl), NHS Carbonate (succinimidyl), Imidoester or derivated, Cyanogen Bromide derivatives, Maleimide derivatives, Haloacteyl derivatives, Iodoacetamide/iodoacetyl derivatives, Epoxide derivatives, Streptavidin derivatives, Tresyl derivatives, Diene/conjugated diene derivatives (diels alder type reaction), Alkene derivatives, Substituted phosphate derivatives, Bromohydrin/halohydrin, Substituted disulfides, Pyridyl-disulfide Derivatives, Aryl azides, Acyl azides, Azlactone, Hydrazide derivatives, Halobenzene derivatives, Nucleoside derivatives, Branching/multi functional linkers, Dendrimeric funcationalities, and/or Nucleoside derivatives; or any combination thereof.


In some aspects, a surface is linked to poly T/U. In some aspects, the binding capacity of the linked surface can be, e.g., >1 mg/mL, >5 mg/mL, >10 mg/mL, >20 mg/mL, >30 mg/mL, or >40 mg/mL.


Linkers


In some aspects, a surface and/or poly T/U can be attached to a linker. The term “linker” can refer to a connection between two molecules or entities, for example, the connection between poly T/U and a spacer or the connection between poly T/U and a surface (e.g., a 5′ hexylamine linker). The linker can be formed by the formation of a covalent bond or a non-covalent bond. Suitable covalent linkers can include, but are not limited to the formation of an amide bond, an oxime bond, a hydrazone bond, a triazole bond, a sulfide bond, an ether bond, an enol ether bond, an ester bond, or a disulfide bond.


A “linker” can refer to either the two or more groups present prior to contact between the groups (e.g. linker precursor groups); or the new group(s) or bond(s) formed after contact between the two or more groups (e.g., linker group(s)). See “Surface synthesis” section for examples of linkers (e.g., first group, second group, bond) and various reaction schemes.


In some aspects, the linker is a 5′-hexylamine linker. In some aspects, the 5′-hexylamine linker can be formed as shown below, where n is any positive integer, e.g., 5 to 500. For example, n is 19 for a 20-mer; and n is 49 for a 50-mer.




embedded image


In some embodiments, linkers can optionally be included at a variety of positions within or on poly T/U and/or a surface. Suitable linkers include alkyl and aryl groups, including heteroalkyl and heteroaryl, and substituted derivatives of these. In some instances, linkers can be amino acid based and/or contain amide linkages. Examples of linkers are: Amino derivatives, Thiol derivatives, Aldehyde derivatives, Formyl derivatives, Azide Derivatives (click chemistry), Biotin derivatives, Alkyne derivatives, Hydroxyl derivatives, Activated hydroxyls or derivatives, Carboxylate derivatives, activated carboxylate derivates, Activated carbonates, Activated esters, NHS Ester (succinimidyl), NHS Carbonate (succinimidyl), Imidoester or derivated, Cyanogen Bromide derivatives, Maleimide derivatives, Haloacteyl derivatives, Iodoacetamide/iodoacetyl derivatives, Epoxide derivatives, Streptavidin derivatives, Tresyl derivatives, Diene/conjugated diene derivatives (diels alder type reaction), Alkene derivatives, Substituted phosphate derivatives, Bromohydrin/halohydrin, Substituted disulfides, Pyridyl-disulfide Derivatives, Aryl azides, Acyl azides, Azlactone, Hydrazide derivatives, Halobenzene derivatives, Nucleoside derivatives, Branching/multi functional linkers, Dendrimeric funcationalities, and/or Nucleoside derivatives; or any combination thereof.


Spacers


A surface can include a spacer in addition to or instead of a linker. Spacers can include atoms such as carbon or molecules, e.g., carbohydrates, nucleic acids such as DNA or RNA, and/or amino acids; or combinations or analogs thereof. In some aspects, spacers can range from about 5 to about 200 atoms or from about 15 to about 50 atoms. In some aspects, spacers can be 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 atoms in length.


Methods


RNA Purification


Also disclosed herein are methods for purifying RNA comprising polyA. In some aspects, a method for purifying an RNA transcript comprising a polyA tail includes obtaining a first sample comprising the RNA transcript, wherein the first sample comprises at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% RNA transcript and at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% impurities; contacting the first sample with a surface linked to a plurality of thymidines or derivatives thereof and/or a plurality of uracils or derivatives thereof (polyT/U) under conditions such that the RNA transcript binds to the surface; eluting the RNA transcript from the surface; and collecting the RNA transcript in a second sample, wherein the second sample comprises at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% RNA transcript and no more than less than 1%, 2%, 3%, 4%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% impurities.


In some aspects, the method can further includes washing the surface with a solution after the contacting step. In some aspects, the method can further include preheating the first sample before the contacting step. In some aspects, preheating can be at a temperature of 25, 35, 45, 55, 65, 70, 75, 80, 85, or 90° C.


In some aspects, one or more steps of the method are performed using a batch process. In some aspects, one or more steps of the method are performed using a column. In some aspects, the column can be heated and/or jacketed.


In some aspects, the first sample comprises DNA and the sample has not been subjected to DNase treatment. In some aspects, the one or more impurities comprise an RNA that does not comprise a polyA tail, a deoxyribonucleic acid (DNA), a carbohydrate, a toxin, a polypeptide, and/or a nucleotide. In some aspects, the DNA is plasmid DNA. In some aspects, the DNA is polymerase chain reaction (PCR) product DNA. In some aspects, the DNA comprises non-amplified DNA template. In some aspects, the toxin is lipopolysaccharide (LPS). In some aspects, the toxin is an endotoxin.


In some aspects, the surface is a resin. In some aspects, the surface comprises sepharose and/or agarose. In some aspects, polyT/U is 5 to 200 thymidines and/or uracils in length or 10 to 50 thymidines and/or uracils in length. In some aspects, polyT/U is 20 thymidines in length. In some aspects, polyT/U is linked directly to the surface. In some aspects, polyT/U is linked to the surface via a linker. Examples of linkers that can be used for linking are: Amino derivatives, Thiol derivatives, Aldehyde derivatives, Formyl derivatives, Azide Derivatives (click chemistry), Biotin derivatives, Alkyne derivatives, Hydroxyl derivatives, Activated hydroxyls or derivatives, Carboxylate derivatives, activated carboxylate derivates, Activated carbonates, Activated esters, NHS Ester (succinimidyl), NHS Carbonate (succinimidyl), Imidoester or derivated, Cyanogen Bromide derivatives, Maleimide derivatives, Haloacteyl derivatives, Iodoacetamide/iodoacetyl derivatives, Epoxide derivatives, Streptavidin derivatives, Tresyl derivatives, Diene/conjugated diene derivatives (diels alder type reaction), Alkene derivatives, Substituted phosphate derivatives, Bromohydrin/halohydrin, Substituted disulfides, Pyridyl-disulfide Derivatives, Aryl azides, Acyl azides, Azlactone, Hydrazide derivatives, Halobenzene derivatives, Nucleoside derivatives, Branching/multi functional linkers, Dendrimeric funcationalities, and/or Nucleoside derivatives; or any combination thereof.


In some aspects, the contacting step is performed at a temperature of 65° C. In some aspects, the contacting step is performed at 4 to 90C. In some aspects, the contacting step is performed at 20 to 70C. In some aspects, the contacting step is performed at 4, 25, 35, 45, 55, 65, 70, 75, 80, 85, or 90C.


In some aspects, the contacting step is performed at a rate of 100 cm/h. In some aspects, the contacting step is performed at a rate of 5 to 7000 cm/h, e.g., 50 to 500 cm/h. In some aspects, the contacting step can be performed in a recirculation mode.


In some aspects, the contacting step is performed using a batch process.


In some aspects, the RNA transcript and polyT/U bind one another via non-covalent bonding. In some aspects, the solution comprising the RNA transcript comprises salt during the contacting step with the surface. Salts are described herein.


In some aspects, the first sample comprises a salt solution. In some aspects, the salt concentration is 0.1-5M, 0.3-2.5M, or 0.5-1M. In some aspects, the salt is a sodium salt, e.g., NaCl. In some aspects, the salt is potassium salt, lithium salt, magnesium salt, calcium salt, and/or ammonium salt. In some aspects, the first sample comprises a sodium chloride solution.


In some aspects, the method can further includes washing the surface with a solution after the contacting step.


In some aspects, the washing step comprises applying one or more solutions comprising a salt. In some aspects, the salt is NaCl or KCl. In some aspects, the salt is NaCl. In some aspects, the salt can be sodium salts, potassium salts, magnesium salts, lithium salts, calcium salts, manganese salts, cesium salts, ammonium salts, and/or alkylammonium salts. In some aspects, the salt can be NaCl, KCl, MgCl2, Ca2+, MnCl2, and/or LiCl.


In some aspects, the washing step comprises applying a first salt buffer and a second salt buffer, wherein the first salt buffer has a higher salt concentration than the second salt buffer, and wherein the first salt buffer is applied before the second salt buffer. In some aspects, the first salt buffer comprises 0.5M NaCl, 10 mM Tris, and 1 mM EDTA, and has a pH of 7.4. In some aspects, the pH can be 4 to 9, e.g., 6 to 8. In some aspects, the second salt buffer comprises 0.1M NaCl, 10 mM Tris, and 1 mM EDTA, and has a pH of 7.4. In some aspects, the pH can be 4 to 9, e.g., 6 to 8. In some aspects, the first salt buffer is applied to the surface at a temperature of 65° C. or 25° C. In some aspects, the temperature can be 4 to 85C. In some aspects, the first salt buffer is applied to the surface twice, wherein the first application is at a first temperature of 65° C., and wherein the second application is at a second temperature of 25° C. In some aspects, the second salt buffer is applied to the surface at a temperature of 25° C. In some aspects, the temperature can be 4 to 85C.


In some aspects, the elution step is performed with an elution buffer. In some aspects, the elution buffer is salt-free. In some aspects, the elution buffer comprises 10 mM Tris and 1 mM EDTA, and has a pH of 7.4. In some aspects, the elution buffer comprises water. In some aspects, the elution buffer comprises a low ionic strength un-buffered salt solution. In some aspects, the elution buffer comprises a low ionic strength buffered salt solution.


Examples of buffers that can be used are shown below in Table A. For example the buffers shown in Table A can be used in one or more elution buffers, first salt buffers, second salt buffers, and solutions used during the contacting step.











TABLE A





Buffer
pKa 25° C.
pH range







ACES
6.78
6.1-7.5


acetate
4.76
3.6-5.6


ADA
6.59
6.0-7.2


AMP (2-amino-2-methyl-1-propanol)
9.69
8.7-10.4


AMPD (2-amino-2-methyl-1,3-
8.80
7.8-9.7


propanediol)




AMPSO
9.00
8.3-9.7


BES
7.09
6.4-7.8


BICINE
8.26
7.6-9.0


bis-tris
6.46
5.8-7.2


BIS-TRIS propane
6.80, 9.00
6.3-9.5


borate
9.23, 12.74, 13.80
8.5-10.2


cacodylate
6.27
5.0-7.4


carbonate (pK1)
6.35
6.0-8.0


carbonate (pK2)
10.33
9.5-11.1


CHES
9.50
8.6-10.0


citrate (pK1)
3.13
2.2-6.5


citrate (pK2)
4.76
3.0-6.2


citrate (pK3)
6.40
5.5-7.2


DIPSO
7.52
7.0-8.2


EPPS, HEPPS
8.00
7.6-8.6


ethanolamine
9.50
6.0-12.0


formate
3.75
3.0-4.5


glycine (pK1)
2.35
2.2-3.6


glycine (pK2)
9.78
8.8-10.6


glycylglycine (pK1)
3.14
2.5-3.8


glycylglycine (pK2)
8.25
7.5-8.9


HEPBS
8.30
7.6-9.0


HEPES
7.48
6.8-8.2


HEPPSO
7.85
7.1-8.5


histidine
1.70, 6.04, 9.09
5.5-7.4


hydrazine
8.10
7.5-10.0


imidazole
6.95
6.2-7.8


malate (pK1)
3.40
2.7-4.2


malate (pK2)
5.13
4.0-6.0


maleate (pK1)
1.97
1.2-2.6


maleate (pK2)
6.24
5.5-7.2


MES
6.10
5.5-6.7


MOBS
7.60
6.9-8.3


MOPS
7.14
6.5-7.9


MOPSO
6.87
6.2-7.6


phosphate (pK1)
2.15
1.7-2.9


phosphate (pK2)
7.20
5.8-8.0


phosphate (pK3)
12.33 



piperazine (pK1)
5.33
5.0-6.0


piperazine (pK2)
9.73
9.5-9.8


piperidine
11.12 
10.5-12.0


PIPES
6.76
6.1-7.5


POPSO
7.78
7.2-8.5


propionate
4.87
3.8-5.6


pyridine
5.23
4.9-5.9


pyrophosphate
0.91, 2.10, 6.70, 9.32
7.0-9.0


succinate (pK1)
4.21
3.2-5.2


succinate (pK2)
5.64
5.5-6.5


TABS
8.90
8.2-9.6


TAPS
8.40
7.7-9.1


TAPSO
7.61
7.0-8.2


taurine (AES)
9.06
8.4-9.6


TES
7.40
6.8-8.2


Tricine
8.05
7.4-8.8


triethanolamine (TEA)
7.76
7.0-8.3


Trizma (tris)
8.06
7.5-9.0









In some aspects, the elution step is performed at a temperature of 65° C. In some aspects, the elution step is performed at a temperature of 4 to 95C. In some aspects, the elution step is performed at a temperature of 25 to 80C. In some aspects, the elution step is performed at a temperature of 45 to 70C.


In some aspects, the RNA transcript is the product of in vitro transcription using a non-amplified DNA template. In some aspects, the RNA transcript is 100 to 10,000 nucleotides in length. In some aspects, the RNA transcript is 500 to 4000 nucleotides in length. In some aspects, the RNA transcript is 800 to 3000 nucleotides in length.


Surface Synthesis


Also disclosed herein are methods of surface synthesis and attachment of poly T/U. In some aspects, a method for making a surface includes obtaining a surface attached to a first group; and contacting the surface with a polyT/U attached to a second group, wherein the first group and the second group are reactive with one another upon contact.


In some aspects, the first group is N-hydroxysuccinimidyl (NHS) ester. In some aspects, the first group is NHS carbonate. In some aspects, the second group is an amino group. In some aspects, the amino group is located at the 5′ end of polyT/U.


In some aspects, examples of the first group are: Amino derivatives, Thiol derivatives, Aldehyde derivatives, Formyl derivatives, Azide Derivatives (click chemistry), Biotin derivatives, Alkyne derivatives, Hydroxyl derivatives, Activated hydroxyls or derivatives, Carboxylate derivatives, activated carboxylate derivates, Activated carbonates, Activated esters, NHS Ester (succinimidyl), NHS Carbonate (succinimidyl), Imidoester or derivated, Cyanogen Bromide derivatives, Maleimide derivatives, Haloacteyl derivatives, Iodoacetamide/iodoacetyl derivatives, Epoxide derivatives, Streptavidin derivatives, Tresyl derivatives, Diene/conjugated diene derivatives (diels alder type reaction), Alkene derivatives, Substituted phosphate derivatives, Bromohydrin/halohydrin, Substituted disulfides, Pyridyl-disulfide Derivatives, Aryl azides, Acyl azides, Azlactone, Hydrazide derivatives, Halobenzene derivatives, Nucleoside derivatives, Branching/multi functional linkers, Dendrimeric funcationalities, and/or Nucleoside derivatives; or any combination thereof.


In some aspects, examples of the second group are: Amino derivatives, Thiol derivatives, Aldehyde derivatives, Formyl derivatives, Azide Derivatives (click chemistry), Biotin derivatives, Alkyne derivatives, Hydroxyl derivatives, Activated hydroxyls or derivatives, Carboxylate derivatives, activated carboxylate derivates, Activated carbonates, Activated esters, NHS Ester (succinimidyl), NHS Carbonate (succinimidyl), Imidoester or derivated, Cyanogen Bromide derivatives, Maleimide derivatives, Haloacteyl derivatives, Iodoacetamide/iodoacetyl derivatives, Epoxide derivatives, Streptavidin derivatives, Tresyl derivatives, Diene/conjugated diene derivatives (diels alder type reaction), Alkene derivatives, Substituted phosphate derivatives, Bromohydrin/halohydrin, Substituted disulfides, Pyridyl-disulfide Derivatives, Aryl azides, Acyl azides, Azlactone, Hydrazide derivatives, Halobenzene derivatives, Nucleoside derivatives, Branching/multi functional linkers, Dendrimeric funcationalities, and/or Nucleoside derivatives; or any combination thereof.


In some aspects, the first group and the second group react to form a bond. In some aspects the bond is an amide bond.


In some aspects, the first group and the second group can be either of the groups (or the group) shown on the left-hand side of the arrow in the reaction schemes shown/detailed below; and the bond can be the group shown on the right-hand side of the arrow(s) in the reaction schemes shown/detailed below.


Amide (substituted amine+substituted succinimidyl ester yields an amide bond) or (azlactone+amine) or (amine+acyl azide) or (amine+succinic anhydride) or (carboxyl+amine with carbodiimide derivatives). For example:




embedded image


Thioether bond (thiol+maleimide) or (Thiol+haloacetyl) or (thiol+epoxide) or (Halohydrin (ie bromohydrin)+thiol) or (tresyl+thiol) or (thiol+acryloyl derivative) or (sulfhydryl+fluorobenzene derivatives). For example:




embedded image


embedded image


Carbamate (Succinimidyl Carbonate+Amine) or (Carbonyldiimizaole Derivative+Amine). For Example:




embedded image


Triazole (alkyne+azide (click chemistry)). For example:




embedded image


Triazoline (alkene+azide). For example:




embedded image


Secondary amine (Aldehyde+amine [reductive amination], or (epoxide+amine) or (Halohydrin (ie bromohydrin)+amine) or (tresyl+amine). For example:




embedded image


iii. Halohydrin (ie bromohydrin)+amine

    • iv. Amine+tresyl




embedded image


Substituted cylclohexene (conjugated diene+substituted alkene[diels alder reaction). For example:




embedded image


Hydrazone linkage (hydrazide+aldehyde). For example:




embedded image


Thiourea linkage (isothiocyanate+amine). For example:




embedded image


Ester (hydroxyl+carboxyl (w/1,1-carbonyldiimidazole[CDI])


Substituted disulfide (substituted thiol+pyridal disulfide (aryldisulfide). For example:




embedded image


Isourea derivative (cyanogen bromide+amine). For example:




embedded image


(Strept)avidin/Biotin


Substituted Ether (Halohydrin (ie bromohydrin)+hydroxyl)


Arylamine bond (Amine+fluorobenzene derivative). For example:




embedded image


Amidine linkage (amine+imidoester derivative). For example:




embedded image


Phosphoramidate bond (alkyl phosphate derivative+amine). For example:




embedded image


Any use of bifunctional crosslinkers, e.g., Homobifunctional/heterobifunctional, PEG linkers, Peptide linkers, and/or EDC Linkers.


Any use of photochemistry/photoconjugation, e.g., Arylazides and/or Benzophenones.


Examples

Below are examples of specific embodiments for carrying out the present invention. The examples are offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way. Efforts have been made to ensure accuracy with respect to numbers used (e.g., amounts, temperatures, etc.), but some experimental error and deviation should, of course, be allowed for.


The practice of the present invention will employ, unless otherwise indicated, conventional methods of protein chemistry, biochemistry, recombinant DNA techniques and pharmacology, within the skill of the art. Such techniques are explained fully in the literature. See, e.g., T. E. Creighton, Proteins: Structures and Molecular Properties (W.H. Freeman and Company, 1993); A. L. Lehninger, Biochemistry (Worth Publishers, Inc., current addition); Sambrook, et al., Molecular Cloning: A Laboratory Manual (2nd Edition, 1989); Methods In Enzymology (S. Colowick and N. Kaplan eds., Academic Press, Inc.); Remington's Pharmaceutical Sciences, 18th Edition (Easton, Pennsylvania: Mack Publishing Company, 1990); Carey and Sundberg Advanced Organic Chemistry 3rd Ed. (Plenum Press) Vols A and B (1992).


General Materials and Methods


Resin Synthesis


The purpose of this protocol was to synthesize Oligo dT sepharose resin for use as a medium for affinity based chromatographic purification of polyadenylated mRNA. Bulk NHS activated Sepharose 4 FF was functionalized with a 20mer polythymidine oligonucleotide containing a 5′-hexylamine linker via a stable amide linkage.



FIG. 1a shows a schematic of poly T/U conjugation to NHS-activated Sepharose resin. FIG. 1b shows a reaction used to synthesize a poly T/U resin conjugate with a 5′-hexylamine linker via a stable amide linkage (n can be any positive integer, e.g., 49 or 19). FIG. 2 shows the general resin synthesis process overview.


Materials:
















Material
Vendor
Part #








NHS-Activated Sepharose 4 FF
GE Healthcare




Resin





20mer Polythymidine
OligoFactory




oligonucleotide with 5'





hexylamine linker (HPLC





Purified/desalted/lyophilized)






Seq: 5'NH2-(C6)-dT-dT- dT- dT- dT- dT-







dT- dT- dT- dT- dT- dT- dT- dT- dT- dT-







dT- dT- dT- dT- 3'





Stock





Solutions






Dimethylsulfoxide (DMSO)
Sigma Aldrich
D8418-



Molecular Biology Grade

500 ML



Sodium Bicarbonate (NaHCO3),
Sigma Aldrich
S5761-



powder, Molecular Biology

500G



Grade





0.1 M Hydrochloric Acid
Sigma Aldrich
84434-





500 ML



1 M Tris HCl pH 8.0
Invitrogen
15568025



3 M Sodium Actetate (NaOAc)
Ambion
AM9740



pH 5.5





Ethanol, Molecular Biology
Fisher




Grade





DNase/RNase free water
MilliQ or





Equivalent



Prepared





Solutions






1mM Hydrochloric Acid





100 mM Tris HCl pH 8





100 mM Sodium Acetate pH 5.5





20% v/v Ethanol





100 mM NaHCO3





2:1 v/v DMSO: 100 mM





NaHCO3









Preparation of Conjugation Reaction Mixture:


The dry weight to UV weight of dT ligand was obtained. Poly thymidine lyophilized powder was weighed out and dissolved in water (0.5 mg/mL); and then mixed by vortexing. The UV concentration of solution was then obtained on plate reader assuming 1 AU=800 ug/mL (RNA). The dry weight to UV weight conversion was then calculated.


The amount of resin to be made was then determined and the amount of ligand (UV weight) needed to conjugate to resin was calculated. A 100 mM sodium bicarbonate (NaHCO3) solution was prepared with a pH of 8-8.5.


The total amount of dT ligand needed was dissolved (calculated as above and using conversion factor dry weight: UV weight conversion obtained as above) in 100 mM NaHCO3 at a concentration of 15 mg/mL.


Volume of DMSO equivalent to 2×volume of poly dT in 100 mM NaHCO3 solution was added to the 15 mg/mL polydT in 100 mM NaHCO3 (e.g., Add 30 mL DMSO to 15 mL of 15 mg/mL poly dT in 100 mM NaHCO3). Final effective coupling solution was 5 mg/mL polythymidine ligand in 2:1 v/v DMSO:100 mM NaHCO3. UV quantitation on dT solution was then performed.


Resin Conjugation:


The slurry concentration of NHS Sepharose 4FF Resin in isopropanol (IPA) was the determined: Slurry %: Volume of Resin (mL)/Total solution (mL). The resin/IPA mix was then shaken until the slurry was completely homogenous and no resin was deposited at the bottom of the container. In a tube, the homogenous slurry was added and centrifuged at 4000 RPM for 5 min.


The volume of settled resin was recorded after centrifugation and the % slurry calculated. Resin was measured out into appropriate centrifuge compatible, DMSO resistant RXN vessels. A volume of DMSO was added to resin/IPA slurry equivalent to achieve 50% total slurry. Note that in lieu of DMSO, 1 mM HCl can also be substituted to wash resin prior to conjugation.


The resin was centrifuged at 4000 RPM for 5 min and all IPA/DMSO solution was removed. All bulk solution was the poured off and then the remaining residual was poured out.


A volume of DMSO equivalent to the resin volume was added to the settled resin and re-slurried. Resin was centrifuged at 4000 RPM for 5 min and poured off all IPA/DMSO solution as above. This step was then repeated.


The polythymidine conjugation reaction: 5 mg/mL polythymidine in 2:1 DMSO: 100 mM NaHCO3 prepared above was added to resin at a load of 2 mg dT/mL of resin as described above. The reaction mixture was re-slurried until completely homogeneous. The mixture was allowed to react at ambient temperature (20-25° C.) for 2 hours while continuously mixing on an orbital shaker/wave system rocking tray or equivalent. The mixture was centrifuged at 4000 RPM for 10 min and then the reaction mixture was poured off. UV quantitation was then performed on the post conjugation reaction mixture and a mass balance was performed to calculate % dT remaining and effectively % dT coupled to the resin.


Blocking of Unconjugated Sites on Resin:


A volume of 100 mM Tris HCl pH 8 equivalent to the resin volume was added to each tube. Re-slurried the entire mixture until completely homogeneous. The mixture was allowed to react at ambient temperature (20-25° C.) for 2 hours while continuously mixing on an orbital shaker/wave system rocking tray or equivalent. The mixture was then centrifuged at 4000 RPM for 10 min. All bulk solution then poured off.


Acid/Base Treatment:


A volume of 100 mM sodium acetate pH 5.5 equivalent to the resin volume was added to each tube. Re-slurried the entire mixture until completely homogeneous. The homogeneous mixture was then allowed to stand for 2 minutes, then centrifuged at 4000 RPM for 5 min and poured off all bulk solution.


A volume of 100 mM Tris HCl pH8 equivalent to the resin volume was then added to each tube. Re-slurried the entire mixture until completely homogeneous. The homogeneous mixture was allowed to stand for 2 minutes, then centrifuged at 4000 RPM for 5 min and poured off all bulk solution.


Resin Storage:


Where applicable, a volume of 20% ethanol solution equivalent to 0.75×the resin volume was added to each tube. Re-slurried the entire mixture until completely homogeneous. All resin was pooled and mixed for 2 minutes by vigorously shaking. Resin is stored in 20% ethanol at 4° C., as needed.


Quality Control:


Quality control can be performed to ensure that the functionalization of the resin was successful and to determine the binding capacity for the prepared resin lot. The procedure is generally outlined below.


RNA Purification


The purpose of this protocol was to selectively purify polyadenylated mRNA using oligo dT (polythymidine) affinity chromatography resin at small scale using a solid phase extraction vacuum manifold. Short mRNA transcripts, abort sequences, and protein were typically removed as mRNA containing poly A tail is captured on the resin and the aforementioned impurities flow through and do not bind to the resin.



FIG. 3 shows a general overview of the process used to purify polyadenylated RNA.


Materials:















Vendor (where



Material
applicable)
Part #







5 M Sodium chloride (Bioultra)
Sigma



DNase/RNase free water
Teknova or




equivalent



10X Tris EDTA (TE) Buffer (100 mM Tris




HCl 10 mM EDTA pH 7.4)




High Salt Equilibration/Wash Buffer (0.5 M




NaCl, 10 mM Tris HCl, 1 mM EDTA pH 7.4)




5X Sample Buffer (2.5 M NaCl, 50 mM Tris




HCl 5 mM EDTA, pH 7.4)




Low Salt Wash Buffer (0.1 M NaCl, 10 mM




Tris HCl, 1 mM EDTA pH 7.4)




Elution Buffer (10 mM Tris HCl, 1 mM EDTA




pH 7.4)




Oligo dT Cellulose
Sigma



20mer Oligo dT Sepharose




Solid phase extraction columns/ Spin columns
Biotage/Invitrogen



DNase/RNase-free water
Teknova or
W3350 or



equivalent
equivalent


DNase/RNase/pyrogen free certified 200 μL




PCR tubes/PCR plates/2.0 mL microfuge




tube/15 mL conical tube/50 mL conical tube




Ethanol (molecular biology grade)
Fisher or equivalent



0.2 um filter
Millipore or




equivalent









Procedure:


The amount of oligo dT resin to use for purification was determined and the column was packed. The elution buffer was placed at 65° C. until immediately prior to product elution. mRNA was then prepared to be loaded on dT resin by adding 5×sample buffer to mRNA sample(s) and preheating the mRNA containing solution to 65° C. and heating at 65° C. for 15 min in an oven or for 10 min in a water bath.


The resin was then equilibrated with high salt buffer in one or more columns. If using Sigma resin slurry solid resin in high salt buffer: Add 2-3 column volumes of high salt buffer to the columns and drain liquid in column. Repeat 2×. If using Applicant's dT Sepharose resin slurried in 20% EtOH: Add 2-3 column volumes of high salt buffer to the columns and drain liquid in column. Repeat 2×.


65° C. preheated mRNA solution was added to the resin column, reslurried in mRNA/sample buffer solution and placed at 65° C. for 15 min in an oven or for 10 min in a water bath with periodic shaking. The mRNA/resin solution was placed at ambient temperature (20-25° C.) for 30 minutes while shaking continuously and keeping the resin as a slurry. The liquid in column was drained into a clean centrifuge tube. A volume of high salt buffer equal to 2-3 resin volumes was added to wash the unbound material off of the resin and repeated once. A volume of low salt buffer equal to 2-3 resin volumes was added to wash the unbound material off of the resin and repeated twice. The mRNA full length product (FLP) was eluted using 2-3 resin volumes of 65° C. elution buffer; ensuring a slow flow rate to maximize contact time of 65° C. elution buffer with resin and repeated with 1-2 resin volumes of elution buffer.


UV quantitation was performed on mRNA in the elution fraction and flowthrough/wash fraction to calculate recovery/yield. Bioanalyzer gel analysis was performed on elution fraction (mRNA FLP containing fraction) to ensure electropherogram contains a single discreet peak at the appropriate size with no lower molecular weight impurities.


The mRNA can be diafiltered into water using a UF/TFF step. The mRNA can be diafiltered into water via UF spin filters or TFF prior to lyophilization. All salts are generally removed prior to formulating mRNA into a desired buffer/matrix.


Example 1: Sepharose Resin Preparation and Quality Control

Activated Resin: NHS activated Sepharose FF.


Ligand: The ligand utilized was a 20-mer polythymidine (2′deoxy) oligonucleotide containing a 5′ hexylamine linker. The ligand was synthesized using standard solid phase synthesis methods, was chromatographically purified, and lyophilized prior to use.


The 20mer polythymidine ligand (890 mg) was dissolved in a 100 mM sodium bicarbonate solution (pH-8.5) at −15 mg/mL. Dimethylsulfoxide (DMSO) was added to the ligand containing solution to achieve a final concentration of 5 mg/mL in 67/33 (v/v %) DMSO/100 mM NaHCO3.


Activated resin (425 mL) was centrifuged at 500×g to remove the Isopropanol, re-slurried, washed twice, each time with 1 resin volume equivalent 1 mM HCl for 5 minutes, the resin was centrifuged and HCl was poured off.


Upon complete removal of HCl, all polythymidine oligo solution (5 mg/mL in 67/33 (v/v %) DMSO/100 mM NaHCO3 was added to the resin and re-slurried; the coupling reaction was performed at 25° C. for 4 hours under constant shaking using an orbital shaker to maintain consistent slurry and to prevent resin settling.


The reaction was centrifuged at 500×g and the coupling solution was poured off and quantified by UV absorbance at 260 nm to assess coupling efficiency. It was determined that 99% of starting material had bound to the resin.


To block any remaining unconjugated sites on the resin, the resin was treated with 425 mL of 100 mM Tris HCl pH 8; the mixture was re-slurried and was allowed to react at 25° C. for 4 hours under constant shaking using an orbital shaker to maintain consistent slurry and to prevent resin settling. The reaction was centrifuged at 500×g and the solution was poured off.


The resin was re-slurried and washed with 425 mL of 100 mM sodium acetate solution pH 5 for 5 minutes. The mixture was centrifuged at 500×g and the solution was poured off.


The resin was re-slurried and washed with 425 mL of 100 mM Tris HCl solution pH 8 for 5 minutes. The mixture was centrifuged at 500×g and the solution was poured off.


A 20%/80% water/ethanol (v/v %) solution was added to the resin to achieve a 55% slurry; The resin was re-slurried a final time and was stored at 4° C. This resin is typically referred to as Applicant's dT resin or similar terminology.


For additional quality control (QC), the binding capacity of the resin and the resin's ability to capture poly A containing RNA was tested with an excess of GCSF encoded mRNA lot: “GCSF PD 29” loaded onto a 2.5 mL column packed with the synthesized lot of resin. Binding capacity was determined to be 1.4 mg RNA/mL resin by UV absorbance measurement at 260 nm. RNA of acceptable quality was observed via chip based electrophoresis using a Biorad Experion Bioanalyzer system. The gel electropherogram can be seen in FIG. 4.


Example 2: dT Column Leaching Analysis

Quantitation of total residual thymidine was performed using LC-MS/MS analysis. Purified and capped mRNA was subjected to a nuclease P1 digestion followed by treatment with bovine alkaline phosphatase (BAP). RNA and DNA were digested to individual nucleotides and abundances of each individual nucleotide (from DNA and RNA) were assayed and quantified using tandem mass spectrometry.



FIG. 5 denotes comparative leaching data of polythymidine ligand from mRNA lots purified using commercially available poly dT resin (GE cellulose) with mRNA lots purified using Applicant's dT resin. Lot 12-04-90-C-B represents GCSF encoded chemically modified mRNA purified using commercially available poly dT resin; this lot generated 6881 ppm leachate. Lot 12-04-114-C represents GCSF encoded chemically modified mRNA purified using Applicant's 20mer dT sepharose; this lot generated 895 ppm leachate Lot 12-04-122-C represents GCSF encoded chemically modified mRNA purified using Applicant's 20mer dT sepharose.; this lot generated 115 ppm leachate.


This demonstrates that dT ligand leaching generated per mg RNA from Applicant's dT resin was significantly less than commercially-available dT resin.


Example 3: Resin Re-Use Analysis

The resins (Sigma cellulose or Applicant's dT resin) were packed into SPE columns and the purifications were performed on a solid phase extraction vacuum manifold (Biotage). 1 gram of “Sigma dT Cellulose 1” (Sigma part #03131-1G) was packed in a 5 mL column. 150 mg of “Sigma dT Cellulose 2” (Part #75349-5G) was packed in a 5 mL column. 1 mL of 20mer Applicant's dT Sepharose was packed in a 5 mL column. Binding capacity experiments utilized GCSF PD 29 mRNA (encoding for GCSF and containing a 140A tail) as a feedstock and was loaded in excess onto each resin. The elutions were quantified by UV absorbance at 260 nm.



FIG. 6 shows a comparison of resin binding capacity between Applicant's poly dT resin and commercially available dT resin upon re-use (4 iterations/resin); (resin binding capacity vs. # of uses). Left to right in each experimental group: Iteration 1 is the first bar; iteration 2 is the second bar; iteration 3 is the third bar; and iteration 4 is the fourth bar (note that iteration 4 was not performed using the Sigma resin). The iterations were performed sequentially.


Diminishing binding capacity was seen as # of runs increase for Sigma's commercially available resin; in contrast Applicant's dT sephaorse resin does not exhibit a substantially reduced capacity.


Example 4: Endotoxin Analysis

Endotoxin Levels in mRNA batches following purification using various poly dT resins was analyzed. Endotoxin measurements were performed using a LAL-based assay Endosafe®-PTS™ instrument (Charles River Labs).


As seen in FIG. 7, a large abundance of endotoxin was present post dT purification using commercially available GE resin (samples 1-5). Applicant's dT resin actively clears endotoxin (samples 9-12).


Sample 5 (highly contaminated with endotoxin >46 EU/mg) was further purified using a column packed with Applicant's dT resin; After one round of purification (Sample 6) endotoxin was cleared significantly to 2.19 EU/mg; After a second round of purification with Applicant's oligo dT resin, endotoxin levels were reduced below the limit of quantitaion, <0.12 EU/mg (Sample 7).


From this data set it is apparent that eluted material using commercially available dT resin contains RNA highly contaminated with endotoxin. Applicant's dT resin was able to actively remove endotoxin from samples highly contaminated with endotoxin.


Example 5: DNA Removal Analysis

A 65 mg batch of chemically modified GCSF encoded mRNA, Lot 12-04-111-1 (922 bases), was transcribed with T7 RNA polymerase (12,740 units) using 1.46 mg of a 3781 base pair linearized plasmid template containing a T7 promoter and a 141 base poly A:T tract for 4 hours at 37° C. The transcription reaction was diafiltered into water using 100 kDa MWCO Amicon filters (EMD Millipore). The mRNA was subsequently purified on an AKTA Avant 150 (GE Healthcare) chromatography system using 100 mL of Applicant's 20mer dT Sepharose resin packed in a 5 cm id×5.1 cm glass column. The column was equilibrated using 0.5M NaCl 10 mM Tris HCl 1 mM EDTA pH 7.4. The RNA was preheated to 65° C. prior to loading using an inline mobile phase heater (Timberline Instruments), was loaded at 100 cm/h, in the aforementioned buffer. After loading, 2CV of high salt buffer was charged over the column, followed by 2CV of 0.1M NaCl 10 mM Tris HCl pH 7.4 to wash off weakly bound species. The polyadenylated RNA was eluted at 65° C. into 10 mM Tris HCl 1 mM EDTA pH 7.4. The flowthrough fraction and elution fraction were dia-filtered into water and concentrated using 100 kDa MWCO Amicon spin filters (EMD Millipore). The eluted material was quantified and the RNA quality was assessed via chip based electrophoresis using a Biorad Experion Bioanalyzer system.


By UV quantitation at 260 nm, 92% of total OD260 loaded was recovered. DNA removal was assessed using a 1.2% agarose precast SybrSafe gel (Life Technologies). As seen in FIG. 8, removal of plasmid DNA template was observed in the flowthrough fraction. The elution fraction containing purified mRNA shows no detectable plasmid DNA band. The published limit of detection on this gel is 0.5 ng/band. No DNA was detected upon loading 6 ug of RNA (elution), which denotes levels of DNA present in the RNA sample are less than 83 PPM. mRNA quality pre and post dT purification can be seen referring to the gel electropherogram in FIG. 9. The preparative UV chromatogram from the dT purification of 12-04-111-I can be seen in FIG. 10.


From this experiment, it is evident that Applicants 20 mer dT Sepharose resin facilitated the removal of plasmid DNA template from the RNA transcript.


Example 6: DNA Removal Analysis (2)

A 5 mg batch of chemically modified GCSF encoded mRNA, Lot 12-04-101-1 (922 bases), was transcribed with T7 RNA polymerase (7,000 units) using 250 ug of a 3781 base pair linearized plasmid template containing a T7 promoter and a 141 base poly A:T tract for 4 hours at 37° C. This was a relatively high load of DNA in the transcription reaction. The transcription reaction was diafiltered into water using 100 kDa MWCO Amicon filters (EMD Millipore). 2 mg of mRNA was subsequently purified on a solid phase extraction vacuum manifold (Biotage) using 3 mL of Applicant's 20mer dT Sepharose resin packed in a 10 mL SPE column. The column was equilibrated using 0.5M NaCl 10 mM Tris HCl 1 mM EDTA pH 7.4. The RNA was preheated to 65° C. prior to loading using a water bath and was loaded in the aforementioned buffer. After loading, 2CV of high salt buffer was charged over the column, followed by 2CV of 0.1M NaCl 10 mM Tris HCl pH 7.4 to wash off weakly bound species. The polyadenylated RNA was eluted at 65° C. into 10 mM Tris HCl 1 mM EDTA pH 7.4 using pre-heated buffer. The flowthrough fraction and elution fraction were diafiltered into water and concentrated using 100 kDa MWCO Amicon spin filters (EMD Millipore). The eluted material was quantified and the RNA quality was assessed via chip based electrophoresis using a Biorad Experion Bioanalyzer system (FIG. 11).


By UV quantitation at 260 nm, 91% of total OD260 loaded was recovered. DNA removal was assessed using a 1.2% agarose precast SybrSafe gel (Life Technologies). As seen in FIG. 12 and FIG. 13, removal of plasmid DNA template was observed in the flowthrough fraction. The elution fraction containing purified mRNA showed no detectable plasmid DNA band. The published limit of detection on this gel is 0.5 ng/band. No DNA was detected upon loading 1.5 ug of RNA (elution), which denotes levels of DNA present in the RNA sample are less than 333 PPM.


From this experiment, it is evident that Applicants 20 mer dT Sepharose resin facilitated the removal of plasmid DNA template from the RNA transcript.


Example 7: Resin Robustness Analysis

Lot 12-04-79-I mRNA post in vitro transcription was purified at large scale. The lot was broken into 4 purification runs. All four runs were performed sequentially. The RNA was purified using a 100 mL column (3.5 cm id×10.4 cm) packed with 20mer dT sepharose on a Biorad Duoflow FPLC system. The column was equilibrated using 0.5M NaCl 10 mM Tris HCl 1 mM EDTA pH 7.4. The RNA was preheated to 65° C. prior to loading using an inline mobile phase heater (Timberline Instruments), was loaded at 100 cm/h, in the aforementioned buffer. After loading, 2CV of high salt buffer was charged over the column, followed by 2CV of 0.1M NaCl 10 mM Tris HCl pH 7.4 to wash off weakly bound species. The polyadenylated RNA was eluted at 65° C. into 10 mM Tris HCl 1 mM EDTA pH 7.4. The eluted material was quantified and the RNA quality was assessed via chip-based electrophoresis using a Biorad Experion Bioanalyzer system.


By UV quantitation at 260 nm, yield can be seen in FIG. 14. RNA quality can be seen in the Bioanalyzer gel electropherograms of FIG. 15. Yield and purity were both consistent across four consecutive runs demonstrating resin robustness.


Example 8: 20-Mer Vs. 50-Mer Polythymidine Ligand Length Comparison Analysis

To compare polythymidine ligand lengths, 4 lots of resin were synthesized. Two were synthesized using a 20mer polythymidine (2′ deoxy) oligonucleotide containing a 5′ hexylamine linker and was conjugated to NHS activated Sepharose 4 FF resin. The other two were synthesized using a 50mer polythymidine (2′ deoxy) oligonucleotide containing a 5′ hexylamine linker and was conjugated to NHS activated Sepharose 4 FF resin. Two different ligand loadings were used for each ligand length, 7 mg ligand/mL resin and 15 mg ligand/mL resin. Both ligands were synthesized using solid phase synthetic methods, HPLC purified, and lyophilized. All dT sepharose resin preps (4) were synthesized in parallel using the same methodology at 5 mL scale (resin). To assess maximum binding capacity, the resins were saturated with the ligand. 35 mg of each ligand (for each 7 mg ligand/mL resin prep) was dissolved in in a 100 mM sodium bicarbonate solution (pH-8.5) at −15 mg/mL. 75 mg of each ligand (for each 15 mg ligand/mL resin prep) was dissolved in in a 100 mM sodium bicarbonate solution (pH-8.5) at −15 mg/mL. Dimethylsulfoxide (DMSO) was added to the ligand containing solution to achieve final concentration of 5 mg/mL in 67/33 (v/v %) DMSO/100 mM NaHCO3.


Activated resin (5 mL) was centrifuged at 4000 rpm to remove the Isopropanol, re-slurried, washed twice, each time with 1 resin volume equivalent 1 mM HCl for 5 minutes, the resin was centrifuged and HCl was poured off.


Upon complete removal of HCl, all polythymidine oligo solution (5 mg/mL in 67/33 (v/v %) DMSO/100 mM NaHCO3 was added to each respective resin prep and re-slurried; the coupling reactions were performed at 25° C. for 4 hours under constant shaking using an orbital shaker to maintain consistent slurry and to prevent resin settling.


The reactions were centrifuged at 4000 rpm and the coupling solution was poured off and quantified by UV absorbance at 260 nm to assess coupling efficiency. All four preparations, the two loads for the 20mer and the two loads for the 50mer resin conjugates were confirmed to be saturated. See FIG. 16.


To block any remaining unconjugated sites on the resins, the resins were treated with 5 mL of 100 mM Tris HCl pH 8; the mixture was re-slurried and was allowed to react at 25° C. for 4 hours under constant shaking using an orbital shaker to maintain consistent slurry and to prevent resin settling. The reaction was centrifuged at 4000 rpm and the solution was poured off.


The resin was re-slurried and washed with 5 mL of 100 mM sodium acetate solution pH 5 for 5 minutes. The mixture was centrifuged at 4000 rpm and the solution was poured off.


The resin was re-slurried and washed with 425 mL of 100 mM Tris HCl solution pH 8 for 5 minutes. The mixture was centrifuged at 4000 rpm and the solution was poured off.


A 20%/80% water/ethanol (v/v %) solution was added to the resin; The resin was re-slurried a final time and was stored at 4° C.


Binding capacities were determined for the four preps and can be seen in FIG. 16. An excess of poly A (140) containing RNA, GCSF PD 29 was loaded onto 2 mL of each resin; The resins were packed into 5 mL SPE columns and the purifications were performed in parallel on a solid phase extraction vacuum manifold (Biotage). Both 20mer and 50mer polythymidine Sepharose preps could bind poly A containing RNA. 20mer dT produced higher binding capacities.


While the invention has been particularly shown and described with reference to a preferred embodiment and various alternate embodiments, it will be understood by persons skilled in the relevant art that various changes in form and details can be made therein without departing from the spirit and scope of the invention.


All references, issued patents and patent applications cited within the body of the instant specification are hereby incorporated by reference in their entirety, for all purposes.

Claims
  • 1. A method for purifying a ribonucleic acid (RNA) transcript comprising a polyA tail, the method comprising: a) obtaining a first sample comprising the RNA transcript, wherein the first sample comprises at least 5% impurities, and wherein the percentage of RNA transcript and the percentage of impurities are the inverse of each other;b) contacting the first sample with a surface linked to twenty thymidines via a linker under conditions such that the RNA transcript binds to the surface;c) eluting the RNA transcript from the surface; andd) collecting the RNA transcript in a second sample, wherein the level of impurities is lower in the second sample than the level of impurities in the first sample.
  • 2. The method of claim 1, further comprising washing the surface with a solution after step b).
  • 3. The method of claim 1, further comprising preheating the first sample before step b).
  • 4. The method of claim 1, wherein one or more steps are performed using a batch process.
  • 5. The method of claim 1, wherein the sample comprises deoxyribonucleic acid (DNA) and the sample has not been subjected to DNase treatment.
  • 6. The method of claim 1, wherein the one or more impurities comprise an RNA that does not comprise a polyA tail, DNA, a carbohydrate, a toxin, a polypeptide, and/or a nucleotide.
  • 7. The method of claim 1, wherein the contacting step is performed at a temperature of 65° C.
  • 8. The method of claim 1, wherein the contacting step is performed at a rate of 100 cm/h.
  • 9. The method of claim 1, wherein the RNA transcript and the twenty thymidines bind one another via non-covalent bonding.
  • 10. The method of claim 1, wherein the first sample comprising the RNA transcript is a salt solution.
  • 11. The method of claim 1, wherein the first sample comprising the RNA transcript is a sodium chloride solution.
  • 12. The method of claim 1, wherein the elution step is performed with an elution buffer.
  • 13. The method of claim 1, wherein the elution step is performed at a temperature of 65° C.
  • 14. The method of claim 1, wherein the RNA transcript is the product of in vitro transcription using a non-amplified DNA template.
  • 15. The method of claim 1, wherein the RNA transcript is 100 to 10,000 nucleotides in length.
  • 16. The method of claim 1, wherein the method is repeated at least 2-times with the same surface.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 14/776,864, filed Sep. 15, 2015, which is a 35 U.S.C. § 371 U.S. National Stage Entry of International Application No. PCT/US2014/026842, filed Mar. 13, 2014, which claims the priority of U.S. Provisional Patent Application No. 61/734,842, filed Mar. 15, 2013, the contents of each of which are herein incorporated by reference in its entirety.

US Referenced Citations (210)
Number Name Date Kind
4870015 Hoffman Sep 1989 A
5426180 Kool Jun 1995 A
5489677 Sanghvi et al. Feb 1996 A
5512439 Hornes Apr 1996 A
5591722 Montgomery et al. Jan 1997 A
5637459 Burke et al. Jun 1997 A
5639873 Barascut et al. Jun 1997 A
5641400 Kaltenbach et al. Jun 1997 A
5789578 Burton et al. Aug 1998 A
5808039 Reddy et al. Sep 1998 A
5989911 Fournier et al. Nov 1999 A
6011148 Bussey et al. Jan 2000 A
6022715 Merenkova et al. Feb 2000 A
6022737 Niven et al. Feb 2000 A
6217899 Benameur et al. Apr 2001 B1
6248268 Cook Jun 2001 B1
6303378 Bridenbaugh et al. Oct 2001 B1
6391542 Anderson et al. May 2002 B1
6423492 Harbron Jul 2002 B1
6511832 Guarino et al. Jan 2003 B1
6521411 Hecker et al. Feb 2003 B2
6642374 Gjerde et al. Nov 2003 B2
6812341 Conrad Nov 2004 B1
6881314 Wang et al. Apr 2005 B1
7691569 Wohlgemuth et al. Apr 2010 B2
7745391 Mintz et al. Jun 2010 B2
7939031 Angus et al. May 2011 B2
8075780 Pearce Dec 2011 B2
8093367 Kore et al. Jan 2012 B2
8664194 de Fougerolles et al. Mar 2014 B2
8680069 de Fougerolles et al. Mar 2014 B2
8691750 Constien et al. Apr 2014 B2
8710200 Schrum et al. Apr 2014 B2
8716465 Rossi et al. May 2014 B2
8802438 Rossi et al. Aug 2014 B2
8822663 Schrum et al. Sep 2014 B2
8883506 Rossi et al. Nov 2014 B2
8898864 Porter Dec 2014 B1
8969353 Mahon et al. Mar 2015 B2
8980864 Hoge et al. Mar 2015 B2
8999380 Bancel et al. Apr 2015 B2
9050297 Chakraborty et al. Jun 2015 B2
9061059 Chakraborty et al. Jun 2015 B2
9089604 Chakraborty et al. Jul 2015 B2
9095552 Chakraborty et al. Aug 2015 B2
9107886 Chakraborty et al. Aug 2015 B2
9114113 Chakraborty et al. Aug 2015 B2
9149506 Chakraborty et al. Oct 2015 B2
9428535 de Fougerolles et al. Aug 2016 B2
9533047 de Fougerolles et al. Jan 2017 B2
9675668 Bancel et al. Jun 2017 B2
9751925 Hoge et al. Sep 2017 B2
9803177 Rossi et al. Oct 2017 B2
9872900 Ciaramella et al. Jan 2018 B2
9950068 De Fougerolles et al. Apr 2018 B2
10022435 Ciaramella et al. Jul 2018 B2
10064935 Ciaramella et al. Sep 2018 B2
10072057 Hoge et al. Sep 2018 B2
10286086 Roy et al. May 2019 B2
10898574 de Fougerolles et al. Jan 2021 B2
11377470 Issa Jul 2022 B2
20010025097 Sheridan et al. Sep 2001 A1
20020001812 Smith et al. Jan 2002 A1
20020016450 Laugharn et al. Feb 2002 A1
20020058256 Rothberg et al. May 2002 A1
20020062017 Hecker et al. May 2002 A1
20020114784 Li et al. Aug 2002 A1
20020130430 Castor Sep 2002 A1
20020153312 Gjerde et al. Oct 2002 A1
20030120035 Gao et al. Jun 2003 A1
20030170810 Vedadi et al. Sep 2003 A1
20030170876 Widner et al. Sep 2003 A1
20030170891 McSwiggen Sep 2003 A1
20030180754 Bergholtz et al. Sep 2003 A1
20030180779 Lofton-Day et al. Sep 2003 A1
20030207288 Lewin et al. Nov 2003 A1
20040038278 Tzertzinis et al. Feb 2004 A1
20040076978 Verfaillie Apr 2004 A1
20040142433 Padgett et al. Jul 2004 A1
20040220127 Sternberg et al. Nov 2004 A1
20040224425 Gjerde et al. Nov 2004 A1
20040259097 De Backer et al. Dec 2004 A1
20040259240 Fadden Dec 2004 A1
20050003496 McGall et al. Jan 2005 A1
20050053942 Kauppinen et al. Mar 2005 A1
20050130196 Hofstadler et al. Jun 2005 A1
20050171333 Paulsen Aug 2005 A1
20060003371 Russell et al. Jan 2006 A1
20060057566 Van Ness et al. Mar 2006 A1
20060058266 Manoharan et al. Mar 2006 A1
20060121441 Spira Jun 2006 A1
20060223081 Jarrell et al. Oct 2006 A1
20060257935 Takeshita et al. Nov 2006 A1
20070020678 Ault-Riche et al. Jan 2007 A1
20070037148 Fong et al. Feb 2007 A1
20070037770 Gryaznov et al. Feb 2007 A1
20070244062 Laux et al. Oct 2007 A1
20070281336 Jendrisak et al. Dec 2007 A1
20080076910 Takkellapati et al. Mar 2008 A1
20080139801 Umansky et al. Jun 2008 A1
20080153078 Braman et al. Jun 2008 A1
20080171711 Hoerr et al. Jul 2008 A1
20080274463 Chen et al. Nov 2008 A1
20080311140 Lee et al. Dec 2008 A1
20090099041 Church et al. Apr 2009 A1
20090192303 Skagestad Jul 2009 A1
20090215125 Reed et al. Aug 2009 A1
20090264511 de Fougerolles et al. Oct 2009 A1
20090270278 Lim et al. Oct 2009 A1
20090286852 Kariko et al. Nov 2009 A1
20090286955 Hatala et al. Nov 2009 A1
20100015232 Besenbacher et al. Jan 2010 A1
20100047261 Hoerr et al. Feb 2010 A1
20100048883 Ketterer et al. Feb 2010 A1
20100159456 Albitar Jun 2010 A1
20100178272 Hartmann et al. Jul 2010 A1
20100183639 Uhlmann et al. Jul 2010 A1
20100255574 Rosen et al. Oct 2010 A1
20100261228 Gharib et al. Oct 2010 A1
20100261231 Kore et al. Oct 2010 A1
20100317532 Liu et al. Dec 2010 A1
20110130440 Manoharan et al. Jun 2011 A1
20110143397 Kariko et al. Jun 2011 A1
20110218170 Thottassery et al. Sep 2011 A1
20110244026 Guild et al. Oct 2011 A1
20110281938 Schaub et al. Nov 2011 A1
20110294205 Hukari et al. Dec 2011 A1
20120009222 Nguyen et al. Jan 2012 A1
20120021042 Panzner et al. Jan 2012 A1
20120046346 Rossi et al. Feb 2012 A1
20120100136 Patel et al. Apr 2012 A1
20120129261 Eberwine et al. May 2012 A1
20120251618 Schrum et al. Oct 2012 A1
20120309053 Wellings Dec 2012 A1
20130046084 Brown et al. Feb 2013 A1
20130052721 Hollander et al. Feb 2013 A1
20130058894 Maldonado et al. Mar 2013 A1
20130115272 de Fougerolles et al. May 2013 A1
20130115274 Knopov et al. May 2013 A1
20130123481 de Fougerolles et al. May 2013 A1
20130156849 de Fougerolles et al. Jun 2013 A1
20130165504 Bancel et al. Jun 2013 A1
20130197068 Kariko et al. Aug 2013 A1
20130203115 Schrum et al. Aug 2013 A1
20130244282 Schrum et al. Sep 2013 A1
20130245103 de Fougerolles et al. Sep 2013 A1
20130245105 de Fougerolles et al. Sep 2013 A1
20130245106 de Fougerolles et al. Sep 2013 A1
20130251618 Li et al. Sep 2013 A1
20130259923 Bancel et al. Oct 2013 A1
20130259924 Bancel et al. Oct 2013 A1
20140010861 Bancel et al. Jan 2014 A1
20140105964 Bancel et al. Apr 2014 A1
20140105966 Bancel et al. Apr 2014 A1
20140147454 Chakraborty et al. May 2014 A1
20140200261 Hoge et al. Jul 2014 A1
20140206752 Afeyan et al. Jul 2014 A1
20140206852 Hoge et al. Jul 2014 A1
20140241956 Page et al. Aug 2014 A1
20140243399 Schrum et al. Aug 2014 A1
20140275227 Hoge et al. Sep 2014 A1
20140343129 de Fougerolles et al. Nov 2014 A1
20140371302 Afeyan et al. Dec 2014 A1
20150005372 Hoge et al. Jan 2015 A1
20150017211 de Fougerolles et al. Jan 2015 A1
20150030576 Bancel Jan 2015 A1
20150044758 Amshey et al. Feb 2015 A1
20150050354 Bouchon et al. Feb 2015 A1
20150050738 Ozsolak et al. Feb 2015 A1
20150051268 Bancel et al. Feb 2015 A1
20150056253 Bancel et al. Feb 2015 A1
20150064235 Bancel et al. Mar 2015 A1
20150064236 Bancel et al. Mar 2015 A1
20150064725 Schrum et al. Mar 2015 A1
20150086614 Bancel et al. Mar 2015 A1
20150105275 Wong et al. Apr 2015 A1
20150111248 Bancel et al. Apr 2015 A1
20150141269 Soldatov et al. May 2015 A1
20150141499 Bancel et al. May 2015 A1
20150157781 Kyle et al. Jun 2015 A1
20150166616 Bancel et al. Jun 2015 A1
20150167017 Roy et al. Jun 2015 A1
20150174070 Cheng et al. Jun 2015 A1
20150211039 Wang et al. Jul 2015 A1
20150291678 Rudolph et al. Oct 2015 A1
20150307542 Roy et al. Oct 2015 A1
20160017313 Spivak et al. Jan 2016 A1
20160024139 Berlanda Scorza et al. Jan 2016 A1
20160024140 Issa et al. Jan 2016 A1
20160024141 Issa et al. Jan 2016 A1
20160024492 Issa et al. Jan 2016 A1
20160024547 Bancel et al. Jan 2016 A1
20160025630 Jensen et al. Jan 2016 A1
20160032273 Shahrokh et al. Feb 2016 A1
20160038612 Hoge et al. Feb 2016 A1
20160177295 Rudolph et al. Jun 2016 A1
20160194368 Hoge et al. Jul 2016 A1
20160194625 Hoge et al. Jul 2016 A1
20160237108 Fraley et al. Aug 2016 A1
20160244742 Linnarsson et al. Aug 2016 A1
20160326575 Von Der Mulbe et al. Nov 2016 A1
20160354490 Roy et al. Dec 2016 A1
20160354491 Roy et al. Dec 2016 A1
20160354492 Roy et al. Dec 2016 A1
20160354493 Roy et al. Dec 2016 A1
20160367702 Hoge et al. Dec 2016 A1
20170088888 El-Sagheer et al. Mar 2017 A1
20170136131 Roy et al. May 2017 A1
20170136132 Roy et al. May 2017 A1
20170175129 Roy et al. Jun 2017 A1
Foreign Referenced Citations (141)
Number Date Country
2028849 Sep 1991 CA
2473135 Jun 2003 CA
105087552 Nov 2015 CN
10 2006 051 516 May 2008 DE
0366400 May 1990 EP
1083232 Feb 2005 EP
1611899 Jan 2006 EP
1619254 Jan 2006 EP
1383556 Mar 2008 EP
1831160 Jun 2010 EP
2092064 Sep 2010 EP
2377938 Oct 2011 EP
2484770 Aug 2012 EP
2188379 Jan 2013 EP
2548960 Jan 2013 EP
2011-130725 Jul 2011 JP
2540017 Jan 2015 RU
WO-9105058 Apr 1991 WO
WO-9303052 Feb 1993 WO
WO-9313121 Jul 1993 WO
WO-9805673 Feb 1998 WO
WO-0155306 Aug 2001 WO
WO-0181566 Nov 2001 WO
WO-0244399 Jun 2002 WO
WO-2002098443 Dec 2002 WO
WO-03039523 May 2003 WO
WO-03051881 Jun 2003 WO
WO-2004020575 Mar 2004 WO
WO-2004020576 Mar 2004 WO
WO-2004064782 Aug 2004 WO
WO-2006015445 Feb 2006 WO
WO-2007024708 Mar 2007 WO
WO-2007024798 Mar 2007 WO
WO-2007089607 Aug 2007 WO
WO-2007120863 Oct 2007 WO
WO-2008039669 Apr 2008 WO
WO-2008045505 Apr 2008 WO
WO-2008083949 Jul 2008 WO
WO-2008120016 Oct 2008 WO
WO-2009016431 Feb 2009 WO
WO-2009042971 Apr 2009 WO
WO-2009051451 Apr 2009 WO
WO-2009127060 Oct 2009 WO
WO-2009127230 Oct 2009 WO
WO-2009147519 Dec 2009 WO
WO-2009149253 Dec 2009 WO
WO-2010014895 Feb 2010 WO
WO-2010017510 Feb 2010 WO
WO-2010054401 May 2010 WO
WO-2010109289 Sep 2010 WO
WO-2010144740 Dec 2010 WO
WO-2011005850 Jan 2011 WO
WO-2011012316 Feb 2011 WO
WO-2011068810 Jun 2011 WO
WO-2011071931 Jun 2011 WO
WO-2011127933 Oct 2011 WO
WO-2011130624 Oct 2011 WO
WO-2011133868 Oct 2011 WO
WO-2011140627 Nov 2011 WO
WO-2012019168 Feb 2012 WO
WO-2012077080 Jun 2012 WO
WO-2012135805 Oct 2012 WO
WO-2012138530 Oct 2012 WO
WO-2012158736 Nov 2012 WO
WO-2012164565 Dec 2012 WO
WO-2013036748 Mar 2013 WO
WO-2013039857 Mar 2013 WO
WO-2013039861 Mar 2013 WO
WO-2013052523 Apr 2013 WO
WO-2013064911 May 2013 WO
WO-2013090186 Jun 2013 WO
WO-2013090294 Jun 2013 WO
WO-2013090648 Jun 2013 WO
WO-2013090897 Jun 2013 WO
WO-2013096709 Jun 2013 WO
WO-2013101690 Jul 2013 WO
WO-2013103659 Jul 2013 WO
WO-2013113326 Aug 2013 WO
WO-2013113501 Aug 2013 WO
WO-2013113502 Aug 2013 WO
WO-2013130161 Sep 2013 WO
WO-2013151663 Oct 2013 WO
WO-2013151664 Oct 2013 WO
WO-2013151665 Oct 2013 WO
WO-2013151666 Oct 2013 WO
WO-2013151667 Oct 2013 WO
WO-2013151668 Oct 2013 WO
WO-2013151669 Oct 2013 WO
WO-2013151670 Oct 2013 WO
WO-2013151671 Oct 2013 WO
WO-2013151672 Oct 2013 WO
WO-2013151736 Oct 2013 WO
WO-2013184976 Dec 2013 WO
WO-2013185069 Dec 2013 WO
WO-2014028429 Feb 2014 WO
WO-2014081507 May 2014 WO
WO-2014093574 Jun 2014 WO
WO-2014093622 Jun 2014 WO
WO-2014093924 Jun 2014 WO
WO-2014113089 Jul 2014 WO
WO-2014144039 Sep 2014 WO
WO-2014144711 Sep 2014 WO
WO-2014144767 Sep 2014 WO
WO-2014152027 Sep 2014 WO
WO-2014152030 Sep 2014 WO
WO-2014152211 Sep 2014 WO
WO-2014152513 Sep 2014 WO
WO-2014152540 Sep 2014 WO
WO-2014152659 Sep 2014 WO
WO-2014152673 Sep 2014 WO
WO-2014160243 Oct 2014 WO
WO-2014160284 Oct 2014 WO
WO-2014164253 Oct 2014 WO
WO-2015006747 Jan 2015 WO
WO-2015023975 Feb 2015 WO
WO-2015034925 Mar 2015 WO
WO-2015034928 Mar 2015 WO
WO-2015038892 Mar 2015 WO
WO-2015048744 Apr 2015 WO
WO-2015051169 Apr 2015 WO
WO-2015051173 Apr 2015 WO
WO-2015051214 Apr 2015 WO
WO-2015058069 Apr 2015 WO
WO-2015070413 May 2015 WO
WO-2015085318 Jun 2015 WO
WO-2015089511 Jun 2015 WO
WO-2015101414 Jul 2015 WO
WO-2015101416 Jul 2015 WO
WO-2015105926 Jul 2015 WO
WO-2015179598 Nov 2015 WO
WO-2015196118 Dec 2015 WO
WO-2015196128 Dec 2015 WO
WO-2015196130 Dec 2015 WO
WO-2016010840 Jan 2016 WO
WO-2016011222 Jan 2016 WO
WO-2016011226 Jan 2016 WO
WO-2016034620 Mar 2016 WO
WO-2016036902 Mar 2016 WO
WO-2016077125 May 2016 WO
WO-2016118724 Jul 2016 WO
WO-2016118725 Jul 2016 WO
Non-Patent Literature Citations (117)
Entry
Bryant, The Nucleic Acids Protocols Handbook, Rapley (Ed), 2000, pp. 9-11.
Kuwahara et al., “Molecular evolution of functional nucleic acids with chemical modifications,” Molecules. 15(8):5423-44 (2010).
Li et al., “Effects of chemically modified messenger RNA on protein expression,” Bioconjug Chem. 27(3):849-53 (2016).
Yanagawa et al., “Overexpression of autocrine motility factor in metastatic tumor cells: possible association with augmented expression of KIF3A and GDI-beta,” Lab Invest. 84(4):513-22 (2004).
Takita et al., “Precise sequential DNA ligation on a solid substrate: solid-based rapid sequential ligation of multiple DNA molecules,” DNA Res. 20(6):583-92 (Dec. 2013).
RNA Modification Database Entry for 1-methylpseudouridine <https://mods.rna.albany.edu/mods/modifications/view/55>, retrieved on Feb. 26, 2019 (1 page).
Applied Biosystems, DNA Synthesizer Model 380B, Version 1.1 User's Manual, 2001 (327 pages).
Aviv et al., “Purification of Biologically Active Globin Messenger RNA by Chromatography on Oligothymidylic acid-Cellulose,” Proc Nat Acad Sci USA 69(6):1408-1412 (1972).
Bell et al., “In trans T cell tolerance diminishes autoantibody responses and exacerbates experimental allergic encephalomyelitis,” J Immunol. 180(3):1508-16 (2008).
Rodriguez et al., “Magnetic poly (styrene/divinylbenzene/acrylic acid)-based hybrid microspheres for bio-molecular recognition,” Micro Nano Lett. 6(6):349-352 (2011).
Brand et al., “Biosynthesis of a Hypermodified Nucleotide in Saccharomyces carlsbergensis 17S and HeLa-Cell 18S Ribosomal Ribonucleic Acid,” Biochem J. 169(1):71-77 (1978) (9 pages).
Bryant et al., Chapter 2: Isolation of mRNA by Affinity Chromatography. The Nucleic Acid Protocols Handbook. Springer, 9-11 (2000) (4 pages).
Tavernier et al., “mRNA as gene therapeutic: how to control protein expression,” J Control Release. 150(3):238-47 (2011).
Salfen et al., “Effects of exogenous ghrelin on feed intake, weight gain, behavior, and endocrine responses in weanling pigs,” J Anim Sci. 82(7):1957-66 (2004).
Chen et al., “LC/MS analysis of cellular RNA reveals NAD-linked RNA,” Nat Chem Biol. 5(12):879-81 (2009).
Deltcheva et al., “CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III,” available in PMC Sep. 30, 2011, published in final edited form as: Nature. 471(7340):602-7 (2011) (54 pages).
Dickman, “Ion Pair Reverse-Phase Chromatography: A Versatile Platform for the Analysis of RNA,” <http://www.chromatographytoday.com/articles/prep-chiral-green-incsfc-gpc-ion/33/m._j._dickman/ion_pair_reverse-phase_chromatography_a_versatile_platform_for_the_analysis_of_rna/984/>, retrieved on Oct. 16, 2015 (5 pages).
Santner et al., “Efficient access to 3′-terminal azide-modified RNA for inverse click-labeling patterns,” Bioconjug Chem. 25(1):188-95 (Jan. 2014).
El-Sagheer et al., “Click nucleic acid ligation: applications in biology and nanotechnology,” Acc Chem Res. 45(8):1258-67 (2012).
Extended European Search Report for European Application No. 14770466.2, dated Sep. 28, 2016 (10 pages).
Thess et al., “Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals,” Mol Ther. 23(9):1456-64 (2015).
Sasaki et al., “Construction of a normalized cDNA library by introduction of a semi-solid mRNA-cDNA hybridization system,” Nucleic Acids Res. 22(6):987-92 (1994).
Finn et al., “A Single Administration of CRISPR/Cas9 Lipid Nanoparticles Achieves Robust and Persistent In Vivo Genome Editing,” Cell Rep. 22(9):2227-2235 (2018) (17 pages).
Gaj et al., “ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering,” Trends Biotechnol. 31(7):397-405 (Jul. 2013).
Gilham, “The Synthesis of Polynucleotide-Celluloses and Their Use in the Fractionation of Polynucleotides,” J Am Chem Soc. 86(22):4982-4985 (1964).
Shimelis et al., “Nuclease P1 digestion/high-performance liquid chromatography, a practical method for DNA quantitation,” J Chromatogr A. 1117(2):132-6 (2006).
Goodnow, “Pathways for self-tolerance and the treatment of autoimmune diseases,” Lancet. 357(9274):2115-21 (2001).
Grosjean, Modification and editing of RNA: historical overview and important facts to remember. Fine-Tuning of RNA Functions by Modification and Editing. Grosjean H, 1-22 (2005).
Thess et al., Supplementary material for “Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals,” Mol Ther. 23(9):1456-64 (2015), accessed via <https://www.sciencedirect.com/science/article/pii/S1525001616302738#cesec90> (11 Pages).
Skyler et al., “Effects of oral insulin in relatives of patients with type 1 diabetes: The Diabetes Prevention Trial—Type 1,” Diabetes Care 28(5):1068-76 (2005).
Hansen et al., “Circular RNA and miR-7 in Cancer,” Cancer Res. 73(18):5609-12 (Sep. 2013).
Hansen et al., “Natural RNA circles function as efficient microRNA sponges,” Nature. 495(7441):384-8 (Feb. 2013) (7 pages).
Henke et al., “microRNA-122 stimulates translation of hepatitis C virus RNA,” EMBO J. 27(24):3300-10 (2008).
Slater, Chapter 16: The Purification of Poly(A)-Containing RNA by Affinity Chromatography. Methods in Molecular Biology. ed. Walker, Springer Verlag, 117-20 (1985).
Hikishima et al., “Synthesis of 1,8-naphthyridine C-nucleosides and their base-pairing properties in oligodeoxynucleotides: thermally stable naphthyridine:imidazopyridopyrimidine base-pairing motifs,” Angew Chem Int Ed. 44:596-8 (2005).
International Preliminary Report on Patentability and Written Opinion for International Patent Application No. PCT/US2014/026842, dated Sep. 15, 2015 (6 pages).
Virnekäs et al., “Trinucleotide phosphoramidites: ideal reagents for the synthesis of mixed oligonucleotides for random mutagenesis,” Nucleic Acids Res. 22(25):5600-7 (1994).
Smith et al., “Purification of polynucleotide phosphorylase by affinity chromatography and some properties of the purified enzymes,” Nucleic Acids Res. 1(12):1763-73 (1974).
Jani et al., “In vitro transcription and capping of Gaussia luciferase mRNA followed by HeLa cell transfection,” J Vis Exp. 61:e3702 (2012) (9 pages).
Jawalekar et al., “Oligonucleotide tagging for copper-free click conjugation,” Molecules. 18(7):7346-63 (Jul. 2013).
Karikó et al., “Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability.” Mol Ther. 16(11):1833-40 (2008).
Sonoke et al., “Tumor regression in mice by delivery of Bcl-2 small interfering RNA with pegylated cationic liposomes,” Cancer Res. 68(21):8843-51 (2008) (10 pages).
Karikó et al., “mRNA is an endogenous ligand for Toll-like receptor 3,” J Biol Chem. 279(13):12542-50 (2004).
Karikó et al., “Naturally occurring nucleoside modifications suppress the immunostimulatory activity of RNA: Implication for therapeutic RNA development,” Curr Opin Drug Discov Devel. 10(5): 523-532 (2007).
Vomelová et al., “Methods of RNA purification. All ways (should) lead to Rome,” Folia Biol (Praha). 55(6):243-51 (2009).
St. Claire, “Positive ion electrospray ionization tandem mass spectrometry coupled to ion-pairing high-performance liquid chromatography with a phosphate buffer for the quantitative analysis of intracellular nucleotides,” Rapid Commun Mass Spectrom. 14(17):1625-34 (2000).
“AutoImmune shares collapse on Colloral data in rheumatoid arthritis,” Pharma MarketLetter, Marketletter Publications Ltd. ISSN:0951-3175 (1999) (2 pages).
Kore et al., “Synthesis and application of 2′-fluoro-substituted cap analogs,” Bioorg Med Chem Letters. 17:5295-9 (2007).
Kraus et al., “Oral tolerance and inflammatory bowel disease,” Curr Opin Gastroenterol. 21(6):692-6 (2005).
Stocher et al., “Removal of Template DNA From cRNA Preparations by Combined Oligo (dT) Affinity Chromatography and DNase I Digestion,” Biotechniques. 36(3):480-2 (2004).
Kuribayashi-Ohta et al., “Application of oligo(dT)30-latex for rapid purification of poly(A)+ mRNA and for hybrid subtraction with the in situ reverse transcribed cDNA,” Biochim Biophys Acta. 1156(2):204-12 (1993).
Quabius et al., “Synthetic mRNAs for manipulating cellular phenotypes: an overview,” N Biotechnol. 32(1):229-35 (2015).
Wang et al., “One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering,” Cell. 153(4):910-8 (May 2013).
Liu et al., “Construction of circular miRNA sponges targeting miR-21 or miR-221 and demonstration of their excellent anticancer effects on malignant melanoma cells,” Int J Biochem Cell Biol. 45(11):2643-50 (Nov. 2013).
Azarani et al., “RNA analysis by ion-pair reversed-phase high performance liquid chromatography,” Nucleic Acids Res. 29(2):E7 (2001) (9 pages).
Lukavsky et al., “Large-scale Preparation and Purification of Polyacrylamide-Free RNA Oligonucleotides,” RNA. 10(5):889-93 (2004) (6 pages).
Bélanger et al., “Characterization of hMTr1, a human Cap1 2′-O-ribose methyltransferase,” J Biol Chem. 285(43):33037-44 (2010).
McKenna et al. “Purification and characterization of transcribed RNAs using gel filtration chromatography.” Nat Protoc. 2(12):3270-7 (2007).
Derrigo et al., “RNA-protein interactions in the control of stability and localization of messenger RNA (review),” Int J Mol Med. 5(2):111-23 (2000).
Memczak et al., “Circular RNAs are a large class of animal RNAs with regulatory potency,” Nature. 495(7441):333-8 (Feb. 2013) (10 pages).
Warren et al., “Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA,” Cell Stem Cell. 7(5):618-30 (2010).
Moretti et al., “Mechanism of translational regulation by miR-2 from sites in the 5′ untranslated region or the open reading frame,” RNA. 16(12):2493-502 (2010).
Gilbert et al., “CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes,” Cell. 154(2):442-51 (Jul. 2013) (15 pages).
Myllykoski et al., “Expression, Purification, and Initial Characterization of Different Domains of Recombinant Mouse 2′,3′-cyclic Nucleotide 3′-phosphodiesterase, an Enigmatic Enzyme From the Myelin Sheath,” BMC Res Notes. 3:12 (2010) (7 pages).
Hamaguchi et al., “Direct reverse transcription-PCR on oligo(dT)-immobilized polypropylene microplates after capturing total mRNA from crude cell lysates,” Clin Chem. 44(11):2256-63 (1998).
Nakazato et al., “Purification of messenger RNA and heterogeneous nuclear RNA containing poly(A) sequences,” Methods Enzymol. 29:431-43 (1974).
Haseltine et al., “Rous sarcoma virus genome is terminally redundant: the 5′ sequence,” Proc Natl Acad Sci USA. 74(3):989-93 (1977).
Olesiak et al., “The synthesis of di- and oligo-nucleotides containing a phosphorodithioate internucleotide linkage with one of the sulfur atoms in a 5′-bridging position,” Org Biomol Chem. 7(10):2162-9 (2009).
Weiner et al., “Oral tolerance,” available in PMC May 1, 2012, published in final edited form as: Immunol Rev. 241(1):241-59 (2011) (14 pages).
Pascolo, Chapter 3: Vaccination With Messenger RNA. Methods in Molecular Medicine, vol. 127: DNA Vaccines: Methods and Protocols: Second Edition. Saltzman et al., Humana Press Inc., 23-40 (2006).
Kanwar et al., “Chimeric aptamers in cancer cell-targeted drug delivery,” Crit Rev Biochem Mol Bio. 46(6):459-77 (2011).
Pozzilli et al., “No effect of oral insulin on residual beta-cell function in recent-onset type I diabetes (the IMDIAB VII),” Diabetologia. 43(8):1000-4 (2000).
Kluiver et al., “Rapid generation of MicroRNA Sponges for MicroRNA Inhibition ,” PLoS One. 7(1):E29275(2012) (8 pages).
PubChem Compound Summary for CID 479886, created Aug. 1, 2005. <URL: http://pubchem.ncbi.nlm.nih.gov/compound/479886> (12 pages).
Kormann et al., “Expression of therapeutic proteins after delivery of chemically modified mRNA in mice,” Nat Biotechnol. 29(2):154-7 (including supplement) (2011) (6 pages).
Qiu et al., “Creating a flexible multiple microRNA expression vector by linking precursor microRNAs,” Biochem Biophys Res Commun. 411(2):276-80 (2011).
Weiss et al., “Prophylactic mRNA vaccination against allergy,” Curr Opin Allergy Clin Immunol. 10(6):567-74 (2010) (8 pages).
Loomis et al., “Strategies for modulating innate immune activation and protein production of in vitro transcribed mRNAs,” J Mater Chem B. 4(9):1619-32 (2016).
Bynum et al., “Characterization of subcellular poly(A) RNA populations by poly(U) sepharose chromatography and discontinuous elution,” Anal. Biochem. 107(2):406-16 (1980).
Melton et al., “Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter,” Nucleic Acids Res. 12(18):7035-56 (1984).
Farrow et al., “Combinatorial recombination of gene fragments to construct a library of chimeras,” Curr Protoc Protein Sci. Chapter 26, Unit 26.2 (2010) (20 pages).
Motorin, “RNA modification,” eLS. John Wiley & Sons, DOI:10.1002/9780470015902.a0000528.pub3 (2015) (18 pages).
Gustafsson et al., “Codon bias and heterologous protein expression,” Trends Biotechnol. 22(7):346-353 (2004).
Nielsen et al., “An mRNA is capped by a 2′,5′ lariat catalyzed by a group I-like ribozyme,” Science. 309(5740):1584-7 (2005).
Weissman et al., “mRNA: Fulfilling the promise of gene therapy,” Mol Ther. 23(9):1416-7 (2015).
Perez-Pinera et al., “RNA-guided gene activation by CRISPR-Cas9-based transcription factors,” Nat Methods. 10(10):973-6 (Oct. 2013).
Kim et al. “Rapid purification of RNAs using fast performance liquid chromatography (FPLC).” RNA. 13(2):289-94 (2007).
Pyhtila et al., “Signal sequence- and translation-independent mRNA localization to the endoplasmic reticulum,” RNA. 14(3):445-53 (2008).
Anderson, Bart R., Dissertation: “Nucleoside Modifications Suppress RNA Activation of Cytoplasmic RNA Sensors,” Doctor of Philosophy, Cell & Molecular Biology, University of Pennsylvania, 2010 (197 pages).
Maeder et al., “CRISPR RNA-guided activation of endogenous human genes,” Nat Methods 10(10):977-9 (Oct. 2013).
Extended European Search Report for European Application No. 18208038.2, dated Aug. 28, 2019 (7 pages).
Mészáros et al., “Subtractive hybridization strategy using paramagnetic oligo(dT) beads and PCR,” Biotechniques. 20(3):413-9 (1996).
Wilusz et al., “Molecular Biology. A circuitous route to noncoding RNA,” Science. 340(6131):440-1 (Apr. 2013).
PubChem Compound Summary for CID 262692, created Mar. 26, 2005. <URL: http://pubchem.ncbi.nlm.nih.gov/compound/262692> (11 pages).
Anderson et al., “Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation,” Nucleic Acids Res. 38(17):5884-92 (2010).
Mestas et al., “Of mice and not men: differences between mouse and human immunology,” J Immunol. 172(5):2731-8 (2004).
Jakobsen et al., “Direct mRNA Isolation Using Magnetic Oligo (dT) Beads: A Protocol for All Types of Cell Cultures, Animal and Plant Tissues,” Advances in Biomagnetic Separation. ed. Uhlén et al., Eaton Publishing, 61-71 (1994) (15 pages).
Lietard et al., “New strategies for cyclization and bicyclization of oligonucleotides by click chemistry assisted by microwaves,” J Org Chem. 73(1):191-200 (2008).
International Search Report for International Patent Application No. PCT/US2014/026835, dated Aug. 28, 2014 (4 pages).
Park et al., “Reverse transcriptase-coupled quantitative real time PCR analysis of cell-free transcription on the chromatin-assembled p21 promoter,” PLoS One. 6(8):e23617 (2011) (6 pages).
Yamamoto et al., “Current prospects for mRNA gene delivery,” Eur J Pharm Biopharm. 71(3):484-9 (2009).
Hornes et al., “Magnetic DNA hybridization properties of oligonucleotide probes attached to superparamagnetic beads and their use in the isolation of poly(A) mRNA from eukaryotic cells,” Genet Anal Tech Appl. 7(6):145-50 (1990).
International Preliminary Report on Patentability for International Patent Application No. PCT/US2017/038426, dated Jan. 3, 2019 (8 pages).
Jakobsen et al., “Purification of mRNA directly from crude plant tissues in 15 minutes using magnetic oligo dT microspheres,” Nucleic Acids Res. 18(12):3669 (1990).
Probst et al., “Spontaneous cellular uptake of exogenous messenger RNA in vivo is nucleic acid-specific, saturable and ion dependent,” Gene Ther. 14(15):1175-1180 (2007).
International Search Report and Written Opinion for International Application No. PCT/US17/38426, dated Sep. 6, 2017 (15 pages).
Berensmeier, “Magnetic particles for the separation and purification of nucleic acids,” Appl Microbiol Biotechnol. 73:495-504 (2006).
International Search Report and Written Opinion for International Application No. PCT/US2017/038534, dated Sep. 7, 2017 (15 pages).
Karikó et al., “Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA,” Immunity. 23(2):165-75 (2005).
Technical Data Sheet for “BioMag® SelectaPure mRNA Purification System,” Polysciences, Inc., dated Mar. 25, 2011 (5 page).
Data Sheet for “Dynabeads® mRNA Purification Kit” received Jan. 12, 2009 (2 pages).
International Preliminary Report on Patentability for International Patent Application No. PCT/US2017/038498, dated Jan. 3, 2019 (8 pages).
International Search Report and Written Opinion for International Application No. PCT/US2017/038498, dated Sep. 7, 2017 (15 pages).
Safarik et al., “Large-scale separation of magnetic bioaffinity adsorbents,” Biotechnol. Lett. 23:1953-6 (2001).
Sahin et al., “mRNA-based therapeutics—developing a new class of drugs,” Nat Rev Drug Discov. 13(10):759-80 (Sep. 2014).
“Resins for Solid Phase Peptide Synthesis—Core Resins,” aappTec, <https://www.peptide.com/resources/resins-for-solid-phase-peptide-synthesis-core-resins/>, retrieved on Feb. 28, 2023 (5 Pages).
Dong et al., “Solid lipid nanoparticles: continuous and potential large-scale nanoprecipitation production in static mixers,” Colloids Surf B Biointerfaces. 94:68-72 (2012).
Related Publications (1)
Number Date Country
20230203086 A1 Jun 2023 US
Provisional Applications (1)
Number Date Country
61794842 Mar 2013 US
Continuations (1)
Number Date Country
Parent 14776864 US
Child 17854187 US