This application contains a sequence listing filed in electronic form as an .xml file entitled BROD-5435WP_ST26.xml, created on Oct. 14, 2022 and having a size of 2,782 bytes. The content of the sequence listing is incorporated herein in its entirety.
The subject matter disclosed herein is generally directed to the use of engineered or non-naturally occurring compositions that allow RNA-guided targeting to facilitate the trans-splicing of one RNA molecule onto another.
Recent advances in our understanding of RNA targeting by Type VI and Type-III CRISPR-Cas systems has opened up the possibility for making sequence-specific modifications to precursor mRNA (pre-mRNA). Specific modifications at the pre-mRNA level would afford a variety of benefits, including, but not limited to, correcting deleterious mutations, adding gene functionality by insertion of transgenes, and adding transcriptional elements to increase gene expression of poorly expressed genes or low copy number genes. Given these new insights into the RNA targeting capabilities of Type VI and Type-III CRISPR-Cas systems, there exists a pressing need to develop robust systems and technologies to facilitate modifications at the pre-mRNA level. One such technology disclosed herein, trans-splicing of pre-mRNA using catalytically-inactive Cas13 or Type-III Cas, addresses this need.
Citation or identification of any document in this application is not an admission that such a document is available as prior art to the present invention.
In certain example embodiments, provided herein is an engineered or non-naturally occurring composition comprising: a catalytically inactive, RNA-binding, Cas polypeptide (dCas); and a trans-splicing donor construct comprising a guide, an intron, a splice acceptor (SA), donor RNA, and a polyA tail, wherein the guide is capable of forming a complex with the dCas and directing sequence-specific binding of the complex to a target pre-cursor mRNA. In an example embodiment, provided herein are compositions wherein the intron has a size between 20 bp and 15 kb. In an embodiment, provided herein are compositions, wherein the guide is configured to bind an intron of a target pre-cursor mRNA and the donor RNA comprises an exon of the target pre-cursor mRNA and a heterologous sequence to be spliced into the target pre-cursor mRNA. In an embodiment, provided herein are compositions wherein the target pre-cursor mRNA is uniquely expressed in a given cell type or cell state. In an embodiment, provided herein are compositions, wherein the exon of the target pre-cursor mRNA is the final exogenous exon. In an embodiment, provided herein are compositions, wherein the heterologous sequence does not comprise a start codon or a ribosomal binding site. In an embodiment, the exon and heterologous sequence of the trans-splicing donor construct are fused in-frame via a self-cleaving linker.
In an embodiment, provided herein are compositions, wherein the guide sequence is configured to bind an intron of a target mRNA adjacent to a target exon, and the donor RNA comprises a replacement exon to be spliced into the endogenous mRNA in place of the target exon. In an embodiment, provided herein are compositions, wherein the replacement exon introduces one or more mutations relative to the target exon. In an embodiment, provided herein are compositions, wherein the replacement exon corrects one or more mutations present in the target exon.
In an example embodiment, provided herein are compositions, wherein the trans-splicing donor construct is fused to the 3′ end of the guide molecule. In a certain example embodiment, provided herein are compositions, wherein the programmable dCas polypeptide comprises a Type VI Cas polypeptide or a Type III Cas polypeptide. In an embodiment, provided herein are compositions, wherein the Type VI Cas polypeptide is a Cas13a, Cas13b, Cas13c or Cas13d polypeptide. In an embodiment, provided herein are compositions, wherein the trans-splicing donor RNA is inserted 3′ to a splice donor (SD) of the pre-mRNA. In an embodiment, the provided herein are compositions, wherein the trans-splicing donor RNA is up to ______ bp in length.
In an embodiment, provided herein are compositions further comprising one or more domains fused to or otherwise capable of associating with the Cas protein to improve recruitment of the spliceosome or efficiency of target search and hybridization by the guide sequence.
In an embodiment, provided herein are vectors comprising encoding the components of any one of the compositions disclosed above.
In an example embodiment, is disclosed a method for expressing heterologous sequences via targeted trans-splicing of pre-mRNA by introducing to a cell or cell population a composition comprising: a RNA-binding dCas and a trans-splicing donor construct comprising a guide portion, an intron, a splice acceptor, an exon of an endogenously expressed target pre-mRNA, a heterologous donor RNA, and a poly-A tail, wherein the guide portion is capable of forming a complex with the dCas and directing binding of the complex to an intron on a target pre-mRNA thereby facilitating splicing of the exon and the heterologous donor RNA into the target pre-mRNA to generate a modified mRNA comprising the heterologous sequences.
In an embodiment, disclosed herein is a method, wherein the target endogenously expressed pre-mRNA is uniquely expressed in a particular cell type thereby providing cell-specific expression of the heterologous sequence. In an embodiment, disclosed herein is a method, wherein the guide portion is configured to bind an intron on the endogenously expressed pre-mRNA adjacent to a final exon. In an embodiment, disclosed herein is a method, wherein the heterologous sequence does not comprise a start codon or a ribosomal binding site. In an embodiment, disclosed herein is a method, wherein the exon and heterologous donor RNA of the trans splicing donor construct are fused in frame via a self-cleaving linker such that a polypeptide translated from the modified mRNA will comprise an endogenous polypeptide portion and a heterologous polypeptide that releases the heterologous polypeptide from the endogenous polypeptide portion by self-cleavage.
In an example embodiment, is disclosed a method for modifying endogenously expressed mRNA via targeted trans-splicing of pre-mRNA comprising: introducing to a cell or cell population a composition comprising a RNA-binding dCas and a trans-splicing donor construct comprising a guide portion, an intron, a splice acceptor, a replacement exon, and a poly-A tail, wherein the guide portion is capable of forming a complex with the dCas and directing binding of the complex to an intron on a target pre-mRNA adjacent to an endogenous exon, thereby facilitating splicing of the replacement exon into the target pre-mRNA in place of the endogenous exon to generate a modified mRNA.
In an embodiment, disclosed herein is a method wherein the replacement exon introduces one or more modifications relative to the endogenous exon. In an embodiment, disclosed herein is a method, wherein the one or more modifications comprise introduction of one or more mutations, introduction of post-translational modification site, or alternative post-translational modification site, introduces pre-mature stop codon, causes a shift in the open reading frame, or a combination thereof. In an embodiment, disclosed herein is a method wherein the replacement exon corrects one or more mutations present in the endogenous exon.
These and other aspects, objects, features, and advantages of the example embodiments will become apparent to those having ordinary skill in the art upon consideration of the following detailed description of example embodiments.
An understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention may be utilized, and the accompanying drawings of which:
The figures herein are for illustrative purposes only and are not necessarily drawn to scale.
Unless defined otherwise, technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure pertains. Definitions of common terms and techniques in molecular biology may be found in Molecular Cloning: A Laboratory Manual, 2nd edition (1989) (Sambrook, Fritsch, and Maniatis); Molecular Cloning: A Laboratory Manual, 4th edition (2012) (Green and Sambrook); Current Protocols in Molecular Biology (1987) (F. M. Ausubel et al. eds.); the series Methods in Enzymology (Academic Press, Inc.): PCR 2: A Practical Approach (1995) (M. J. MacPherson, B. D. Hames, and G. R. Taylor eds.): Antibodies, A Laboratory Manual (1988) (Harlow and Lane, eds.): Antibodies A Laboratory Manual, 2nd edition 2013 (E. A. Greenfield ed.); Animal Cell Culture (1987) (R. I. Freshney, ed.); Benjamin Lewin, Genes IX, published by Jones and Bartlet, 2008 (ISBN 0763752223); Kendrew et al. (eds.), The Encyclopedia of Molecular Biology, published by Blackwell Science Ltd., 1994 (ISBN 0632021829); Robert A. Meyers (ed.), Molecular Biology and Biotechnology: a Comprehensive Desk Reference, published by VCH Publishers, Inc., 1995 (ISBN 9780471185710); Singleton et al., Dictionary of Microbiology and Molecular Biology 2nd ed., J. Wiley & Sons (New York, N.Y. 1994), March, Advanced Organic Chemistry Reactions, Mechanisms and Structure 4th ed., John Wiley & Sons (New York, N.Y. 1992); and Marten H. Hofker and Jan van Deursen, Transgenic Mouse Methods and Protocols, 2nd edition (2011).
As used herein, the singular forms “a”, “an”, and “the” include both singular and plural referents unless the context clearly dictates otherwise.
The term “optional” or “optionally” means that the subsequent described event, circumstance or substituent may or may not occur, and that the description includes instances where the event or circumstance occurs and instances where it does not.
The recitation of numerical ranges by endpoints includes all numbers and fractions subsumed within the respective ranges, as well as the recited endpoints.
The terms “about” or “approximately” as used herein when referring to a measurable value such as a parameter, an amount, a temporal duration, and the like, are meant to encompass variations of and from the specified value, such as variations of +/−10% or less, +/−5% or less, +/−1% or less, and +/−0.1% or less of and from the specified value, insofar such variations are appropriate to perform in the disclosed invention. It is to be understood that the value to which the modifier “about” or “approximately” refers is itself also specifically, and preferably, disclosed.
As used herein, a “biological sample” may contain whole cells and/or live cells and/or cell debris. The biological sample may contain (or be derived from) a “bodily fluid”. The present invention encompasses embodiments wherein the bodily fluid is selected from amniotic fluid, aqueous humour, vitreous humour, bile, blood serum, breast milk, cerebrospinal fluid, cerumen (earwax), chyle, chyme, endolymph, perilymph, exudates, feces, female ejaculate, gastric acid, gastric juice, lymph, mucus (including nasal drainage and phlegm), pericardial fluid, peritoneal fluid, pleural fluid, pus, rheum, saliva, sebum (skin oil), semen, sputum, synovial fluid, sweat, tears, urine, vaginal secretion, vomit and mixtures of one or more thereof. Biological samples include cell cultures, bodily fluids, cell cultures from bodily fluids. Bodily fluids may be obtained from a mammal organism, for example by puncture, or other collecting or sampling procedures.
The terms “subject,” “individual,” and “patient” are used interchangeably herein to refer to a vertebrate, preferably a mammal, more preferably a human. Mammals include, but are not limited to, murines, simians, humans, farm animals, sport animals, and pets. Tissues, cells and their progeny of a biological entity obtained in vivo or cultured in vitro are also encompassed.
Various embodiments are described hereinafter. It should be noted that the specific embodiments are not intended as an exhaustive description or as a limitation to the broader aspects discussed herein. One aspect described in conjunction with a particular embodiment is not necessarily limited to that embodiment and can be practiced with any other embodiment(s). Reference throughout this specification to “one embodiment”, “an embodiment,” “an example embodiment,” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment,” “in an embodiment,” or “an example embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment, but may. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner, as would be apparent to a person skilled in the art from this disclosure, in one or more embodiments. Furthermore, while some embodiments described herein include some but not other features included in other embodiments, combinations of features of different embodiments are meant to be within the scope of the invention. For example, in the appended claims, any of the claimed embodiments can be used in any combination.
All publications, published patent documents, and patent applications cited herein are hereby incorporated by reference to the same extent as though each individual publication, published patent document, or patent application was specifically and individually indicated as being incorporated by reference.
Embodiments disclosed herein provide engineered compositions comprising a catalytically inactive, RNA-binding, Cas polypeptide (dCas) and a trans-splicing donor construct. The trans-splicing donor construct may comprise a guide sequence, an intron, a splice acceptor (SA), a splice donor (SD), and a poly-A tail. The guide portion of the trans-splicing construct is capable of forming a complex with the dCas and directing sequence-specific binding of the complex to a target pre-cursor mRNA.
Embodiments disclosed herein further provide vector systems encoding one or more vectors encoding components of any of the disclosed compositions.
Embodiments disclosed herein provide methods using the disclosed compositions to modify endogenously expressed mRNA. In an example embodiment, the methods disclosed herein may be used to replace a mutated exon associated with a disease or disorder by trans-splicing a donor exon which restores a gene's wild-type function.
Embodiments disclosed herein also provide methods for expressing heterologous sequences by modifying one or more exons of an endogenously expressed pre-mRNA such that the mature mRNA encodes either a fusion protein or heterologous protein product. In such embodiments, target pre-mRNAs may be selected for their relative expression levels, e.g. selecting a more abundantly endogenously expressed pre-mRNA to increase expression of the heterologous protein product. Likewise, pre-mRNAs may be selected that are uniquely expressed in a given type or cell state such that generation of the heterologous protein product is only expressed in a specific cell type or cell state. Such embodiment may be used for bioproduction of a desired polypeptide product, to induce a change in cell phenotype or cell state to a preferred cell phenotype or cell state, or used to express a therapeutic polypeptide that corrects a disease condition within the target cell type or is exported by the targeted cell for localized or systemic distribution of the heterologous therapeutic polypeptide to other cell and tissue types.
Additional features and advantages of the aforementioned embodiments are further described below.
Trans-splicing compositions disclosed herein comprise a RNA-binding dCas and a trans-splicing donor construct. In one example embodiment, the trans-splicing construct may comprise a guide sequence, an intron, a splice acceptor, a donor RNA, and a poly-A tail. The guide sequence is capable of forming a complex with the dCas and directing site-specific binding of the dCas to a target pre-mRNA. Binding of the complex results in positioning of the other components of the trans-splicing donor construct at a position on the target pre-mRNA such that the remaining components of the trans-splicing construct can facilitate splicing of the donor RNA into the targeted pre-mRNA. In another example embodiment, the trans-splicing construct may comprise a guide sequence, a group I intron-derived ribozyme, and a donor RNA. The function of the guide sequence and donor RNA are the same as in the prior embodiment, with the ribozyme facilitating splicing of the donor RNA into the target pre-mRNA.
In a certain example embodiment, provided herein are compositions which allow trans-splicing of pre-mRNA by introduction and expression of a transgene or transgenes in cells containing a desired target pre-mRNA. In an embodiment, the transgene expression is conditional. In an embodiment, the transgene expression is constitutive. In an embodiment, the guide sequence is designed to target a pre-mRNA transcript uniquely expressed in a cell of interest. In an embodiment, the trans-splicing donor RNA carries a transgene to be expressed but lacks a ribosomal binding site and start codon. In embodiments, the introduced transgene would only be expressed upon successful trans-splicing onto the target mRNA.
In an example embodiment, the expression of the trans-spliced donor RNA occurs by replacing the final endogenous exon with a new exon containing the protein coding sequence for the target gene's final exon. In an embodiment, the final endogenous exon is fused in-frame with a linker, which is followed by the transgene to be expressed. In an embodiment, expression of the transgene can only occur when the replacement exon, linker and transgene are in-frame. In an embodiment, the transgene can be any gene of interest, including, but not limited to, therapeutic and non-therapeutic uses. In an embodiment, the therapeutic use is to treat a disease or disorder. In an embodiment, the non-therapeutic use is to enhance a desirable characteristic by, for example, modification of gene expression.
Cas polypeptides that may be used in trans-splicing compositions disclosed herein include any Cas polypeptide capable of forming a complex with a guide sequence and bind, via the guide sequence, to an RNA polynucleotide. Example, Cas polynucleotide include Class I, Type III Cas polypeptides and Class 2, Type VI (Cas13) Cas polypeptides, and hybrid systems such as Cas7-11 systems (See e.g., Özcan et al. “Programmable RNA targeting with the single-protein CRISPR effector Cas7-11” Nature 597, 720-725 (2021)). As the Cas polypeptide is used to help facilitate binding of the trans-splicing compositions to target pre-mRNA the natural catalytic function of the Cas polypeptide may be rendered inactive, typically via mutation of a catalytic residue in the active site of the Cas polypeptide. This may also be necessary, to avoid the collateral activity of some Cas RNA endonucleases, e.g., Cas13, which results in non-specific cleavage of non-target RNAs upon activation/binding of Cas13 to a target RNA, and in the context of the present invention would likely cause unwanted cell death. Where the Cas13 protein has nuclease activity, the Cas13 protein may be modified to have diminished nuclease activity e.g., nuclease inactivation of at least 70%, at least 80%, at least 90%, at least 95%, at least 97%, or 100% as compared with the wild type enzyme. A Cas13 enzyme may have advantageously, for example, about 0% of the nuclease activity of the non-mutated or wild type Cas13 enzyme or CRISPR-Cas protein. In some embodiments, the CRISPR-Cas protein is a dead Cas13.
The compositions, systems, and methods described in greater detail elsewhere herein can be designed and adapted for use with Class 2 CRISPR-Cas systems. Thus, in some embodiments, the CRISPR-Cas system is a Class 2 CRISPR-Cas system. Class 2 systems are distinguished from Class 1 systems in that they have a single, large, multi-domain effector protein. In certain example embodiments, the Class 2 system can be a Type VI system, which is described in Makarova et al. “Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants” Nature Reviews Microbiology, 18:67-81 (February 2020), incorporated herein by reference. Type VI CRISPR-Cas proteins comprise two HEPN catalytic domains which are tied to the protein's ability to act upon target RNA molecules. A RxxxxH catalytic motif is present within each HEPN domain and is required for RNA endonuclease activity. The HEPN domains facilitates binding of the Cas polypeptide even when catalytic motif residues are mutated. In certain embodiments, the RxxxxH motif comprises a R[N/H/K]X1X2X3H sequence, optionally wherein X1 is R, S, D, E, Q, N, G, or Y, and X2 is independently I, S, T, V, or L, and X3 is independently L, F, N, Y, V, I, S, D, E, or A.
Class 2, Type VI systems is further divided into subtypes as for example, Type VI systems can be divided into 5 subtypes: VI-A, VI-B1, VI-B2, VI-C, and VI-D. See Markova et al. 2020.
A distinguishing feature of the Type VI systems is that their effector complexes consist of a single, large, multi-domain protein and contain two HEPN domains and target RNA. Cas13 proteins also display collateral activity that is triggered by target recognition.
In some embodiments, the Class 2 system is a Type VI system. In some embodiments, the Type VI CRISPR-Cas system is a VI-A CRISPR-Cas system. In some embodiments, the Type VI CRISPR-Cas system is a VI-B1 CRISPR-Cas system. In some embodiments, the Type VI CRISPR-Cas system is a VI-B2 CRISPR-Cas system. In some embodiments, the Type VI CRISPR-Cas system is a VI-C CRISPR-Cas system. In some embodiments, the Type VI CRISPR-Cas system is a VI-D CRISPR-Cas system. In some embodiments, the Type VI CRISPR-Cas system includes a Cas13a (C2c2), Cas13b (Group 29/30), Cas13c, and/or Cas13d. See, generally, O'Connell et al. 2019 J. Mol Biol. Volume 431, Issue 1, 4 Jan. 2019, pages 66-87.
Another feature of Class 2 CRISPR-Cas systems which target RNA is that they do not typically rely on PAM sequences. Instead, such systems typically recognize protospacer flanking sites (PFSs) instead of PAMs. Thus, Type VI CRISPR-Cas systems typically recognize protospacer flanking sites (PFSs) instead of PAMs. PFSs represent an analogue to PAMs for RNA targets. Type VI CRISPR-Cas systems employ a Cas13 effector protein. Some Cas13 proteins analyzed to date, such as Cas13a (C2c2) identified from Leptotrichia shahii (LShCAs13a) have a specific discrimination against G at the 3′end of the target RNA. The presence of a C at the corresponding crRNA repeat site may indicate that nucleotide pairing at this position is rejected. However, some Cas13 proteins (e.g., LwaCAs13a and PspCas13b) do not seem to have a PFS preference. See e.g., Gleditzsch et al. 2019. RNA Biology. 16(4):504-517.
Some Type VI proteins, such as subtype B, have 5′-recognition of D (G, T, A) and a 3′-motif requirement of NAN or NNA. One example is the Cas13b protein identified in Bergeyella zoohelcum (BzCas13b). See e.g., Gleditzsch et al. 2019. RNA Biology. 16(4):504-517.
Overall Type VI CRISPR-Cas systems appear to have less restrictive rules for substrate (e.g., target sequence) recognition than those that target DNA (e.g., Type V and type II).
In one example embodiment, the Cas may be a Cas13a such as described in Shmakov, S. et al. Nat Rev Microbiol 15, 169-182; U.S. patent application Ser. No. 15/482,603; U.S. patent application Ser. No. 16/310,577; Abudayyeh et al., Nature. 2017 Oct. 12; 550(7675):280-284; doiL10.1038/nature24049. In one example embodiment, the Cas13a may be derived from Leptotrichia shahii Cas13a, Lachnospiraceae bacterium MA2020 Cas13a, Lachnospiraceae bacterium NK4A179 Cas13a, Clostridium aminophilum (DSM 10710) Cas13a, Carnobacterium gallinarum (DSM 4847) Cas13, Paludibacter propionicigenes (WB4) Cas13, Listeria weihenstephanensis (FSL R9-0317) Cas13, Listeriaceae bacterium (FSL M6-0635) Cas13, Listeria newyorkensis (FSL M6-0635) Cas13, Leptotrichia wadei (F0279) Cas13, Rhodobacter capsulatus (SB 1003) Cas13, Rhodobacter capsulatus (R121) Cas13, Rhodobacter capsulatus (DE442) Cas13, Leptotrichia wadei (Lw2) Cas13, or Listeria seeligeri Cas13).
Cas13a may be mutated to generate catalytically inactive mutants in or near the HEPN1 and HEPN2 domains and include: R474A and R1046A corresponding to the Leptotrichia wadei (LwaCas13a) or amino acid positions corresponding thereto of a Cas13a ortholog. Abudayyeh et al., Nature. 2017 Oct. 12; 550(7675):280-284; doiL10.1038/nature24049; see also, Abudayyeh et al., Science. 2016 Aug. 5; 353 (6299); doi:10.1126/science.aaf573 (mutation of Leptotrichia shahii Cas13a amino acids positions R597A and R1278A of HEPN domain catalytic motif generated catalytically inactive protein); Shmakov et al., 2015 Mol Cell 60, 385-397 (characterization of Type VI proteins).
In one example embodiment, the Cas may be a Cas13b such as described in Kannan, S. et al. (EPub Aug. 30, 2021), Nature Biotechnology, (doi.org/10.1038/s41587-021-01030-2); Smargon A A, et al. (2017) Mol Cell. 2017; 65:618-630 e617; U.S. patent application Ser. No. 15/960,064; U.S. patent application Ser. No. 16/493,464; U.S. patent application Ser. No. 16/604,729; Smargon, A. et al. (2017), Mol. Cell, 65 618-630; Slaymaker, I. et al. (2021), Cell Reports, 26 3741-3751; Fareh, M. et al. (2021), Nature Comm., 12, 4270 https://doi.org/10.1038/s41467-021-24577-9. Example Cas13bs include Cas 13bs derived from Bergeyella zoohelcum, Prevotella intermedia, Prevotella buccae, Alistipes sp. ZOR0009, Prevotella sp. MA2016, Riemerella anatipestifer, Prevotella aurantiaca, Prevotella saccharolytica, Prevotella intermedia, Capnocytophaga canimorsus, Porphyromonas gulae, Prevotella sp. P5-125, Flavobacterium branchiophilum, Porphyromonas gingivalis, Prevotella intermediam.
Cas13b may be mutated to generate catalytically inactive mutants in or near the HEPN1 and HEPN2 domains and include: R116A, H121A, R1177A, H1182A of a Cas13b protein originating from Bergeyella zoohelcum ATCC 43767 or amino acid positions corresponding thereto of a Cas13b ortholog.
In one example embodiment, the Cas may be a Cas13c such as described in Shmakov S, et al. Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol. 2017; 15:169-182. In an embodiment, the Cas13c protein may comprise from one of the following ortholog species (including multiple CRISPR loci); Fusobacterium necrophorum subsp. funduliforme ATCC 51357; Fusobacterium necrophorum DJ-2; Fusobacterium necrophorum BFTR-1; Fusobacterium necrophorum subsp. funduliforme 1_1_36S; Fusobacterium perfoetens ATCC 29250 T364; Fusobacterium ulcerans ATCC 49185; Anaerosalibacter sp. ND1; Cetobacterium sp. ZOR0034; Anaerosilobacter massiliensis; Fusobacterium varium; and Tissierella sp. P1.
In an example embodiment, Cas13c nuclease activity may be mutated to generate catalytically inactive mutants in or near the HEPN1 domain and include: D372, R377, Q/H382, and F383 or corresponding amino acids of an ortholog, and in or near the HEPN2 domain and include: K893, N894, R898, N899, H903, F904, Y906, Y927, D928, K930, K932 corresponding to the consensus amino acid sequences provided in Tables 4a and 4b of WO 2019/005866 which is incorporated herein by reference, or the corresponding amino acids of an ortholog.
In one example embodiment, the Cas polypeptide may be a Cas13d such as described in Yan et al., Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein, Molecular Cell (2018), doi.org/10.1016/j.molcel.2018.02.028; Konermann et al., 2018, Cell 173, 665-676; doi:10.1016/j.cell.2018.02.033, U.S. Pat. Nos. 10,666,592 and 10,392,616. In certain embodiments, Cas13d is Eubacterium siraeum DSM 15702 (EsCas13d) or Ruminococcus sp. N15.MGS-57 (RspCas13d) (see, e.g., Yan et al., Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein, Molecular Cell (2018), doi.org/10.1016/j.molcel.2018.02.028).
Cas13d may be mutated to generate catalytically inactive mutants in or near the HEPN1 and HEPN2 domains and include: R288A, R295A, H300A, H828A, R849A, and H854A corresponding to an uncultured Ruminococcus sp. sample (UrCas13d) or corresponding amino acids of an ortholog. (Anantharaman, V. et al. (2013), Bio. Direct 8, 15; Zhang, B. et al. (2019), Nat. Comm. 10:2544/doi.org/10.1038/s41467-019-10507-3; Konermann, S. et al. (2018), Cell 173:665-76 e14).
RNA-targeting CRISPR-Cas13 systems have been harnessed for a variety of applications, including precision base editing. RNA base editing is a promising therapeutic strategy that allows for installation of temporary, non-heritable edits. However, therapeutic delivery of Cas13-based RNA editing systems remains challenging, in part because the size of cas13 genes identified so far exceed the packaging capacity of adeno-associated virus (AAV), the most widely used viral vector for gene delivery. Applicants identified prokaryotic and viral genomes and metagenomes for small Cas13 orthologs and identified two novel groups of ultra-small Cas13 proteins that form distinct branches within the Cas13b and Cas13c subtypes. Unlike other Type VI-B CRISPR-Cas loci, the genomic loci encoding Cas13b-t lack any accessory genes. Applicants also observed that Cas13b are more active in mammalian systems than Cas13c and support RNA base editing, thereby supporting further exploration into these mini-Cas13 proteins.
Cas13b-t is a functional family of ultra-small Cas nucleases, comprising Cas13b-t1-Cas13b-t2, Cas13b-t3, Cas13b-t4, Cas14b-t5 and Cas13b-t6. In an embodiment, the small Cas proteins are small Cas13b-t proteins. In an embodiment, the Cas13b-t is Cas13b-t1, Cas13b-t1a, Cas13b-t2, Cas13b-t3, Cas13b-t4, Cas14b-t5 or Cas13b-t6. Applicants showed that wild-type Cas 13b-t sequence and sequences with mutation of both the arginine and histidine residues to alanines in both HEPN domains of RanCas13b, Cas13b-t1 and Cas13b-t3 when targeted to a Gaussia luciferase transcript with two different targeting spacers were knocked down, as measured by a decrease of luciferase activity, and abolished in the HEPN-mutated proteins, with RanCas13b acting as a positive control (Kannan, S. et al. (EPub Aug. 30, 2021), Nat Biotech, https://doi.org/10.1038/s41587-021-01030-2). Exemplary Cas13bts are provided, for example, at Tables 3 and 13 of International Publication WO 2021/055874.
Truncated dCas13
dCas13 may be further truncated to derive a minimal polypeptide that maintains the ability to complex with a guide sequence, thus retaining the re-programmability and site specificity functions of the composition but reducing the size of the Cas polypeptide, which in certain contexts, may help facilitate delivery of the composition by reducing the overall cargo size, for example when the composition is delivered by a vector, such as a viral vector.
In some embodiments, the dCas13 protein is truncated at a C terminus, an N terminus, or both. In some embodiments, the dCas13 is truncated by at least 20, at least 40, at least 60, at least 80, at least 100, at least 120, at least 140, at least 160, at least 180, at least 200, at least 220, at least 240, at least 260, or at least 300 amino acids on the C terminus. In some embodiments, the dCas13 is truncated by at least 20, at least 40, at least 60, at least 80, at least 100, at least 120, at least 140, at least 160, at least 180, at least 200, at least 220, at least 240, at least 260, or at least 300 amino acids on the N terminus. In some embodiments, the truncated form of the Cas13 effector protein has been truncated at C-terminal Δ984-1090, C-terminal Δ1026-1090, C-terminal Δ1053-1090, C-terminal Δ934-1090, C-terminal Δ884-1090, C-terminal A834-1090, C-terminal Δ784-1090, or C-terminal Δ734-1090, wherein amino acid positions of the truncations correspond to amino acid positions of Prevotella sp. P5-125 Cas13b protein. In some embodiments, the truncated form of the Cas13 effector protein has been truncated at C-terminal Δ795-1095, wherein amino acid positions of the truncation correspond to amino acid positions of Riemerella anatipestifer Cas13b protein. In some embodiments, the truncated form of the Cas13 effector protein has been truncated at C-terminal Δ 875-1175, C-terminal Δ 895-1175, C-terminal Δ 915-1175, C-terminal Δ 935-1175, C-terminal Δ 955-1175, C-terminal Δ 975-1175, C-terminal Δ 995-1175, C-terminal Δ 1015-1175, C-terminal Δ 1035-1175, C-terminal Δ 1055-1175, C-terminal Δ 1075-1175, C-terminal Δ 1095-1175, C-terminal Δ 1115-1175, C-terminal Δ 1135-1175, C-terminal Δ 1155-1175, wherein amino acid positions correspond to amino acid positions of Porphyromonas gulae Cas13b protein. In some embodiments, the truncated form of the Cas13 effector protein has been truncated at N-terminal Δ1-125, N-terminal Δ 1-88, or N-terminal Δ 1-72, wherein amino acid positions of the truncations correspond to amino acid positions of Prevotella sp. P5-125 Cas13b protein. In some embodiments, the dCas13 comprises a truncated form of a Cas13 effector protein at an HEPN domain of the Cas13 effector protein. The foregoing embodiments are disclosed in US20200291382A1 and are hereby incorporated by reference in their entirety.
The compositions, systems, and methods described in greater detail elsewhere herein can be designed and adapted for use with Class 1 CRISPR-Cas systems. Thus, in some embodiments, the CRISPR-Cas system is a Class 1 CRISPR-Cas system. Class 1 systems are distinguished from Class 2 systems in that they are more complex, multi-component systems unlike their Class 2 counterparts which have a single, large, multi-domain effector protein. In certain example embodiments, the Class 1 system can be a Type III system, which is described in Makarova et al. “Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants” Nature Reviews Microbiology, 18:67-81 (February 2020), incorporated herein by reference.
Type III systems are subdivided into subtypes III-A to III-F, highlighting its heterogeneity, and it is of particular interest as its members degrade both RNA and DNA of the invaders. Type III systems domain architecture is similar to other CRISPR-Cas systems but possess notable differences. The general domain architecture is comprised of cas3, cas8 or cas10, cas11, cas7, cas5, cas6, cas1, cas2, and cas4 followed by repeats and spacers. The functional aspects of the different domains is divided into the Adaptation Region, which contains a repeat array and a spacer integration region comprised of cas1, cas2 and RT genes. The Expression Region contains the pre-crRNA processing gene cas6. The Interference Region contains the effector module (crRNA) and target binding genes and comprise cas7, cas5, SS and cas10 genes followed by a signal transduction/ancillary gene region containing CRISPR-Associated Rossman fold (CARF) regions and a HEPN domain (higher eukaryotes and prokaryotes nucleotide-binding domain.
Type III systems can be further divided into subtypes Csm and Cmr. For example, Subtype III-A (Csm) and III-B (Cmr) are the best characterized. Both share the signature cas10 gene product called Csm1 and Cmr2. Cas10 encodes a multidomain protein containing an N-terminal HD (histidine-aspartate) domain followed by a palm domain with a zinc finger (ZnF) insertion, a small a-helical domain (D2), and another palm domain followed by a C-terminal a-helical domain (Mohanraju et al., (2016), Science, 353, aad5147). As the host RNA polymerase transcribes the foreign DNA, the nascent mRNA is recognized by base pairing with complementary crRNA and cleaved into single-stranded RNA (ssRNA) fragments at 6-nt intervals by the Cmr4/Csm3 subunits (Ramia et al., (2014), Cell Rep. 9: 1610-1614). This binding tethers the complex to the transcription bubble (Kazlauskiene et al., (2017), Science, 357, 605-609). Identification of the mRNA as an invader-derived transcript results in the activation of the Cmr2/Csm1 protein.
The compositions, methods, and systems provided herein may also be designed for use with Class 1 CRISPR proteins. In certain example embodiments, the Class 1 system may comprise a Type III Cas protein as described in Makarova K., et al. “Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants” Nature Reviews Microbiology, 18:67-81 (February 2020); Lin et al. “A Type III-A CRISPR-Cas system mediates co-transcriptional DNA cleavage at the transcriptional bubbles in close proximity to active effectors” Nucleic Acids Research (July 2021) 49(13): 7628-7643; and McMahon et al. “Structure and mechanism of a Type III CRISPR defence DNA nuclease activated by cyclic oligoadenylate” Nature Comm. (2020) 11:500). Class 1 systems typically use a multi-protein effector complex, which can, in some embodiments, include ancillary proteins, such as for example, in a Type III CRISPR-Cas complex include Cas1, Cas2, Cas6, Cas10, Csm2, Csm3, Csm4, Csm5, Cmr1, Cmr2, Cmr3, Cmr4, Cmr5, Cmr6 for subtypes Type III-A, III-B, III-C, and III-D.
Type III (Csm/Cmr) CRISPR systems utilize a cyclase domain in the Cas10 subunit to generate cyclic oligoadenylate (cOA) by polymerizing ATP. The cyclase activity is activated by target RNA binding and switched off by subsequent RNA cleavage and dissociation. Type III CRISPR-Cas systems possess three distinct activities, namely, (a) targeted RNA cleavage via Csm3/Cmr4, the large backbone subunit (Benda, C. et al. (2014), Mol. Cell 56, 43-54; Staals, R. et al. (2014), Mol. Cell, 56, 518-530; Ramia, N. et al. (2014) Cell Rep. 9, 1610-1619; Tamulaitis, G. et al. (2014), Mol. Cell, 56, 506-517), (b) targeted RNA-activated indiscriminate ssDNA cleavage from the HD nuclease domain of Csm1/Cmr2, the Cas10 subunit (Elmore, J. et al. (2016), Genes Dev. 30, 447-459; Kazlauskiene, M. et al. (2016), Mol. Cell 62, 295-306; Liu, T. et al. (2017), PloS One, 12 e0170552) and (c) cyclic oligoadenylate (cOA) generation by the Palm domains of Cas10 (Kazlauskiene, M. et al. (2017), Science 357, 605-609; Niewoehner, O. et al. (2017), Nature 548, 543-548; Han, W. et al. (2018), Nucleic Acids Res. 46, 10319-10330; Jia, N. et al. (2019), Mol. Cell, 75, 933-943). The last activity produces cOA secondary signals that allosterically regulate activities of CARF (CRISPR-Associated Rossman Fold) domain nucleases.
(Csm6/Csx1/Can1/Can2/Card1), CRISPR-accessory enzymes (Han, W. et al. (2017), Nucleic Acids Res., 45, 10740-10750) or NucC, an endonuclease that functions as the effector in the cyclic-oligonucleotide-based anti-phage signaling systems (CBASS) (Millman, A. et al. (2020), Nat. Microbiol., 5, 1608-1615). The Cas10-hosted cOA synthesis and the CARF domain nucleases or the CBASS restriction enzyme constitute the cOA signaling pathway that is essential for efficiently protecting host against nucleic acid invasion and these enzyme effectors probably protect the cell population by selectively eliminating the infected cells (abortive infection) (Deng, L. et al. (2013), Mol. Microbiol., 87, 1088-1099).
It is expressly envisioned that the compositions disclosed herein will be delivered to desirable locations within eukaryotic cells, tissues, and organs. Delivery of multimeric Class I complexes (e.g., Type III CRISPR-Cas systems) is known in the art. See, e.g., Pickar-Oliver et al. Nat. Biotechnol. 2019 December; 37(12): 1493-1501; doi: 10.1038/s41587-019-0235-7. Briefly, Pickar-Oliver utilized a CMV promoter for each subunit of the system and further included N-terminal Flag epitope tags and nuclear localization systems. While Pickar-Olivier delivered each subunit of the complex on a separate vector delivery of more than one subunit on the same construct. Dolan et al. delivered T. fusca Type I-E for genome editing in hESCs via RNP electroporation utilizing C-terminal NLSs on Cas3 and to the C-terminus of each of the six Cas7 subunits delivered via electroporation. Dolan et al., Mol Cell. 2019 Jun. 6; 74(5): 936-950.e5; doi: 10.1016/j.molcel.2019.03.014; see also Morisaka, et al. Nat. Commun. 10, 5302 (2019); Cameron et al, Nat Biotechnol. 2019 December; 37(12):1471-147. doi: 10.1038/s41587-019-0310-0 (fusion of multi-subunit cascade to Fok1 nuclease domain for delivery via polycistronic vector with guide RNA delivered on separate plasmid for eukaryotic application); and Young et al., Commun Biol. 2019 Oct. 18; 2:383. doi: 10.1038/s42003-019-0637-6 (delivery of class 1 type 1-E S. thermophilus system in Zea mays by tethering a plant transcriptional activation domain to 3 different subunits of the Cascade complex). As such, it is known to those skilled in the art that delivery of Class 1 CRISPR-Cas complexes, for example, Type III CRISPR-Cas systems, while more complex than Class II systems, are able to be efficiently delivered to cells to effectuate a targeted cellular activity or alter a targeted cellular function. In embodiments, the compositions and methods disclosed herein include activities effectuated by the introduction of Type-III systems into cells and include trans-splicing of pre-mRNA to replace an exon or to express a transgene. In embodiments, the compositions and methods disclosed herein are used for exon replacement to convert a mutated gene to a wild-type gene, for example, for a therapeutic use. In embodiments, the compositions and methods disclosed herein are used for exon replacement to convert a mutated gene to a wild-type gene for non-therapeutic uses. In embodiments, the compositions and methods disclosed herein are used for exon replacement to increase expression of a wild-type gene, i.e., for enhancement of a desirable function. In embodiments, the compositions and methods disclosed herein are used for introducing a transgene for a therapeutic or non-therapeutic application. In embodiments, the compositions and methods disclosed herein are used for introducing a transgene for stabilizing a transcript and thereby increasing expression of the gene.
In response to infection, the Csm (type III-A and type-III D) or Cmr (type III-B and III-C) effector complex, guided by the crRNA, binds to the matching sequence in the invading RNA target and activates the Cas10 subunit (Makarova, K. et al., (2020), Nature Reviews Microbiology, 18, 676-83). Activated Cas10 exhibits two different catalytic activities: ssDNase which degrades the target DNA that is being transcribed and synthetase, which produces cyclic oligoadenylates (cAns, n=2-6) that act as secondary messengers (Kazlauskiene, M. et al. (2017) Science, 357, 605-609). In addition to csm and cmr coding genes, csm6/csx1-like genes are frequently associated with Type III CRISPR-Cas systems (Anantharaman, V. et al. (2013), Biol. Direct 8, 15). Csm6 ribonuclease is preferentially associated with Type III-A, while Csx1 ribonuclease is found with no clear link to a particular subtype (Makarova, K. et al (2014), Frontiers Genet. 5, 102; Makarova, K. et al. (2011), Nat. Rev. Microbiol., 9, 467-477). It had been previously shown that cA6 or cA4 molecules bind to the CARF (CRISPR-associated Rossmann fold) domain of the Csm6/Csx1 RNases and activate their HEPN (higher eukaryotes and prokaryotes nucleotide-binding) domain for RNA degradation (Kazlauskiene, M. et al. (2017), Science 357, 605-609; Niewoehner, O. et al. (2017), Nature 548, 543-548; Han, W. et al. (2018), Nucleic Acids Res. 46, 10319-10330). Activated Csm6/Csx1 RNases presumably degrade both cellular RNAs and phage transcripts at the later stages of phage infection, which can lead to cell death or dormancy (Jiang, W. et al. (2016), Cell, 164, 710-721; Rostol, J. et al. (2019), Nat. Microbiol., 4, 656-662). Some Type III systems are predicted to have cAn binding CARF domains in conjunction with various effector domains such as putative transcription factors or DNases (Makarova, K., et al. (2014), Front. Genet., 5, 102; Shmakov, S. et al. (2018) Proc. Natl. Acad. Sci. U.S.A., 115, E5307-E5316). The steady state concentration of cAns in the cell and the cAn-dependent Csm6/Csx1 RNase activity depends on two factors: (i) cAn synthesis that is controlled through target RNA degradation by Csm3 (Rouillon, C., et al. (2018), eLife, 7, e36734.) and (ii) cAn degradation by specialized enzymes called ring nucleases. A family of ring nucleases composed of a sole CARF domain that degrade cA4 has been first identified in Sulfolobus solfataricus and Sulfolobus islandicus (Athukoralage, J. et al., (2018), Nature, 562, 277-280; Molina, R. et al. (2019), Nat. Commun., 10, 4302). It has been shown that the CARF domain of cA4-dependent Csm6 RNases from Thermus thermophilus and Thermococcus onnurineus also function as a ring nuclease that slowly degrades cA4 (Athukoralage, J., et al. (2019), J. Mol. Biol., 431, 2894-2899; Jia, N. et al. (2019), Mol. Cell, 75, 944-956). Recently, a widespread new family of archaeal viral enzymes that efficiently degrade cA4 has been identified, implying that these enzymes could function as Type III anti-CRISPR proteins (Athukoralage, J., et al. (2020), Nature, 577, 572-575). However, the control and regulation mechanisms of cA6-dependent CARF RNases remain to be elucidated. To address this question, attention has been focused on the well-characterized Streptoccocus thermophilus type III-A CRISPR-Cas system (Tamulaitis, G. et al. (2014), Mol. Cell, 56, 506-517; Mogila, I. et al. (2019), Cell Rep., 26, 2753-276). It was previously shown that in vitro StCsm complex produces cA3, cA4, cA5 and cA6 in decreasing order of abundance and traces of cA2 (Kazlauskiene, M. et al. (2017), Science, 357, 605-609). Although cA3 was the major reaction product in vitro, the least abundant cA6 acted as the activator of StCsm6 and StCsm6_RNases (Kazlauskiene, M. et al. (2017), Science, 357, 605-609), raising a question whether a similar or different set of cAns is produced in vivo. Using a targeted HPLC-MS analysis of cell metabolites we show here that StCsm complex in the heterologous E. coli host produces a range of different cAns, with the equilibrium shifted towards cA5 and cA6 species. It is further shown that cells expressing wild type (WT) StCsm6 and StCsm6_exhibit dramatically lower cAn levels and demonstrated that both CARF and HEPN domains of StCsm6 RNases function as ring nucleases that degrade the cA6 and other cAns to auto-regulate the level of the signaling molecules and to limit the degree of RNA degradation in the cell after phage is eliminated (Smalakyte, D. et al. (2020), Nucleic Acids Res. 48 (16):9204-9217).
The Type III-B Cmr complex was originally purified from Pyrococcus furiosus (Pf) and found to contain the Cas10 signature protein (Cmr2), three Cas7-like proteins (Cmr1, Cmr4, and Cmr6), a Cas5-like protein (Cmr3), and a small unrelated protein (Cmr5) (Hale, C. et al., (2009), Cell, 139, 945-956; Makarova, K. et al., (2011a), Biol. Direct 6, 38). Studies to date have revealed the crystal structures of three of the six Pf Cmr subunits (Cmr2, Cmr3, and Cmr5; (Reeks, J. et al. (2013), Biochem. J., 453, 155-166) and the overall superhelical architecture of the complex by cryoelectron microscopy (cryo-EM) (Spilman, M. et al., (2013), Mol. Cell, 52, 146-152). The Pf Cmr complex can load either a 39 nt long or a 45 nt long crRNA (Hale, C. et al., (2012), Mol. Cell, 45, 292-302. Both crRNAs have in common an 8 nt tag sequence at the 5′ end (corresponding to part of the CRISPR repeat sequence) and feature either a 31 nt or a 37 nt guide sequence (corresponding to an invader-derived spacer). The crRNAs guide the Pf Cmr complex to cleave the complementary RNA targets 14 nt upstream of the 30 end (Hale, C. et al., (2009), Cell, 139, 945-956). This ruler mechanism is conserved in the Thermus thermophilus (Tt) Cmr complex (Staals, R., et al., (2013), Mol. Cell, 52, 135-145, while Sulfolobus solfataricus (Sso) appears to differ (Zhang, J. et al., (2012), Mol. Cell, 45, 303-313). As of 2013, the nuclease active site responsible for RNA-target cleavage was currently unknown (reviewed in Bailey, S. (2013), Biochem. Soc. Trans. 41, 1464-1467). A pseudoatomic model of the P. furiosus Cmr complex identified the long-sought-after RNA-target cleavage site and it was found to reside in Cmr4 (Benda, C. et al. (2014), Mol. Cell, 56, 43-54).
As described above, the architecture of the Type III Cas complex is multi-component and the Cmr complex of P. furiosus quarternary complex reveals involvement of Cmr1, Cmr2, Cmr3, Cmr4, Cmr5 and Cmr6 in ribonuclease activity. RNA-target cleavage assays were performed on all suspected Cmr proteins, both wild-type and mutated, involved in putative binding and nuclease activities (Benda, C. et al. (2014), Mol. Cell, 56, 43-54). The results of wild-type incubations with crRNA and crRNA containing substitutions of amino acid residues on Cmr4 with alanine indicated Cmr4 was conferring the ribonuclease activity, with the wild-type protein yielding primarily 14 nt fragments but also at lower levels 20 nt and 26 nt fragments. Cmr4 substitutions of H15A, E227A decreased RNAse activity significantly, while Y229A decreased nuclease activity moderately. However, mutating residue D26 (e.g., D26A) caused a complete elimination of nuclease activity, indicting a role in the catalytic mechanism. This residue is also conserved in other Cmr orthologs from Type III-B systems, but also is one of the few amino acids residues to be conserved in the Csm3 proteins (e.g., Mk D35 of Csm3), the putative backbone protein of Type III-A systems (Benda, C. et al., (2014), Mol. Cell, 56, 43-54; Hrle, A. et al. (2013), RNA Biol. 10, 1670-1678).
In an example embodiment, Type III-B Cas nuclease activity may be decreased or inactivated (dCmr4) by mutating singly or in combination a variety of amino acids located in and around the active site of Cmr4. In an embodiment, the catalytically reduced Cmr4 protein or dCmr4 protein comprises one or more of non-limiting examples of amino acid residues that can be modified to generate mutants that have reduced catalytic activity or are catalytically inactive and include: H15A, E227A, Y229A and D26A. In an embodiment, the compositions and methods disclose a catalytically inactive Cmr4 protein, which contains the D26A substitution.
A Type III-E protein, also referred to herein as Cas7-11 is a single-protein effector in the Class 1 system that can be used in accordance with the invention. See, Ozcan, A., Krajeski, R., Ioannidi, E. et al. Programmable RNA targeting with the single-protein CRISPR effector Cas7-11. Nature (2021); doi:10.1038/s41586-021-03886-5, incorporated herein by reference. An exemplary Cass7-11 protein is from Desulfonema ishimotonii (DiCas7-11), which was shown to accurately edit RNA in mammalian cells without damaging the cell but does not exhibit collateral activity exhibited by the Cas13 proteins. DiCas7-11 also processes pre-CRISPR RNA into mature CRISPR RNA (crRNA) like a class 2 Cas proteins, and cleaves RNA at positions defined by the target:spacer duplex, without detectable non-specific activity. An alignment of representative Cas7-11 orthologues shows conservation of the residues involved in catalysis: D177, D429, D654, D745, D758, and E959, which may be mutated to provide a catalytically inactive protein. See Ozcan, et al., 2021 at Extended Data
The above Cas polypeptides as referred to herein may also encompasses a functional variant of a RNA-bind Cas or a homologue or an orthologue thereof. A “functional variant” of a protein as used herein refers to a variant of such protein which retains at least partially the activity of that protein. Functional variants may include mutants (which may be insertion, deletion, or replacement mutants), including polymorphs, etc. Also included within functional variants are fusion products of such protein with another, usually unrelated, nucleic acid, protein, polypeptide or peptide. Functional variants may be naturally occurring or may be man-made. Advantageous embodiments can involve engineered or non-naturally occurring Type VI RNA-targeting proteins.
In an embodiment, nucleic acid molecule(s) encoding the Cas13 or an ortholog or homolog thereof, may be codon-optimized for expression in a eukaryotic cell. A eukaryote can be as herein discussed. Nucleic acid molecule(s) can be engineered or non-naturally occurring.
In an embodiment, the Cas13 or an ortholog or homolog thereof, may comprise one or more mutations (and hence nucleic acid molecule(s) coding for same may have mutation(s). The mutations may be artificially introduced mutations and may include but are not limited to one or more mutations in a catalytic domain such as the catalytic motif of the HEPN domain.
In one example embodiment, trans-splicing donor constructs comprise a guide sequence, an intron, a splice acceptor, donor RNA, and a poly-A tail. The guide sequence is capable of forming a complex with the RNA-binding Cas. The sequence of the guide sequence can be configured to direct sequence-specific binding of the complex to a target pre-mRNA to be modified. The donor RNA represents the sequence to be spliced into the pre-mRNA to generate a modified mature RNA. The type and composition of the donor RNA may vary, as discussed in further detail below, based on the desired use of the composition. The intron and splice acceptor interact with the spliceosome to facilitate splicing of the donor RNA into the targeted pre-mRNA. The poly-AA tail serves to assist translation efficiency and stability of the resulting mRNA.
The CRISPR-Cas or Cas-Based system described herein can, in some embodiments, include one or more guide molecules. The terms guide molecule, guide sequence and guide polynucleotide, refer to polynucleotides capable of guiding Cas to a target genomic locus and are used interchangeably as in foregoing cited documents such as WO 2014/093622 (PCT/US2013/074667). In general, a guide sequence is any polynucleotide sequence having sufficient complementarity with a target polynucleotide sequence to hybridize with the target sequence and direct sequence-specific binding of a CRISPR complex to the target sequence. The guide molecule can be a polynucleotide.
The ability of a guide sequence (within a trans-splicing construct) to direct sequence-specific binding of a nucleic acid-targeting complex to a target nucleic acid sequence may be assessed by any suitable assay. For example, the components of a nucleic acid-targeting CRISPR system sufficient to form a nucleic acid-targeting complex, including the guide sequence to be tested, may be provided to a host cell having the corresponding target nucleic acid sequence, such as by transfection with vectors encoding the components of the nucleic acid-targeting complex, followed by an assessment of preferential targeting (e.g., cleavage) within the target nucleic acid sequence, such as by Surveyor assay (Qui et al. 2004. BioTechniques. 36(4)702-707). Similarly, cleavage of a target nucleic acid sequence may be evaluated in a test tube by providing the target nucleic acid sequence, components of a nucleic acid-targeting complex, including the guide sequence to be tested and a control guide sequence different from the test guide sequence, and comparing binding or rate of cleavage at the target sequence between the test and control guide sequence reactions. Other assays are possible and will occur to those skilled in the art.
In some embodiments, the guide molecule is an RNA. The guide molecule(s) (also referred to interchangeably herein as guide polynucleotide and guide sequence) that are included in the CRISPR-Cas or Cas based system can be any polynucleotide sequence having sufficient complementarity with a target nucleic acid sequence to hybridize with the target nucleic acid sequence and direct sequence-specific binding of a nucleic acid-targeting complex to the target nucleic acid sequence. In some embodiments, the degree of complementarity, when optimally aligned using a suitable alignment algorithm, can be about or more than about 50%, 60%, 75%, 80%, 85%, 90%, 95%, 97.5%, 99%, or more. Optimal alignment may be determined with the use of any suitable algorithm for aligning sequences, non-limiting examples of which include the Smith-Waterman algorithm, the Needleman-Wunsch algorithm, algorithms based on the Burrows-Wheeler Transform (e.g., the Burrows Wheeler Aligner), ClustalW, Clustal X, BLAT, Novoalign (Novocraft Technologies; available at www.novocraft.com), ELAND (Illumina, San Diego, CA), SOAP (available at soap.genomics.org.cn), and Maq (available at maq.sourceforge.net).
In some embodiments, a nucleic acid-targeting guide is selected to reduce the degree secondary structure within the nucleic acid-targeting guide. In some embodiments, about or less than about 75%, 50%, 40%, 30%, 25%, 20%, 15%, 10%, 5%, 1%, or fewer of the nucleotides of the nucleic acid-targeting guide participate in self-complementary base pairing when optimally folded. Optimal folding may be determined by any suitable polynucleotide folding algorithm. Some programs are based on calculating the minimal Gibbs free energy. An example of one such algorithm is mFold, as described by Zuker and Stiegler (Nucleic Acids Res. 9(1981), 133-148). Another example folding algorithm is the online webserver RNAfold, developed at Institute for Theoretical Chemistry at the University of Vienna, using the centroid structure prediction algorithm (see e.g., A. R. Gruber et al., 2008, Cell 106(1): 23-24; and P A Carr and G M Church, 2009, Nature Biotechnology 27(12): 1151-62).
In certain embodiments, a guide sequence portion of the trans-splicing construct may comprise, consist essentially of, or consist of a direct repeat (DR) sequence and a guide sequence or spacer sequence. In certain embodiments, the guide RNA or crRNA may comprise, consist essentially of, or consist of a direct repeat sequence fused or linked to a guide sequence or spacer sequence. In certain embodiments, the direct repeat sequence may be located upstream (i.e., 5′) from the guide sequence or spacer sequence. In other embodiments, the direct repeat sequence may be located downstream (i.e., 3′) from the guide sequence or spacer sequence.
In certain embodiments, the spacer length of the guide RNA is from 15 to 35 nt. In certain embodiments, the spacer length of the guide RNA is at least 15 nucleotides. In certain embodiments, the spacer length is from 15 to 17 nt, e.g., 15, 16, or 17 nt, from 17 to 20 nt, e.g., 17, 18, 19, or 20 nt, from 20 to 24 nt, e.g., 20, 21, 22, 23, or 24 nt, from 23 to 25 nt, e.g., 23, 24, or 25 nt, from 24 to 27 nt, e.g., 24, 25, 26, or 27 nt, from 27 to 30 nt, e.g., 27, 28, 29, or 30 nt, from 30 to 35 nt, e.g., 30, 31, 32, 33, 34, or 35 nt, or 35 nt or longer.
Cas13 or Type-III proteins are guided to their target RNAs by a single CRISPR RNA (crRNA) composed of a direct repeat (DR) stem loop and a spacer sequence (guide RNA) that mediates target recognition by RNA-RNA hybridization. Although Cas13 enzymes exert some non-specific collateral nuclease activity upon activation (Smargon, A. et al. (2017), Mol. Cell, 65, 618-630; Konermann, S. et al. (2018), Cell, 173, 1-12; Yan, W. X. et al. (2018), Mol. Cell, 70, 327-339). they have greatly reduced off-target activity in cultured cells compared to RNA interference. Previous studies have shown that Cas13 guide RNAs have minimal Protospacer Flanking Sequence (PFS) constraints in mammalian cells (Abudayyeh, O. et al. (2016), Science, 353) and that RNA target sites should be preferentially accessible for Cas13 binding (Abudayyeh, O. et al. (2016), Nature, 550, 280-284) that guide RNAs show high diversity in knock-down efficiency driven by crRNA specific features as well as target site context. Moreover, while single mismatches generally reduce knock-down to a modest degree, a critical region spanning spacer nucleotides 15-21 was identified that is largely intolerant to target site mismatches. Computational models have been developed to identify guide RNAs with high knock-down efficacy. The model was determined to be generalizable across a large number of endogenous target mRNAs and showed that Cas13 can be used in forward genetic pooled CRISPR-screens to identify essential genes. (Wessels, H., et al. (Dec. 28, 2019), bioRxiv doi:.org/10.1101/2019). Exemplary methods for guide design have been developed. See, e.g., International Patent Publication WO202186231, incorporated herein by reference, in particular at [0266]-[0278].
Three different Cas13 effector proteins (e.g., PguCas13b, PspCas13b, RfxCas13d) have been reported to show high RNA knock-down efficacy with minimal off-target activity (Konermann, S. et al. (2018), Cell, 173, 1-12; Cox, D. et al. (2017), Science 358, 1019-1027). For Cas13d, it was shown that using a Cas13d containing a nuclear localization signal (Cas13d-NLS) while varying the guide length and maintaining a constant guide RNA 5′ end or 3′ end relative to a 30 nt reference guide showed the most pronounced target knock-down was using guide RNAs of 23-30 nt. (Wessels, H., et al. (Dec. 28, 2019), bioRxiv doi:.org/10.1101/2019). Structural analysis of another Cas13d variant (EsCas13d, PDB: 6E9E/6E9F) suggested that guide RNAs longer than 20 nt extend outside the effector protein binding cleft and that 22 nt guide RNAs provide optimal knock-down. (Zhang, C. et al. (2018), Cell, 175, 212-223). In embodiments, the length of the guide RNA for targeting and knocking down targets is between 16 and 30 nt in length, between 20 and 26 nt in length, between 22 and 24 nt in length.
An intron as used in the context of the present invention refers to a sequence comprising at least a splice donor and a splice acceptor. The intron may further comprise a branch site. The intron sequence used in the trans-splicing-construct may be derived from a naturally occurring intron sequence but be further engineered to comprise a minimal sequence necessary to facilitate initiation of a spliceosome-mediated reaction.
The splice donor site may include GU sequence at the 5′ end of the intron, within a larger, less highly conserved region. The splice acceptor site at the 3′ end of the intron terminates the intron with an almost invariant AG sequence. Upstream (5′-ward) from the AG there is a region high in pyrimidines (C and U), or polypyrimidine tract. Further upstream from the polypyrimidine tract is the branchpoint, which includes an adenine nucleotide involved in lariat formation. The consensus sequence for an intron (in IUPAC nucleic acid notation) is: G-G-[cut]-G-U-R-A-G-U (donor site) . . . intron sequence . . . Y-U-R-A-C (branch sequence 20-50 nucleotides upstream of acceptor site) . . . Y-rich-N-C-A-G-[cut]-G (acceptor site) (Wilkinson, M. et al. (2020), Annu. Rev. Biochem., 89:1.1-1.30). However, it is noted that the specific sequence of intronic splicing elements and the number of nucleotides between the branchpoint and the nearest 3′ acceptor site affect splice site selection (Taggart, A. et al. (2012), Nature Structural & Molecular Biology 19(7): 719-721).
The sequences around these sites are stringently conserved in yeast but more degenerate in humans. In an embodiment, the degenerate nature of the human 5′SS and 3′SS sites can be considered when designing an intron for trans-splicing. In an embodiment, the 5′SS and 3′SS sites conform to the G-G-[cut]-G-U-R-A-G-U (5′SS, donor site) intron sequence, the Y-U-R-A-C (branch sequence 20-50 nucleotides upstream of acceptor site) and the Y-rich-N-C-A-G-[cut]-G (3′SS, acceptor site). In an embodiment, one or more 5′SS sites are modified from the above human general consensus site to improve recruitment of the dCas13 to the spliceosome. In an embodiment, one or more 3′SS sites are modified from the above human general consensus site to improve recruitment of the dCas13 to the spliceosome. In an example embodiment, one or more 5′SS sites and one or more 3′SS sites are modified from.
In an embodiment, intron length is optimized to improve trans-splicing with the donor RNA. In an embodiment, the intron sequence is optimized to improve trans-splicing with the donor RNA. In an embodiment, both the intron length and sequence including the 5′SS, BP and 3′SS domains, are optimized to improve trans-splicing with the donor RNA. In an embodiment, the intron has a size between 20 bp and 45 kb. In one embodiment, intron length is between 50 bp and 25,000 bp, between 100 bp and 12000 bp, between 200 bp and 9000 bp, or between about 1000 bp and 7000 bp.
The spliceosome must perform four general functions: 1) recognition of a large number of intron substrates; 2) effectuate splicing activity at the acceptor and donor sites in a highly accurate manner; 3) mediate cross-functional activities with other cellular processes; and 4) generate extra-catalytic functions such as marking the spliced mRNA (e.g., generating an exon junction complex).
The spliceosome is not a preassembled enzyme complex but is formed anew on its intron substrate from 5 small nuclear RNAs (snRNA) and about 100 other proteins. The 5 snRNA have been designated U1, U2, U4, U5 and U6. U1, U2, U4, U5 are transcribed by RNA polymerase II and each acquire a tri-methyl-guanosine cap, whereas U6 snRNA is transcribed by RNA polymerase III and has a γ-monomethyl guanosine cap.
Seven homologous small (Sm) proteins assemble into a ring around the U-rich sequence known as the Sm site located toward the 3′ end of U1, U2, U4, and U5 snRNAs (Leung, A. et al. (2011), Nature 473(7348):536-539), whereas a U-rich sequence at the 3′ end of U6 snRNA threads through a preassembled ring of seven paralogous LSm proteins (LSm2-8). Each of these snRNAs binds a specific set of additional proteins and forms a small nuclear ribonucleoprotein (snRNP) particle, pronounced “snurp” for short (Lerner, M. et al (1979), PNAS, 76(11):5495-5499). Several non-snRNP-associated proteins and protein complexes, including splicing factors and eight ATP-dependent helicases, are also involved in splicing. Within the spliceosome, the snRNAs perform the essential roles of catalysis and substrate recognition.
The U1 and U2 snRNPs recognize the 5′ splicing site (“5′ SS”, splice donor) and the BP sequence, respectively, and form the pre-spliceosome or A complex. The pre-spliceosome then associates with the preassembled U4/U6/U5 tri-snRNP to form the fully assembled spliceosome. U6 snRNA, which ultimately folds to form the active site of the spliceosome, is extensively base-paired with U4 snRNA within the tri-snRNP (Yan, C. et al. (2019), Cold Spring Harb. Perspect. Biol. 11(1):a032409). The DEAD-box helicase, encoded by Prp28, releases the 5′SS from U1 snRNP and transfers it to the ACAGAGA box within U6 snRNA (Staley, J. et al. (2009), Mol. Cell 3(1)55-64). The RNA helicase, encoded by Brr2, then separates U4 snRNA from U6 snRNA and
allows the U6 snRNA sequence adjacent to the 5′ SS-bound ACAGAGA box to fold and associate with part of U2 snRNA to yield the active site harboring two catalytic metal ions (Hang, J. et al. (2015), Science 349:1191-1198). The 5′SS is positioned at the M1 metal ion. When the BP adenosine is docked into the active site, the branching reaction produces the cleaved 5′ exon and the lariat-intron intermediate (Galej, W. et al. (2016), Nature, 537(7619):197-201). The 5′ exon remains in the active site, but the branch point (BP) adenosine must vacate the active site for the incoming 3′ SS site for the exon-ligation reaction. Finally, the 5′ and 3′exons are ligated, and the resulting mRNA (ligated exons) is released from the active site. The spliceosome choreographs the intricate movements of these substrates in and out of the active site. The catalytic mechanism in summary involves the U1 and U2 small nuclear ribonucleoproteins (snRNPs) marking an intron and recruiting the U4/U6/U5 tri-snRNP. Transfer of the 5′ SS from U1 to U6 snRNA triggers unwinding of U6 snRNA from U4 snRNA. U6 folds with U2 snRNA into an RNA-based active site that positions the 5′SS at two catalytic metal ions. The branch point (BP) adenosine attacks the 5′SS, producing a free 5′ exon. Removal of the BP adenosine from the active site allows the 3′ SS to bind, so that the 5′ exon attacks the 3′SS to produce mature mRNA and an excised lariat intron. These sequences are recognized multiple times during the splicing cycle to maintain the fidelity of the splicing reaction.
Introns are then removed by two transesterification reactions and branching and exon ligation are catalyzed at a single active site. The two-metal-ion mechanism, originally proposed by Steitz, T. et al. (1993), PNAS, 90(14):6498-6502) proceeds via a penta-covalent transition state. For the branching reaction, the 5′SS is first positioned at the active site and the BP adenosine nucleophile is docked into the active site to attack the phosphorus of the 5′SS, producing the free 5′exon and lariat-3′exon intermediate. In the resulting lariat-3′exon intermediate, the phosphorus atom of the first intron nucleotide is linked to the 2′O of the BP adenosine. The 5′exon remains in the active site, but for the exon ligation reaction, the BP adenosine is moved away to allow the 3′SS to dock into the active site. The 5′ and 3′ exons are ligated by the nucleophilic attack of the 5′exon 3′OH group at the phosphorus atom of the 3′SS. (d) The spliceosome is assembled in a highly ordered manner, activated to form the active site, and remodeled extensively to perform the branching and exon ligation reactions, release mRNA (ligated exons), and disassemble the spliceosome.
In an embodiment, the guide sequence is configured to bind an intron of an endogenously expressed pre-cursor mRNA of a target cell and the donor RNA comprises an exon of the endogenously expressed pre-cursor mRNA and a heterologous sequence to be spliced into the endogenously expressed pre-cursor mRNA. In an embodiment, the endogenously expressed pre-cursor mRNA is uniquely expressed in the target cell. In an embodiment, the exon of the endogenously expressed pre-cursor mRNA is the final endogenous exon.
In an embodiment, the heterologous sequence does not comprise a start codon or a ribosomal binding site. In an embodiment, the exon and heterologous sequence of the donor RNA are fused in frame via a self-cleaving linker.
In an embodiment, the guide sequence is configured to bind an intron of an endogenously expressed pre-cursor mRNA adjacent to a target exon and the donor RNA comprises a replacement exon to be spliced into the endogenous mRNA in place of the target exon.
In the present disclosure, it is contemplated that for many applications, e.g., for correction of mutations, for the insertion of transgenes for determining cell-specific activities, etc., it would be desirable to target introns that would appear to be favorable for Cas13- or Cas Type-III-mediated trans-splicing. In example embodiments, intron features or design parameters that could be taken into consideration when designing the disclosed compositions for improving trans-splicing events would be intron sequence, intron length, intron location within the chromosome, position of the intron within the gene, stereochemical environment of the intron within the larger exonic structure, gene expression, factors affecting gene regulation, copy number, the presence and number of known alternative splicing sites, known post-transcriptional modifications, or combinations thereof.
The donor RNA of the trans-splicing construct provides a sequence to be spliced into the target pre-mRNA. The donor RNA may be configured in more than one way depending on the outcome desired. In one example embodiment, the donor RNA may comprise a heterologous RNA sequence that replaces one or more exons of the endogenous pre-mRNA and results in either expression of a heterologous polypeptide or a fusion polypeptide comprised of an endogenously coded portion and a heterologous portion provided by the donor RNA. In another example embodiment, the donor RNA may comprise an RNA sequence that replicates an endogenous exon sequence but introduces one or more modifications. The one or more modifications may be used to correct a mutation that results in an aberrant or non-functional polypeptide product or provides an enhanced function or activity to the expressed polypeptide.
In is contemplated that in certain cases, it would be desirable to increase the expression of a poorly expressed gene or a gene present in low copy number in the chromosome and subsequently expressed at low concentrations in a cell. Provided herein are compositions and methods for increasing the expression of poorly expressed genes or genes that are present in low copy number in the chromosome and expressed at low concentrations in a cell. In an embodiment, is disclosed compositions and methods using trans-splicing to increase the expression of a poorly expressed gene or a gene present at low copy number in the chromosome. In an embodiment, provided herein are compositions containing a poorly expressed gene, wherein the poorly expressed gene's RNA is trans-spliced onto a highly expressed precursor mRNA (i.e., at a heterologous locus) to increase gene expression. In an embodiment, provided herein are compositions containing a low copy-number gene, wherein the low copy-number gene's RNA is trans-spliced onto a highly expressed precursor mRNA (i.e., at a heterologous locus) to increase gene expression.
It is contemplated that in an embodiment, it may be desirable to generate a fusion protein where part of the endogenous protein sequence is replaced by a heterologous sequence, for example. In an embodiment, provided herein are compositions that comprise donor RNA that comprise part endogenous donor RNA fused with a heterologous donor RNA that is trans-spliced onto a target pre-mRNA. In certain alternative cases, it may be beneficial to fuse the two RNA sequences with a cleavable linker, thereby allowing the facile release of the heterologous protein sequence for experimental purposes (e.g., for diagnostics within a particular cell type). In an embodiment, provided herein are compositions comprising donor RNA sequences comprising endogenous RNA sequences, heterologous RNA sequences and a linker sequence to be used in trans-splicing onto pre-mRNA transcripts that allow for the facile release of heterologous protein sequences. In an embodiment, the linker sequence is a self-cleaving linker.
It is contemplated that in many cases, e.g., for treating a disease or disorder, it may be desirable to introduce beneficial mutations, or delete harmful mutations or combinations thereof, from an endogenously expressed exon. Thus, the donor RNA may replicate an exon to be replaced but for modifications to the sequence to introduce beneficial modifications or remove harmful modifications. The modification may include insertion, deletions, or substitutions of one or more nucleotides, or other modifications such as introduction or removal of sequences encoding post-translational modification sites on the final polypeptide product
Provided herein are compositions and methods for introducing beneficial mutations and/or deleting harmful mutations. In an embodiment, a donor RNA sequence is designed, which contains a known beneficial mutation which increases, for example, the expression of a gene, or, for example, increases the stability of the expressed mRNA, which leads to an increase in the expressed protein concentration or protein activity in a cell. In an embodiment, a donor RNA sequence is designed which contains the wild-type endogenous sequence, which is used in trans-splicing to replace a mutated gene by exon replacement to correct a mutation or genetic defect. In an embodiment, the mutation or genetic defect to be corrected is in a specific cell type. In an embodiment, the mutation or genetic defect to be corrected is not in a specific cell type and is systemic. In an embodiment, the mutation or genetic defect to be corrected is in a eukaryote. In an embodiment, the mutation or genetic defect to be corrected is in a non-human animal. In an embodiment, the mutation or genetic defect to be corrected is in a human.
In an embodiment, provided herein is a dCas-mediated trans-splicing donor RNA that comprises a polyadenylated tail (Poly-A tail). Polyadenylation of an mRNA is important for nuclear transport, translation efficiency and stability of the mRNA, and all of these, as well as the process of polyadenylation, depend on specific RNA-binding proteins. Most eukaryotic mRNAs receive a 3′ poly(A) tail of about 200 nucleotides after transcription. Polyadenylation involves different RNA-binding protein complexes which stimulate the activity of a poly(A)polymerase (Minvielle-Sebastia L. et al. (1999), Curr Opin Cell Biol., 11:352-357). It is envisaged that the RNA-targeting effector proteins provided herein can be used to promote the interaction between the RNA-binding proteins, crRNA and donor RNA.
In some embodiments, provided herein are compositions and methods for using Group I introns in dCas-mediated trans-splicing reactions. Group I introns are structured self-splicing introns that in part persist in genomes by minimizing the impact of their insertion into host genes. This is accomplished by autocatalyzing their removal (splicing) from primary transcripts and restoring a contiguous and functional host transcript. Group I introns can be divided into two general classes, those that encode open reading frames (ORFs) and those that do not. Group I introns with ORFs can function as mobile genetic elements that can move within and between genomes by inserting into cognate alleles that lack intron insertions (Dujon, B. et al. (1989), Gene 82, 91-114). In this case, intron-encoded ORFs function as so-called homing endonucleases (HEases) that cleave intronless alleles to promote a DNA-based recombination-dependent mobility mechanism referred to as intron homing (Belfort, M. (1997), Nucleic Acids Res. 25, 3379-3388). Later characterization showed that intron movement was driven by the homing endonuclease encoded within the intron, generating a double-stranded break in the intronless allele at a position close to where the intron is inserted in the intron containing allele (the intron insertion site).
In an embodiment, the trans-splicing compositions comprising the dCas-mediated trans-splicing reactions using Group I introns comprise a catalytically-inactive dCas, a donor RNA comprising a direct repeat, a spacer, a ribozyme (i.e., the catalytic intron) and a trans-splicing exon. In an embodiment, the catalytic intron comprises one or more engineered Group I introns. Group I introns are highly variable at the primary sequence level yet possess characteristic conserved secondary and tertiary structures. The secondary structure of Group I introns consists of paired (P) elements designated P1 to P10 and single-stranded loop regions. Short, conserved sequences can be recognized in some intron sequences, and these are named P, Q, R, and S. These sequences participate in forming core helical regions, where the P sequence pairs with Q (contributing towards the P4 helix) and R pairs with S (contributing towards the P7 helix). The P1 and the P10 helices form the substrate-binding domain wherein the 5′ and 3′ splice sites are juxtaposed to each other. Group I introns have been categorized into five classes, IA, IB, IC, ID and IE [26-28] based on conservation of core domains, alternative configurations of secondary structure elements, the presence of peripheral elements and features of the P7:P7′ helix (for example, P2, P7.1, P7.2)
In an embodiment, provided herein are compositions and methods for effecting dCas13 or dCas Type-III, as opposed to the Group I intron itself, homing capability targeting pre-mRNA and positioning the catalytic intron to self-cleave followed by concatenating the bound donor RNA such that the donor exon is adjacent to the target pre-mRNA, i.e, adjacent to the endogenous transcript (
In an example embodiment, the intron has been replaced with a catalytically active group I intron to enhance trans-splicing such as the endogenous or evolved group I intron from Tetrahymena thermophila (see e.g., Roman, J. et al. (1998), PNAS 95(5): 2134-2139) or the Rib21 group I intron (see, e.g., Kwon, B-S. et al. (2005), Mol. Ther. 12(5): 824-834).
Precursor mRNA Targets
In an example embodiment, precursor mRNA (pre-mRNA) targets that are relevant to the design of a donor RNA construct comprise a guide RNA comprising an intron, a 3′ splice acceptor site (3′SS), a replacement exon, and a polyA tail, wherein the guide is capable of forming a complex with a catalytically-inactive Cas (dCas) and directing sequence-specific binding of the complex to the target pre-mRNA. In an embodiment, dCas forms a complex with the guide to direct sequence-specific binding of the complex to the target pre-mRNA. In an embodiment, dCas forms a complex with the guide to direct sequence-specific binding of the complex to the target pre-mRNA. In an embodiment, the replacement exon is designed to correct a mutation in the pre-mRNA. In an embodiment, the replacement exon comprises the wild-type sequence and is fused in-frame to a transgene, which lacks a ribosome-binding site and a start codon.
In an example embodiment, the dCas is mutated to improve the efficiency of trans-splicing, i.e., improve recruitment of the spliceosome or its functioning. In an example embodiment, domains are fused to dCas to improve trans-splicing, i.e., to improve recruitment of the spliceosome or to improve the efficiency of dCas functioning in the trans-splicing complex. In some embodiments, the system is a Cas-based system that is capable of performing a specialized function or activity. For example, the Cas protein may be fused, operably coupled to, or otherwise associated with one or more functional domains.
In an embodiment, the dCas, may be used as a precursor mRNA binding protein with fusion to or operably linked to a functional domain. In one example embodiment, the functional domain may be a protein from the spliceosome complex defined above.
The one or more functional domain(s) may be positioned at, near, and/or in proximity to a terminus of the effector protein (e.g., a Cas protein). In embodiments having two or more functional domains, each of the two can be positioned at or near or in proximity to a terminus of the effector protein (e.g., a Cas protein). In some embodiments, such as those where the functional domain is operably coupled to the effector protein, the one or more functional domains can be tethered or linked via a suitable linker (including, but not limited to, GlySer linkers) to the effector protein (e.g., a Cas protein). When there is more than one functional domain, the functional domains can be same or different. In some embodiments, all the functional domains are the same. In some embodiments, all of the functional domains are different from each other. In some embodiments, at least two of the functional domains are different from each other. In some embodiments, at least two of the functional domains are the same as each other.
Other suitable functional domains can be found, for example, in International Patent Publication No. WO 2019/018423.
Exemplary functional domains may include, but are not limited to, a translational initiator, a translational activator, a translational repressor, a spliceosome or a domain of a spliceosome that improves recruitment, beads, a light inducible/controllable domain or a chemically inducible/controllable domain.
In one example embodiment, the dCas further comprises a viral coat protein that is a translational repressor of viral replicase. In various embodiments, the viral protein is a MS2 binding protein, which specifically binds an ms2 RNA hairpin that encompasses the replicase start codon. In an embodiment, the ms2 hairpin can be conjugated to the donor construct or the guide RNA. In an embodiment the ms2 hairpin is conjugated 5′ or 3′ of the exon of the donor polynucleotide, or 5′ or 3′ of the spacer of the guide polynucleotide. The MS2 binding protein associated is associated with the catalytically inactive Cas (dCas) protein, wherein association can be via covalent (e.g., GlySer linker), non-covalent, or fusion to the dCas protein.
The RBFOX1 family and RBM38 (RNPC1) are highly conserved RNA-binding proteins with well-established roles in alternative splicing regulation and RNA metabolism (Chen, M. et al. (2009), Nat Rev Mol Cell Biol, 10: 741-754; Nilsen, T. et al. (2010), Nature 463: 457-463). In an example embodiment, the compositions provided herein comprise one or more domains fused to or otherwise capable of associating with the Cas protein to improve recruitment of spliceosome such as fusing the proteins RBFOX1 (See, e.g., Pedrotti, S. et al. (2015), Hum. Mol. Gen. 24(8): 2360-2374; Ying, Y. et al. (2017), Cell 170(2): 312-323) and/or RBM38 (See, e.g., Heinecke, L. et al. (2013), PloS ONE 8(10): e78031; She, X. et al. (2020), OncoTargets and Therapy, 13: 13225-13236) or efficiency of target search and hybridization by the guide sequence.
Provided herein are vectors and vector systems that can contain one or more of the engineered or non-naturally occurring polynucleotides described herein that can encode one or more of the trans-splicing compositions of the present invention. As used in this context, engineered or non-naturally occurring polynucleotides refers to any one or more of the polynucleotides described herein capable of encoding an engineered or non-naturally occurring polynucleotide(s) as described elsewhere herein and/or polynucleotide(s) capable of encoding one or more engineered or non-naturally occurring proteins described elsewhere herein. Further, where the vector includes an engineered composition as described herein, the vector can also be referred to and considered an engineered vector or system thereof although not specifically noted as such. In embodiments, the vector can contain one or more polynucleotides encoding one or more elements of an engineered or non-naturally occurring composition described herein. The vectors and systems thereof can be useful in producing bacterial, fungal, yeast, plant cells, animal cells, and transgenic animals that can express one or more components of the engineered or non-naturally occurring compositions described herein. Within the scope of this disclosure are vectors containing one or more of the polynucleotide sequences described herein. One or more of the polynucleotides that are part of the engineered or non-naturally occurring compositions and systems thereof described herein can be included in a vector or vector system.
In some embodiments, the vector can include an engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) polynucleotide having a 3′ polyadenylation signal. In some embodiments, the 3′ polyadenylation is an SV40 polyadenylation signal. In some embodiments, the vector includes one or more minimal splice regulatory elements. In some embodiments, the vector can further include a modified splice regulatory element, wherein the modification inactivates the splice regulatory element. In some embodiments, the modified splice regulatory element is a polynucleotide sequence sufficient to induce splicing, between a rep protein polynucleotide and the engineered or non-naturally occurring composition (e.g., components of the trans-splicing system). In some embodiments, the polynucleotide sequence can be sufficient to induce splicing in a splice acceptor or a splice donor. In some embodiments, the vector includes one or more minimal splice regulatory elements, modified splice regulatory agent, splice acceptor, and/or splice donor.
The vectors and/or vector systems can be used, for example, to express one or more of the engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) in a cell, such as a producer cell, to produce engineered or non-naturally occurring nucleic acids and/or other trans-splicing compositions (e.g., polypeptides, etc.) of the present invention described elsewhere herein. Other uses for the vectors and vector systems described herein are also within the scope of this disclosure. In general, and throughout this specification, the term is a tool that allows or facilitates the transfer of an entity from one environment to another. In some contexts which will be appreciated by those of ordinary skill in the art, “vector” can be a term of art to refer to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. A vector can be a replicon, such as a plasmid, phage, or cosmid, into which another DNA segment may be inserted so as to bring about the replication of the inserted segment. Generally, a vector is capable of replication when associated with the proper control elements.
Vectors include, but are not limited to, nucleic acid molecules that are single-stranded, double-stranded, or partially double-stranded; nucleic acid molecules that comprise one or more free ends, no free ends (e.g., circular); nucleic acid molecules that comprise DNA, RNA, or both; and other varieties of polynucleotides known in the art. One type of vector is a “plasmid,” which refers to a circular double stranded DNA loop into which additional DNA segments can be inserted, such as by standard molecular cloning techniques. Another type of vector is a viral vector, wherein virally-derived DNA or RNA sequences are present in the vector for packaging into a virus (e.g., retroviruses, replication defective retroviruses, adenoviruses, replication defective adenoviruses, and adeno-associated viruses (AAVs)). Viral vectors also include polynucleotides carried by a virus for transfection into a host cell. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively-linked. Such vectors are referred to herein as “expression vectors.” Common expression vectors of utility in recombinant DNA techniques are often in the form of plasmids.
Recombinant expression vectors can be composed of a nucleic acid (e.g., a polynucleotide) of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory elements, which can be selected on the basis of the host cells to be used for expression, that is operatively-linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, “operably linked” and “operatively-linked” are used interchangeably herein and further defined elsewhere herein. In the context of a vector, the term “operably linked” is intended to mean that the nucleotide sequence of interest is linked to the regulatory element(s) in a manner that allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell). Advantageous vectors include adeno-associated viruses, and types of such vectors can also be selected for targeting particular types of cells, such as those engineered viral (e.g., AAV) vectors containing an engineered viral (e.g., engineered or non-naturally occurring polynucleotides) with a desired cell-selective tropism. These and other embodiments of the vectors and vector systems are described elsewhere herein.
In some embodiments, the vector can be a bicistronic vector. In some embodiments, a bicistronic vector can be used for one or more elements of the engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) described herein. In some embodiments, expression of elements of the engineered or non-naturally occurring compositions (e.g., components of the trans-splicing system) and systems described herein can be driven by a suitable constitutive or tissue specific promoter. Where the element of the engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) and systems is an RNA, its expression can be driven by a Pol III promoter, such as a U6 promoter. In some embodiments, the two are combined.
Vectors can be designed for expression of one or more elements of the engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) and systems of the present invention described herein (e.g., nucleic acid transcripts, proteins, enzymes, and combinations thereof) in a suitable host cell. In some embodiments, the suitable host cell is a prokaryotic cell. Suitable host cells include, but are not limited to, bacterial cells, yeast cells, insect cells, and mammalian cells. The vectors can be viral-based or non-viral based. In some embodiments, the suitable host cell is a eukaryotic cell. In some embodiments, the suitable host cell is a suitable bacterial cell. Suitable bacterial cells include, but are not limited to, bacterial cells from the bacteria of the species Escherichia coli. Many suitable strains of E. coli are known in the art for expression of vectors. These include, but are not limited to Pir1, Stbl2, Stbl3, Stbl4, TOP10, XL1 Blue, and XL10 Gold. In some embodiments, the host cell is a suitable insect cell. Suitable insect cells include those from Spodoptera frugiperda. Suitable strains of S. frugiperda cells include, but are not limited to, Sf9 and Sf21. In some embodiments, the host cell is a suitable yeast cell. In some embodiments, the yeast cell can be from Saccharomyces cerevisiae. In some embodiments, the host cell is a suitable mammalian cell. Many types of mammalian cells have been developed to express vectors. Suitable mammalian cells include, but are not limited to, HEK293, Chinese Hamster Ovary Cells (CHOs), mouse myeloma cells, HeLa, U20S, A549, HT1080, CAD, P19, NIH 3T3, L929, N2a, MCF-7, Y79, SO-Rb50, HepG G2, DIKX-X11, J558L, Baby hamster kidney cells (BHK), and chicken embryo fibroblasts (CEFs). Suitable host cells are discussed further in Goeddel, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif (1990).
In some embodiments, the vector can be a yeast expression vector. Examples of vectors for expression in yeast Saccharomyces cerevisiae include pYepSec1 (Baldari, et al., 1987. EMBO J. 6: 229-234), pMFa (Kuijan and Herskowitz, 1982. Cell 30: 933-943), pJRY88 (Schultz et al., 1987. Gene 54: 113-123), pYES2 (Invitrogen Corporation, San Diego, Calif.), and picZ (InVitrogen Corp, San Diego, Calif.). As used herein, a “yeast expression vector” refers to a nucleic acid that contains one or more sequences encoding an RNA and/or polypeptide and may further contain any desired elements that control the expression of the nucleic acid(s), as well as any elements that enable the replication and maintenance of the expression vector inside the yeast cell. Many suitable yeast expression vectors and features thereof are known in the art; for example, various vectors and techniques are illustrated in in Yeast Protocols, 2nd edition, Xiao, W., ed. (Humana Press, New York, 2007) and Buckholz, R. G. and Gleeson, M. A. (1991) Biotechnology (NY) 9(11): 1067-72. Yeast vectors can contain, without limitation, a centromeric (CEN) sequence, an autonomous replication sequence (ARS), a promoter, such as an RNA Polymerase III promoter, operably linked to a sequence or gene of interest, a terminator such as an RNA polymerase III terminator, an origin of replication, and a marker gene (e.g., auxotrophic, antibiotic, or other selectable markers). Examples of expression vectors for use in yeast may include plasmids, yeast artificial chromosomes, 2μ plasmids, yeast integrative plasmids, yeast replicative plasmids, shuttle vectors, and episomal plasmids.
In some embodiments, the vector is a baculovirus vector or expression vector and can be suitable for expression of polynucleotides and/or proteins in insect cells. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., SF9 cells) include the pAc series (Smith, et al., 1983. Mol. Cell. Biol. 3: 2156-2165) and the pVL series (Lucklow and Summers, 1989. Virology 170: 31-39). rAAV (recombinant Adeno-associated viral) vectors are preferably produced in insect cells, e.g., Spodoptera frugiperda Sf9 insect cells, grown in serum-free suspension culture. Serum-free insect cells can be purchased from commercial vendors, e.g., Sigma Aldrich (EX-CELL 405).
In some embodiments, the vector is a mammalian expression vector. In some embodiments, the mammalian expression vector is capable of expressing one or more polynucleotides and/or polypeptides in a mammalian cell. Examples of mammalian expression vectors include, but are not limited to, pCDM8 (Seed, 1987. Nature 329: 840) and pMT2PC (Kaufman, et al., 1987. EMBO J. 6: 187-195). The mammalian expression vector can include one or more suitable regulatory elements capable of controlling expression of the one or more polynucleotides and/or proteins in the mammalian cell. For example, commonly used promoters are derived from polyoma, adenovirus 2, cytomegalovirus, simian virus 40, and others disclosed herein and known in the art. More detail on suitable regulatory elements are described elsewhere herein.
For other suitable expression vectors and vector systems for both prokaryotic and eukaryotic cells see, e.g., Chapters 16 and 17 of Sambrook, et al., MOLECULAR CLONING: A LABORATORY MANUAL. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989.
In some embodiments, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid). Tissue-specific regulatory elements are known in the art. Non-limiting examples of suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert, et al., 1987. Genes Dev. 1: 268-277), lymphoid-specific promoters (Calame and Eaton, 1988. Adv. Immunol. 43: 235-275), in particular promoters of T cell receptors (Winoto and Baltimore, 1989. EMBO J. 8: 729-733) and immunoglobulins (Baneiji, et al., 1983. Cell 33: 729-740; Queen and Baltimore, 1983. Cell 33: 741-748), neuron-specific promoters (e.g., the neurofilament promoter; Byrne and Ruddle, 1989. Proc. Natl. Acad. Sci. USA 86: 5473-5477), pancreas-specific promoters (Edlund, et al., 1985. Science 230: 912-916), and mammary gland-specific promoters (e.g., milk whey promoter; U.S. Pat. No. 4,873,316 and European Application Publication No. 264,166). Developmentally-regulated promoters are also encompassed, e.g., the murine hox promoters (Kessel and Gruss, 1990. Science 249: 374-379) and the α-fetoprotein promoter (Campes, et al. (1989), Genes Dev. 3: 537-546). With regards to these prokaryotic and eukaryotic vectors, mention is made of U.S. Pat. No. 6,750,059, the contents of which are incorporated by reference herein in their entirety. Other embodiments can utilize viral vectors, with regards to which mention is made of U.S. patent application Ser. No. 13/092,085, the contents of which are incorporated by reference herein in their entirety. Tissue-specific regulatory elements are known in the art and in this regard, mention is made of U.S. Pat. No. 7,776,321, the contents of which are incorporated by reference herein in their entirety. In some embodiments, a regulatory element can be operably linked to one or more elements of an engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) so as to drive expression of the one or more elements of the engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) described herein.
Vectors may be introduced and propagated in a prokaryote or prokaryotic cell. In some embodiments, a prokaryote is used to amplify copies of a vector to be introduced into a eukaryotic cell or as an intermediate vector in the production of a vector to be introduced into a eukaryotic cell (e.g., amplifying a plasmid as part of a viral vector packaging system). In some embodiments, a prokaryote is used to amplify copies of a vector and express one or more nucleic acids, such as to provide a source of one or more proteins for delivery to a host cell or host organism.
In some embodiments, the vector can be a fusion vector or fusion expression vector. In some embodiments, fusion vectors add a number of amino acids to a protein encoded therein, such as to the amino terminus, carboxy terminus, or both of a recombinant protein. Such fusion vectors can serve one or more purposes, such as: (i) to increase expression of recombinant protein; (ii) to increase the solubility of the recombinant protein; and (iii) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. In some embodiments, expression of polynucleotides (such as non-coding polynucleotides) and proteins in prokaryotes can be carried out in Escherichia coli with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion polynucleotides and/or proteins. In some embodiments, the fusion expression vector can include a proteolytic cleavage site, which can be introduced at the junction of the fusion vector backbone or other fusion moiety and the recombinant polynucleotide or protein to enable separation of the recombinant polynucleotide or protein from the fusion vector backbone or other fusion moiety subsequent to purification of the fusion polynucleotide or protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase. Example fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith and Johnson, 1988. Gene 67: 31-40), pMAL (New England Biolabs, Beverly, Mass.) and pRIT5 (Pharmacia, Piscataway, N.J.) that fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein. Examples of suitable inducible non-fusion E. coli expression vectors include pTrc (Amrann et al., (1988) Gene 69:301-315) and pET 11d (Studier et al., GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990) 60-89).
In some embodiments, one or more vectors driving expression of one or more elements of an engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) and system as described herein are introduced into a host cell such that expression of the elements of the engineered delivery system described herein direct formation of an engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) and system as described herein. For example, different elements of the engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) and system as described herein can each be operably linked to separate regulatory elements on separate vectors. RNA(s) of different elements of the engineered delivery system described herein can be delivered to an animal or mammal or cell thereof to produce an animal or mammal or cell thereof that constitutively or inducibly or conditionally expresses different elements of the engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) and system as described herein that incorporates one or more elements of the engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) and system as described herein or contains one or more cells that incorporates and/or expresses one or more elements of the engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) and system as described herein.
In some embodiments, two or more of the elements expressed from the same or different regulatory element(s), can be combined in a single vector, with one or more additional vectors providing any components of the system not included in the first vector. Engineered polynucleotides of the present invention that are combined in a single vector may be arranged in any suitable orientation, such as one element located 5′ with respect to (“upstream” of) or 3′ with respect to (“downstream” of) a second element. The coding sequence of one element may be located on the same or opposite strand of the coding sequence of a second element, and oriented in the same or opposite direction. In some embodiments, a single promoter drives expression of a transcript encoding one or more engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) and system as described herein, embedded within one or more intron sequences (e.g., each in a different intron, two or more in at least one intron, or all in a single intron). In some embodiments, the engineered polynucleotides of the present invention (including but not limited to engineered trans-spliced polynucleotides) can be operably linked to and expressed from the same promoter.
The vectors can include additional features that can confer one or more functionalities to the vector, the polynucleotide to be delivered, a virus particle produced there from, or polypeptide expressed thereof. Such features include, but are not limited to, regulatory elements, selectable markers, molecular identifiers (e.g., molecular barcodes), stabilizing elements, and the like. It will be appreciated by those skilled in the art that the design of the expression vector and additional features included can depend on such factors as the choice of the host cell to be transformed, the level of expression desired, etc.
In embodiments, the polynucleotides and/or vectors thereof described herein (including, but not limited to, the engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) and systems of the present invention) can include one or more regulatory elements that can be operatively linked to the polynucleotide. The term “regulatory element” is intended to include promoters, enhancers, internal ribosomal entry sites (IRES), and other expression control elements (e.g., transcription termination signals, such as polyadenylation signals and poly-U sequences). Such regulatory elements are described, for example, in Goeddel, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif (1990). Regulatory elements include those that direct constitutive expression of a nucleotide sequence in many types of host cell and those that direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). A tissue-specific promoter can direct expression primarily in a desired tissue of interest, such as muscle, neuron, bone, skin, blood, specific organs (e.g., liver, brain), or particular cell types (e.g., lymphocytes). Regulatory elements may also direct expression in a temporal-dependent manner, such as in a cell-cycle dependent or developmental stage-dependent manner, which may or may not also be tissue or cell-type specific. In some embodiments, a vector comprises one or more pol III promoter (e.g., 1, 2, 3, 4, 5, or more pol III promoters), one or more pol II promoters (e.g., 1, 2, 3, 4, 5, or more pol II promoters), one or more pol I promoters (e.g., 1, 2, 3, 4, 5, or more pol I promoters), or combinations thereof. Examples of pol III promoters include, but are not limited to, U6 and H1 promoters. Examples of pol II promoters include, but are not limited to, the retroviral Rous sarcoma virus (RSV) LTR promoter (optionally with the RSV enhancer), the cytomegalovirus (CMV) promoter (optionally with the CMV enhancer) (see, e.g., Boshart et al, Cell, 41:521-530 (1985)), the SV40 promoter, the dihydrofolate reductase promoter, the 3-actin promoter, the phosphoglycerol kinase (PGK) promoter, and the EF1α promoter. Also encompassed by the term “regulatory element” are enhancer elements, such as WPRE; CMV enhancers; the R-U5′ segment in LTR of HTLV-I (Mol. Cell. Biol., Vol. 8(1), p. 466-472, 1988); SV40 enhancer; and the intron sequence between exons 2 and 3 of rabbit β-globin (Proc. Natl. Acad. Sci. USA., Vol. 78(3), p. 1527-31, 1981).
In some embodiments, the regulatory sequence can be a regulatory sequence described in U.S. Pat. No. 7,776,321, U.S. Pat. Pub. No. 2011/0027239, and PCT publication WO 2011/028929, the contents of which are incorporated by reference herein in their entirety. In some embodiments, the vector can contain a minimal promoter. In some embodiments, the minimal promoter is the Mecp2 promoter, tRNA promoter, or U6. In a further embodiment, the minimal promoter is tissue specific. In some embodiments, the length of the vector polynucleotide the minimal promoters and polynucleotide sequences is less than 4.4 Kb.
To express a polynucleotide, the vector can include one or more transcriptional and/or translational initiation regulatory sequences, e.g., promoters, that direct the transcription of the gene and/or translation of the encoded protein in a cell. In some embodiments a constitutive promoter may be employed. Suitable constitutive promoters for mammalian cells are generally known in the art and include, but are not limited to SV40, CAG, CMV, EF-1α, β-actin, RSV, and PGK. Suitable constitutive promoters for bacterial cells, yeast cells, and fungal cells are generally known in the art, such as a T-7 promoter for bacterial expression and an alcohol dehydrogenase promoter for expression in yeast.
In some embodiments, the regulatory element can be a regulated promoter. “Regulated promoter” refers to promoters that direct gene expression not constitutively, but in a temporally- and/or spatially-regulated manner, and includes tissue-specific, tissue-preferred and inducible promoters. In some embodiments, the regulated promoter is a tissue specific promoter as previously discussed elsewhere herein. Regulated promoters include conditional promoters and inducible promoters. In some embodiments, conditional promoters can be employed to direct expression of a polynucleotide in a specific cell type, under certain environmental conditions, and/or during a specific state of development. Suitable tissue specific promoters can include, but are not limited to, liver specific promoters (e.g. APOA2, SERPIN A1 (hAAT), CYP3A4, and MIR122), pancreatic cell promoters (e.g. INS, IRS2, Pdx1, Alx3, Ppy), cardiac specific promoters (e.g. Myh6 (alpha MHC), MYL2 (MLC-2v), TNI3 (cTnl), NPPA (ANF), Slc8a1 (Ncx1)), central nervous system cell promoters (SYN1, GFAP, INA, NES, MOBP, MBP, TH, FOXA2 (HNF3 beta)), skin cell specific promoters (e.g. FLG, K14, TGM3), immune cell specific promoters, (e.g. ITGAM, CD43 promoter, CD14 promoter, CD45 promoter, CD68 promoter), urogenital cell specific promoters (e.g. Pbsn, Upk2, Sbp, Fer1l4), endothelial cell specific promoters (e.g. ENG), pluripotent and embryonic germ layer cell specific promoters (e.g. Oct4, NANOG, Synthetic Oct4, T brachyury, NES, SOX17, FOXA2, MIR122), and muscle cell specific promoter (e.g. Desmin). Other tissue and/or cell specific promoters are discussed elsewhere herein and can be generally known in the art and are within the scope of this disclosure.
Inducible/conditional promoters can be positively inducible/conditional promoters (e.g. a promoter that activates transcription of the polynucleotide upon appropriate interaction with an activated activator, or an inducer (compound, environmental condition, or other stimulus) or a negative/conditional inducible promoter (e.g. a promoter that is repressed (e.g. bound by a repressor) until the repressor condition of the promotor is removed (e.g. inducer binds a repressor bound to the promoter stimulating release of the promoter by the repressor or removal of a chemical repressor from the promoter environment). The inducer can be a compound, environmental condition, or other stimulus. Thus, inducible/conditional promoters can be responsive to any suitable stimuli such as chemical, biological, or other molecular agents, temperature, light, and/or pH. Suitable inducible/conditional promoters include, but are not limited to, Tet-On, Tet-Off, Lac promoter, pBad, AlcA, LexA, Hsp70 promoter, Hsp90 promoter, pDawn, XVE/OlexA, GVG, and pOp/LhGR.
In some embodiments, the vector or system thereof can include one or more elements capable of translocating and/or expressing an engineered polynucleotide of the present invention (e.g., an engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) and system to/in a specific cell component or organelle. Such organelles can include, but are not limited to, nucleus, ribosome, endoplasmic reticulum, golgi apparatus, chloroplast, mitochondria, vacuole, lysosome, cytoskeleton, plasma membrane, cell wall, peroxisome, centrioles, etc.
One or more of the engineered polynucleotides of the present invention (e.g., an engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) and system can be operably linked, fused to, or otherwise modified to include a polynucleotide that encodes or is a selectable marker or tag, which can be a polynucleotide or polypeptide. In some embodiments, the polypeptide encoding a polypeptide selectable marker can be incorporated in the engineered polynucleotide of the present invention (e.g., the engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) such that the selectable marker polypeptide, when translated, is inserted between two amino acids between the N- and C-terminus of an engineered polypeptide (e.g. the engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) or at the N- and/or C-terminus of the engineered polypeptide (e.g. the engineered or non-naturally occurring composition (e.g., components of the trans-splicing system). In some embodiments, the selectable marker or tag is a polynucleotide barcode or unique molecular identifier (UMI).
It will be appreciated that the polynucleotide encoding such selectable markers or tags can be incorporated into a polynucleotide encoding one or more components of the engineered the engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) described herein in an appropriate manner to allow expression of the selectable marker or tag. Such techniques and methods are described elsewhere herein and will be instantly appreciated by one of ordinary skill in the art in view of this disclosure. Many such selectable markers and tags are generally known in the art and are intended to be within the scope of this disclosure.
Suitable selectable markers and tags include, but are not limited to, affinity tags, such as chitin binding protein (CBP), maltose binding protein (MBP), glutathione-S-transferase (GST), poly(His) tag; solubilization tags such as thioredoxin (TRX) and poly(NANP), MBP, and GST; chromatography tags such as those consisting of polyanionic amino acids, such as FLAG-tag; epitope tags such as V5-tag, Myc-tag, HA-tag and NE-tag; protein tags that can allow specific enzymatic modification (such as biotinylation by biotin ligase) or chemical modification (such as reaction with FlAsH-EDT2 for fluorescence imaging), DNA and/or RNA segments that contain restriction enzyme or other enzyme cleavage sites; DNA segments that encode products that provide resistance against otherwise toxic compounds including antibiotics, such as, spectinomycin, ampicillin, kanamycin, tetracycline, Basta, neomycin phosphotransferase II (NEO), hygromycin phosphotransferase (HPT)) and the like; DNA and/or RNA segments that encode products that are otherwise lacking in the recipient cell (e.g., tRNA genes, auxotrophic markers); DNA and/or RNA segments that encode products which can be readily identified (e.g., phenotypic markers such as β-galactosidase, GUS; fluorescent proteins such as green fluorescent protein (GFP), cyan (CFP), yellow (YFP), red (RFP), luciferase, and cell surface proteins); polynucleotides that can generate one or more new primer sites for PCR (e.g., the juxtaposition of two DNA sequences not previously juxtaposed), DNA sequences not acted upon or acted upon by a restriction endonuclease or other DNA modifying enzyme, chemical, etc.; epitope tags (e.g. GFP, FLAG- and His-tags), and, DNA sequences that make a molecular barcode or unique molecular identifier (UMI), DNA sequences required for a specific modification (e.g., methylation) that allows its identification. Other suitable markers will be appreciated by those of skill in the art.
Selectable markers and tags can be operably linked to one or more components of the engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) as described herein via suitable linker, such as a glycine or glycine serine linkers as short as GS or GG up to (GGGGG)3 (SEQ ID NO: 1) or (GGGGS)3 (SEQ ID NO: 2). Other suitable linkers are described elsewhere herein.
The vector or vector system can include one or more polynucleotides encoding one or more targeting moieties. In some embodiments, the targeting moiety encoding polynucleotides can be included in the vector or vector system, such as a viral vector system, such that they are expressed within and/or on the virus particle(s) produced such that the virus particles can be targeted to selective cells, tissues, organs, etc. In some embodiments, such as non-viral carriers, the components of the trans-splicing system can be attached to the carrier (e.g., polymer, lipid, inorganic molecule etc.) and can be capable of targeting the carrier and any attached or associated engineered polynucleotide(s) of the present invention, the engineered polypeptides, or other compositions of the present invention described herein, to select cells, tissues, organs, etc. In some embodiments, the select cells are muscle cells.
In some embodiments, the polynucleotide(s) encoding a targeting motif of the present invention can be expressed from a vector or suitable polynucleotide in a cell-free in vitro system. In some embodiments, the polynucleotide encoding one or more features of the engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) can be expressed from a vector or suitable polynucleotide in a cell-free in vitro system. In other words, the polynucleotide can be transcribed and optionally translated in vitro. In vitro transcription/translation systems and appropriate vectors are generally known in the art and commercially available. Generally, in vitro transcription and in vitro translation systems replicate the processes of RNA and protein synthesis, respectively, outside of the cellular environment. Vectors and suitable polynucleotides for in vitro transcription can include T7, SP6, T3, promoter regulatory sequences that can be recognized and acted upon by an appropriate polymerase to transcribe the polynucleotide or vector.
In vitro translation can be stand-alone (e.g., translation of a purified polyribonucleotide) or linked/coupled to transcription. In some embodiments, the cell-free (or in vitro) translation system can include extracts from rabbit reticulocytes, wheat germ, and/or E. coli. The extracts can include various macromolecular components that are needed for translation of exogenous RNA (e.g., 70S or 80S ribosomes, tRNAs, aminoacyl-tRNA, synthetases, initiation, elongation factors, termination factors, etc.). Other components can be included or added during the translation reaction, including but not limited to, amino acids, energy sources (ATP, GTP), energy regenerating systems (creatine phosphate and creatine phosphokinase (eukaryotic systems)) (phosphoenolpyruvate and pyruvate kinase for bacterial systems), and other co-factors (Mg2+, K+, etc.). As previously mentioned, in vitro translation can be based on RNA or DNA starting material. Some translation systems can utilize an RNA template as starting material (e.g., reticulocyte lysates and wheat germ extracts). Some translation systems can utilize a DNA template as a starting material (e.g., E coli-based systems). In these systems transcription and translation are coupled and DNA is first transcribed into RNA, which is subsequently translated. Suitable standard and coupled cell-free translation systems are generally known in the art and are commercially available.
As described elsewhere herein, the polynucleotide encoding a targeting motif of the present invention and/or other polynucleotides described herein can be codon optimized. In some embodiments, polynucleotides of the engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) as described herein can be codon optimized. In some embodiments, one or more polynucleotides contained in a vector (“vector polynucleotides”) described herein that are in addition to an optionally codon optimized polynucleotide encoding an engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) described herein, can be codon optimized. In general, codon optimization refers to a process of modifying a nucleic acid sequence for enhanced expression in the host cells of interest by replacing at least one codon (e.g., about or more than about 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, or more codons) of the native sequence with codons that are more frequently or most frequently used in the genes of that host cell while maintaining the native amino acid sequence. Various species exhibit particular bias for certain codons of a particular amino acid. Codon bias (differences in codon usage between organisms) often correlates with the efficiency of translation of messenger RNA (mRNA), which is in turn believed to be dependent on, among other things, the properties of the codons being translated and the availability of particular transfer RNA (tRNA) molecules. The predominance of selected tRNAs in a cell is generally a reflection of the codons used most frequently in peptide synthesis. Accordingly, genes can be tailored for optimal gene expression in a given organism based on codon optimization. Codon usage tables are readily available, for example, at the “Codon Usage Database” available at www.kazusa.orjp/codon/and these tables can be adapted in a number of ways. See Nakamura, Y., et al. “Codon usage tabulated from the international DNA sequence databases: status for the year 2000” Nucl. Acids Res. 28:292 (2000). Computer algorithms for codon optimizing a particular sequence for expression in a particular host cell are also available, such as Gene Forge (Aptagen; Jacobus, PA), are also available. In some embodiments, one or more codons (e.g., 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, or more, or all codons) in a sequence encoding a DNA/RNA-targeting Cas protein corresponds to the most frequently used codon for a particular amino acid. As to codon usage in yeast, reference is made to the online Yeast Genome database available at http://www.yeastgenome.org/community/codon_usage.shtml, or Codon selection in yeast, Bennetzen and Hall, J Biol Chem. 1982 Mar. 25; 257(6):3026-31. As to codon usage in plants including algae, reference is made to Codon usage in higher plants, green algae, and cyanobacteria, Campbell and Gowri, Plant Physiol. 1990 January; 92(1): 1-11; as well as Codon usage in plant genes, Murray et al, Nucleic Acids Res. 1989 Jan. 25; 17(2):477-98; or Selection on the codon bias of chloroplast and cyanelle genes in different plant and algal lineages, Morton B R, J Mol Evol. 1998 April; 46(4):449-59.
The vector polynucleotide can be codon optimized for expression in a select cell-type, tissue type, organ type, and/or subject type. In some embodiments, a codon optimized sequence is a sequence optimized for expression in a eukaryote, e.g., humans (i.e., being optimized for expression in a human or human cell), or for another eukaryote, such as another animal (e.g., a mammal or avian) as is described elsewhere herein. In some embodiments, the polynucleotide is codon optimized for a specific cell type or types. Such cell types can include, but are not limited to, epithelial cells (including skin cells, cells lining the gastrointestinal tract, cells lining other hollow organs), nerve cells (nerves, brain cells, spinal column cells, nerve support cells (e.g., astrocytes, glial cells, Schwann cells etc.), muscle cells (e.g., cardiac muscle, smooth muscle cells, and skeletal muscle cells), connective tissue cells (fat and other soft tissue padding cells, bone cells, tendon cells, cartilage cells), blood cells, stem cells and other progenitor cells, immune system cells, germ cells, and combinations thereof. Such codon optimized sequences are within the ambit of the ordinary skilled artisan in view of the description herein. In some embodiments, the polynucleotide is codon optimized for a specific tissue type. Such tissue types can include, but are not limited to, muscle tissue, connective tissue, nervous tissue, and epithelial tissue. Such codon optimized sequences are within the ambit of the ordinary skilled artisan in view of the description herein. In some embodiments, the polynucleotide is codon optimized for a specific organ. Such organs include, but are not limited to, muscles, skin, intestines, liver, spleen, brain, lungs, stomach, heart, kidneys, gallbladder, pancreas, bladder, thyroid, bone, blood vessels, blood, and combinations thereof. Such codon optimized sequences are within the ambit of the ordinary skilled artisan in view of the description herein.
In some embodiments, a vector polynucleotide is codon optimized for expression in particular cells, such as prokaryotic or eukaryotic cells. The eukaryotic cells may be those of or derived from a particular organism, such as a plant or a mammal, including but not limited to human, or non-human eukaryote or animal or mammal as discussed herein, e.g., mouse, rat, rabbit, dog, livestock, or non-human mammal or primate.
In some embodiments, the vector is a non-viral vector or carrier. In some embodiments, non-viral vectors can have the advantage(s) of reduced toxicity and/or immunogenicity and/or increased bio-safety as compared to viral vectors The terms of art “Non-viral vectors and carriers” and as used herein in this context refers to molecules and/or compositions that are not based on one or more component of a virus or virus genome (excluding any nucleotide to be delivered and/or expressed by the non-viral vector) that can be capable of attaching to, incorporating, coupling, and/or otherwise interacting with an engineered polynucleotide (e.g. an engineered or non-naturally occurring composition (e.g., components of the trans-splicing system)) or other composition of the present invention described herein and can be capable of ferrying the polynucleotide to a cell and/or expressing the polynucleotide. It will be appreciated that this does not exclude the inclusion of a virus-based polynucleotide that is to be delivered. For example, if a guide RNA to be delivered is directed against a virus component and it is inserted or otherwise coupled to an otherwise non-viral vector or carrier, this would not make said vector a “viral vector”. Non-viral vectors and carriers include naked polynucleotides, chemical-based carriers, polynucleotide (non-viral) based vectors, and particle-based carriers. It will be appreciated that the term “vector” as used in the context of non-viral vectors and carriers refers to polynucleotide vectors and “carriers” used in this context refers to a non-nucleic acid or polynucleotide molecule or composition that be attached to or otherwise interact with a polynucleotide to be delivered, such as an engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) of the present invention.
In some embodiments one or more the engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) polynucleotides of the present invention described elsewhere herein can be included in a naked polynucleotide. The term of art “naked polynucleotide” as used herein refers to polynucleotides that are not associated with another molecule (e.g., proteins, lipids, and/or other molecules) that can often help protect it from environmental factors and/or degradation. As used herein, associated with includes, but is not limited to, linked to, adhered to, adsorbed to, enclosed in, enclosed in or within, mixed with, and the like. Naked polynucleotides that include one or more of the engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) or other polynucleotides of the present invention described herein can be delivered directly to a host cell and optionally expressed therein. The naked polynucleotides can have any suitable two- and three-dimensional configurations. By way of non-limiting examples, naked polynucleotides can be single-stranded molecules, double stranded molecules, circular molecules (e.g., plasmids and artificial chromosomes), molecules that contain portions that are single stranded and portions that are double stranded (e.g., ribozymes), and the like. In some embodiments, the naked polynucleotide contains only the engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) or other polynucleotides of the present invention. In some embodiments, the naked polynucleotide can contain other nucleic acids and/or polynucleotides in addition to the engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) polynucleotide(s) or other polynucleotides of the present invention described elsewhere herein. The naked polynucleotides can include one or more elements of a transposon system. Transposons and system thereof are described in greater detail elsewhere herein.
In some embodiments, one or more of the engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) polynucleotides or other polynucleotides of the present invention can be included in a non-viral polynucleotide vector. Suitable non-viral polynucleotide vectors include, but are not limited to, transposon vectors and vector systems, plasmids, bacterial artificial chromosomes, yeast artificial chromosomes, AR (antibiotic resistance)-free plasmids and miniplasmids, circular covalently closed vectors (e.g., minicircles, minivectors, miniknots), linear covalently closed vectors (“dumbbell shaped”), MIDGE (minimalistic immunologically defined gene expression) vectors, MiLV (micro-linear vector) vectors, Ministrings, mini-intronic plasmids, PSK systems (post-segregationally killing systems), ORT (operator repressor titration) plasmids, and the like. See e.g., Hardee et al. 2017. Genes. 8(2):65.
In some embodiments, the non-viral polynucleotide vector can have a conditional origin of replication. In some embodiments, the non-viral polynucleotide vector can be an ORT plasmid. In some embodiments, the non-viral polynucleotide vector can have a minimalistic immunologically defined gene expression. In some embodiments, the non-viral polynucleotide vector can have one or more post-segregationally killing system genes. In some embodiments, the non-viral polynucleotide vector is AR-free. In some embodiments, the non-viral polynucleotide vector is a minivector. In some embodiments, the non-viral polynucleotide vector includes a nuclear localization signal. In some embodiments, the non-viral polynucleotide vector can include one or more CpG motifs. In some embodiments, the non-viral polynucleotide vectors can include one or more scaffold/matrix attachment regions (S/MARs). See e.g., Mirkovitch et al. 1984. Cell. 39:223-232, Wong et al. 2015. Adv. Genet. 89:113-152, whose techniques and vectors can be adapted for use in the present invention. S/MARs are AT-rich sequences that play a role in the spatial organization of chromosomes through DNA loop base attachment to the nuclear matrix. S/MARs are often found close to regulatory elements such as promoters, enhancers, and origins of DNA replication. Inclusion of one or S/MARs can facilitate a once-per-cell-cycle replication to maintain the non-viral polynucleotide vector as an episome in daughter cells. In embodiments, the S/MAR sequence is located downstream of an actively transcribed polynucleotide (e.g., one or more engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) or other polynucleotides or molecules of the present invention) included in the non-viral polynucleotide vector. In some embodiments, the S/MAR can be a S/MAR from the beta-interferon gene cluster. See e.g., Verghese et al. 2014. Nucleic Acid Res. 42:e53; Xu et al. 2016. Sci. China Life Sci. 59:1024-1033; Jin et al. 2016. 8:702-711; Koirala et al. 2014. Adv. Exp. Med. Biol. 801:703-709; and Nehlsen et al. 2006. Gene Ther. Mol. Biol. 10:233-244, whose techniques and vectors can be adapted for use in the present invention.
In some embodiments, the non-viral vector is a transposon vector or system thereof. As used herein, “transposon” (also referred to as transposable element) refers to a polynucleotide sequence that is capable of moving form location in a genome to another. There are several classes of transposons. Transposons include retrotransposons and DNA transposons. Retrotransposons require the transcription of the polynucleotide that is moved (or transposed) in order to transpose the polynucleotide to a new genome or polynucleotide. DNA transposons are those that do not require reverse transcription of the polynucleotide that is moved (or transposed) in order to transpose the polynucleotide to a new genome or polynucleotide. In some embodiments, the non-viral polynucleotide vector can be a retrotransposon vector. In some embodiments, the retrotransposon vector includes long terminal repeats. In some embodiments, the retrotransposon vector does not include long terminal repeats. In some embodiments, the non-viral polynucleotide vector can be a DNA transposon vector. DNA transposon vectors can include a polynucleotide sequence encoding a transposase. In some embodiments, the transposon vector is configured as a non-autonomous transposon vector, meaning that the transposition does not occur spontaneously on its own. In some of these embodiments, the transposon vector lacks one or more polynucleotide sequences encoding proteins required for transposition. In some embodiments, the non-autonomous transposon vectors lack one or more Ac elements.
In some embodiments a non-viral polynucleotide transposon vector system can include a first polynucleotide vector that contains the engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) polynucleotide(s) or other polynucleotides, or molecules of the present invention described herein flanked on the 5′ and 3′ ends by transposon terminal inverted repeats (TIRs) and a second polynucleotide vector that includes a polynucleotide capable of encoding a transposase coupled to a promoter to drive expression of the transposase. When both are expressed in the same cell the transposase can be expressed from the second vector and can transpose the material between the TIRs on the first vector (e.g., the engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) polynucleotide(s) or other polynucleotides or molecules of the present invention) and integrate it into one or more positions in the host cell's genome. In some embodiments the transposon vector or system thereof can be configured as a gene trap. In some embodiments, the TTRs can be configured to flank a strong splice acceptor site followed by a reporter and/or other gene (e.g., one or more of the engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) polynucleotide(s) or other polynucleotides or molecules of the present invention) and a strong poly A tail. When transposition occurs while using this vector or system thereof, the transposon can insert into an intron of a gene and the inserted reporter or other gene can provoke a mis-splicing process and as a result it in activates the trapped gene.
Any suitable transposon system can be used. Suitable transposon and systems thereof can include Sleeping Beauty transposon system (Tc1/mariner superfamily) (see e.g., Ivics et al. 1997. Cell. 91(4): 501-510), piggyBac (piggyBac superfamily) (see e.g., Li et al. 2013 110(25): E2279-E2287 and Yusa et al. 2011. PNAS. 108(4): 1531-1536), Tol2 (superfamily hAT), Frog Prince (Tc1/mariner superfamily) (see e.g., Miskey et al. 2003 Nucleic Acid Res. 31(23):6873-6881) and variants thereof.
In some embodiments, the engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) polynucleotide(s) or other polynucleotides or other molecules of the present invention described herein can be coupled to a chemical carrier. Chemical carriers that can be suitable for delivery of polynucleotides can be broadly classified into the following classes: (i) inorganic particles, (ii) lipid-based, (iii) polymer-based, and (iv) peptide based. They can be categorized as (1) those that can form condensed complexes with a polynucleotide (such as the engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) polynucleotide(s) of the present invention), (2) those capable of targeting specific or select cells, (3) those capable of increasing delivery of the polynucleotide or other molecules (such as the engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) polynucleotide(s) of the present invention to the nucleus or cytosol of a host cell, (4) those capable of disintegrating from DNA/RNA in the cytosol of a host cell, and (5) those capable of sustained or controlled release. It will be appreciated that any one given chemical carrier can include features from multiple categories. The term “particle” as used herein, refers to any suitable sized particles for delivery of the compositions (including particles, polypeptides, polynucleotides, and other compositions described herein) present invention described herein. Suitable sizes include macro-, micro-, and nano-sized particles.
In some embodiments, the non-viral carrier can be an inorganic particle. In some embodiments, the inorganic particle, can be a nanoparticle. The inorganic particles can be configured and optimized by varying size, shape, and/or porosity. In some embodiments, the inorganic particles are optimized to escape from the reticulo-endothelial system. In some embodiments, the inorganic particles can be optimized to protect an entrapped molecule from degradation. The suitable inorganic particles that can be used as non-viral carriers in this context can include, but are not limited to, calcium phosphate, silica, metals (e.g., gold, platinum, silver, palladium, rhodium, osmium, iridium, ruthenium, mercury, copper, rhenium, titanium, niobium, tantalum, and combinations thereof), magnetic compounds, particles, and materials, (e.g., supermagnetic iron oxide and magnetite), quantum dots, fullerenes (e.g., carbon nanoparticles, nanotubes, nanostrings, and the like), and combinations thereof. Other suitable inorganic non-viral carriers are discussed elsewhere herein.
In some embodiments, the non-viral carrier can be lipid-based. Suitable lipid-based carriers are also described in greater detail herein. In some embodiments, the lipid-based carrier includes a cationic lipid or an amphiphilic lipid that is capable of binding or otherwise interacting with a negative charge on the polynucleotide to be delivered (e.g., such as an engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) polynucleotide of the present invention). In some embodiments, chemical non-viral carrier systems can include a polynucleotide (such as the engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) polynucleotide(s)) or other composition or molecule of the present invention) and a lipid (such as a cationic lipid). These are also referred to in the art as lipoplexes. Other embodiments of lipoplexes are described elsewhere herein. In some embodiments, the non-viral lipid-based carrier can be a lipid nano emulsion. Lipid nano emulsions can be formed by the dispersion of an immisicible liquid in another stabilized emulsifying agent and can have particles of about 200 nm that are composed of the lipid, water, and surfactant that can contain the polynucleotide to be delivered (e.g., the engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) polynucleotide(s) of the present invention). In some embodiments, the lipid-based non-viral carrier can be a solid lipid particle or nanoparticle.
In some embodiments, the non-viral carrier can be peptide-based. In some embodiments, the peptide-based non-viral carrier can include one or more cationic amino acids. In some embodiments, 35 to 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 99 or 100% of the amino acids are cationic. In some embodiments, peptide carriers can be used in conjunction with other types of carriers (e.g., polymer-based carriers and lipid-based carriers to functionalize these carriers). In some embodiments, the functionalization is targeting a host cell. Suitable polymers that can be included in the polymer-based non-viral carrier can include, but are not limited to, polyethylenimine (PEI), chitosan, poly (DL-lactide) (PLA), poly (DL-Lactide-co-glycoside) (PLGA), dendrimers (see e.g., US Pat. Pub. 2017/0079916 whose techniques and compositions can be adapted for use with the engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) polynucleotides of the present invention), polymethacrylate, and combinations thereof.
In some embodiments, the non-viral carrier can be configured to release an engineered delivery system polynucleotide that is associated with or attached to the non-viral carrier in response to an external stimulus, such as pH, temperature, osmolarity, concentration of a specific molecule or composition (e.g., calcium, NaCl, and the like), pressure and the like. In some embodiments, the non-viral carrier can be a particle that is configured includes one or more of the engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) polynucleotides or other compositions of the present invention describe herein and an environmental triggering agent response element, and optionally a triggering agent. In some embodiments, the particle can include a polymer that can be selected from the group of polymethacrylates and polyacrylates. In some embodiments, the non-viral particle can include one or more embodiments of the compositions microparticles described in US Pat. Pubs. 20150232883 and 20050123596, whose techniques and compositions can be adapted for use in the present invention.
In some embodiments, the non-viral carrier can be a polymer-based carrier. In some embodiments, the polymer is cationic or is predominantly cationic such that it can interact in a charge-dependent manner with the negatively charged polynucleotide to be delivered (such as the engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) polynucleotide(s) of the present invention). Polymer-based systems are described in greater detail elsewhere herein.
In some embodiments, the vector is a viral vector. The term of art “viral vector” and as used herein in this context refers to polynucleotide based vectors that contain one or more elements from or based upon one or more elements of a virus that can be capable of expressing and packaging a polynucleotide, such as an engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) polynucleotide, cargo, or other composition or molecule of the present invention, into a virus particle and producing said virus particle when used alone or with one or more other viral vectors (such as in a viral vector system). Viral vectors and systems thereof can be used for producing viral particles for delivery of and/or expression and/or generation of one or more compositions of the present invention described herein (including, but not limited to, any viral particle and associated cargo). The viral vector can be part of a viral vector system involving multiple vectors. In some embodiments, systems incorporating multiple viral vectors can increase the safety of these systems. Suitable viral vectors can include adenoviral-based vectors, adeno associated vectors, helper-dependent adenoviral (HdAd) vectors, hybrid adenoviral vectors, and the like. Other embodiments of viral vectors and viral particles produce therefrom are described elsewhere herein. In some embodiments, the viral vectors are configured to produce replication incompetent viral particles for improved safety of these systems.
In some embodiments, the vector can be an adenoviral vector. In some embodiments, the adenoviral vector can include elements such that the virus particle produced using the vector or system thereof can be serotype 2, 5, or 9. In some embodiments, the polynucleotide to be delivered via the adenoviral particle can be up to about 8 kb. Thus, in some embodiments, an adenoviral vector can include a DNA polynucleotide to be delivered that can range in size from about 0.001 kb to about 8 kb. Adenoviral vectors have been used successfully in several contexts (see e.g., Teramato et al. 2000. Lancet. 355:1911-1912; Lai et al. 2002. DNA Cell. Biol. 21:895-913; Flotte et al., 1996. Hum. Gene. Ther. 7:1145-1159; and Kay et al. 2000. Nat. Genet. 24:257-261. The engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) can be included in an adenoviral vector to produce adenoviral particles containing said engineered or non-naturally occurring components of the trans-splicing system.
In some embodiments the vector can be a helper-dependent adenoviral vector or system thereof. These are also referred to in the field as “gutless” or “gutted” vectors and are a modified generation of adenoviral vectors (see e.g., Thrasher et al. 2006. Nature. 443:E5-7). In embodiments of the helper-dependent adenoviral vector system one vector (the helper) can contain all the viral genes required for replication but contains a conditional gene defect in the packaging domain. The second vector of the system can contain only the ends of the viral genome, one or more engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) polynucleotides, and the native packaging recognition signal, which can allow selective packaged release from the cells (see e.g., Cideciyan et al. 2009. N Engl J Med. 361:725-727). Helper-dependent Adenoviral vector systems have been successful for gene delivery in several contexts (see e.g., Simonelli et al. 2010. J Am Soc Gene Ther. 18:643-650; Cideciyan et al. 2009. N Engl J Med. 361:725-727; Crane et al. 2012. Gene Ther. 19(4):443-452; Alba et al. 2005. Gene Ther. 12:18-S27; Croyle et al. 2005. Gene Ther. 12:579-587; Amalfitano et al. 1998. J. Virol. 72:926-933; and Morral et al. 1999. PNAS. 96:12816-12821). The techniques and vectors described in these publications can be adapted for inclusion and delivery of the engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) polynucleotides described herein. In some embodiments, the polynucleotide to be delivered via the viral particle produced from a helper-dependent adenoviral vector or system thereof can be up to about 38 kb. Thus, in some embodiments, an adenoviral vector can include a DNA polynucleotide to be delivered that can range in size from about 0.001 kb to about 37 kb (see e.g., Rosewell et al. 2011. J. Genet. Syndr. Gene Ther. Suppl. 5:001).
In some embodiments, the vector is a hybrid-adenoviral vector or system thereof. Hybrid adenoviral vectors are composed of the high transduction efficiency of a gene-deleted adenoviral vector and the long-term genome-integrating potential of adeno-associated, retroviruses, lentivirus, and transposon based-gene transfer. In some embodiments, such hybrid vector systems can result in stable transduction and limited integration site. See e.g., Balague et al. 2000. Blood. 95:820-828; Morral et al. 1998. Hum. Gene Ther. 9:2709-2716; Kubo and Mitani. 2003. J. Virol. 77(5): 2964-2971; Zhang et al. 2013. PloS One. 8(10) e76771; and Cooney et al. 2015. Mol. Ther. 23(4):667-674), whose techniques and vectors described therein can be modified and adapted for use in the engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) or systems of the present invention. In some embodiments, a hybrid-adenoviral vector can include one or more features of a retrovirus and/or an adeno-associated virus. In some embodiments the hybrid-adenoviral vector can include one or more features of a spuma retrovirus or foamy virus (FV). See e.g., Ehrhardt et al. 2007. Mol. Ther. 15:146-156 and Liu et al. 2007. Mol. Ther. 15:1834-1841, whose techniques and vectors described therein can be modified and adapted for use in the engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) of the present invention. Advantages of using one or more features from the FVs in the hybrid-adenoviral vector or system thereof can include the ability of the viral particles produced therefrom to infect a broad range of cells, a large packaging capacity as compared to other retroviruses, and the ability to persist in quiescent (non-dividing) cells. See also e.g., Ehrhardt et al. 2007. Mol. Ther. 156:146-156 and Shuji et al. 2011. Mol. Ther. 19:76-82, whose techniques and vectors described therein can be modified and adapted for use in the engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) system of the present invention.
In an embodiment, the engineered vector or system thereof can be an adeno-associated vector (AAV). See, e.g., West et al., Virology 160:38-47 (1987); U.S. Pat. No. 4,797,368; WO 93/24641; Kotin, Human Gene Therapy 5:793-801 (1994); and Muzyczka, J. Clin. Invest. 94:1351 (1994). Although similar to adenoviral vectors in some of their features, AAVs have some deficiency in their replication and/or pathogenicity and thus can be safer that adenoviral vectors. In some embodiments, the AAV can integrate into a specific or preferred site on chromosome 19 of a human cell with no observable side effects. In some embodiments, the capacity of the AAV vector, system thereof, and/or AAV particles can be up to about 4.7 kb. The AAV vector or system thereof can include one or more engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) polynucleotides described herein.
The AAV vector or system thereof can include one or more regulatory molecules. In some embodiments the regulatory molecules can be promoters, enhancers, repressors and the like, which are described in greater detail elsewhere herein. In some embodiments, the AAV vector or system thereof can include one or more polynucleotides that can encode one or more regulatory proteins. In some embodiments, the one or more regulatory proteins can be selected from Rep78, Rep68, Rep52, Rep40, variants thereof, and combinations thereof. In some embodiments, the promoter can be a tissue specific promoter as previously discussed. In some embodiments, the tissue specific promoter can drive expression of an engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) polynucleotide described herein.
The AAV vector or system thereof can include one or more polynucleotides that can encode one or more proteins, such as the engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) proteins described elsewhere herein. The engineered proteins can be capable of assembling into a protein shell of the AAV virus particle. The engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) can have a cell-, tissue- and/or organ-selective tropism.
In some embodiments, the AAV vector or system thereof can include one or more adenovirus helper factors or polynucleotides that can encode one or more adenovirus helper factors. Such adenovirus helper factors can include, but are not limited, ElA, E1B, E2A, E4ORF6, and VA RNAs. In some embodiments, a producing host cell line expresses one or more of the adenovirus helper factors.
The AAV vector or system thereof can be configured to produce AAV particles having a specific serotype. In some embodiments, the serotype can be AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV-6, AAV-8, AAV-9 or any combinations thereof. In some embodiments, the AAV can be AAV1, AAV-2, AAV-5, AAV-9 or any combination thereof. One can select the AAV of the AAV with regard to the cells to be targeted; e.g., one can select AAV serotypes 1, 2, 5, 9 or a hybrid capsid AAV-1, AAV-2, AAV-5, AAV-9 or any combination thereof for targeting brain and/or neuronal cells; and one can select AAV-4 for targeting cardiac tissue; and one can select AAV-8 for delivery to the liver. Thus, in some embodiments, an AAV vector or system thereof capable of producing AAV particles capable of targeting the brain and/or neuronal cells can be configured to generate AAV particles having serotypes 1, 2, 5 or a hybrid capsid AAV-1, AAV-2, AAV-5 or any combination thereof. In some embodiments, an AAV vector or system thereof capable of producing AAV particles capable of targeting cardiac tissue can be configured to generate an AAV particle having an AAV-4 serotype. In some embodiments, an AAV vector or system thereof capable of producing AAV particles capable of targeting the liver can be configured to generate an AAV having an AAV-8 serotype. See also Srivastava. 2017. Curr. Opin. Virol. 21:75-80.
It will be appreciated that while the different serotypes can provide some level of cell, tissue, and/or organ selectivity, each serotype still is multi-tropic and thus can result in tissue-toxicity if using that serotype to target a tissue that the serotype is less efficient in transducing. Thus, in addition to achieving some tissue targeting capacity via selecting an AAV of a particular serotype, it will be appreciated that the tropism of the AAV serotype can be modified by an engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) as described herein. As described elsewhere herein, variants of wild-type AAV of any serotype can be generated via a method described herein and determined to have a particular cell-selective tropism, which can be the same or different as that of the reference wild-type AAV serotype. In some embodiments, the cell, tissue, and/or selectivity of the wild-type serotype can be enhanced (e.g., made more selective or specific for a particular cell type that the serotype is already biased towards). For example, wild-type AAV-9 is biased towards muscle and brain in humans (see e.g., Srivastava. 2017. Curr. Opin. Virol. 21:75-80).
In some embodiments, the AAV vector is a hybrid AAV vector or system thereof. Hybrid AAVs are AAVs that include genomes with elements from one serotype that are packaged into a capsid derived from at least one different serotype. For example, if it is the rAAV2/5 that is to be produced, and if the production method is based on the helper-free, transient transfection method discussed above, the 1st plasmid and the 3rd plasmid (the adeno helper plasmid) will be the same as discussed for rAAV2 production. However, the 2nd plasmid, the pRepCap will be different. In this plasmid, called pRep2/Cap5, the Rep gene is still derived from AAV2, while the Cap gene is derived from AAV5. The production scheme is the same as the above-mentioned approach for AAV2 production. The resulting rAAV is called rAAV2/5, in which the genome is based on recombinant AAV2, while the capsid is based on AAV5. It is assumed the cell or tissue-tropism displayed by this AAV2/5 hybrid virus should be the same as that of AAV5. It will be appreciated that wild-type hybrid AAV particles suffer the same selectivity issues as with the non-hybrid wild-type serotypes previously discussed.
Advantages achieved by the wild-type based hybrid AAV systems can be combined with the increased and customizable cell-selectivity that can be achieved with the engineered AAV capsids can be combined by generating a hybrid AAV that can include an engineered AAV capsid described elsewhere herein. It will be appreciated that hybrid AAVs can contain an engineered AAV capsid containing a genome with elements from a different serotype than the reference wild-type serotype that the engineered AAV capsid is a variant of. For example, a hybrid AAV can be produced that includes an engineered AAV capsid that is a variant of an AAV-9 serotype that is used to package a genome that contains components (e.g., rep elements) from an AAV-2 serotype. As with wild-type based hybrid AAVs previously discussed, the tropism of the resulting AAV particle will be that of the engineered AAV capsid.
A tabulation of certain wild-type AAV serotypes as to these cells can be found in Grimm, D. et al, J. Virol. 82: 5887-5911 (2008) reproduced below as Table 1. Further tropism details can be found in Srivastava. 2017. Curr. Opin. Virol. 21:75-80 as previously discussed.
In one example embodiment, the AAV vector or system thereof is AAV rh.74 or AAV rh.10.
In another example embodiment, the AAV vector or system thereof is configured as a “gutless” vector, similar to that described in connection with a retroviral vector. In some embodiments, the “gutless” AAV vector or system thereof can have the cis-acting viral DNA elements involved in genome amplification and packaging in linkage with the heterologous sequences of interest (e.g., the engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) polynucleotide(s)).
The vectors described herein can be constructed using any suitable process or technique. In some embodiments, one or more suitable recombination and/or cloning methods or techniques can be used to the vector(s) described herein. Suitable recombination and/or cloning techniques and/or methods can include, but not limited to, those described in U.S. Application publication No. US 2004-0171156 A1. Other suitable methods and techniques are described elsewhere herein.
Construction of recombinant AAV vectors are described in a number of publications, including U.S. Pat. No. 5,173,414; Tratschin et al., Mol. Cell. Biol. 5:3251-3260 (1985); Tratschin, et al., Mol. Cell. Biol. 4:2072-2081 (1984); Hermonat & Muzyczka, PNAS 81:6466-6470 (1984); and Samulski et al., J. Virol. 63:03822-3828 (1989). Any of the techniques and/or methods can be used and/or adapted for constructing an AAV or other vector described herein. AAV vectors are discussed elsewhere herein.
In some embodiments, the vector can have one or more insertion sites, such as a restriction endonuclease recognition sequence (also referred to as a “cloning site”). In some embodiments, one or more insertion sites (e.g., about or more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more insertion sites) are located upstream and/or downstream of one or more sequence elements of one or more vectors.
Delivery vehicles, vectors, particles, nanoparticles, formulations and components thereof for expression of one or more elements of an engineered or non-naturally occurring composition (e.g., components of the trans-splicing system) as described herein and are discussed in greater detail herein.
Methods for Modifying Endogenously Expressed mRNA
In an example embodiment, provided herein are methods of modifying endogenously expressed mRNA via targeted trans-splicing of pre-mRNA comprising introducing into a cell or cell population a composition comprising a RNA-binding dCas, a trans-splicing donor construct comprising a guide portion, an intron, a splice acceptor, a replacement exon, and a polyA tail, wherein the guide portion is capable of forming a complex with the dCas and directing binding of the complex to an intron on a target pre-mRNA adjacent to an endogenous exon, thereby facilitating splicing of the replacement exon into the target pre-mRNA in place of the endogenous exon to generate a modified mRNA.
In certain example embodiments, provided herein are compositions which allow programmable trans-splicing, whereby, in contrast to standard splicing of mRNA in cells is removed and the splice donor is joined with the splice acceptor, trans-splicing is mediated by a programmable, catalytically-inactive Cas protein (e.g., dCas13 or dCas Type-III). In an example embodiment, the trans-splicing donor is engineered by combining a dCas13a, dCas13b, dCas13c, or dCas13d or dCas-Type-III crRNA with an intron, a splice acceptor, a replacement exon, and a poly-A tail. In an example embodiment, trans-splicing of pre-mRNA in cells is engineered by combining dCas13a, dCas13b, dCas13c or dCas13d or dCas Type-III crRNA with an intron, a splice acceptor, a replacement exon, and a poly-A tail, wherein the catalytically-inactivated Cas polypeptide binds to the target pre-mRNA via guidance by the crRNA.
In embodiments, the Cas13a, Cas13b, Cas13c or Cas13d or Cas Type-III polypeptides possess diminished nuclease activity, e.g., nuclease inactivation of at least 70%, at least 80%, at least 90%, at least 95%, at least 97%, or 100% as compared with the wild-type enzyme. A Cas13 or Type-III enzyme may have advantageously, for example, about 0% of the nuclease activity of the non-mutated or wild type Cas13 or Type-III enzyme. In some embodiments, the CRISPR-Cas protein is a dead (0% nuclease activity) Cas13 or a dead Type-III Cas protein.
In a certain example embodiment, provided herein are compositions which allow trans-splicing by exon replacement mediated by dCas13 or dCas Type-III and comprise combining a Cas13 or Type-III crRNA with an intron, a splice acceptor, a replacement exon, and a polyA tail, wherein the dCas13 or dCas Type-III binds to the target pre-mRNA via guidance by the crRNA.
In a certain example embodiment, provided herein are compositions which allow trans-splicing of pre-mRNA by introduction and expression of a transgene or transgenes in cells containing a desired target pre-mRNA. In an embodiment, the transgene expression is conditional. In an embodiment, the transgene expression is constitutive. In an embodiment, the crRNA is designed to target a pre-mRNA transcript uniquely expressed in a cell of interest. In an embodiment, the trans-splicing donor RNA carries a transgene to be expressed but lacks a ribosomal binding site and start codon. In embodiments, the introduced transgene would only be expressed upon successful trans-splicing onto the target mRNA.
In an example embodiment, the expression of the trans-spliced donor RNA occurs by replacing the final endogenous exon with a new exon containing the protein coding sequence for the target gene's final exon. In an embodiment, the final endogenous exon is fused in-frame with a linker (e.g., 2A), which is followed by the transgene to be expressed. In an embodiment, expression of the transgene can only occur when the replacement exon, linker and transgene are in-frame. In an embodiment, the transgene can be any gene of interest, including, but not limited to, therapeutic and non-therapeutic uses. In an embodiment, the therapeutic use is to treat a disease or disorder. In an embodiment, the non-therapeutic use is to enhance a desirable characteristic by, for example, modification of gene expression.
Exons Associated with Diseases or Disorders
The present invention also contemplates use of the trans-splicing compositions and methods disclosed herein for modifying endogenously expressed pre-mRNA associated with a variety of diseases or disorders. Diseases associated with exon skipping, for example, can be found at ExonSkipDB, available at ccsm.uth.edu/ExonSkipDB.
In an embodiment, the modifying of endogenously expressed pre-mRNA comprises replacing an exon that contains a mutation or mutations by introducing via trans-splicing one or more changes to the pre-mRNA such that the gene function is restored to the native (e.g., wild-type) state.
In an embodiment, the modifying of endogenously expressed pre-mRNA comprises introducing via trans-splicing to the pre-mRNA one or more post-translational modification sites.
In an embodiment, the modifying of endogenously expressed pre-mRNA comprises introducing via trans-splicing to the pre-mRNA one or more pre-mature stop codons.
In an embodiment, the modifying of endogenously expressed pre-mRNA comprises introducing via trans-splicing to the pre-mRNA one or more shifts in the open reading frame, thereby generating a truncated polypeptide.
The delivery systems may comprise one or more delivery vehicles. The delivery vehicles may deliver the cargo into cells, tissues, organs, or organisms (e.g., animals or plants). The cargos may be packaged, carried, or otherwise associated with the delivery vehicles. The delivery vehicles may be selected based on the types of cargo to be delivered, and/or the delivery is in vitro and/or in vivo. Examples of delivery vehicles include vectors, viruses, non-viral vehicles, and other delivery reagents described herein.
The delivery vehicles in accordance with the present invention may a greatest dimension (e.g., diameter) of less than 100 microns (μm). In some embodiments, the delivery vehicles have a greatest dimension of less than 10 μm. In some embodiments, the delivery vehicles may have a greatest dimension of less than 2000 nanometers (nm). In some embodiments, the delivery vehicles may have a greatest dimension of less than 1000 nanometers (nm). In some embodiments, the delivery vehicles may have a greatest dimension (e.g., diameter) of less than 900 nm, less than 800 nm, less than 700 nm, less than 600 nm, less than 500 nm, less than 400 nm, less than 300 nm, less than 200 nm, less than 150 nm, or less than 100 nm, less than 50 nm. In some embodiments, the delivery vehicles may have a greatest dimension ranging between 25 nm and 200 nm.
In some embodiments, the delivery vehicles may be or comprise particles. For example, the delivery vehicle may be or comprise nanoparticles (e.g., particles with a greatest dimension (e.g., diameter) no greater than 1000 nm. The particles may be provided in different forms, e.g., as solid particles (e.g., metal such as silver, gold, iron, titanium), non-metal, lipid-based solids, polymers), suspensions of particles, or combinations thereof. Metal, dielectric, and semiconductor particles may be prepared, as well as hybrid structures (e.g., core-shell particles).
The systems, compositions, and/or delivery systems may comprise one or more vectors. The present disclosure also include vector systems. A vector system may comprise one or more vectors. In some embodiments, a vector refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. Vectors include nucleic acid molecules that are single-stranded, double-stranded, or partially double-stranded; nucleic acid molecules that comprise one or more free ends, no free ends (e.g., circular); nucleic acid molecules that comprise DNA, RNA, or both; and other varieties of polynucleotides known in the art. A vector may be a plasmid, e.g., a circular double stranded DNA loop into which additional DNA segments can be inserted, such as by standard molecular cloning techniques. Certain vectors may be capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Some vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. In certain examples, vectors may be expression vectors, e.g., capable of directing the expression of genes to which they are operatively-linked. In some cases, the expression vectors may be for expression in eukaryotic cells. Common expression vectors of utility in recombinant DNA techniques are often in the form of plasmids.
Examples of vectors include pGEX, pMAL, pRIT5, E. coli expression vectors (e.g., pTrc, pET 11d, yeast expression vectors (e.g., pYepSec1, pMFa, pJRY88, pYES2, and picZ, Baculovirus vectors (e.g., for expression in insect cells such as SF9 cells) (e.g., pAc series and the pVL series), mammalian expression vectors (e.g., pCDM8 and pMT2PC.
A vector may comprise i) Cas encoding sequence(s), and/or ii) a single, or at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 12, at least 14, at least 16, at least 32, at least 48, at least 50 guide RNA(s) encoding sequences. In a single vector there can be a promoter for each RNA coding sequence. Alternatively or additionally, in a single vector, there may be a promoter controlling (e.g., driving transcription and/or expression) multiple RNA encoding sequences.
A vector may comprise one or more regulatory elements. The regulatory element(s) may be operably linked to coding sequences of Cas proteins, accessary proteins, guide RNAs (e.g., a crRNA), or combination thereof. The term “operably linked” is intended to mean that the nucleotide sequence of interest is linked to the regulatory element(s) in a manner that allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell). In certain examples, a vector may comprise: a first regulatory element operably linked to a nucleotide sequence encoding a Cas protein, and a second regulatory element operably linked to a nucleotide sequence encoding a guide RNA.
Examples of regulatory elements include promoters, enhancers, internal ribosomal entry sites (IRES), and other expression control elements (e.g., transcription termination signals, such as polyadenylation signals and poly-U sequences). Such regulatory elements are described, for example, in Goeddel, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif (1990). Regulatory elements include those that direct constitutive expression of a nucleotide sequence in many types of host cell and those that direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). A tissue-specific promoter may direct expression primarily in a desired tissue of interest, such as muscle, neuron, bone, skin, blood, specific organs (e.g., liver, pancreas), or particular cell types (e.g., lymphocytes). Regulatory elements may also direct expression in a temporal-dependent manner, such as in a cell-cycle dependent or developmental stage-dependent manner, which may or may not also be tissue or cell-type specific.
Examples of promoters include one or more pol III promoter (e.g., 1, 2, 3, 4, 5, or more pol III promoters), one or more pol II promoters (e.g., 1, 2, 3, 4, 5, or more pol II promoters), one or more pol I promoters (e.g., 1, 2, 3, 4, 5, or more pol I promoters), or combinations thereof. Examples of pol III promoters include, but are not limited to, U6 and H1 promoters. Examples of pol II promoters include, but are not limited to, the retroviral Rous sarcoma virus (RSV) LTR promoter (optionally with the RSV enhancer), the cytomegalovirus (CMV) promoter (optionally with the CMV enhancer), the SV40 promoter, the dihydrofolate reductase promoter, the 3-actin promoter, the phosphoglycerol kinase (PGK) promoter, and the EF1α promoter.
The cargos may be delivered by viruses. In some embodiments, viral vectors are used. A viral vector may comprise virally-derived DNA or RNA sequences for packaging into a virus (e.g., retroviruses, replication defective retroviruses, adenoviruses, replication defective adenoviruses, and adeno-associated viruses). Viral vectors also include polynucleotides carried by a virus for transfection into a host cell. Viruses and viral vectors may be used for in vitro, ex vivo, and/or in vivo deliveries.
The systems and compositions herein may be delivered by adeno associated virus (AAV). AAV vectors may be used for such delivery. AAV, of the Dependovirus genus and Parvoviridae family, is a single stranded DNA virus. In some embodiments, AAV may provide a persistent source of the provided DNA, as AAV delivered genomic material can exist indefinitely in cells, e.g., either as exogenous DNA or, with some modification, be directly integrated into the host DNA. In some embodiments, AAV do not cause or relate with any diseases in humans. The virus itself is able to efficiently infect cells while provoking little to no innate or adaptive immune response or associated toxicity.
Examples of AAV that can be used herein include AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV-6, AAV-8, and AAV-9. The type of AAV may be selected with regard to the cells to be targeted; e.g., one can select AAV serotypes 1, 2, 5 or a hybrid capsid AAV1, AAV2, AAV5 or any combination thereof for targeting brain or neuronal cells; and one can select AAV4 for targeting cardiac tissue. AAV8 is useful for delivery to the liver. AAV-2-based vectors were originally proposed for CFTR delivery to CF airways, other serotypes such as AAV-1, AAV-5, AAV-6, and AAV-9 exhibit improved gene transfer efficiency in a variety of models of the lung epithelium. Examples of cell types targeted by AAV are described in Grimm, D. et al, J. Virol. 82: 5887-5911 (2008) and shown in Table 1 above.
CRISPR-Cas AAV particles may be created in HEK 293 T cells. Once particles with specific tropism have been created, they are used to infect the target cell line much in the same way that native viral particles do. This may allow for persistent presence of CRISPR-Cas components in the infected cell type, and what makes this version of delivery particularly suited to cases where long-term expression is desirable. Examples of doses and formulations for AAV that can be used include those describe in U.S. Pat. Nos. 8,454,972 and 8,404,658.
Various strategies may be used for delivery the systems and compositions herein with AAVs. In some examples, coding sequences of Cas and guide RNA may be packaged directly onto one DNA plasmid vector and delivered via one AAV particle. In some examples, AAVs may be used to deliver guide RNAs into cells that have been previously engineered to express Cas. In some examples, coding sequences of Cas and guide RNA may be made into two separate AAV particles, which are used for co-transfection of target cells. In some examples, markers, tags, and other sequences may be packaged in the same AAV particles as coding sequences of Cas and/or guide RNAs.
The systems and compositions herein may be delivered by lentiviruses. Lentiviral vectors may be used for such delivery. Lentiviruses are complex retroviruses that have the ability to infect and express their genes in both mitotic and post-mitotic cells.
Examples of lentiviruses include human immunodeficiency virus (HIV), which may use its envelope glycoproteins of other viruses to target a broad range of cell types; minimal non-primate lentiviral vectors based on the equine infectious anemia virus (EIAV), which may be used for ocular therapies. In certain embodiments, self-inactivating lentiviral vectors with an siRNA targeting a common exon shared by HIV tat/rev, a nucleolar-localizing TAR decoy, and an anti-CCR5-specific hammerhead ribozyme (see, e.g., DiGiusto et al. (2010) Sci Transl Med 2:36ra43) may be used/and or adapted to the nucleic acid-targeting system herein.
Lentiviruses may be pseudo-typed with other viral proteins, such as the G protein of vesicular stomatitis virus. In doing so, the cellular tropism of the lentiviruses can be altered to be as broad or narrow as desired. In some cases, to improve safety, second- and third-generation lentiviral systems may split essential genes across three plasmids, which may reduce the likelihood of accidental reconstitution of viable viral particles within cells.
In some examples, leveraging the integration ability, lentiviruses may be used to create libraries of cells comprising various genetic modifications, e.g., for screening and/or studying genes and signaling pathways.
The systems and compositions herein may be delivered by adenoviruses. Adenoviral vectors may be used for such delivery. Adenoviruses include nonenveloped viruses with an icosahedral nucleocapsid containing a double stranded DNA genome. Adenoviruses may infect dividing and non-dividing cells. In some embodiments, adenoviruses do not integrate into the genome of host cells, which may be used for limiting off-target effects of CRISPR-Cas systems in gene editing applications.
The delivery vehicles may comprise non-viral vehicles. In general, methods and vehicles capable of delivering nucleic acids and/or proteins may be used for delivering the systems compositions herein. Examples of non-viral vehicles include lipid nanoparticles, cell-penetrating peptides (CPPs), DNA nanoclews, gold nanoparticles, streptolysin O, multifunctional envelope-type nanodevices (MENDs), lipid-coated mesoporous silica particles, and other inorganic nanoparticles.
The delivery vehicles may comprise lipid particles, e.g., lipid nanoparticles (LNPs) and liposomes.
LNPs may encapsulate nucleic acids within cationic lipid particles (e.g., liposomes), and may be delivered to cells with relative ease. In some examples, lipid nanoparticles do not contain any viral components, which helps minimize safety and immunogenicity concerns. Lipid particles may be used for in vitro, ex vivo, and in vivo deliveries. Lipid particles may be used for various scales of cell populations.
In some examples. LNPs may be used for delivering DNA molecules (e.g., those comprising coding sequences of Cas and/or guide RNA) and/or RNA molecules (e.g., mRNA of Cas, guide RNAs). In certain cases, LNPs may be use for delivering RNP complexes of Cas/guide RNA.
Components in LNPs may comprise cationic lipids 1,2-dilineoyl-3-dimethylammonium-propane (DLinDAP), 1,2-dilinoleyloxy-3-N,N-dimethylaminopropane (DLinDMA), 1,2-dilinoleyloxyketo-N,N-dimethyl-3-aminopropane (DLinK-DMA), 1,2-dilinoleyl-4-(2-dimethylaminoethyl)-[1,3]-dioxolane (DLinKC2-DMA), (3-o-[2″-(methoxypolyethyleneglycol 2000) succinoyl]-1,2-dimyristoyl-sn-glycol (PEG-S-DMG), R-3-[(ro-methoxy-poly(ethylene glycol)2000) carbamoyl]-1,2-dimyristyloxlpropyl-3-amine (PEG-C-DOMG, and any combination thereof. Preparation of LNPs and encapsulation may be adapted from Rosin et al, Molecular Therapy, vol. 19, no. 12, pages 1286-2200, December 2011).
In some embodiments, a lipid particle may be liposome. Liposomes are spherical vesicle structures composed of a uni- or multilamellar lipid bilayer surrounding internal aqueous compartments and a relatively impermeable outer lipophilic phospholipid bilayer. In some embodiments, liposomes are biocompatible, nontoxic, can deliver both hydrophilic and lipophilic drug molecules, protect their cargo from degradation by plasma enzymes, and transport their load across biological membranes and the blood brain barrier (BBB).
Liposomes can be made from several different types of lipids, e.g., phospholipids. A liposome may comprise natural phospholipids and lipids such as 1,2-distearoryl-sn-glycero-3-phosphatidyl choline (DSPC), sphingomyelin, egg phosphatidylcholines, monosialoganglioside, or any combination thereof.
Several other additives may be added to liposomes in order to modify their structure and properties. For instance, liposomes may further comprise cholesterol, sphingomyelin, and/or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), e.g., to increase stability and/or to prevent the leakage of the liposomal inner cargo.
In some embodiments, the lipid particles may be stable nucleic acid lipid particles (SNALPs). SNALPs may comprise an ionizable lipid (DLinDMA) (e.g., cationic at low pH), a neutral helper lipid, cholesterol, a diffusible polyethylene glycol (PEG)-lipid, or any combination thereof. In some examples, SNALPs may comprise synthetic cholesterol, dipalmitoylphosphatidylcholine, 3-N-[(w-methoxy polyethylene glycol)2000)carbamoyl]-1,2-dimyrestyloxypropylamine, and cationic 1,2-dilinoleyloxy-3-N,Ndimethylaminopropane. In some examples, SNALPs may comprise synthetic cholesterol, 1,2-distearoyl-sn-glycero-3-phosphocholine, PEG-cDMA, and 1,2-dilinoleyloxy-3-(N; N-dimethyl)aminopropane (DLinDMA).
The lipid particles may also comprise one or more other types of lipids, e.g., cationic lipids, such as amino lipid 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), DLin-KC2-DMA4, C12-200 and colipids disteroylphosphatidyl choline, cholesterol, and PEG-DMG.
In some embodiments, the delivery vehicles comprise lipoplexes and/or polyplexes. Lipoplexes may bind to negatively charged cell membrane and induce endocytosis into the cells. Examples of lipoplexes may be complexes comprising lipid(s) and non-lipid components. Examples of lipoplexes and polyplexes include FuGENE-6 reagent, a non-liposomal solution containing lipids and other components, zwitterionic amino lipids (ZALs), Ca2 (e.g., forming DNA/Ca2+ microcomplexes), polyethenimine (PEI) (e.g., branched PEI), and poly(L-lysine) (PLL).
In some embodiments, the delivery vehicles comprise cell penetrating peptides (CPPs). CPPs are short peptides that facilitate cellular uptake of various molecular cargo (e.g., from nanosized particles to small chemical molecules and large fragments of a nucleic acid).
CPPs may be of different sizes, amino acid sequences, and charges. In some examples, CPPs can translocate the plasma membrane and facilitate the delivery of various molecular cargoes to the cytoplasm or an organelle. CPPs may be introduced into cells via different mechanisms, e.g., direct penetration in the membrane, endocytosis-mediated entry, and translocation through the formation of a transitory structure.
CPPs may have an amino acid composition that either contains a high relative abundance of positively charged amino acids such as lysine or arginine or has sequences that contain an alternating pattern of polar/charged amino acids and non-polar, hydrophobic amino acids. These two types of structures are referred to as polycationic or amphipathic, respectively. A third class of CPPs are the hydrophobic peptides, containing only apolar residues, with low net charge or have hydrophobic amino acid groups that are crucial for cellular uptake. Another type of CPPs is the trans-activating transcriptional activator (Tat) from Human Immunodeficiency Virus 1 (HIV-1). Examples of CPPs include to Penetratin, Tat (48-60), Transportan, and (R-AhX-R4) (Ahx refers to aminohexanoyl). Examples of CPPs and related applications also include those described in U.S. Pat. No. 8,372,951.
CPPs can be used for in vitro and ex vivo work quite readily, and extensive optimization for each cargo and cell type is usually required. In some examples, CPPs may be covalently attached to the Cas protein directly, which is then complexed with the guide RNA and delivered to cells. In some examples, separate delivery of CPP-Cas and CPP-guide RNA to multiple cells may be performed. CPP may also be used to delivery RNPs.
In some embodiments, the delivery vehicles comprise DNA nanoclews. A DNA nanoclew refers to a sphere-like structure of DNA (e.g., with a shape of a ball of yarn). The nanoclew may be synthesized by rolling circle amplification with palindromic sequences that aide in the self-assembly of the structure. The sphere may then be loaded with a payload. An example of DNA nanoclew is described in Sun W et al, J Am Chem Soc. 2014 Oct. 22; 136(42):14722-5; and Sun W et al, Angew Chem Int Ed Engl. 2015 Oct. 5; 54(41):12029-33. DNA nanoclew may have a palindromic sequences to be partially complementary to the guide RNA within the Cas:guide RNA ribonucleoprotein complex. A DNA nanoclew may be coated, e.g., coated with PEI to induce endosomal escape.
In some embodiments, the delivery vehicles comprise gold nanoparticles (also referred to AuNPs or colloidal gold). Gold nanoparticles may form complex with cargos, e.g., Cas:guide RNA RNP. Gold nanoparticles may be coated, e.g., coated in a silicate and an endosomal disruptive polymer, PAsp(DET). Examples of gold nanoparticles include AuraSense Therapeutics' Spherical Nucleic Acid (SNA™) constructs, and those described in Mout R, et al. (2017). ACS Nano 11:2452-8; Lee K, et al. (2017). Nat Biomed Eng 1:889-901.
iTOP
In some embodiments, the delivery vehicles comprise iTOP. iTOP refers to a combination of small molecules drives the highly efficient intracellular delivery of native proteins, independent of any transduction peptide. iTOP may be used for induced transduction by osmocytosis and propanebetaine, using NaCl-mediated hyperosmolality together with a transduction compound (propanebetaine) to trigger macropinocytotic uptake into cells of extracellular macromolecules. Examples of iTOP methods and reagents include those described in D'Astolfo D S, Pagliero R J, Pras A, et al. (2015). Cell 161:674-690.
In some embodiments, the delivery vehicles may comprise polymer-based particles (e.g., nanoparticles). In some embodiments, the polymer-based particles may mimic a viral mechanism of membrane fusion. The polymer-based particles may be a synthetic copy of Influenza virus machinery and form transfection complexes with various types of nucleic acids (siRNA, miRNA, plasmid DNA or shRNA, mRNA) that cells take up via the endocytosis pathway, a process that involves the formation of an acidic compartment. The low pH in late endosomes acts as a chemical switch that renders the particle surface hydrophobic and facilitates membrane crossing. Once in the cytosol, the particle releases its payload for cellular action. This Active Endosome Escape technology is safe and maximizes transfection efficiency as it is using a natural uptake pathway. In some embodiments, the polymer-based particles may comprise alkylated and carboxyalkylated branched polyethylenimine. In some examples, the polymer-based particles are VIROMER, e.g., VIROMER RNAi, VIROMER RED, VIROMER mRNA, VIROMER CRISPR. Example methods of delivering the systems and compositions herein include those described in Bawage S S et al., Synthetic mRNA expressed Cas13a mitigates RNA virus infections, www.biorxiv.org/content/10.1101/370460v1.full doi: doi.org/10.1101/370460, Viromer® RED, a powerful tool for transfection of keratinocytes. doi: 10.13140/RG.2.2.16993.61281, Viromer® Transfection—Factbook 2018: technology, product overview, users' data, doi:10.13140/RG.2.2.23912.16642.
The delivery vehicles may be streptolysin O (SLO). SLO is a toxin produced by Group A streptococci that works by creating pores in mammalian cell membranes. SLO may act in a reversible manner, which allows for the delivery of proteins (e.g., up to 100 kDa) to the cytosol of cells without compromising overall viability. Examples of SLO include those described in Sierig G, et al. (2003). Infect Immun. 71:446-55; Walev I, et al. (2001). Proc Natl Acad Sci USA 98:3185-90; Teng K W, et al. (2017). Elife 6:e25460.
The delivery vehicles may comprise multifunctional envelope-type nanodevice (MENDs). MENDs may comprise condensed plasmid DNA, a PLL core, and a lipid film shell. A MEND may further comprise cell-penetrating peptide (e.g., stearyl octaarginine). The cell penetrating peptide may be in the lipid shell. The lipid envelope may be modified with one or more functional components, e.g., one or more of: polyethylene glycol (e.g., to increase vascular circulation time), ligands for targeting of specific tissues/cells, additional cell-penetrating peptides (e.g., for greater cellular delivery), lipids to enhance endosomal escape, and nuclear delivery tags. In some examples, the MEND may be a tetra-lamellar MEND (T-MEND), which may target the cellular nucleus and mitochondria. In certain examples, a MEND may be a PEG-peptide-DOPE-conjugated MEND (PPD-MEND), which may target bladder cancer cells. Examples of MENDs include those described in Kogure K, et al. (2004). J Control Release 98:317-23; Nakamura T, et al. (2012). Acc Chem Res 45:1113-21.
The delivery vehicles may comprise lipid-coated mesoporous silica particles. Lipid-coated mesoporous silica particles may comprise a mesoporous silica nanoparticle core and a lipid membrane shell. The silica core may have a large internal surface area, leading to high cargo loading capacities. In some embodiments, pore sizes, pore chemistry, and overall particle sizes may be modified for loading different types of cargos. The lipid coating of the particle may also be modified to maximize cargo loading, increase circulation times, and provide precise targeting and cargo release. Examples of lipid-coated mesoporous silica particles include those described in Du X, et al. (2014). Biomaterials 35:5580-90; Durfee P N, et al. (2016). ACS Nano 10:8325-45.
The delivery vehicles may comprise inorganic nanoparticles. Examples of inorganic nanoparticles include carbon nanotubes (CNTs) (e.g., as described in Bates K and Kostarelos K. (2013). Adv Drug Deliv Rev 65:2023-33), bare mesoporous silica nanoparticles (MSNPs) (e.g., as described in Luo G F, et al. (2014). Sci Rep 4:6064), and dense silica nanoparticles (SiNPs) (as described in Luo D and Saltzman W M. (2000). Nat Biotechnol 18:893-5).
Delivery, as described elsewhere herein, may comprise delivery of one or more subunits or CRISPR associated proteins separately, as one or more fusion proteins, or as polynucleotides encoding the proteins. As described above, delivery of multimeric Class I complexes, including Type III systems, is known in the art, e.g., Pickar-Oliver et al., Nat Biotechnol. 2019 December; 37(12): 1493-1501; doi: 10.1038/s41587-019-0235-7. Pickar-Oliver utilized a CMV promoter for each subunit of the system and further included N-terminal Flag epitope tags and nuclear localization systems. While Pickar-Olivier delivered each subunit of the complex on a separate vector delivery of more than one subunit on the same construct. Dolan et al. delivered T. fusca Type I-E for genome editing in hESCs via RNP electroporation utilizing C-terminal NLSs on Cas3 and to the C-terminus of each of the six Cas7 subunits delivered via electroporation. Dolan et al., Mol Cell, (2019); 74(5): 936-950.e5; doi: 10.1016/j.molcel.2019.03.014; see also Morisaka, et al. Nat. Commun. 10, 5302 (2019); Cameron et al, Nat Biotechnol. 2019 December; 37(12):1471-147; doi: 10.1038/s41587-019-0310-0 (fusion of multi-subunit cascade to Fok1 nuclease domain for delivery via polycistronic vector with guide RNA delivered on separate plasmid for eukaryotic application); and Young et al., Commun Biol. (Oct. 18, 2019); 2:383. doi: 10.1038/s42003-019-0637-6 (delivery of class 1 type 1-E S. thermophilus system in Zea mays by tethering a plant transcriptional activation domain to 3 different subunits of the Cascade complex). Codon optimization based on human codon usage and/or further codon optimization by optimization tools such as ATUM/DNA2.0 can be performed to further optimize expression.
Described herein are modified cells, cell populations, and organisms that can be modified by the engineered CRISPR-Cas system of the present invention. The modified cells, cell populations, and organisms can have an insertion of one or more polynucleotides, deletion of one or more polynucleotides, mutation of one or more polynucleotides, or a combination thereof. The modification can result in activation of one or more genes, inactivation of one or more genes, modulation of one or more genes, or a combination thereof. Cells, including cells in an organism, can be modified in vitro, in situ, ex vivo, or in vivo. In some embodiments, the modification is insertion or deletion of a polynucleotide, gene, or allele of interest. In some embodiments, the polynucleotide, gene, or allele of interest is associated with a genetic disease or condition.
Also described herein are modified cells and cell populations that can be modified by an embodiment of a polynucleotide modifying agent or system described in greater detail elsewhere herein. In some embodiments, a cell is modified the CRISPR-Cas or Cas-based system of the present invention. In some embodiments, the cell is a eukaryotic cell. In some embodiments, the eukaryotic cell is a mammalian cell. In some embodiments, the eukaryotic cell is a non-human mammalian cell. In some embodiments, the cell is a human cell. In some embodiments, the cell is a plant cell. In some embodiments, the cell is a fungal cell. In some embodiments, the cell is a prokaryotic cell. The cells can be modified in vitro, ex vivo, or in vivo. The cells can be modified by delivering a polynucleotide modifying agent or system described in greater detail elsewhere herein or a component thereof into a cell by a suitable delivery mechanism. Suitable delivery methods and techniques include, but are not limited to, transfection via a vector, transduction with viral particles, electroporation, endocytic methods, and others, which are described elsewhere herein and will be appreciated by those of ordinary skill in the art in view of this disclosure.
The modified cells can be further optionally cultured and/or expanded in vitro or ex vivo using any suitable cell culture techniques or conditions, which unless specified otherwise herein, will be appreciated by one of ordinary skill in the art in view of this disclosure. In some embodiments, the cells can be modified, optionally cultured and/or expanded, and administered to a subject in need thereof. In some embodiments, cells can be isolated from a subject, subsequently modified and optionally cultured and/or expanded, and administered back to the subject, such as in a cell therapy. In some embodiments, the cell therapy is an adoptive cell therapy. Such administration can be referred to as autologous administration. In some embodiments, cells can be isolated from a first subject, subsequently modified, optionally cultured and/or expanded, and administered to a second subject, where the first subject and the second subject are different. Such administration can be referred to as non-autologous administration.
In some embodiment, the modified cells can be used as a bioreactor for production of a bioproduct. In some embodiments engineered compositions of the present invention introduce a gene or polynucleotide or otherwise modify the cell to produce one or more bioproducts. In some embodiments, the engineered compositions of the present invention are used to modify a producer cell so as to improve production of a bioproduct. For example, one or more genes and/or transcripts of a cell that limit or decrease efficiency of production of a bioproduct may be modified by the engineered CRISPR-Cas system of the present invention such that efficiency in production of and/or amount of the bioproduct is increased. In some embodiments, one or more genes and/or transcripts of a cell are modified such that they enhance production or efficiency of production of the bioproduct.
Also described herein are modified organisms. In some embodiments, the modified organisms can include one or more modified cells as are described elsewhere herein. In some embodiments, the modified organism is a non-human mammal. In some embodiments, the modified organism is a modified plant. In some embodiments, the modified organism is an insect. In some embodiments, the modified organism is a fungus. In some embodiments, the modified organism is a fungus. The modified organisms can be generated using a that can be modified by an embodiment of the engineered or non-natural guided excision-transposition system described herein. Methods of making modified organisms are described in greater detail elsewhere herein.
The systems and methods described herein can be used in non-animal organisms, e.g., plants, fungi to generated modified non-animal organisms. The system and methods described can be used to generate non-human animal organisms. The system and methods described herein can be used to modify non-germline cells in a human. In some embodiments, the modification is expression of a polynucleotide of interest, gene of interest, and/or allele of interest.
The polynucleotide modifying agents and systems described herein can be used to modify non-animal organisms such as plants, yeast, etc. In general, the term “plant” relates to any various photosynthetic, eukaryotic, unicellular or multicellular organism of the kingdom Plantae characteristically growing by cell division, containing chloroplasts, and having cell walls comprised of cellulose. The term plant encompasses monocotyledonous and dicotyledonous plants. Specifically, the plants are intended to comprise without limitation angiosperm and gymnosperm plants such as acacia, alfalfa, amaranth, apple, apricot, artichoke, ash tree, asparagus, avocado, banana, barley, beans, beet, birch, beech, blackberry, blueberry, broccoli, Brussel's sprouts, cabbage, canola, cantaloupe, carrot, cassava, cauliflower, cedar, a cereal, celery, chestnut, cherry, Chinese cabbage, citrus, clementine, clover, coffee, corn, cotton, cowpea, cucumber, cypress, eggplant, elm, endive, eucalyptus, fennel, figs, fir, geranium, grape, grapefruit, groundnuts, ground cherry, gum hemlock, hickory, kale, kiwifruit, kohlrabi, larch, lettuce, leek, lemon, lime, locust, pine, maidenhair, maize, mango, maple, melon, millet, mushroom, mustard, nuts, oak, oats, oil palm, okra, onion, orange, an ornamental plant or flower or tree, papaya, palm, parsley, parsnip, pea, peach, peanut, pear, peat, pepper, persimmon, pigeon pea, pine, pineapple, plantain, plum, pomegranate, potato, pumpkin, radicchio, radish, rapeseed, raspberry, rice, rye, sorghum, safflower, sallow, soybean, spinach, spruce, squash, strawberry, sugar beet, sugarcane, sunflower, sweet potato, sweet corn, tangerine, tea, tobacco, tomato, trees, triticale, turf grasses, turnips, vine, walnut, watercress, watermelon, wheat, yams, yew, and zucchini. The term plant also encompasses Algae, which are mainly photoautotrophs unified primarily by their lack of roots, leaves and other organs that characterize higher plants.
The methods polynucleotide modification and the polynucleotide modifying agents and systems as described herein can be used to confer desired traits on essentially any plant. A wide variety of plants and plant cell systems may be engineered for the desired physiological and agronomic characteristics described herein using the nucleic acid constructs of the present disclosure and the various transformation methods mentioned above. In preferred embodiments, target plants and plant cells for engineering include, but are not limited to, those monocotyledonous and dicotyledonous plants, such as crops including grain crops (e.g., wheat, maize, rice, millet, barley), fruit crops (e.g., tomato, apple, pear, strawberry, orange), forage crops (e.g., alfalfa), root vegetable crops (e.g., carrot, potato, sugar beets, yam), leafy vegetable crops (e.g., lettuce, spinach); flowering plants (e.g., petunia, rose, chrysanthemum), conifers and pine trees (e.g., pine fir, spruce); plants used in phytoremediation (e.g., heavy metal accumulating plants); oil crops (e.g., sunflower, rape seed) and plants used for experimental purposes (e.g., Arabidopsis). Plant cells and tissues for engineering include, without limitation, roots, stems, leaves, flowers, and reproductive structures, undifferentiated meristematic cells, parenchyma, collenchyma, sclerenchyma, xylem, phloem, epidermis, and germplasm. Thus, the methods and modifying agents and systems described herein can be used over a broad range of plants, such as for example with dicotyledonous plants belonging to the orders Magniolales, Illiciales, Laurales, Piperales, Aristochiales, Nymphaeales, Ranunculales, Papeverales, Sarraceniaceae, Trochodendrales, Hamamelidales, Eucomiales, Leitneriales, Myricales, Fagales, Casuarinales, Caryophyllales, Batales, Polygonales, Plumbaginales, Dilleniales, Theales, Malvales, Urticales, Lecythidales, Violales, Salicales, Capparales, Ericales, Diapensales, Ebenales, Primulales, Rosales, Fabales, Podostemales, Haloragales, Myrtales, Cornales, Proteales, San tales, Rafflesiales, Celastrales, Euphorbiales, Rhamnales, Sapindales, Juglandales, Geraniales, Polygalales, Umbellales, Gentianales, Polemoniales, Lamiales, Plantaginales, Scrophulariales, Campanulales, Rubiales, Dipsacales, and Asterales; the methods and CRISPR-Cas systems can be used with monocotyledonous plants such as those belonging to the orders Alismatales, Hydrocharitales, Najadales, Triuridales, Commelinales, Eriocaulales, Restionales, Poales, Juncales, Cyperales, Typhales, Bromeliales, Zingiberales, Arecales, Cyclanthales, Pandanales, Arales, Lilliales, and Orchid ales, or with plants belonging to Gymnospermae, e.g those belonging to the orders Pinales, Ginkgoales, Cycadales, Araucariales, Cupressales and Gnetales.
The polynucleotide modifying systems and methods of use described herein can be used over a broad range of plant species, included in the non-limitative list of dicot, monocot or gymnosperm genera hereunder: Atropa, Alseodaphne, Anacardium, Arachis, Beilschmiedia, Brassica, Carthamus, Cocculus, Croton, Cucumis, Citrus, Citrullus, Capsicum, Catharanthus, Cocos, Coffea, Cucurbita, Daucus, Duguetia, Eschscholzia, Ficus, Fragaria, Glaucium, Glycine, Gossypium, Helianthus, Hevea, Hyoscyamus, Lactuca, Landolphia, Linum, Litsea, Lycopersicon, Lupinus, Manihot, Majorana, Malus, Medicago, Nicotiana, Olea, Parthenium, Papaver, Persea, Phaseolus, Pistacia, Pisum, Pyrus, Prunus, Raphanus, Ricinus, Senecio, Sinomenium, Stephania, Sinapis, Solanum, Theobroma, Trifolium, Trigonella, Vicia, Vinca, Vilis, and Vigna; and the genera Allium, Andropogon, Aragrostis, Asparagus, Avena, Cynodon, Elaeis, Festuca, Festulolium, Heterocallis, Hordeum, Lemna, Lolium, Musa, Oryza, Panicum, Pannesetum, Phleum, Poa, Secale, Sorghum, Triticum, Zea, Abies, Cunninghamia, Ephedra, Picea, Pinus, and Pseudotsuga.
The polynucleotide modification systems and methods of modifying described herein can also be used over a broad range of “algae” or “algae cells”; including for example algea selected from several eukaryotic phyla, including the Rhodophyta (red algae), Chlorophyta (green algae), Phaeophyta (brown algae), Bacillariophyta (diatoms), Eustigmatophyta and dinoflagellates as well as the prokaryotic phylum Cyanobacteria (blue-green algae). The term “algae” includes for example algae selected from: Amphora, Anabaena, Anikstrodesmis, Botryococcus, Chaetoceros, Chlamydomonas, Chlorella, Chlorococcum, Cyclotella, Cylindrotheca, Dunaliella, Emiliana, Euglena, Hematococcus, Isochrysis, Monochrysis, Monoraphidium, Nannochloris, Nannnochloropsis, Navicula, Nephrochloris, Nephroselmis, Nitzschia, Nodularia, Nostoc, Oochromonas, Oocystis, Oscillartoria, Pavlova, Phaeodactylum, Playtmonas, Pleurochrysis, Porhyra, Pseudoanabaena, Pyramimonas, Stichococcus, Synechococcus, Synechocystis, Tetraselmis, Thalassiosira, and Trichodesmium.
A part of a plant, e.g., a “plant tissue” may be treated according to the methods of the present invention to produce an improved plant. Plant tissue also encompasses plant cells. The term “plant cell” as used herein refers to individual units of a living plant, either in an intact whole plant or in an isolated form grown in in vitro tissue cultures, on media or agar, in suspension in a growth media or buffer or as a part of higher organized unites, such as, for example, plant tissue, a plant organ, or a whole plant.
A “protoplast” refers to a plant cell that has had its protective cell wall completely or partially removed using, for example, mechanical or enzymatic means resulting in an intact biochemical competent unit of living plant that can reform their cell wall, proliferate and regenerate grow into a whole plant under proper growing conditions.
The term “transformation” broadly refers to the process by which a plant host is genetically modified by the introduction of DNA by means of Agrobacteria or one of a variety of chemical or physical methods. As used herein, the term “plant host” refers to plants, including any cells, tissues, organs, or progeny of the plants. Many suitable plant tissues or plant cells can be transformed and include, but are not limited to, protoplasts, somatic embryos, pollen, leaves, seedlings, stems, calli, stolons, microtubers, and shoots. A plant tissue also refers to any clone of such a plant, seed, progeny, propagule whether generated sexually or asexually, and descendants of any of these, such as cuttings or seed.
The term “transformed” as used herein, refers to a cell, tissue, organ, or organism into which a foreign DNA molecule, such as a construct, has been introduced. The introduced DNA molecule may be integrated into the genomic DNA of the recipient cell, tissue, organ, or organism such that the introduced DNA molecule is transmitted to the subsequent progeny. In these embodiments, the “transformed” or “transgenic” cell or plant may also include progeny of the cell or plant and progeny produced from a breeding program employing such a transformed plant as a parent in a cross and exhibiting an altered phenotype resulting from the presence of the introduced DNA molecule. Preferably, the transgenic plant is fertile and capable of transmitting the introduced DNA to progeny through sexual reproduction.
The term “progeny”, such as the progeny of a transgenic plant, is one that is born of, begotten by, or derived from a plant or the transgenic plant. The introduced DNA molecule may also be transiently introduced into the recipient cell such that the introduced DNA molecule is not inherited by subsequent progeny and thus not considered “transgenic”. Accordingly, as used herein, a “non-transgenic” plant or plant cell is a plant which does not contain a foreign DNA stably integrated into its genome.
The term “plant promoter” as used herein is a promoter capable of initiating transcription in plant cells, whether or not its origin is a plant cell. Exemplary suitable plant promoters include, but are not limited to, those that are obtained from plants, plant viruses, and bacteria such as Agrobacterium or Rhizobium which comprise genes expressed in plant cells.
As used herein, a “fungal cell” refers to any type of eukaryotic cell within the kingdom of fungi. Phyla within the kingdom of fungi include Ascomycota, Basidiomycota, Blastocladiomycota, Chytridiomycota, Glomeromycota, Microsporidia, and Neocallimastigomycota. Fungal cells may include yeasts, molds, and filamentous fungi. In some embodiments, the fungal cell is a yeast cell.
As used herein, the term “yeast cell” refers to any fungal cell within the phyla Ascomycota and Basidiomycota. Yeast cells may include budding yeast cells, fission yeast cells, and mold cells. Without being limited to these organisms, many types of yeast used in laboratory and industrial settings are part of the phylum Ascomycota. In some embodiments, the yeast cell is an S. cerervisiae, Kluyveromyces marxianus, or Issatchenkia orientalis cell. Other yeast cells may include without limitation Candida spp. (e.g., Candida albicans), Yarrowia spp. (e.g., Yarrowia lipolytica), Pichia spp. (e.g., Pichia pastoris), Kluyveromyces spp. (e.g., Kluyveromyces lactis and Kluyveromyces marxianus), Neurospora spp. (e.g., Neurospora crassa), Fusarium spp. (e.g., Fusarium oxysporum), and Issatchenkia spp. (e.g., Issatchenkia orientalis, a.k.a. Pichia kudriavzevii and Candida acidothermophilum). In some embodiments, the fungal cell is a filamentous fungal cell. As used herein, the term “filamentous fungal cell” refers to any type of fungal cell that grows in filaments, i.e., hyphae or mycelia. Examples of filamentous fungal cells may include without limitation Aspergillus spp. (e.g., Aspergillus niger), Trichoderma spp. (e.g., Trichoderma reesei), Rhizopus spp. (e.g., Rhizopus oryzae), and Mortierella spp. (e.g., Mortierella isabellina).
In some embodiments, the fungal cell is an industrial strain. As used herein, “industrial strain” refers to any strain of fungal cell used in or isolated from an industrial process, e.g., production of a product on a commercial or industrial scale. Industrial strain may refer to a fungal species that is typically used in an industrial process, or it may refer to an isolate of a fungal species that may be also used for non-industrial purposes (e.g., laboratory research). Examples of industrial processes may include fermentation (e.g., in production of food or beverage products), distillation, biofuel production, production of a compound, and production of a polypeptide. Examples of industrial strains may include, without limitation, JAY270 and ATCC4124.
In some embodiments, the fungal cell is a polyploid cell. As used herein, a “polyploid” cell may refer to any cell whose genome is present in more than one copy. A polyploid cell may refer to a type of cell that is naturally found in a polyploid state, or it may refer to a cell that has been induced to exist in a polyploid state (e.g., through specific regulation, alteration, inactivation, activation, or modification of meiosis, cytokinesis, or DNA replication). A polyploid cell may refer to a cell whose entire genome is polyploid, or it may refer to a cell that is polyploid in a particular genomic locus of interest. Without wishing to be bound to theory, it is thought that the abundance of guideRNA may more often be a rate-limiting component in genome engineering of polyploidy cells than in haploid cells, and thus the methods using the systems described herein may take advantage of using a certain fungal cell type.
In some embodiments, the fungal cell is a diploid cell. As used herein, a “diploid” cell may refer to any cell whose genome is present in two copies. A diploid cell may refer to a type of cell that is naturally found in a diploid state, or it may refer to a cell that has been induced to exist in a diploid state (e.g., through specific regulation, alteration, inactivation, activation, or modification of meiosis, cytokinesis, or DNA replication). For example, the S. cerevisiae strain S228C may be maintained in a haploid or diploid state. A diploid cell may refer to a cell whose entire genome is diploid, or it may refer to a cell that is diploid in a particular genomic locus of interest. In some embodiments, the fungal cell is a haploid cell. As used herein, a “haploid” cell may refer to any cell whose genome is present in one copy. A haploid cell may refer to a type of cell that is naturally found in a haploid state, or it may refer to a cell that has been induced to exist in a haploid state (e.g., through specific regulation, alteration, inactivation, activation, or modification of meiosis, cytokinesis, or DNA replication). For example, the S. cerevisiae strain S228C may be maintained in a haploid or diploid state. A haploid cell may refer to a cell whose entire genome is haploid, or it may refer to a cell that is haploid in a particular genomic locus of interest.
As used herein, a “yeast expression vector” refers to a nucleic acid that contains one or more sequences encoding an RNA and/or polypeptide and may further contain any desired elements that control the expression of the nucleic acid(s), as well as any elements that enable the replication and maintenance of the expression vector inside the yeast cell. Many suitable yeast expression vectors and features thereof are known in the art; for example, various vectors and techniques are illustrated in in Yeast Protocols, 2nd edition, Xiao, W., ed. (Humana Press, New York, 2007) and Buckholz, R. G. and Gleeson, M. A. (1991) Biotechnology (NY) 9(11): 1067-72. Yeast vectors may contain, without limitation, a centromeric (CEN) sequence, an autonomous replication sequence (ARS), a promoter, such as an RNA Polymerase III promoter, operably linked to a sequence or gene of interest, a terminator such as an RNA polymerase III terminator, an origin of replication, and a marker gene (e.g., auxotrophic, antibiotic, or other selectable markers). Examples of expression vectors for use in yeast may include plasmids, yeast artificial chromosomes, 2μ plasmids, yeast integrative plasmids, yeast replicative plasmids, shuttle vectors, and episomal plasmids.
Described herein are plants and/or plant cells that can be produced by one or more of the methods described herein, or a progeny thereof. The progeny may be a clone of the produced plant or animal or may result from sexual reproduction by crossing with other individuals of the same species to introgress further desirable traits into their offspring. The cell may be in vivo or ex vivo in the cases of multicellular organisms, particularly plant. This is described in greater detail herein.
Also described herein are gametes, seeds, germplasm, embryos, either zygotic or somatic, progeny or hybrids of plants comprising the genetic modification, which are produced by traditional breeding methods, are also included within the scope of the present invention. Such plants may contain a heterologous or foreign DNA sequence inserted at or instead of a target sequence. Alternatively, such plants may contain only an alteration (mutation, deletion, insertion, substitution) in one or more nucleotides. As such, such plants will only be different from their progenitor plants by the presence of the particular modification.
The polynucleotide modifying agent(s) and/or systems described herein can be used to confer desired traits on essentially any plant, algae, fungus, yeast, etc. A wide variety of plants, algae, fungus, yeast, etc. and plant algae, fungus, yeast cell or tissue systems may be engineered for the desired physiological and agronomic characteristics described herein using the nucleic acid constructs of the present disclosure and the various transformation methods mentioned above.
In particular embodiments, the methods described herein are used to modify endogenous genes or to modify their expression without the permanent introduction into the genome of the plant, algae, fungus, yeast, etc. of any foreign gene, including those encoding CRISPR components, so as to avoid the presence of foreign DNA in the genome of the plant. This can be of interest as the regulatory requirements for non-transgenic plants are less rigorous.
Also described herein are modified non-animal organisms (plants, yeast, algae, and other microorganisms) that can express one or more polynucleotides, genes or alleles of interest.
In particular embodiments, the polynucleotides encoding the polynucleotide modifying agents or systems thereof are introduced for stable integration into the genome of a plant cell. In these embodiments, the design of the transformation vector or the expression system can be adjusted depending on for when, where and under what conditions the polynucleotide modifying agents or systems thereof are expressed. Suitable vectors and delivery are described in greater detail elsewhere herein.
In particular embodiments, the polynucleotide modifying agents or systems thereof are stably introduced into the genomic DNA of a plant cell. In particular embodiments, the polynucleotide modifying agents or systems thereof are introduced for stable integration into the DNA of a plant organelle such as, but not limited to, a plastid, e mitochondrion or a chloroplast. In some embodiments, the expression system for stable integration into the genome of a plant cell can contain one or more of the following elements: a promoter element that can be used to express a polynucleotide modifying agent(s) or a system thereof in a plant cell; a 5′ untranslated region to enhance expression; an intron element to further enhance expression in certain cells, such as monocot cells; a multiple-cloning site to provide convenient restriction sites for inserting the polynucleotide modifying agent(s) or a system thereof and other desired elements; and a 3′ untranslated region to provide for efficient termination of the expressed transcript. The elements of the expression system may be on one or more expression constructs which are either circular such as a plasmid or transformation vector, or non-circular such as linear double stranded DNA.
DNA construct(s) containing the components of the systems, and, where applicable, template sequence may be introduced into the genome of a plant, plant part, or plant cell by a variety of conventional techniques. The process generally comprises the steps of selecting a suitable host cell or host tissue, introducing the construct(s) into the host cell or host tissue.
In particular embodiments, the DNA construct may be introduced into the plant cell using techniques such as but not limited to electroporation, microinjection, aerosol beam injection of plant cell protoplasts, or the DNA constructs can be introduced directly to plant tissue using biolistic methods, such as DNA particle bombardment (see also Fu et al., Transgenic Res. 2000 February; 9(1):11-9). The basis of particle bombardment is the acceleration of particles coated with gene/s of interest toward cells, resulting in the penetration of the protoplasm by the particles and typically stable integration into the genome. (see, e.g., Klein et al, Nature (1987), Klein et ah, Bio/Technology (1992), Casas et ah, Proc. Natl. Acad. Sci. USA (1993)).
In particular embodiments, the DNA constructs containing components of the systems may be introduced into the plant by Agrobacterium-mediated transformation. The DNA constructs may be combined with suitable T-DNA flanking regions and introduced into a conventional Agrobacterium tumefaciens host vector. The foreign DNA can be incorporated into the genome of plants by infecting the plants or by incubating plant protoplasts with Agrobacterium bacteria, containing one or more Ti (tumor-inducing) plasmids. (see, e.g., Fraley et al., (1985), Rogers et al., (1987) and U.S. Pat. No. 5,563,055).
In some embodiments, the polynucleotide modifying agent(s) and/or systems can be transiently expressed in the plant cell. In these embodiments, the system can ensure modification of a target gene only when all the required components of the system (e.g., in the context of a typical CRISPR-Cas system, the Cas enzyme(s) and guide RNA(s)) are present in a cell, such that polynucleotide modification can further be controlled. As the expression of the necessary components of the modification agent and/or system is transient, plants regenerated from such plant cells typically contain no foreign DNA. It will be appreciated that not all components must be expressed transiently for modification to be controlled by transient expression. In some embodiments where multiple components are necessary for modification to occur, one or more components of the modification system are expressed transiently and one or more components of the system are stably expressed. In some embodiments where a CRISPR-Cas system is employed, the Cas enzyme is stably expressed by the plant cell and the guide sequence is transiently expressed. In some embodiments where a CRISPR-Cas system is employed, the Cas enzyme is transiently expressed by the plant cell and the guide sequence is stably expressed.
In particular embodiments, the polynucleotide modifying agent(s) and/or system components can be transiently introduced in the plant cells using a plant viral vector (Scholthof et al. 1996, Annu Rev Phytopathol. 1996; 34:299-323). In further particular embodiments, said viral vector is a vector from a DNA virus. For example, geminivirus (e.g., cabbage leaf curl virus, bean yellow dwarf virus, wheat dwarf virus, tomato leaf curl virus, maize streak virus, tobacco leaf curl virus, or tomato golden mosaic virus) or nanovirus (e.g., Faba bean necrotic yellow virus). In other particular embodiments, said viral vector is a vector from an RNA virus. For example, tobravirus (e.g., tobacco rattle virus, tobacco mosaic virus), potexvirus (e.g., potato virus X), or hordeivirus (e.g., barley stripe mosaic virus). The replicating genomes of plant viruses are non-integrative vectors.
In particular embodiments, the vector used for transient expression of constructs is for instance a pEAQ vector, which is tailored for Agrobacterium-mediated transient expression (Sainsbury F. et al., Plant Biotechnol J. 2009 September; 7(7):682-93) in the protoplast. Precise targeting of genomic locations was demonstrated using a modified Cabbage Leaf Curl virus (CaLCuV) vector to express gRNAs in stable transgenic plants expressing a CRISPR enzyme (Scientific Reports 5, Article number: 14926 (2015), doi:10.1038/srep14926).
In particular embodiments, double-stranded DNA fragments encoding the polynucleotide modifying agent(s) and/or system component(s) (e.g., where a CRISPR-Cas system is employed, a guide RNA and/or the Cas gene) can be transiently introduced into the plant cell. In such embodiments, the introduced double-stranded DNA fragments are provided in sufficient quantity to modify the cell but do not persist after a contemplated period of time has passed or after one or more cell divisions. Methods for direct DNA transfer in plants are known by the skilled artisan (see for instance Davey et al. Plant Mol Biol. 1989 September; 13(3):273-85.)
In other embodiments, an RNA polynucleotide encoding the a protein polynucleotide modifying agent or system component (e.g. where a CRISPR-Cas system is employed, a Cas protein) is introduced into the plant cell, which is then translated and processed by the host cell generating the protein in sufficient quantity to modify the cell (in the presence of at least one guide RNA) but which does not persist after a contemplated period of time has passed or after one or more cell divisions. Methods for introducing mRNA to plant protoplasts for transient expression are known by the skilled artisan (see for instance in Gallie, Plant Cell Reports (1993), 13; 119-122).
In some embodiments, a combination of the different methods described above can be used.
In some embodiments, the polynucleotide modifying agent(s) or systems thereof described elsewhere herein can be placed under control of a suitable plant promoter, i.e. a promoter operable in plant cells. The use of different types of promoters is envisaged. Plant promoters can be constitutive, inducible, and/or tissue specific.
A constitutive plant promoter is a promoter that is able to express the open reading frame (ORF) that it controls in all or nearly all of the plant tissues during all or nearly all developmental stages of the plant (referred to as “constitutive expression”). One non-limiting example of a constitutive promoter is the cauliflower mosaic virus 35S promoter. “Regulated promoter” refers to promoters that direct gene expression not constitutively, but in a temporally- and/or spatially-regulated manner, and includes tissue-specific, tissue-preferred and inducible promoters. Different promoters may direct the expression of a gene in different tissues or cell types, or at different stages of development, or in response to different environmental conditions. In particular embodiments, one or more of the gene modifying agents are expressed under the control of a constitutive promoter, such as the cauliflower mosaic virus 35S promoter issue-preferred promoters can be utilized to target enhanced expression in certain cell types within a particular plant tissue, for instance vascular cells in leaves or roots or in specific cells of the seed. Examples of particular promoters for use in the system are found in Kawamata et al., (1997) Plant Cell Physiol 38:792-803; Yamamoto et al., (1997) Plant J 12:255-65; Hire et al, (1992) Plant Mol Biol 20:207-18, Kuster et al, (1995) Plant Mol Biol 29:759-72, and Capana et al., (1994) Plant Mol Biol 25:681-91.
Examples of promoters that are inducible and that allow for spatiotemporal control of gene editing or gene expression may use a form of energy. The form of energy may include but is not limited to sound energy, electromagnetic radiation, chemical energy and/or thermal energy. Examples of inducible systems include tetracycline inducible promoters (Tet-On or Tet-Off), small molecule two-hybrid transcription activations systems (FKBP, ABA, etc), or light inducible systems (Phytochrome, LOV domains, or cryptochrome), such as a Light Inducible Transcriptional Effector (LITE) that direct changes in transcriptional activity in a sequence-specific manner. The components of a light inducible system may include one or more gene modifying agents, a light-responsive cytochrome heterodimer (e.g. from Arabidopsis thaliana), and a transcriptional activation/repression domain. Further examples of inducible DNA binding proteins and methods for their use are provided in U.S. 61/736,465 and U.S. 61/721,283, which is hereby incorporated by reference in its entirety.
In particular embodiments, transient or inducible expression can be achieved by using, for example, chemical-regulated promotors, i.e. whereby the application of an exogenous chemical induces gene expression. Modulating of gene expression can also be obtained by a chemical-repressible promoter, where application of the chemical represses gene expression. Chemical-inducible promoters include, but are not limited to, the maize ln2-2 promoter, activated by benzene sulfonamide herbicide safeners (De Veylder et al., (1997) Plant Cell Physiol 38:568-77), the maize GST promoter (GST-ll-27, WO93/01294), activated by hydrophobic electrophilic compounds used as pre-emergent herbicides, and the tobacco PR-1 a promoter (Ono et al., (2004) Biosci Biotechnol Biochem 68:803-7) activated by salicylic acid. Promoters which are regulated by antibiotics, such as tetracycline-inducible and tetracycline-repressible promoters (Gatz et al., (1991) Mol Gen Genet 227:229-37; U.S. Pat. Nos. 5,814,618 and 5,789,156) can also be used herein.
Translocation to and/or Expression in Specific Plant Organelles
The system may comprise elements for translocation to and/or expression in a specific plant organelle. In some embodiments, a tissue specific promoter can be included in the expression construct. In some embodiments, a tissue localization or organelle localization sequence or signal can be incorporated into the expression constructs. Such promoters and localization signals are described in greater detail elsewhere herein and/or will be appreciated by one of ordinary skill in the art.
In some embodiments, the polynucleotide modifying system can specifically modify chloroplast genes or to ensure expression in the chloroplast. In some embodiments, chloroplast transformation methods or compartmentalization of the system components to the chloroplast. For instance, the introduction of genetic modifications in the plastid genome can reduce biosafety issues such as gene flow through pollen.
Methods of chloroplast transformation are known in the art and include Particle bombardment, PEG treatment, and microinjection. Additionally, methods involving the translocation of transformation cassettes from the nuclear genome to the plastid can be used as described in WO2010061186.
In some embodiments, one or more of the polynucleotide modifying system components can be targeted to the plant chloroplast. This can be achieved by incorporating in the expression construct a sequence encoding a chloroplast transit peptide (CTP) or plastid transit peptide, operably linked to the 5′ region of the sequence encoding the Cas protein. The CTP is removed in a processing step during translocation into the chloroplast. Chloroplast targeting of expressed proteins is well known to the skilled artisan (see for instance Protein Transport into Chloroplasts, 2010, Annual Review of Plant Biology, Vol. 61: 157-180). In such embodiments it is also can be desirable to target the guide RNA to the plant chloroplast. Methods and constructs which can be used for translocating guide RNA into the chloroplast by means of a chloroplast localization sequence are described, for instance, in US 20040142476, incorporated herein by reference. Such variations of constructs can be incorporated into the expression systems of the invention to efficiently translocate the Cas-guide RNA.
In some embodiments, the modified organism is algae. Modified algae (or other plants such as rape) can be useful in a variety of situations, such as in the production of vegetable oils or biofuels such as alcohols (especially methanol and ethanol) or other products. In some embodiments, such organisms can be engineered to express or overexpress high levels of a useful product. For example, they can be modified to produce oil and/or alcohols for use in the oil or biofuel industries.
Algae modification using polynucleotide modifying agents has been described in, for example U.S. Pat. No. 8,945,839 and WO 2015086795, which can be adapted to modifying algae and similar organisms with the polynucleotide modifying agents and systems described herein. In some embodiments, the polynucleotide modifying agent(s) or system thereof can be introduced to the algae using a vector that expresses the polynucleotide modifying agent(s) or system thereof under the control of a constitutive promoter such as Hsp70A-Rbc S2 or Beta2-tubulin. Some components of the polynucleotide modifying system (such as a guide RNA or other RNAs) can be optionally delivered using a vector containing T7 promoter. In some embodiments, a polynucleotide modifying agent and/or other components of the polynucleotide modifying system mRNA can be expressed and in vitro transcribed guide RNA can be delivered to algal cells. In some embodiments, delivery can be via electroporation. Electroporation protocols are available to the skilled person such as the standard recommended protocol from the GeneArt Chlamydomonas Engineering kit.
In particular embodiments, the endonuclease used herein is a split Cas enzyme. Split Cas enzymes used in Algae for targeted genome modification as has been described for Cas9 in WO 2015086795. Use of the Cas split system is suitable for an inducible method of genome targeting and can avoid or mitigate the potential toxic effect of the Cas overexpression within the algae cell. In particular embodiments, said Cas split domains (RuvC and HNH domains in the case of Cas9) can be simultaneously or sequentially introduced into the cell such that said split Cas domain(s) process the target nucleic acid sequence in the algae cell. The reduced size of the split Cas compared to the wild type Cas allows other methods of delivery of the systems to the cells, such as the use of cell penetrating peptides as described herein.
In some embodiments, a yeast cell can be modified using the polynucleotide modifying agents and/or systems described herein. Methods for transforming yeast cells which can be used to introduce polynucleotides encoding the systems components are well known to the artisan and are reviewed by Kawai et al., 2010, Bioeng Bugs. 2010 November-December; 1(6): 395-403). Non-limiting examples include transformation of yeast cells by lithium acetate treatment (which may further include carrier DNA and PEG treatment), bombardment or by electroporation.
In particular embodiments, it is of interest to deliver one or more polynucleotide modifying agent(s) or components of the system directly to the plant cell. In particular embodiments, one or more of the polynucleotide modifying agent(s) or components of the system can be prepared outside the plant or plant cell and delivered to the cell. In some embodiments, the protein polynucleotide modifying agent (e.g. where a CRISPR-Cas system is used, a Cas protein) or system component is prepared in vitro prior to introduction to the plant cell. Proteins can be prepared by various methods known by one of skill in the art and include recombinant production and de novo synthesis. After expression, the protein can be isolated, refolded if needed, purified and optionally treated to remove any purification tags, such as a His-tag. Once crude, partially purified, or more completely purified protein is obtained, the protein may be introduced to the plant cell.
In some embodiments where a CRISPR-Cas or RNA guided system is employed, the Cas or other protein(s) can be mixed with guide RNA(s) targeting the gene(s) of interest to form a pre-assembled ribonucleoprotein.
The individual components or pre-assembled ribonucleoprotein can be introduced into the plant cell via electroporation, by bombardment with Cas-associated gene product coated particles, by chemical transfection or by some other means of transport across a cell membrane. For instance, transfection of a plant protoplast with a pre-assembled CRISPR ribonucleoprotein has been demonstrated to ensure targeted modification of the plant genome (as described by Woo et al. Nature Biotechnology, 2015; DOI: 10.1038/nbt.3389), which can be adapted for use with the present invention.
In particular embodiments, the system components are introduced into the plant cells using nanoparticles. The components, either as protein or nucleic acid or in a combination thereof, can be uploaded onto or packaged in nanoparticles and applied to the plants (such as for instance described in WO 2008042156 and US 20130185823). In particular, embodiments of the invention comprise nanoparticles uploaded with or packed with DNA molecule(s) encoding the Cas protein, DNA molecules encoding the guide RNA and/or isolated guide RNA as described in WO2015089419.
In some embodiments, the polynucleotide modifying agent(s) or one or more components of the system to the plant cell is by using cell penetrating peptides (CPP). In some embodiments, the cell penetrating peptide can be linked to a protein polynucleotide modifying agent or other component of a polynucleotide modifying agent or system thereof.
In some embodiments where a CRISPR-Cas system is employed, the Cas protein and/or guide RNA is coupled to one or more CPPs to effectively transport them inside plant protoplasts; see also Ramakrishna (20140 Genome Res. 2014 June; 24(6):1020-7 for Cas9 in human cells). In other embodiments, the Cas gene and/or guide RNA are encoded by one or more circular or non-circular DNA molecule(s) which are coupled to one or more CPPs for plant protoplast delivery. The plant protoplasts can then regenerate to produce plant cells and further to plants.
CPPs are generally described as short peptides of fewer than 35 amino acids either derived from proteins or from chimeric sequences which are capable of transporting biomolecules across cell membrane in a receptor independent manner. CPP can be cationic peptides, peptides having hydrophobic sequences, amphipatic peptides, peptides having proline-rich and anti-microbial sequence, and chimeric or bipartite peptides (Pooga and Langel 2005). CPPs are able to penetrate biological membranes and as such trigger the movement of various biomolecules across cell membranes into the cytoplasm and to improve their intracellular routing, and hence facilitate interaction of the biomolecule with the target. Examples of CPP include amongst others: Tat, a nuclear transcriptional activator protein required for viral replication by HIV type1, penetratin, Kaposi fibroblast growth factor (FGF) signal peptide sequence, integrin β3 signal peptide sequence; polyarginine peptide Args sequence, Guanine rich-molecular transporters, sweet arrow peptide, etc.
In particular embodiments, the systems and methods described herein are used to modify endogenous genes or to modify their expression without the permanent introduction into the genome of the plant of any foreign gene, including those encoding polynucleotide modifying agent(s) or components of a polynucleotide modifying system, so as to avoid the presence of foreign DNA in the genome of the plant. This can be of interest as the regulatory requirements for non-transgenic plants are less rigorous.
In particular embodiments, this can be achieved by transient expression of the system components. In particular embodiments, one or more of the systems components are expressed on one or more viral vectors which produce sufficient components of the systems to consistently steadily ensure modification of a gene of interest according to a method described herein. In particular embodiments, transient expression of constructs is ensured in plant protoplasts and thus not integrated into the genome. The limited window of expression can be sufficient to allow the system to ensure modification of the target gene(s) as described herein.
In particular embodiments, different components of the system are introduced in the plant cell, protoplast or plant tissue either separately or in mixture, with the aid of particulate delivering molecules such as nanoparticles or CPP molecules as described herein above.
The expression of the components of the systems herein can induce targeted modification of the genome, either by direct activity of the polynucleotide modifying agent (e.g. when a CRISPR-Cas system is employed, a Cas protein) and optionally introduction of template DNA or by modification of genes targeted using the system as described herein. The different strategies described herein above can allow targeted genome editing without requiring the introduction of the components into the plant genome. Components which are transiently introduced into the plant cell can be, in some embodiments, removed upon crossing.
Protocols for targeted plant genome editing via CRISPR-Cas are also available based on those disclosed for the CRISPR-Cas9 system in volume 1284 of the series Methods in Molecular Biology pp 239-255 10 Feb. 2015. A detailed procedure to design, construct, and evaluate dual gRNAs for plant codon optimized Cas9 (pcoCas9) mediated genome editing using Arabidopsis thaliana and Nicotiana benthamiana protoplasts s model cellular systems are described. Strategies to apply the CRISPR-Cas9 system to generating targeted genome modifications in whole plants are also discussed. The protocols described in the chapter can be applied to the polynucleotide modifying agent(s) and systems described herein.
Sugano et al. (Plant Cell Physiol. 2014 March; 55(3):475-81. doi: 10.1093/pcp/pcu014. Epub 2014 Jan. 18) reports the application of CRISPR-Cas9 to targeted mutagenesis in the liverwort Marchantia polymorpha L., which has emerged as a model species for studying land plant evolution. The U6 promoter of M. polymorpha was identified and cloned to express the gRNA. The target sequence of the gRNA was designed to disrupt the gene encoding auxin response factor 1 (ARF1) in M. polymorpha. Using Agrobacterium-mediated transformation, Sugano et al. isolated stable mutants in the gametophyte generation of M. polymorpha. CRISPR-Cas9-based site-directed mutagenesis in vivo was achieved using either the Cauliflower mosaic virus 35S or M. polymorpha EF1α promoter to express Cas9. Isolated mutant individuals showing an auxin-resistant phenotype were not chimeric. Moreover, stable mutants were produced by asexual reproduction of T1 plants. Multiple arfl alleles were easily established using CRIPSR-Cas9-based targeted mutagenesis. The methods of Sugano et al. can be applied to the polynucleotide modifying agent(s) and systems described herein.
Lowder et al. (Plant Physiol. 2015 Aug. 21. pii: pp. 00636.2015) also developed a CRISPR-Cas9 toolbox enables multiplex genome editing and transcriptional regulation of expressed, silenced or non-coding genes in plants. This toolbox provides researchers with a protocol and reagents to quickly and efficiently assemble functional CRISPR-Cas9 T-DNA constructs for monocots and dicots using Golden Gate and Gateway cloning methods. It comes with a full suite of capabilities, including multiplexed gene editing and transcriptional activation or repression of plant endogenous genes. T-DNA based transformation technology is fundamental to modern plant biotechnology, genetics, molecular biology and physiology. As such, Applicants developed a method for the assembly of Cas (WT, nickase or dCas) and gRNA(s) into a T-DNA destination-vector of interest. The assembly method is based on both Golden Gate assembly and MultiSite Gateway recombination. Three modules are required for assembly. The first module is a Cas entry vector, which contains promoterless Cas or its derivative genes flanked by attL1 and attR5 sites. The second module is a gRNA entry vector which contains entry gRNA expression cassettes flanked by attL5 and attL2 sites. The third module includes attR1-attR2-containing destination T-DNA vectors that provide promoters of choice for Cas expression. The toolbox of Lowder et al. can be applied to the polynucleotide modifying agent(s) and systems described herein.
Wang et al. (bioRxiv 051342; doi: doi.org/10.1101/051342; Epub. May 12, 2016) demonstrate editing of homoeologous copies of four genes affecting important agronomic traits in hexaploid wheat using a multiplexed gene editing construct with several gRNA-tRNA units under the control of a single promoter. The methods of Wang et al. can be applied to the polynucleotide modifying agent(s) and systems described herein.
In an advantageous embodiment, the plant may be a tree. The present invention may also utilize the herein disclosed systems for herbaceous systems (see, e.g., Belhaj et al., Plant Methods 9: 39 and Harrison et al., Genes & Development 28: 1859-1872). In a particularly advantageous embodiment, the polynucleotide modifying agent(s) and systems thereof can target single nucleotide polymorphisms (SNPs) in trees (see, e.g., Zhou et al., New Phytologist, Volume 208, Issue 2, pages 298-301, October 2015). In the Zhou et al. study, the authors applied a systems in the woody perennial Populus using the 4-coumarate:CoA ligase (4CL) gene family as a case study and achieved 100% mutational efficiency for two 4CL genes targeted, with every transformant examined carrying biallelic modifications. In the Zhou et al., study, the CRISPR-Cas9 system was highly sensitive to single nucleotide polymorphisms (SNPs), as cleavage for a third 4CL gene was abolished due to SNPs in the target sequence. These methods Wang et al. (bioRxiv 051342; doi: doi.org/10.1101/051342; Epub. May 12, 2016) demonstrate editing of homoeologous copies of four genes affecting important agronomic traits in hexaploid wheat using a multiplexed gene editing construct with several gRNA-tRNA units under the control of a single promoter. These techniques and methods can be applied to the polynucleotide modifying agent(s) and systems described herein.
In particular embodiments, the polynucleotide modification systems described herein, can be used for self-cleavage. In these embodiments, the promotor of the Cas enzyme and gRNA can be a constitutive promotor and a second gRNA is introduced in the same transformation cassette, but controlled by an inducible promoter. This second gRNA can be designated to induce site-specific cleavage in the Cas gene in order to create a non-functional Cas. In a further particular embodiment, the second gRNA induces cleavage on both ends of the transformation cassette, resulting in the removal of the cassette from the host genome. This system offers a controlled duration of cellular exposure to the Cas enzyme and further minimizes off-target editing. Furthermore, cleavage of both ends of a CRISPR/Cas cassette can be used to generate transgene-free TO plants with bi-allelic mutations (as described for Cas9 e.g. Moore et al., Nucleic Acids Research, 2014; Schaeffer et al., Plant Science, 2015). The methods of Moore et al. can be applied to the polynucleotide modifying agent(s) and systems described herein.
Kabadi et al. (Nucleic Acids Res. 2014 Oct. 29; 42(19):e147. doi: 10.1093/nar/gku749. Epub 2014 Aug. 13) developed a single lentiviral system to express a Cas9 variant, a reporter gene and up to four sgRNAs from independent RNA polymerase III promoters that are incorporated into the vector by a convenient Golden Gate cloning method. Each sgRNA was efficiently expressed and can mediate multiplex gene editing and sustained transcriptional activation in immortalized and primary human cells. The methods of Kabadi et al. may be applied to the Cas effector protein system of the present invention.
Ling et al. (BMC Plant Biology 2014, 14:327) developed a CRISPR-Cas9 binary vector set based on the pGreen or pCAMBIA backbone, as well as a gRNA This toolkit requires no restriction enzymes besides BsaI to generate final constructs harboring maize-codon optimized Cas9 and one or more gRNAs with high efficiency in as little as one cloning step. The toolkit was validated using maize protoplasts, transgenic maize lines, and transgenic Arabidopsis lines and was shown to exhibit high efficiency and specificity. More importantly, using this toolkit, targeted mutations of three Arabidopsis genes were detected in transgenic seedlings of the T1 generation. Moreover, the multiple-gene mutations could be inherited by the next generation. (guide RNA) module vector set, as a toolkit for multiplex genome editing in plants. The toolbox of Lin et al. can be applied to the polynucleotide modifying agent(s) and systems described herein.
The methods of Zhou et al. (New Phytologist, Volume 208, Issue 2, pages 298-301, October 2015) may be applied to the present invention as follows. Two 4CL genes, 4CL1 and 4CL2, associated with lignin and flavonoid biosynthesis, respectively are targeted for CRISPR-Cas9 editing. The Populus tremula×alba clone 717-1B4 routinely used for transformation is divergent from the genome-sequenced Populus trichocarpa. Therefore, the 4CL1 and 4CL2 gRNAs designed from the reference genome are interrogated with in-house 717 RNA-Seq data to ensure the absence of SNPs which could limit Cas efficiency. A third gRNA designed for 4CL5, a genome duplicate of 4CL1, is also included. The corresponding 717 sequence harbors one SNP in each allele near/within the PAM, both of which are expected to abolish targeting by the 4CL5-gRNA. All three gRNA target sites are located within the first exon. For 717 transformation, the gRNA is expressed from the Medicago U6.6 promoter, along with a human codon-optimized Cas under control of the CaMV 35S promoter in a binary vector. Transformation with the Cas-only vector can serve as a control. Randomly selected 4CL1 and 4CL2 lines are subjected to amplicon-sequencing. The data is then processed and biallelic mutations are confirmed in all cases. These methods can be applied to the polynucleotide modifying agent(s) and systems described herein.
The following table (Table 2) provides additional references and related fields for which the systems, complexes, modified effector proteins, systems, and methods of optimization may be used to generate modified non-animal organisms.
In particular embodiments, a selectable marker can be included or introduced to allow for identification of modified cells. Selectable markers can be advantageous for many situations, such as when the modification is made to an endogenous target gene of the plant genome. Any suitable method can be used to determine, after the plant, plant part or plant cell is infected or transfected with the system, whether gene targeting or targeted mutagenesis has occurred at the target site.
Where the method involves introduction of a transgene, a transformed plant cell, callus, tissue or plant may be identified and isolated by selecting or screening the engineered plant material for the presence of the transgene or for traits encoded by the transgene. Physical and biochemical methods may be used to identify plant or plant cell transformants containing inserted gene constructs or an endogenous DNA modification. These methods include but are not limited to: 1) Southern analysis or PCR amplification for detecting and determining the structure of the recombinant DNA insert or modified endogenous genes; 2) Northern blot, S1 RNase protection, primer-extension or reverse transcriptase-PCR amplification for detecting and examining RNA transcripts of the gene constructs; 3) enzymatic assays for detecting enzyme or ribozyme activity, where such gene products are encoded by the gene construct or expression is affected by the genetic modification; 4) protein gel electrophoresis, Western blot techniques, immunoprecipitation, or enzyme-linked immunoassays, where the gene construct or endogenous gene products are proteins. Additional techniques, such as in situ hybridization, enzyme staining, and immunostaining, also may be used to detect the presence or expression of the recombinant construct or detect a modification of endogenous gene in specific plant organs and tissues. The methods for doing all these assays are well known to those skilled in the art.
In some embodiments, the expression system encoding the polynucleotide modifying agent and/or system components can be designed to comprise one or more selectable or detectable markers that provide a means to isolate or efficiently select cells that contain and/or have been modified by the system at an early stage and on a large scale.
In the case of Agrobacterium-mediated transformation, the marker cassette may be adjacent to or between flanking T-DNA borders and contained within a binary vector. In another embodiment, the marker cassette may be outside of the T-DNA. A selectable marker cassette may also be within or adjacent to the same T-DNA borders as the expression cassette or may be somewhere else within a second T-DNA on the binary vector (e.g., a 2 T-DNA system).
For particle bombardment or with protoplast transformation, the expression system can include one or more isolated linear fragments or may be part of a larger construct that might contain bacterial replication elements, bacterial selectable markers or other detectable elements. The expression cassette(s) comprising the polynucleotide(s) encoding the polynucleotide modifying agents(s), system component(s), or system can be physically linked to a marker cassette or may be mixed with a second nucleic acid molecule encoding a marker cassette. The marker cassette can include the necessary elements to express a detectable or selectable marker that allows for efficient selection of transformed cells. Such elements will be appreciated by one of ordinary skill in the art.
The selection procedure for the cells based on the selectable marker will depend on the nature of the marker gene. In particular embodiments, use is made of a selectable marker, i.e., a marker which allows a direct selection of the cells based on the expression of the marker. A selectable marker can confer positive or negative selection and is conditional or non-conditional on the presence of external substrates (Miki et al. 2004, 107(3): 193-232). Most commonly, antibiotic or herbicide resistance genes are used as a marker, whereby selection is be performed by growing the engineered plant material on media containing an inhibitory amount of the antibiotic or herbicide to which the marker gene confers resistance. Examples of such genes are genes that confer resistance to antibiotics, such as hygromycin (hpt) and kanamycin (nptII), and genes that confer resistance to herbicides, such as phosphinothricin (bar) and chlorosulfuron (als),
Transformed plants and plant cells can also be identified by screening for the activities of a visible marker, typically an enzyme capable of processing a colored substrate (e.g., the β-glucuronidase, luciferase, B or C1 genes). Such selection and screening methodologies are well known to those skilled in the art.
In particular embodiments, plant cells which have a modified genome and that are produced or obtained by any of the methods described herein, can be cultured to regenerate a whole plant which possesses the transformed or modified genotype and thus the desired phenotype. Conventional regeneration techniques are well known to those skilled in the art. Particular examples of such regeneration techniques rely on manipulation of certain phytohormones in a tissue culture growth medium, and typically relying on a biocide and/or herbicide marker which has been introduced together with the desired nucleotide sequences. In further particular embodiments, plant regeneration is obtained from cultured protoplasts, plant callus, explants, organs, pollens, embryos or parts thereof (see e.g., Evans et al. (1983), Handbook of Plant Cell Culture, Klee et al (1987) Ann. Rev. of Plant Phys).
In particular embodiments, transformed or improved plants as described herein can be self-pollinated to provide seed for homozygous improved plants of the invention (homozygous for the DNA modification) or crossed with non-transgenic plants or different improved plants to provide seed for heterozygous plants. Where a recombinant DNA was introduced into the plant cell, the resulting plant of such a crossing is a plant which is heterozygous for the recombinant DNA molecule. Both such homozygous and heterozygous plants obtained by crossing from the improved plants and comprising the genetic modification (which can be a recombinant DNA) are referred to herein as “progeny”. Progeny plants are plants descended from the original transgenic plant and containing the genome modification or recombinant DNA molecule introduced by the methods provided herein. Alternatively, genetically modified plants can be obtained by one of the methods described supra using the Cfp1 enzyme whereby no foreign DNA is incorporated into the genome. Progeny of such plants, obtained by further breeding may also contain the genetic modification. Breedings are performed by any breeding methods that are commonly used for different crops (e.g., Allard, Principles of Plant Breeding, John Wiley & Sons, NY, U. of CA, Davis, CA, 50-98 (1960).
In some embodiments, the modified plants, algae, yeast or other non-animal organisms can be used to produce a desirable gene product. The desirable gene product can then be harvested after production and used accordingly.
In particular embodiments, the polynucleotide modifying agents and system can be used for visualization of genetic element dynamics. For example, CRISPR imaging can visualize either repetitive or non-repetitive genomic sequences, report telomere length change and telomere movements and monitor the dynamics of gene loci throughout the cell cycle (Chen et al., Cell, 2013). These methods may also be applied to plants.
Other applications of the systems, and preferably the systems described herein, is the targeted gene disruption positive-selection screening in vitro and in vivo (Malina et al., Genes and Development, 2013). These methods may also be applied to plants.
In particular embodiments, fusion of inactive Cas endonucleases with histone-modifying enzymes can introduce custom changes in the complex epigenome (Rusk et al., Nature Methods, 2014). These methods may also be applied to plants.
In particular embodiments, the systems, and preferably the systems described herein, can be used to purify a specific portion of the chromatin and identify the associated proteins, thus elucidating their regulatory roles in transcription (Waldrip et al., Epigenetics, 2014). These methods may also be applied to plants.
In particular embodiments, present invention can be used as a therapy for virus removal in plant systems as it is able to cleave both viral DNA and RNA. Previous studies in human systems have demonstrated the success of utilizing CRISPR in targeting the single strand RNA virus, hepatitis C (A. Price, et al., Proc. Natl. Acad. Sci, 2015) as well as the double stranded DNA virus, hepatitis B (V. Ramanan, et al., Sci. Rep, 2015). These methods may also be adapted for using the systems in plants.
In particular embodiments, present invention could be used to alter genome complexity. In further particular embodiments, the systems, and preferably the systems described herein, can be used to disrupt or alter chromosome number and generate haploid plants, which only contain chromosomes from one parent. Such plants can be induced to undergo chromosome duplication and converted into diploid plants containing only homozygous alleles (Karimi-Ashtiyani et al., PNAS, 2015; Anton et al., Nucleus, 2014). These methods may also be applied to plants.
The polynucleotide modifying agent(s) and systems can be used to generate loss of function plants, algae, yeast, and other non-animal organisms, which can allow for functional analysis of genomic material. Ma et al. (Mol Plant. 2015 Aug. 3; 8(8):1274-84. doi: 10.1016/j.molp.2015.04.007) reports robust CRISPR-Cas9 vector system, utilizing a plant codon optimized Cas9 gene, for convenient and high-efficiency multiplex genome editing in monocot and dicot plants. Ma et al. designed PCR-based procedures to rapidly generate multiple sgRNA expression cassettes, which can be assembled into the binary CRISPR-Cas9 vectors in one round of cloning by Golden Gate ligation or Gibson Assembly. With this system, Ma et al. edited 46 target sites in rice with an average 85.4% rate of mutation, mostly in biallelic and homozygous status. Ma et al. provide examples of loss-of-function gene mutations in TO rice and T1Arabidopsis plants by simultaneous targeting of multiple (up to eight) members of a gene family, multiple genes in a biosynthetic pathway, or multiple sites in a single gene. The methods of Ma et al. can be applied to the polynucleotide modifying agent(s) and systems described herein.
In plants, pathogens are often host-specific. For example, Fusarium oxysporum f. sp. lycopersici causes tomato wilt but attacks only tomato, and F. oxysporum f. dianthii Puccinia graminis f. sp. tritici attacks only wheat. Plants have existing and induced defenses to resist most pathogens. Mutations and recombination events across plant generations lead to genetic variability that gives rise to susceptibility, especially as pathogens reproduce with more frequency than plants. In plants there can be non-host resistance, e.g., the host and pathogen are incompatible. There can also be Horizontal Resistance, e.g., partial resistance against all races of a pathogen, typically controlled by many genes and Vertical Resistance, e.g., complete resistance to some races of a pathogen but not to other races, typically controlled by a few genes. In a Gene-for-Gene level, plants and pathogens evolve together, and the genetic changes in one balance changes in other. Accordingly, using Natural Variability, breeders combine most useful genes for Yield, Quality, Uniformity, Hardiness, Resistance. The sources of resistance genes include native or foreign Varieties, Heirloom Varieties, Wild Plant Relatives, and Induced Mutations, e.g., treating plant material with mutagenic agents. The polynucleotide modifying agents and systems can be used to induce mutations, to analyze the genome of sources of resistance genes, and in varieties having desired characteristics or traits employ the present invention to induce the rise of resistance genes, with more precision than previous mutagenic agents and hence accelerate and improve plant breeding programs. Further, the modifying agents and systems described herein can be used to generate plants with one or more disease resistant genes or alleles.
Similarly, the polynucleotide modifying agents and systems described herein can be used to induce mutations to allow for genome wide screening for mutations, alleles, and variants that have a desired characteristic (e.g., heat tolerance, cold tolerance, fast growth, pest resistance, etc.) and also used to generate plants with the identified and desired allele(s).
In some embodiments, the polynucleotide modifying agents and systems described herein can be used to generate non-animal organism model systems of animals. Modified non-animal organisms or cells thereof can be modified to express one or more heterologous genes, such as genes from a human or non-human animal. Such model systems can be used to determine response to environmental toxins, pharmaceutical agents, or other stimuli. Other uses for such model systems will be appreciated by those of ordinary skill in the art.
The methods described herein can result in the generation of “improved plants, algae, fungi, yeast, etc.” in that they have one or more desirable traits compared to the wildtype plant. In particular embodiments, the plants, algae, fungi, yeast, etc., cells or parts obtained are transgenic plants, comprising an exogenous DNA sequence incorporated into the genome of all or part of the cells. In particular embodiments, non-transgenic genetically modified plants, algae, fungi, yeast, etc., parts or cells are obtained, in that no exogenous DNA sequence is incorporated into the genome of any of the cells of the plant. In such embodiments, the improved plants, algae, fungi, yeast, etc. are non-transgenic. Where only the modification of an endogenous gene is ensured and no foreign genes are introduced or maintained in the plant, algae, fungi, yeast, etc. genome, the resulting genetically modified crops contain no foreign genes and can thus basically be considered non-transgenic. The different applications of the systems for plant, algae, fungi, yeast, etc. genome editing include, but are not limited to: introduction of one or more foreign genes to confer an agricultural trait of interest; editing of endogenous genes to confer an agricultural trait of interest; modulating of endogenous genes by the systems to confer an agricultural trait of interest. Exemplary genes conferring agronomic traits include, but are not limited to, genes that confer resistance to pests or diseases; genes involved in plant diseases, such as those listed in WO 2013046247; genes that confer resistance to herbicides, fungicides, or the like; genes involved in (abiotic) stress tolerance. Other aspects of the use of the systems include, but are not limited to: create (male) sterile plants; increasing the fertility stage in plants/algae etc.; generate genetic variation in a crop of interest; affect fruit-ripening; increasing storage life of plants/algae etc.; reducing allergen in plants/algae etc.; ensure a value-added trait (e.g. nutritional improvement); Screening methods for endogenous genes of interest; biofuel, fatty acid, organic acid, etc. production.
Also described here are modified non-animal organisms (e.g., plants, algae, and yeast cells) obtainable and obtained by the methods provided herein that can be improved in at least one aspect as compared to an unmodified plant. The improved non-animal organisms obtained by the methods described herein may be useful in one or more fields (e.g., food or feed production) through expression of genes or alleles which, for instance ensure tolerance to infectious agents, pests, herbicides, drought, low or high temperatures, excessive water, toxins, etc.
The improved plants obtained by the methods described herein, especially crops and algae may be useful in food or feed production through expression of, for instance, higher protein, carbohydrate, nutrient or vitamin levels than would normally be seen in the wildtype. In this regard, improved plants, especially pulses and tubers are preferred.
Improved algae or other plants such as rape may be particularly useful in the production of vegetable oils or biofuels such as alcohols (especially methanol and ethanol), for instance. These may be engineered to express or overexpress high levels of oil or alcohols for use in the oil or biofuel industries.
Also described herein are improved parts of a plant. Plant parts include, but are not limited to, leaves, stems, roots, tubers, seeds, endosperm, ovule, and pollen. Plant parts as envisaged herein may be viable, nonviable, regeneratable, and/or non-regeneratable. The improved part of the plant can, for example, result in earlier fruit, higher content of one or more molecules involved in fruit taste, color, maturity, ripening, etc. or have other desired characteristics. In one embodiment, the method described in Soyk et al. (Nat Genet. 2017 January; 49(1):162-168), which used CRISPR-Cas9 mediated mutation targeting flowering repressor SP5G in tomatoes to produce early yield tomatoes can be modified and adapted for use with the polynucleotide modifying agent(s) and systems thereof described herein.
The systems and methods may be used to generate modified non-human animals and cells thereof. In an aspect, the invention provides a non-human eukaryotic organism; preferably a multicellular eukaryotic organism, comprising a eukaryotic host cell according to any of the described embodiments. In other aspects, the invention provides a eukaryotic organism; preferably a multicellular eukaryotic organism, comprising a eukaryotic host cell according to any of the described embodiments. The organism in some embodiments of these aspects may be an animal, for example, a mammal. Also, the organism may be an arthropod such as an insect. The present invention may also be extended to other agricultural applications such as, for example, farm and production animals. For example, pigs have many features that make them attractive as biomedical models, especially in regenerative medicine. In particular, pigs with severe combined immunodeficiency (SCID) may provide useful models for regenerative medicine, xenotransplantation (discussed also elsewhere herein), and tumor development and will aid in developing therapies for human SCID patients. Lee et al., (Proc Natl Acad Sci USA. 2014 May 20; 111(20):7260-5) utilized a reporter-guided transcription activator-like effector nuclease (TALEN) system to generated targeted modifications of recombination activating gene (RAG) 2 in somatic cells at high efficiency, including some that affected both alleles. Such techniques and modifications can be adapted for and used with the modifying agent(s) and systems thereof described herein to generate a modified non-human animal or cell thereof.
The methods of Lee et al., (Proc Natl Acad Sci USA. 2014 May 20; 111(20):7260-5) may be applied to the present invention analogously as follows. Mutated pigs are produced by targeted insertion for example in RAG2 in fetal fibroblast cells followed by SCNT and embryo transfer. Constructs coding for CRISPR Cas and a reporter are electroporated into fetal-derived fibroblast cells. After 48 h, transfected cells expressing the green fluorescent protein are sorted into individual wells of a 96-well plate at an estimated dilution of a single cell per well. Targeted modification of RAG2 is screened by amplifying a genomic DNA fragment flanking any CRISPR Cas cutting sites followed by sequencing the PCR products. After screening and ensuring lack of off-site mutations, cells carrying targeted modification of RAG2 are used for SCNT. The polar body, along with a portion of the adjacent cytoplasm of oocyte, presumably containing the metaphase II plate, are removed, and a donor cell are placed in the perivitelline. The reconstructed embryos are then electrically porated to fuse the donor cell with the oocyte and then chemically activated. The activated embryos are incubated in Porcine Zygote Medium 3 (PZM3) with 0.5 μM Scriptaid (S7817; Sigma-Aldrich) for 14-16 h. Embryos are then washed to remove the Scriptaid and cultured in PZM3 until they were transferred into the oviducts of surrogate pigs. Such techniques and modifications can be adapted for and used with the modifying agent(s) and systems thereof described herein to generate a modified non-human animal or cell thereof.
The modified non-human animals described herein can be a platform to model a disease or disorder of an animal, including but not limited to mammals. In some of these embodiments, the mammal can be a human. In certain embodiments, such models and platforms are rodent based, in non-limiting examples rat or mouse. Such models and platforms can take advantage of distinctions among and comparisons between inbred rodent strains. In certain embodiments, such models and platforms primate, horse, cattle, sheep, goat, swine, dog, cat or bird-based, for example to directly model diseases and disorders of such animals or to create modified and/or improved lines of such animals. Advantageously, in certain embodiments, an animal-based platform or model is created to mimic a human disease or disorder. For example, the similarities of swine to humans make swine an ideal platform for modeling human diseases. Compared to rodent models, development of swine models has been costly and time intensive. On the other hand, swine and other animals are much more similar to humans genetically, anatomically, physiologically and pathophysiologically. The present invention provides a high efficiency platform for targeted gene and genome editing, gene and genome modification and gene and genome regulation to be used in such animal platforms and models. Though ethical standards block development of human models and in many case models based on non-human primates, the present invention is used with in vitro systems, including but not limited to cell culture systems, three dimensional models and systems, and organoids to mimic, model, and investigate genetics, anatomy, physiology and pathophysiology of structures, organs, and systems of humans. The platforms and models provide manipulation of single or multiple targets.
In certain embodiments, the present invention is applicable to disease models like that of Schomberg et al. (FASEB Journal, April 2016; 30(1):Suppl 571.1). To model the inherited disease neurofibromatosis type 1 (NF-1) Schomberg used CRISPR-Cas9 to introduce mutations in the swine neurofibromin 1 gene by cytosolic microinjection of CRISPR/Cas9 components into swine embryos. CRISPR guide RNAs (gRNA) were created for regions targeting sites both upstream and downstream of an exon within the gene for targeted cleavage by Cas9 and repair was mediated by a specific single-stranded oligodeoxynucleotide (ssODN) template to introduce a 2500 bp deletion. The systems were also used to engineer swine with specific NF-1 mutations or clusters of mutations, and further can be used to engineer mutations that are specific to, or representative of a given human individual. Such techniques and modifications can be adapted for and used with the modifying agent(s) and systems thereof described herein to generate a modified non-human animal or cell thereof. In some embodiments, the polynucleotide modifying agent(s) or systems thereof can be similarly used to develop animal models, including but not limited to swine models, of human multigenic diseases. In some embodiments, multiple genetic loci in one gene or in multiple genes are simultaneously targeted using multiplexed guides and optionally one or multiple templates.
SNPs of other animals, such as cows can also be modified or generated using one or more polynucleotide modifying agents or systems described herein. Tan et al. (Proc Natl Acad Sci USA. 2013 Oct. 8; 110(41): 16526-16531) expanded the livestock gene editing toolbox to include transcription activator-like (TAL) effector nuclease (TALEN)- and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-stimulated homology-directed repair (HDR) using plasmid, rAAV, and oligonucleotide templates. Gene specific gRNA sequences were cloned into the Church lab gRNA vector (Addgene ID: 41824) according to their methods (Mali P, et al. (2013) RNA-Guided Human Genome Engineering via Cas9. Science 339(6121):823-826). The Cas9 nuclease was provided either by co-transfection of the hCas9 plasmid (Addgene ID: 41815) or mRNA synthesized from RCIScript-hCas9. This RCIScript-hCas9 was constructed by sub-cloning the XbaI-AgeI fragment from the hCas9 plasmid (encompassing the hCas9 cDNA) into the RCIScript plasmid. Such techniques and modifications can be adapted for and used with the modifying agent(s) and systems thereof described herein to generate a modified non-human animal or cell thereof.
Heo et al. (Stem Cells Dev. 2015 Feb. 1; 24(3):393-402. doi: 10.1089/scd.2014.0278. Epub 2014 Nov. 3) reported highly efficient gene targeting in the bovine genome using bovine pluripotent cells and clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 nuclease. First, Heo et al. generate induced pluripotent stem cells (iPSCs) from bovine somatic fibroblasts by the ectopic expression of yamanaka factors and GSK3β and MEK inhibitor (2i) treatment. Heo et al. observed that these bovine iPSCs are highly similar to naïve pluripotent stem cells with regard to gene expression and developmental potential in teratomas. Moreover, CRISPR-Cas9 nuclease, which was specific for the bovine NANOG locus, showed highly efficient editing of the bovine genome in bovine iPSCs and embryos. Such techniques and modifications can be adapted for and used with the modifying agent(s) and systems thereof described herein to generate a modified non-human animal or cell thereof.
Igenity® provides a profile analysis of animals, such as cows, to perform and transmit traits of economic traits of economic importance, such as carcass composition, carcass quality, maternal and reproductive traits and average daily gain. The analysis of a comprehensive Igenity® profile begins with the discovery of DNA markers (most often single nucleotide polymorphisms or SNPs). All the markers behind the Igenity® profile were discovered by independent scientists at research institutions, including universities, research organizations, and government entities such as USDA. Markers are then analyzed at Igenity® in validation populations. Igenity® uses multiple resource populations that represent various production environments and biological types, often working with industry partners from the seedstock, cow-calf, feedlot and/or packing segments of the beef industry to collect phenotypes that are not commonly available. Cattle genome databases are widely available, see, e.g., the NAGRP Cattle Genome Coordination Program (www.animalgenome.org/cattle/maps/db.html). Thus, the polynucleotide modifying agent(s) and/or systems described herein can be applied to target bovine SNPs. One of skill in the art may utilize the above protocols for targeting SNPs and apply them to bovine SNPs as described, for example, by Tan et al. or Heo et al.
Qingjian Zou et al. (Journal of Molecular Cell Biology Advance Access published Oct. 12, 2015) demonstrated increased muscle mass in dogs by targeting the first exon of the dog Myostatin (MSTN) gene (a negative regulator of skeletal muscle mass). First, the efficiency of the sgRNA was validated, using cotransfection of the sgRNA targeting MSTN with a Cas9 vector into canine embryonic fibroblasts (CEFs). Thereafter, MSTN KO dogs were generated by micro-injecting embryos with normal morphology with a mixture of Cas9 mRNA and MSTN sgRNA and auto-transplantation of the zygotes into the oviduct of the same female dog. The knock-out puppies displayed an obvious muscular phenotype on thighs compared with its wild-type littermate sister. This can also be performed using the polynucleotide agent(s) and/or systems provided herein. Such techniques and modifications can be adapted for and used with the modifying agent(s) and systems thereof described herein to generate a modified non-human animal or cell thereof.
Also described herein are modified pigs or cells that can express one or more polynucleotides, genes, or alleles of interest. As reported by Kristin M Whitworth and Dr Randall Prather et al. (Nature Biotech 3434 published online 7 Dec. 2015) CD163 (a viral target) was targeted using CRISPR-Cas9 and the offspring of edited pigs were resistant when exposed to PRRSv. One founder male and one founder female, both of whom had mutations in exon 7 of CD163, were bred to produce offspring. The founder male possessed an 11-bp deletion in exon 7 on one allele, which results in a frameshift mutation and missense translation at amino acid 45 in domain 5 and a subsequent premature stop codon at amino acid 64. The other allele had a 2-bp addition in exon 7 and a 377-bp deletion in the preceding intron, which were predicted to result in the expression of the first 49 amino acids of domain 5, followed by a premature stop code at amino acid 85. The sow had a 7 bp addition in one allele that when translated was predicted to express the first 48 amino acids of domain 5, followed by a premature stop codon at amino acid 70. The sow's other allele was unamplifiable. Selected offspring were predicted to be a null animal (CD163−/−), i.e., a CD163 knock out. Such techniques and modifications can be adapted for and used with the modifying agent(s) and systems thereof described herein to generate a modified pig that can express a polynucleotide of interest. Thus, also described herein are modified pigs their progeny that also express one or more copies of the gene or allele of interest. This may be for livestock, breeding or modelling purposes (i.e., a porcine model). Semen comprising the modification (e.g., polynucleotide of interest) is also provided.
Also described herein are other non-human animals that are modified to express one or more polynucleotides, genes or alleles of interest. Suitable polynucleotide modifying agent(s) and/or system thereof described elsewhere herein can be used to generate other non-human animals such as non-human primates, chickens (reviewed in Sid and Schusser et al 2018. Front. Genet. Doi.org/10.3389/fgene.2018.00456) and other avians (e.g., Scott et al. 2010. ILAR J. 51(4):353-361), cattle (Yum et al., 2016. Scientific Reports. 6:27185 and Tait-Burkard et al. 2018. Genome Biology. 19:2014), sheep and goats (see e.g., Kalds et al., 2019. Front. Genet. Doi.org//10.3389/fgene.2019.00750), horses (see e.g., West and Gill. 2016. J. Equine Vet. Sci. 41:1-6), dogs (see e.g., D. Duan. Nature Biomedical Engineering. 2018. 2: 795-796), reptiles (see e.g., Rasys et al. 2019. Cell Reports. 28:2288-2292), fish (including but not limited to zebrafish, see e.g., Datsomor et al. 2019. Scientific Reports. 9:7533, Liu et al. 2019. Front. Cell. Dev. Biol. https://doi.org/10.3389/fcell.2019.00013), insects (see e.g., Kotwica-Rolinska et al. 2019. Front. Physiol. https://doi.org/10.3389/fphys.2019.00891; Gantz and Akbari. 2018. Curr. Opin. Insect. Sci. 28:66-72), rabbits (see e.g., Kawano and Honda. 2017. Methods Mol. Biol. 4630:109-120; Liu et al., 2018. Nature Commun. 9:2717; and Liu et al. 2018. Gene. https://doi.org/10.1016/j.gene.2018.01.044), mice (see e.g., Hall et al. 2018. Curr Protoc Cell Biol. 81(1): e57), rats (see e.g. Back et al. 2019. Neuron. 102(1):105-119), amphibians (see e.g., Nakayama et al. 2013. Genesis. 51(12):835-843), nematodes (see e.g., J. B. Lok. 2019. Front. Genet. https://doi.org/10.3389/fgene.2019.00656), molluscs (see e.g., Abe and Kuroda. 2019. Development. 146: dev175976 doi: 10.1242/dev.175976, geckos, shrimp, and other crustaceans (see e.g., Gui et al. Genes Genomes Genetics: 6(11): 3757-3764), oysters (Yu et al. 2019; Mar. Biotechnol (NY) 21(3):301-309. doi: 10.1007/s10126-019-09885-y), and sponges (see e.g., Revilla-i-Domingo et al. 2018. Genetics. 210(2)435-443), the teachings of which can be adapted for use with one or more of the modifying agent(s) and/or systems described herein to generate the modified non-human animal or cell thereof.
Also described herein are pharmaceutical formulations that can contain an amount, effective amount, and/or least effective amount, and/or therapeutically effective amount of one or more compounds, molecules, compositions, vectors, vector systems, cells, or a combination thereof (which are also referred to as the primary active agent or ingredient elsewhere herein) described in greater detail elsewhere herein and a pharmaceutically acceptable carrier or excipient. As used herein, “pharmaceutical formulation” refers to the combination of an active agent, compound, or ingredient with a pharmaceutically acceptable carrier or excipient, making the composition suitable for diagnostic, therapeutic, or preventive use in vitro, in vivo, or ex vivo. As used herein, “pharmaceutically acceptable carrier or excipient” refers to a carrier or excipient that is useful in preparing a pharmaceutical formulation that is generally safe, non-toxic, and is neither biologically or otherwise undesirable, and includes a carrier or excipient that is acceptable for veterinary use as well as human pharmaceutical use. A “pharmaceutically acceptable carrier or excipient” as used in the specification and claims includes both one and more than one such carrier or excipient. When present, the compound can optionally be present in the pharmaceutical formulation as a pharmaceutically acceptable salt. In some embodiments, the pharmaceutical formulation can include, such as an active ingredient, a CRISPR-Cas system or component thereof described in greater detail elsewhere herein. In some embodiments, the pharmaceutical formulation can include, such as an active ingredient, a CRISPR-Cas polynucleotide described in greater detail elsewhere herein. In some embodiments, the pharmaceutical formulation can include, such as an active ingredient one or more modified cells, such as one or more modified cells described in greater detail elsewhere herein.
In some embodiments, the active ingredient is present as a pharmaceutically acceptable salt of the active ingredient. As used herein, “pharmaceutically acceptable salt” refers to any acid or base addition salt whose counter-ions are non-toxic to the subject to which they are administered in pharmaceutical doses of the salts. Suitable salts include, hydrobromide, iodide, nitrate, bisulfate, phosphate, isonicotinate, lactate, salicylate, acid citrate, tartrate, oleate, tannate, pantothenate, bitartrate, ascorbate, succinate, maleate, gentisinate, fumarate, gluconate, glucaronate, saccharate, formate, benzoate, glutamate, methanesulfonate, ethanesulfonate, benzenesulfonate, p-toluenesulfonate, camphorsulfonate, napthalenesulfonate, propionate, malonate, mandelate, malate, phthalate, and pamoate.
The pharmaceutical formulations described herein can be administered to a subject in need thereof via any suitable method or route to a subject in need thereof. Suitable administration routes can include, but are not limited to auricular (otic), buccal, conjunctival, cutaneous, dental, electro-osmosis, endocervical, endosinusial, endotracheal, enteral, epidural, extra-amniotic, extracorporeal, hemodialysis, infiltration, interstitial, intra-abdominal, intra-amniotic, intra-arterial, intra-articular, intrabiliary, intrabronchial, intrabursal, intracardiac, intracartilaginous, intracaudal, intracavernous, intracavitary, intracerebral, intracisternal, intracorneal, intracoronal (dental), intracoronary, intracorporus cavernosum, intradermal, intradiscal, intraductal, intraduodenal, intradural, intraepidermal, intraesophageal, intragastric, intragingival, intraileal, intralesional, intraluminal, intralymphatic, intramedullary, intrameningeal, intramuscular, intraocular, intraovarian, intrapericardial, intraperitoneal, intrapleural, intraprostatic, intrapulmonary, intrasinal, intraspinal, intrasynovial, intratendinous, intratesticular, intrathecal, intrathoracic, intratubular, intratumor, intratympanic, intrauterine, intravascular, intravenous, intravenous bolus, intravenous drip, intraventricular, intravesical, intravitreal, iontophoresis, irrigation, laryngeal, nasal, nasogastric, occlusive dressing technique, ophthalmic, oral, oropharyngeal, other, parenteral, percutaneous, periarticular, peridural, perineural, periodontal, rectal, respiratory (inhalation), retrobulbar, soft tissue, subarachnoid, subconjunctival, subcutaneous, sublingual, submucosal, topical, transdermal, transmucosal, transplacental, transtracheal, transtympanic, ureteral, urethral, and/or vaginal administration, and/or any combination of the above administration routes, which typically depends on the disease to be treated and/or the active ingredient(s).
Where appropriate, compounds, molecules, compositions, vectors, vector systems, cells, or a combination thereof described in greater detail elsewhere herein can be provided to a subject in need thereof as an ingredient, such as an active ingredient or agent, in a pharmaceutical formulation. As such, also described are pharmaceutical formulations containing one or more of the compounds and salts thereof, or pharmaceutically acceptable salts thereof described herein. Suitable salts include, hydrobromide, iodide, nitrate, bisulfate, phosphate, isonicotinate, lactate, salicylate, acid citrate, tartrate, oleate, tannate, pantothenate, bitartrate, ascorbate, succinate, maleate, gentisinate, fumarate, gluconate, glucaronate, saccharate, formate, benzoate, glutamate, methanesulfonate, ethanesulfonate, benzenesulfonate, p-toluenesulfonate, camphorsulfonate, napthalenesulfonate, propionate, malonate, mandelate, malate, phthalate, and pamoate.
In some embodiments, the subject in need thereof has or is suspected of having a hematopoietic disease or a symptom thereof. In some embodiments, the subject in need thereof has or is suspected of having, a neurobiological disease or disorder, a psychiatric disease or disorder, a cancer, an autoimmune disease or disorder, a thrombosis disease, a heart disease, a kidney disease, a lung disease, or a blood vessel disease, or a combination thereof. As used herein, “agent” refers to any substance, compound, molecule, and the like, which can be biologically active or otherwise can induce a biological and/or physiological effect on a subject to which it is administered to. As used herein, “active agent” or “active ingredient” refers to a substance, compound, or molecule, which is biologically active or otherwise, induces a biological or physiological effect on a subject to which it is administered to. In other words, “active agent” or “active ingredient” refers to a component or components of a composition to which the whole or part of the effect of the composition is attributed. An agent can be a primary active agent, or in other words, the component(s) of a composition to which the whole or part of the effect of the composition is attributed. An agent can be a secondary agent, or in other words, the component(s) of a composition to which an additional part and/or other effect of the composition is attributed.
The pharmaceutical formulation can include a pharmaceutically acceptable carrier. Suitable pharmaceutically acceptable carriers include, but are not limited to water, salt solutions, alcohols, gum arabic, vegetable oils, benzyl alcohols, polyethylene glycols, gelatin, carbohydrates such as lactose, amylose or starch, magnesium stearate, talc, silicic acid, viscous paraffin, perfume oil, fatty acid esters, hydroxy methylcellulose, and polyvinyl pyrrolidone, which do not deleteriously react with the active composition.
The pharmaceutical formulations can be sterilized, and if desired, mixed with agents, such as lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, coloring, flavoring and/or aromatic substances, and the like which do not deleteriously react with the active compound.
In some embodiments, the pharmaceutical formulation can also include an effective amount of secondary active agents, including but not limited to, biologic agents or molecules including, but not limited to, e.g., polynucleotides, amino acids, peptides, polypeptides, antibodies, aptamers, ribozymes, hormones, immunomodulators, antipyretics, anxiolytics, antipsychotics, analgesics, antispasmodics, anti-inflammatories, anti-histamines, anti-infectives, chemotherapeutics, and combinations thereof.
In some embodiments, the amount of the primary active agent and/or optional secondary agent can be an effective amount, least effective amount, and/or therapeutically effective amount. As used herein, “effective amount” refers to the amount of the primary and/or optional secondary agent included in the pharmaceutical formulation that achieve one or more therapeutic effects or desired effect. As used herein, “least effective” amount refers to the lowest amount of the primary and/or optional secondary agent that achieves the one or more therapeutic or other desired effects. As used herein, “therapeutically effective amount” refers to the amount of the primary and/or optional secondary agent included in the pharmaceutical formulation that achieves one or more therapeutic effects.
The effective amount, least effective amount, and/or therapeutically effective amount of the primary and optional secondary active agent described elsewhere herein contained in the pharmaceutical formulation can be any non-zero amount ranging from about 0 to 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 610, 620, 630, 640, 650, 660, 670, 680, 690, 700, 710, 720, 730, 740, 750, 760, 770, 780, 790, 800, 810, 820, 830, 840, 850, 860, 870, 880, 890, 900, 910, 920, 930, 940, 950, 960, 970, 980, 990, 1000 pg, ng, μg, mg, or g or be any numerical value or subrange within any of these ranges.
In some embodiments, the effective amount, least effective amount, and/or therapeutically effective amount can be an effective concentration, least effective concentration, and/or therapeutically effective concentration, which can each be any non-zero amount ranging from about 0 to 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 610, 620, 630, 640, 650, 660, 670, 680, 690, 700, 710, 720, 730, 740, 750, 760, 770, 780, 790, 800, 810, 820, 830, 840, 850, 860, 870, 880, 890, 900, 910, 920, 930, 940, 950, 960, 970, 980, 990, 1000 μM, nM, M, mM, or M or be any numerical value or subrange within any of these ranges.
In other embodiments, the effective amount, least effective amount, and/or therapeutically effective amount of the primary and optional secondary active agent be any non-zero amount ranging from about 0 to 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 610, 620, 630, 640, 650, 660, 670, 680, 690, 700, 710, 720, 730, 740, 750, 760, 770, 780, 790, 800, 810, 820, 830, 840, 850, 860, 870, 880, 890, 900, 910, 920, 930, 940, 950, 960, 970, 980, 990, 1000 IU or be any numerical value or subrange within any of these ranges.
In some embodiments, the primary and/or the optional secondary active agent present in the pharmaceutical formulation can be any non-zero amount ranging from about 0 to 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.6, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.7, 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.8, 0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.9, to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 99.1, 99.2, 99.3, 99.4, 99.5, 99.6, 99.7, 99.8, 99.9% w/w, v/v, or w/v of the pharmaceutical formulation or be any numerical value or subrange within any of these ranges.
In some embodiments where a cell or cell population is present in the pharmaceutical formulation (e.g., as a primary and/or or secondary active agent), the effective amount of cells can be any amount ranging from about 1 or 2 cells to 1×101/mL, 1×1020/mL or more, such as about 1×101/mL, 1×102/mL, 1×103/mL, 1×104/mL, 1×105/mL, 1×106/mL, 1×107/mL, 1×108/mL, 1×109/mL, 1×1010/mL, 1×1011/mL, 1×1012/mL, 1×1013/mL, 1×1014/mL, 1×1015/mL, 1×1016/mL, 1×1017/mL, 1×1018/mL, 1×1019/mL, to/or about 1×1020/mL or any numerical value or subrange within any of these ranges.
In some embodiments, the amount or effective amount, particularly where an infective particle is being delivered (e.g., a virus particle having the primary or secondary agent as a cargo), the effective amount of virus particles can be expressed as a titer (plaque forming units per unit of volume) or as a MOI (multiplicity of infection). In some embodiments, the effective amount can be about 1×101 particles per pL, nL, μL, mL, or L to 1×1020/particles per pL, nL, μL, mL, or L or more, such as about 1×101, 1×102, 1×103, 1×104, 1×105, 1×106, 1×107, 1×108, 1×109, 1×1010, 1×1011, 1×1012, 1×1013, 1×1014, 1×1015, 1×1016, 1×1017, 1×1018, 1×1019, to/or about 1×1020 particles per pL, nL, μL, mL, or L. In some embodiments, the effective titer can be about 1×101 transforming units per pL, nL, μL, mL, or L to 1×1020/transforming units per pL, nL, μL, mL, or L or more, such as about 1×101, 1×102, 1×103, 1×104, 1×105 1×106 1×107, 1×8, 1×109, 1×1010, 1×1011, 1×1012, 1×1013, 1×1014, 1×1015, 1×1016, 1×1017, 1×1018, 1×1019, to/or about 1×1020 transforming units per pL, nL, μL, mL, or L or any numerical value or subrange within these ranges. In some embodiments, the MOI of the pharmaceutical formulation can range from about 0.1 to 10 or more, such as 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 8, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 9, 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 10 or more or any numerical value or subrange within these ranges.
In some embodiments, the amount or effective amount of the one or more of the active agent(s) described herein contained in the pharmaceutical formulation can range from about 1 μg/kg to about 10 mg/kg based upon the bodyweight of the subject in need thereof or average bodyweight of the specific patient population to which the pharmaceutical formulation can be administered.
In embodiments where there is a secondary agent contained in the pharmaceutical formulation, the effective amount of the secondary active agent will vary depending on the secondary agent, the primary agent, the administration route, subject age, disease, stage of disease, among other things, which will be one of ordinary skill in the art.
When optionally present in the pharmaceutical formulation, the secondary active agent can be included in the pharmaceutical formulation or can exist as a stand-alone compound or pharmaceutical formulation that can be administered contemporaneously or sequentially with the compound, derivative thereof, or pharmaceutical formulation thereof.
In some embodiments, the effective amount of the secondary active agent, when optionally present, is any non-zero amount ranging from about 0 to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 99.1, 99.2, 99.3, 99.4, 99.5, 99.6, 99.7, 99.8, 99.9% w/w, v/v, or w/v of the total active agents present in the pharmaceutical formulation or any numerical value or subrange within these ranges. In additional embodiments, the effective amount of the secondary active agent is any non-zero amount ranging from about 0 to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 99.1, 99.2, 99.3, 99.4, 99.5, 99.6, 99.7, 99.8, 99.9% w/w, v/v, or w/v of the total pharmaceutical formulation or any numerical value or subrange within these ranges.
In some embodiments, the pharmaceutical formulations described herein can be provided in a dosage form. The dosage form can be administered to a subject in need thereof. The dosage form can be effective generate specific concentration, such as an effective concentration, at a given site in the subject in need thereof. As used herein, “dose,” “unit dose,” or “dosage” can refer to physically discrete units suitable for use in a subject, each unit containing a predetermined quantity of the primary active agent, and optionally present secondary active ingredient, and/or a pharmaceutical formulation thereof calculated to produce the desired response or responses in association with its administration. In some embodiments, the given site is proximal to the administration site. In some embodiments, the given site is distal to the administration site. In some cases, the dosage form contains a greater amount of one or more of the active ingredients present in the pharmaceutical formulation than the final intended amount needed to reach a specific region or location within the subject to account for loss of the active components such as via first and second pass metabolism.
The dosage forms can be adapted for administration by any appropriate route. Appropriate routes include, but are not limited to, oral (including buccal or sublingual), rectal, intraocular, inhaled, intranasal, topical (including buccal, sublingual, or transdermal), vaginal, parenteral, subcutaneous, intramuscular, intravenous, internasal, and intradermal. Other appropriate routes are described elsewhere herein. Such formulations can be prepared by any method known in the art.
Dosage forms adapted for oral administration can discrete dosage units such as capsules, pellets or tablets, powders or granules, solutions, or suspensions in aqueous or non-aqueous liquids; edible foams or whips, or in oil-in-water liquid emulsions or water-in-oil liquid emulsions. In some embodiments, the pharmaceutical formulations adapted for oral administration also include one or more agents which flavor, preserve, color, or help disperse the pharmaceutical formulation. Dosage forms prepared for oral administration can also be in the form of a liquid solution that can be delivered as a foam, spray, or liquid solution. The oral dosage form can be administered to a subject in need thereof. Where appropriate, the dosage forms described herein can be microencapsulated.
The dosage form can also be prepared to prolong or sustain the release of any ingredient. In some embodiments, compounds, molecules, compositions, vectors, vector systems, cells, or a combination thereof described herein can be the ingredient whose release is delayed. In some embodiments the primary active agent is the ingredient whose release is delayed. In some embodiments, an optional secondary agent can be the ingredient whose release is delayed. Suitable methods for delaying the release of an ingredient include, but are not limited to, coating or embedding the ingredients in material in polymers, wax, gels, and the like. Delayed release dosage formulations can be prepared as described in standard references such as “Pharmaceutical dosage form tablets,” eds. Liberman et. al. (New York, Marcel Dekker, Inc., 1989), “Remington—The science and practice of pharmacy”, 20th ed., Lippincott Williams & Wilkins, Baltimore, MD, 2000, and “Pharmaceutical dosage forms and drug delivery systems”, 6th Edition, Ansel et al., (Media, PA: Williams and Wilkins, 1995). These references provide information on excipients, materials, equipment, and processes for preparing tablets and capsules and delayed release dosage forms of tablets and pellets, capsules, and granules. The delayed release can be anywhere from about an hour to about 3 months or more.
Examples of suitable coating materials include, but are not limited to, cellulose polymers such as cellulose acetate phthalate, hydroxypropyl cellulose, hydroxypropyl methylcellulose, hydroxypropyl methylcellulose phthalate, and hydroxypropyl methylcellulose acetate succinate; polyvinyl acetate phthalate, acrylic acid polymers and copolymers, and methacrylic resins that are commercially available under the trade name EUDRAGIT® (Roth Pharma, Westerstadt, Germany), zein, shellac, and polysaccharides.
Coatings may be formed with a different ratio of water-soluble polymer, water insoluble polymers, and/or pH dependent polymers, with or without water insoluble/water soluble non-polymeric excipient, to produce the desired release profile. The coating is either performed on the dosage form (matrix or simple) which includes, but is not limited to, tablets (compressed with or without coated beads), capsules (with or without coated beads), beads, particle compositions, “ingredient as is” formulated as, but not limited to, suspension form or as a sprinkle dosage form.
Where appropriate, the dosage forms described herein can be a liposome. In these embodiments, primary active ingredient(s), and/or optional secondary active ingredient(s), and/or pharmaceutically acceptable salt thereof where appropriate are incorporated into a liposome. In embodiments where the dosage form is a liposome, the pharmaceutical formulation is thus a liposomal formulation. The liposomal formulation can be administered to a subject in need thereof.
Dosage forms adapted for topical administration can be formulated as ointments, creams, suspensions, lotions, powders, solutions, pastes, gels, sprays, aerosols, or oils. In some embodiments for treatments of the eye or other external tissues, for example the mouth or the skin, the pharmaceutical formulations are applied as a topical ointment or cream. When formulated in an ointment, a primary active ingredient, optional secondary active ingredient, and/or pharmaceutically acceptable salt thereof where appropriate can be formulated with a paraffinic or water-miscible ointment base. In other embodiments, the primary and/or secondary active ingredient can be formulated in a cream with an oil-in-water cream base or a water-in-oil base. Dosage forms adapted for topical administration in the mouth include lozenges, pastilles, and mouth washes.
Dosage forms adapted for nasal or inhalation administration include aerosols, solutions, suspension drops, gels, or dry powders. In some embodiments, a primary active ingredient, optional secondary active ingredient, and/or pharmaceutically acceptable salt thereof where appropriate can be in a dosage form adapted for inhalation is in a particle-size-reduced form that is obtained or obtainable by micronization. In some embodiments, the particle size of the size reduced (e.g., micronized) compound or salt or solvate thereof, is defined by a D50 value of about 0.5 to about 10 microns as measured by an appropriate method known in the art. Dosage forms adapted for administration by inhalation also include particle dusts or mists. Suitable dosage forms wherein the carrier or excipient is a liquid for administration as a nasal spray or drops include aqueous or oil solutions/suspensions of an active (primary and/or secondary) ingredient, which may be generated by various types of metered dose pressurized aerosols, nebulizers, or insufflators. The nasal/inhalation formulations can be administered to a subject in need thereof.
In some embodiments, the dosage forms are aerosol formulations suitable for administration by inhalation. In some of these embodiments, the aerosol formulation contains a solution or fine suspension of a primary active ingredient, secondary active ingredient, and/or pharmaceutically acceptable salt thereof where appropriate and a pharmaceutically acceptable aqueous or non-aqueous solvent. Aerosol formulations can be presented in single or multi-dose quantities in sterile form in a sealed container. For some of these embodiments, the sealed container is a single dose or multi-dose nasal or an aerosol dispenser fitted with a metering valve (e.g., metered dose inhaler), which is intended for disposal once the contents of the container have been exhausted.
Where the aerosol dosage form is contained in an aerosol dispenser, the dispenser contains a suitable propellant under pressure, such as compressed air, carbon dioxide, or an organic propellant, including but not limited to a hydrofluorocarbon. The aerosol formulation dosage forms in other embodiments are contained in a pump-atomizer. The pressurized aerosol formulation can also contain a solution or a suspension of a primary active ingredient, optional secondary active ingredient, and/or pharmaceutically acceptable salt thereof. In further embodiments, the aerosol formulation also contains co-solvents and/or modifiers incorporated to improve, for example, the stability and/or taste and/or fine particle mass characteristics (amount and/or profile) of the formulation. Administration of the aerosol formulation can be once daily or several times daily, for example 2, 3, 4, or 8 times daily, in which 1, 2, 3 or more doses are delivered each time. The aerosol formulations can be administered to a subject in need thereof.
For some dosage forms suitable and/or adapted for inhaled administration, the pharmaceutical formulation is a dry powder inhalable-formulation. In addition to a primary active agent, optional secondary active ingredient, and/or pharmaceutically acceptable salt thereof where appropriate, such a dosage form can contain a powder base such as lactose, glucose, trehalose, mannitol, and/or starch. In some of these embodiments, a primary active agent, secondary active ingredient, and/or pharmaceutically acceptable salt thereof where appropriate is in a particle-size reduced form. In further embodiments, a performance modifier, such as L-leucine or another amino acid, cellobiose octaacetate, and/or metals salts of stearic acid, such as magnesium or calcium stearate. In some embodiments, the aerosol formulations are arranged so that each metered dose of aerosol contains a predetermined amount of an active ingredient, such as the one or more of the compositions, compounds, vector(s), molecules, cells, and combinations thereof described herein.
Dosage forms adapted for vaginal administration can be presented as pessaries, tampons, creams, gels, pastes, foams, or spray formulations. Dosage forms adapted for rectal administration include suppositories or enemas. The vaginal formulations can be administered to a subject in need thereof.
Dosage forms adapted for parenteral administration and/or adapted for injection can include aqueous and/or non-aqueous sterile injection solutions, which can contain antioxidants, buffers, bacteriostats, solutes that render the composition isotonic with the blood of the subject, and aqueous and non-aqueous sterile suspensions, which can include suspending agents and thickening agents. The dosage forms adapted for parenteral administration can be presented in a single-unit dose or multi-unit dose containers, including but not limited to sealed ampoules or vials. The doses can be lyophilized and re-suspended in a sterile carrier to reconstitute the dose prior to administration. Extemporaneous injection solutions and suspensions can be prepared in some embodiments, from sterile powders, granules, and tablets. The parenteral formulations can be administered to a subject in need thereof.
For some embodiments, the dosage form contains a predetermined amount of a primary active agent, secondary active ingredient, and/or pharmaceutically acceptable salt thereof where appropriate per unit dose. In an embodiment, the predetermined amount of primary active agent, secondary active ingredient, and/or pharmaceutically acceptable salt thereof where appropriate can be an effective amount, a least effect amount, and/or a therapeutically effective amount. In other embodiments, the predetermined amount of a primary active agent, secondary active agent, and/or pharmaceutically acceptable salt thereof where appropriate, can be an appropriate fraction of the effective amount of the active ingredient.
In some embodiments, the pharmaceutical formulation(s) described herein are part of a combination treatment or combination therapy. The combination treatment can include the pharmaceutical formulation described herein and an additional treatment modality. The additional treatment modality can be a chemotherapeutic, a biological therapeutic, surgery, radiation, diet modulation, environmental modulation, a physical activity modulation, and combinations thereof.
In some embodiments, the co-therapy or combination therapy can additionally include but not limited to, polynucleotides, amino acids, peptides, polypeptides, antibodies, aptamers, ribozymes, hormones, immunomodulators, antipyretics, anxiolytics, antipsychotics, analgesics, antispasmodics, anti-inflammatories, anti-histamines, anti-infectives, chemotherapeutics, and combinations thereof.
The pharmaceutical formulations or dosage forms thereof described herein can be administered one or more times hourly, daily, monthly, or yearly (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more times hourly, daily, monthly, or yearly). In some embodiments, the pharmaceutical formulations or dosage forms thereof described herein can be administered continuously over a period of time ranging from minutes to hours to days. Devices and dosages forms are known in the art and described herein that are effective to provide continuous administration of the pharmaceutical formulations described herein. In some embodiments, the first one or a few initial amount(s) administered can be a higher dose than subsequent doses. This is typically referred to in the art as a loading dose or doses and a maintenance dose, respectively. In some embodiments, the pharmaceutical formulations can be administered such that the doses over time are tapered (increased or decreased) overtime so as to wean a subject gradually off of a pharmaceutical formulation or gradually introduce a subject to the pharmaceutical formulation.
As previously discussed, the pharmaceutical formulation can contain a predetermined amount of a primary active agent, secondary active agent, and/or pharmaceutically acceptable salt thereof where appropriate. In some of these embodiments, the predetermined amount can be an appropriate fraction of the effective amount of the active ingredient. Such unit doses may therefore be administered once or more than once a day, month, or year (e.g., 1, 2, 3, 4, 5, 6, or more times per day, month, or year). Such pharmaceutical formulations may be prepared by any of the methods well known in the art.
Where co-therapies or multiple pharmaceutical formulations are to be delivered to a subject, the different therapies or formulations can be administered sequentially or simultaneously. Sequential administration is administration where an appreciable amount of time occurs between administrations, such as more than about 15, 20, 30, 45, 60 minutes or more. The time between administrations in sequential administration can be on the order of hours, days, months, or even years, depending on the active agent present in each administration. Simultaneous administration refers to administration of two or more formulations at the same time or substantially at the same time (e.g., within seconds or just a few minutes apart), where the intent is that the formulations be administered together at the same time.
Any of the compounds, compositions, formulations, particles, cells, described herein or a combination thereof can be presented as a combination kit. As used herein, the terms “combination kit” or “kit of parts” refers to the compounds, compositions, formulations, particles, cells, and any additional components that are used to package, sell, market, deliver, and/or administer the combination of elements or a single element, such as the active ingredient, contained therein. Such additional components include, but are not limited to, packaging, syringes, blister packages, bottles, and the like. When one or more of the compounds, compositions, formulations, particles, cells, described herein or a combination thereof (e.g., agents) contained in the kit are administered simultaneously, the combination kit can contain the active agents in a single formulation, such as a pharmaceutical formulation, (e.g., a tablet) or in separate formulations. When the compounds, compositions, formulations, particles, and cells described herein or a combination thereof and/or kit components are not administered simultaneously, the combination kit can contain each agent or other component in separate pharmaceutical formulations. The separate kit components can be contained in a single package or in separate packages within the kit.
In some embodiments, the combination kit also includes instructions printed on or otherwise contained in a tangible medium of expression. The instructions can provide information regarding the content of the compounds, compositions, formulations, particles, cells, described herein or a combination thereof contained therein, safety information regarding the content of the compounds, compositions, formulations (e.g., pharmaceutical formulations), particles, and cells described herein or a combination thereof contained therein, information regarding the dosages, indications for use, and/or recommended treatment regimen(s) for the compound(s) and/or pharmaceutical formulations contained therein. In some embodiments, the instructions can provide directions for administering the compounds, compositions, formulations, particles, and cells described herein or a combination thereof to a subject in need thereof.
Generally, the engineered compositions and systems of the present inventions can be used to modify a polynucleotide in a cell and/or to express a heterologous or exogenous polynucleotide in a cell. In some embodiments, the modification or heterologous or exogenous polynucleotide corrects or treats a genetic disease or condition. In some embodiments, the modification modifies the cells for a cell therapy, particularly an adoptive cell therapy.
In some embodiments, a method for expressing heterologous sequences via targeted trans-splicing of pre-mRNA comprises introducing to a cell or cell population a composition comprising a RNA-binding dCas, a trans-splicing donor construct comprising a guide portion, an intron, a splice acceptor, an exon of an endogenously expressed target pre-mRNA, a heterologous donor RNA, and a poly-A tail, wherein the guide portion is capable of forming a complex with the dCas and directing binding of the complex to an intron on a target pre-mRNA thereby facilitating splicing of the exon and the heterologous donor RNA into the target pre-mRNA to generate a modified mRNA comprising the heterologous sequences. In some embodiments, the target endogenously expressed pre-mRNA is uniquely expressed in a particular cell type thereby providing cell-specific expression of the heterologous sequence. In some embodiments, the guide portion is configured to bind an intron on the endogenously expressed pre-mRNA adjacent to a final exon. In some embodiments, the heterologous sequence does not comprise a start codon or a ribosomal binding site. In some embodiments, the exon and heterologous donor RNA of the trans-splicing donor construct are fused in frame via a self-cleaving linker such that a polypeptide translated from the modified mRNA will comprise an endogenous polypeptide portion and a heterologous polypeptide that releases the heterologous polypeptide from the endogenous polypeptide portion by self-cleavage.
In some embodiments, a method for modifying endogenously expressed mRNA via targeted trans-splicing of pre-mRNA comprises introducing to a cell or cell population a composition comprising a RNA-binding dCas, a trans-splicing donor construct comprising a guide portion, an intron, a splice acceptor, a replacement exon, and a poly-A tail, wherein the guide portion is capable of forming a complex with the dCas and directing binding of the complex to an intron on a target pre-mRNA adjacent to an endogenous exon, thereby facilitating splicing of the replacement exon into the target pre-mRNA in place of the endogenous exon to generate a modified mRNA. In some embodiments, the replacement exon introduces one or more modifications relative to the endogenous exon.
In some embodiments, the one or more modifications comprise introduction of one or more mutations, introduction of post-translational modification site, or alternative post-translational modification site, introduces premature stop codon, causes a shift in the open reading frame, or a combination thereof. In some embodiments, the replacement exon corrects one or more mutations present in the endogenous exon. In some embodiments, the one or more mutations that are corrected are associated with a disease or disorder, such as a genetic disease or disorder.
Also within the scope of the present invention are modified cells that have been modified by a method of the present invention. In some embodiments, a modified cell comprising one or more modifications in an endogenously expressed mRNA is produced by a method of the present invention. In some embodiments, a modified cell expressing a heterologous sequence is produced by a method of the present invention.
Also provided herein are methods of diagnosing, prognosing, treating, and/or preventing a disease, state, or condition in or of a subject. Generally, the methods of diagnosing, prognosing, treating, and/or preventing a disease, state, or condition in or of a subject can include modifying a polynucleotide in a subject or cell thereof using a CRISPR-Cas system or component thereof described herein and/or include detecting a diseased or healthy polynucleotide in a subject or cell thereof using a CRISPR-Cas system or component thereof described herein. In some embodiments, the method of treatment or prevention can include using a CRISPR-Cas system or component thereof to modify a polynucleotide of an infectious organism (e.g., bacterial or virus) within a subject or cell thereof. In some embodiments, the method of treatment or prevention can include using a CRISPR-Cas system or component thereof to modify a polynucleotide of an infectious organism or symbiotic organism within a subject. The CRISPR-Cas systems and components thereof can be used to develop models of diseases, states, or conditions. The CRISPR-Cas systems and components thereof can be used to detect a disease state or correction thereof, such as by a method of treatment or prevention described herein. The CRISPR-Cas systems and components thereof can be used to screen and select cells that can be used, for example, as treatments or preventions described herein. The CRISPR-Cas systems and components thereof can be used to develop biologically active agents that can be used to modify one or more biologic functions or activities in a subject or a cell thereof.
In general, the method can include delivering a CRISPR-Cas System and/or component thereof to a subject or cell thereof, or to an infectious or symbiotic organism by a suitable delivery technique and/or composition. Once administered the components can operate as described elsewhere herein to elicit a nucleic acid modification event. In some aspects, the nucleic acid modification event can occur at the genomic, epigenomic, and/or transcriptomic level. DNA and/or RNA cleavage, gene activation, and/or gene deactivation can occur. Additional features, uses, and advantages are described in greater detail below. On the basis of this concept, several variations are appropriate to elicit a genomic locus event, including DNA cleavage, gene activation, or gene deactivation. Using the provided compositions, the person skilled in the art can advantageously and specifically target single or multiple loci with the same or different functional domains to elicit one or more genomic locus events. In addition to treating and/or preventing a disease in a subject, the compositions may be applied in a wide variety of methods for screening in libraries in cells and functional modeling in vivo (e.g., gene activation of lincRNA and identification of function; gain-of-function modeling; loss-of-function modeling; the use the compositions of the invention to establish cell lines and transgenic animals for optimization and screening purposes).
The CRISPR-Cas systems and components thereof described elsewhere herein can be used to treat and/or prevent a disease, such as a genetic and/or epigenetic disease, in a subject. The CRISPR-Cas systems and components thereof described elsewhere herein can be used to treat and/or prevent genetic infectious diseases in a subject, such as bacterial infections, viral infections, fungal infections, parasite infections, and combinations thereof. The CRISPR-Cas systems and components thereof described elsewhere herein can be used to modify the composition or profile of a microbiome in a subject, which can in turn modify the health status of the subject. The CRISPR-Cas systems described herein can be used to modify cells ex vivo, which can then be administered to the subject whereby the modified cells can treat or prevent a disease or symptom thereof. This is also referred to in some contexts as adoptive therapy. The CRISPR-Cas systems described herein can be used to treat mitochondrial diseases, where the mitochondrial disease etiology involves a mutation in the mitochondrial DNA.
Also provided is a method of treating a subject, e.g., a subject in need thereof, comprising inducing gene editing by transforming the subject with the polynucleotide encoding one or more components of the CRISPR-Cas system or complex or any of polynucleotides or vectors described herein and administering them to the subject. A suitable repair template may also be provided, for example delivered by a vector comprising said repair template. Also provided is a method of treating a subject, e.g., a subject in need thereof, comprising inducing transcriptional activation or repression of multiple target gene loci by transforming the subject with the polynucleotides or vectors described herein, wherein said polynucleotide or vector encodes or comprises one or more components of CRISPR-Cas system, complex or component thereof comprising multiple Cas effectors. Where any treatment is occurring ex vivo, for example in a cell culture, then it will be appreciated that the term ‘subject’ may be replaced by the phrase “cell or cell culture.”
Also provided is a method of treating a subject, e.g., a subject in need thereof, comprising inducing gene editing by transforming the subject with the Cas effector(s), advantageously encoding and expressing in vivo the remaining portions of the CRISPR-Cas system (e.g., RNA, guides). A suitable repair template may also be provided, for example delivered by a vector comprising said repair template. Also provided is a method of treating a subject, e.g., a subject in need thereof, comprising inducing transcriptional activation or repression by transforming the subject with the Cas effector(s) advantageously encoding and expressing in vivo the remaining portions of the CRISPR-Cas system (e.g., RNA, guides); advantageously in some embodiments the CRISPR enzyme is a catalytically inactive Cas effector and includes one or more associated functional domains. Where any treatment is occurring ex vivo, for example in a cell culture, then it will be appreciated that the term ‘subject’ may be replaced by the phrase “cell or cell culture.”
One or more components of the nucleic acid targeting system described herein can be included in a composition, such as a pharmaceutical composition, and administered to a host individually or collectively. Alternatively, these components may be provided in a single composition for administration to a host. Administration to a host may be performed via viral vectors known to the skilled person or described herein for delivery to a host (e.g., lentiviral vector, adenoviral vector, AAV vector). As explained herein, use of different selection markers (e.g., for lentiviral gRNA selection) and concentration of gRNA (e.g. dependent on whether multiple gRNAs are used) may be advantageous for eliciting an improved effect.
Thus, also described herein are methods of inducing one or more polynucleotide modifications in a eukaryotic or prokaryotic cell or component thereof (e.g., a mitochondria) of a subject, infectious organism, and/or organism of the microbiome of the subject. The modification can include the introduction, deletion, or substitution of one or more nucleotides at a target sequence of a polynucleotide of one or more cell(s). The modification can occur in vitro, ex vivo, in situ, or in vivo.
In some embodiments, the method of treating or inhibiting a condition or a disease caused by one or more mutations in a genomic locus in a eukaryotic organism or a non-human organism can include manipulation of a target sequence within a coding, non-coding or regulatory element of said genomic locus in a target sequence in a subject or a non-human subject in need thereof comprising modifying the subject or a non-human subject by manipulation of the target sequence and wherein the condition or disease is susceptible to treatment or inhibition by manipulation of the target sequence including providing treatment comprising delivering a composition comprising the particle delivery system or the delivery system or the virus particle of any one of the above embodiment or the cell of any one of the above embodiment.
Also provided herein is the use of the particle delivery system or the delivery system or the virus particle of any one of the above embodiments or the cell of any one of the above embodiments in ex vivo or in vivo gene or genome editing; or for use in in vitro, ex vivo or in vivo gene therapy. Also provided herein are particle delivery systems, non-viral delivery systems, and/or the virus particle of any one of the above embodiments or the cell of any one of the above embodiments used in the manufacture of a medicament for in vitro, ex vivo or in vivo gene or genome editing or for use in in vitro, ex vivo or in vivo gene therapy or for use in a method of modifying an organism or a non-human organism by manipulation of a target sequence in a genomic locus associated with a disease or in a method of treating or inhibiting a condition or disease caused by one or more mutations in a genomic locus in a eukaryotic organism or a non-human organism.
In some embodiments, polynucleotide modification can include the introduction, deletion, or substitution of 1-75 nucleotides at each target sequence of said polynucleotide of said cell(s). The modification can include the introduction, deletion, or substitution of 1, 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, or 75 nucleotides at each target sequence. The modification can include the introduction, deletion, or substitution of 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, or 75 nucleotides at each target sequence of said cell(s). The modification can include the introduction, deletion, or substitution of 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, or 75 nucleotides at each target sequence of said cell(s). The modification can include the introduction, deletion, or substitution of 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, or 75 nucleotides at each target sequence of said cell(s). The modification can include the introduction, deletion, or substitution of 40, 45, 50, 75, 100, 200, 300, 400 or 500 nucleotides at each target sequence of said cell(s). The modification can include the introduction, deletion, or substitution of 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000, 3100, 3200, 3300, 3400, 3500, 3600, 3700, 3800, 3900, 4000, 4100, 4200, 4300, 4400, 4500, 4600, 4700, 4800, 4900, 5000, 5100, 5200, 5300, 5400, 5500, 5600, 5700, 5800, 5900, 6000, 6100, 6200, 6300, 6400, 6500, 6600, 6700, 6800, 6900, 7000, 7100, 7200, 7300, 7400, 7500, 7600, 7700, 7800, 7900, 8000, 8100, 8200, 8300, 8400, 8500, 8600, 8700, 8800, 8900, 9000, 9100, 9200, 9300, 9400, 9500, 9600, 9700, 9800, or 9900 to 10000 nucleotides at each target sequence of said cell(s).
In some embodiments, the modifications can include the introduction, deletion, or substitution of nucleotides at each target sequence of said cell(s) via nucleic acid components (e.g., guide(s) RNA(s) or sgRNA(s)), such as those mediated by a CRISPR-Cas system or a component thereof described elsewhere herein. In some embodiments, the modifications can include the introduction, deletion, or substitution of nucleotides at a target or random sequence of said cell(s) via a non CRISPR-Cas system or technique.
The target sequences of polynucleotides to be modified to treat or prevent disease are described in greater detail below.
As is also discussed elsewhere herein, the CRISPR-Cas system can include a template polynucleotide (also referred to herein as template nucleic acids or template sequence). In an embodiment, the template nucleic acid alters the structure of the target position by participating in homologous recombination. In an embodiment, the template nucleic acid alters the sequence of the target position. In an embodiment, the template nucleic acid results in the incorporation of a modified, or non-naturally occurring base into the target nucleic acid.
The template sequence may undergo a breakage mediated or catalyzed recombination with the target sequence. In an embodiment, the template nucleic acid can include sequence that corresponds to a site on the target sequence that is cleaved, nicked, or otherwise modified by one or more Cas effector mediated cleavage event(s). In an embodiment, the template nucleic acid can include sequence that corresponds to both, a first site on the target sequence that is cleaved, nicked, or otherwise modified in a first Cas effector mediated event, and a second site on the target sequence that is cleaved in a second Cas effector mediated event.
In certain embodiments, the template nucleic acid can include a sequence which results in an alteration in the coding sequence of a translated sequence, e.g., one which results in the substitution of one amino acid for another in a protein product, e.g., transforming a mutant allele into a wild type allele, transforming a wild type allele into a mutant allele, and/or introducing a stop codon, insertion of an amino acid residue, deletion of an amino acid residue, or a nonsense mutation. In certain embodiments, the template nucleic acid can include sequence which results in an alteration in a non-coding sequence, e.g., an alteration in an exon or in a 5′ or 3′ non-translated or non-transcribed region. Such alterations include an alteration in a control element, e.g., a promoter, enhancer, and an alteration in a cis-acting or trans-acting control element.
A template nucleic acid having homology with a target position in a target gene may be used to alter the structure of a target sequence. The template sequence may be used to alter an unwanted structure, e.g., an unwanted or mutant nucleotide. The template nucleic acid may include sequence which, when integrated, results in: decreasing the activity of a positive control element; increasing the activity of a positive control element; decreasing the activity of a negative control element; increasing the activity of a negative control element; decreasing the expression of a gene; increasing the expression of a gene; increasing resistance to a disorder or disease; increasing resistance to viral entry; correcting a mutation or altering an unwanted amino acid residue conferring, increasing, abolishing or decreasing a biological property of a gene product, e.g., increasing the enzymatic activity of an enzyme, or increasing the ability of a gene product to interact with another molecule.
The template nucleic acid may include sequence which results in: a change in sequence of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or more nucleotides of the target sequence. In an embodiment, the template nucleic acid may be 20+/−10, 30+/−10, 40+/−10, 50+/−10, 60+/−10, 70+/−10, 80+/−10, 9 0+/−10, 100+/−10, 110+/−10, 120+/−10, 130+/−10, 140+/−10, 150+/−10, 160+/−10, 170+/−10, 180+/−10, 190+/−10, 200+/−10, 210+/−10, of 220+/−10 nucleotides in length. In an embodiment, the template nucleic acid may be 30+/−20, 40+/−20, 50+/−20, 60+/−20, 70+/−20, 80+/−20, 90+/−20, 100+/−20, 110+/−20, 120+/−20, 130+/−20, 140+/−20, 150+/−20, 160+/−20, 170+/−20, 180+/−20, 190+/−20, 200+/−20, 210+/−20, of 220+/−20 nucleotides in length. In an embodiment, the template nucleic acid is 10 to 1,000, 20 to 900, 30 to 800, 40 to 700, 50 to 600, 50 to 500, 50 to 400, 50 to 300, 50 to 200, or 50 to 100 nucleotides in length.
A template nucleic acid comprises the following components: [5′ homology arm]-[replacement sequence]-[3′ homology arm]. The homology arms provide for recombination into the chromosome, thus replacing the undesired element, e.g., a mutation or signature, with the replacement sequence. In an embodiment, the homology arms flank the most distal cleavage sites. In an embodiment, the 3′ end of the 5′ homology arm is the position next to the 5′ end of the replacement sequence. In an embodiment, the 5′ homology arm can extend at least 10, 20, 30, 40, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, or 2000 nucleotides 5′ from the 5′ end of the replacement sequence. In an embodiment, the 5′ end of the 3′ homology arm is the position next to the 3′ end of the replacement sequence. In an embodiment, the 3′ homology arm can extend at least 10, 20, 30, 40, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, or 2000 nucleotides 3′ from the 3′ end of the replacement sequence.
In certain embodiments, one or both homology arms may be shortened to avoid including certain sequence repeat elements. For example, a 5′ homology arm may be shortened to avoid a sequence repeat element. In other embodiments, a 3′ homology arm may be shortened to avoid a sequence repeat element. In some embodiments, both the 5′ and the 3′ homology arms may be shortened to avoid including certain sequence repeat elements.
In certain embodiments, template nucleic acids for correcting a mutation may be designed for use as a single-stranded oligonucleotide. When using a single-stranded oligonucleotide, 5′ and 3′ homology arms may range up to about 200 base pairs (bp) in length, e.g., at least 25, 50, 75, 100, 125, 150, 175, or 200 bp in length.
In some embodiments, the CRISPR-Cas system or component thereof can promote Non-Homologous End-Joining (NHEJ). In some embodiments, modification of a polynucleotide by a CRISPR-Cas system or a component thereof, such as a diseased polynucleotide, can include NHEJ. In some embodiments, promotion of this repair pathway by the CRISPR-Cas system or a component thereof can be used to target gene or polynucleotide specific knock-outs and/or knock-ins. In some embodiments, promotion of this repair pathway by the CRISPR-Cas system or a component thereof can be used to generate NHEJ-mediated indels. Nuclease-induced NHEJ can also be used to remove (e.g., delete) sequence in a gene of interest. Generally, NHEJ repairs a double-strand break in the DNA by joining together the two ends; however, generally, the original sequence is restored only if two compatible ends, exactly as they were formed by the double-strand break, are perfectly ligated. The DNA ends of the double-strand break are frequently the subject of enzymatic processing, resulting in the addition or removal of nucleotides, at one or both strands, prior to rejoining of the ends. This results in the presence of insertion and/or deletion (indel) mutations in the DNA sequence at the site of the NHEJ repair. The indel can range in size from 1-50 or more base pairs. In some embodiments the indel can be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, or 500 base pairs or more. If a double-strand break is targeted near to a short target sequence, the deletion mutations caused by the NHEJ repair often span, and therefore remove, the unwanted nucleotides. For the deletion of larger DNA segments, introducing two double-strand breaks, one on each side of the sequence, can result in NHEJ between the ends with removal of the entire intervening sequence. Both of these approaches can be used to delete specific DNA sequences.
In some embodiments, CRISPR-Cas system mediated NHEJ can be used in the method to delete small sequence motifs. In some embodiments, CRISPR-Cas system mediated NHEJ can be used in the method to generate NHEJ-mediate indels that can be targeted to the gene, e.g., a coding region, e.g., an early coding region of a gene of interest can be used to knockout (i.e., eliminate expression of) a gene of interest. For example, early coding region of a gene of interest includes sequence immediately following a transcription start site, within a first exon of the coding sequence, or within 500 bp of the transcription start site (e.g., less than 500, 450, 400, 350, 300, 250, 200, 150, 100 or 50 bp). In an embodiment, in which a guide RNA and Cas effector generate a double strand break for the purpose of inducing NHEJ-mediated indels, a guide RNA may be configured to position one double-strand break in close proximity to a nucleotide of the target position. In an embodiment, the cleavage site may be between 0-500 bp away from the target position (e.g., less than 500, 400, 300, 200, 100, 50, 40, 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 bp from the target position). In an embodiment, in which two guide RNAs complexing with one or more Cas nickases induce two single strand breaks for the purpose of inducing NHEJ-mediated indels, two guide RNAs may be configured to position two single-strand breaks to provide for NHEJ repair a nucleotide of the target position.
For minimization of toxicity and off-target effect, it may be important to control the concentration of Cas mRNA and guide RNA delivered. Optimal concentrations of Cas mRNA and guide RNA can be determined by testing different concentrations in a cellular or non-human eukaryote animal model and using deep sequencing the analyze the extent of modification at potential off-target genomic loci. Alternatively, to minimize the level of toxicity and off-target effect, Cas nickase mRNA (for example S. pyogenes Cas9 with the D10A mutation) can be delivered with a pair of guide RNAs targeting a site of interest. Guide sequences and strategies to minimize toxicity and off-target effects can be as in WO 2014/093622 (PCT/US2013/074667); or, via mutation. Others are as described elsewhere herein.
Typically, in the context of an endogenous CRISPR system, formation of a CRISPR complex (comprising a guide sequence hybridized to a target sequence and complexed with one or more Cas proteins) results in cleavage, nicking, and/or another modification of one or both strands in or near (e.g. within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, or more base pairs from) the target sequence. In some embodiments, the tracr sequence, which may comprise or consist of all or a portion of a wild-type tracr sequence (e.g. about or more than about 20, 26, 32, 45, 48, 54, 63, 67, 85, or more nucleotides of a wild-type tracr sequence), can also form part of a CRISPR complex, such as by hybridization along at least a portion of the tracr sequence to all or a portion of a tracr mate sequence that is operably linked to the guide sequence.
In some embodiments, a method of modifying a target polynucleotide in a cell to treat or prevent a disease can include allowing a CRISPR-Cas system or component thereof to bind to the target polynucleotide, e.g., to effect cleavage, nicking, or other modification as the CRISPR-Cas system is capable of said target polynucleotide, thereby modifying the target polynucleotide, wherein the CRISPR-Cas system or component thereof, complex with a guide sequence, and hybridize said guide sequence to a target sequence within the target polynucleotide, wherein said guide sequence is optionally linked to a tracr mate sequence, which in turn can hybridize to a tracr sequence. In some of these embodiments, the CRISPR-Cas system or component thereof can be or include a CRISPR-Cas effector complexed with a guide sequence. In some embodiments, modification can include cleaving or nicking one or two strands at the location of the target sequence by one or more components of the CRISPR-Cas system or component thereof.
The cleavage, nicking, or other modification capable of being performed by the CRISPR-Cas system can modify transcription of a target polynucleotide. In some embodiments, modification of transcription can include decreasing transcription of a target polynucleotide. In some embodiments, modification can include increasing transcription of a target polynucleotide. In some embodiments, the method includes repairing said cleaved target polynucleotide by homologous recombination with an exogenous template polynucleotide, wherein said repair results in a modification such as, but not limited to, an insertion, deletion, or substitution of one or more nucleotides of said target polynucleotide. In some embodiments, said modification results in one or more amino acid changes in a protein expressed from a gene comprising the target sequence. In some embodiments, the modification imparted by the CRISPR-Cas system or component thereof provides a transcript and/or protein that can correct a disease or a symptom thereof, including but not limited to, any of those described in greater detail elsewhere herein.
In some embodiments, the method of treating or preventing a disease can include delivering one or more vectors or vector systems to a cell, such as a eukaryotic or prokaryotic cell, wherein one or more vectors or vector systems include the CRISPR-Cas system or component thereof. In some embodiments, the vector(s) or vector system(s) can be a viral vector or vector system, such as an AAV or lentiviral vector system, which are described in greater detail elsewhere herein. In some embodiments, the method of treating or preventing a disease can include delivering one or more viral particles, such as an AAV or lentiviral particle, containing the CRISPR-Cas system or component thereof. In some embodiments, the viral particle has a tissue specific tropism. In some embodiments, the viral particle has a liver, muscle, eye, heart, pancreas, kidney, neuron, epithelial cell, endothelial cell, astrocyte, glial cell, immune cell, or red blood cell specific tropism.
It will be understood that the CRISPR-Cas systems according to the invention as described herein, such as the CRISPR-Cas systems for use in the methods according to the invention as described herein, may be suitably used for any type of application known for CRISPR-Cas systems, preferably in eukaryotes. In certain aspects, the application is therapeutic, preferably therapeutic in a eukaryote organism, such as including but not limited to animals (including human), plants, algae, fungi (including yeasts), etc. Alternatively, or in addition, in certain aspects, the application may involve accomplishing or inducing one or more particular traits or characteristics, such as genotypic and/or phenotypic traits or characteristics, as also described elsewhere herein.
In some embodiments, the CRISPR-Cas system and/or component thereof described herein can be used to treat and/or prevent a circulatory system disease. Exemplary diseases are provided, for example, in Tables A and B, as well as a disease identified as being caused or attributed to a mtDNA mutation set forth at mitomap.org. In some embodiments the plasma exosomes of Wahlgren et al. (Nucleic Acids Research, 2012, Vol. 40, No. 17 e130) can be used to deliver the CRISPR-Cas system and/or component thereof described herein to the blood. In some embodiments, the circulatory system disease can be treated by using a lentivirus to deliver the CRISPR-Cas system described herein to modify hematopoietic stem cells (HSCs) in vivo or ex vivo (see e.g. Drakopoulou, “Review Article, The Ongoing Challenge of Hematopoietic Stem Cell-Based Gene Therapy for β-Thalassemia,” Stem Cells International, Volume 2011, Article ID 987980, 10 pages, doi:10.4061/2011/987980, which can be adapted for use with the CRISPR-Cas systems herein in view of the description herein). In some embodiments, the circulatory system disorder can be treated by correcting HSCs as to the disease using a CRISPR-Cas system herein or a component thereof, wherein the CRISPR-Cas system optionally includes a suitable HDR repair template (see e.g. Cavazzana, “Outcomes of Gene Therapy for β-Thalassemia Major via Transplantation of Autologous Hematopoietic Stem Cells Transduced Ex Vivo with a Lentiviral βA-T87Q-Globin Vector.”; Cavazzana-Calvo, “Transfusion independence and HMGA2 activation after gene therapy of human 0-thalassaemia”, Nature 467, 318-322 (16 Sep. 2010) doi:10.1038/nature09328; Nienhuis, “Development of Gene Therapy for Thalassemia, Cold Spring Harbor Perspectives in Medicine, doi: 10.1101/cshperspect.a011833 (2012), LentiGlobin BB305, a lentiviral vector containing an engineered β-globin gene (βA-T87Q); and Xie et al., “Seamless gene correction of β-thalassaemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyback” Genome Research gr.173427.114 (2014) http://www.genome.org/cgi/doi/10.1101/gr.173427.114 (Cold Spring Harbor Laboratory Press; [1599] Watts, “Hematopoietic Stem Cell Expansion and Gene Therapy” Cytotherapy 13(10):1164-1171. doi:10.3109/14653249.2011.620748 (2011), which can be adapted for use with the CRISPR-Cas systems herein in view of the description herein). In some embodiments, iPSCs can be modified using a CRISPR-Cas system described herein to correct a disease polynucleotide associated with a circulatory disease. In this regard, the teachings of Xu et al. (Sci Rep. 2015 Jul. 9; 5:12065. doi: 10.1038/srep12065) and Song et al. (Stem Cells Dev. 2015 May 1; 24(9):1053-65. doi: 10.1089/scd.2014.0347. Epub 2015 Feb. 5) with respect to modifying iPSCs can be adapted for use in view of the description herein with the CRISPR-Cas systems described herein.
The term “Hematopoietic Stem Cell” or “HSC” refers broadly those cells considered to be an HSC, e.g., blood cells that give rise to all the other blood cells and are derived from mesoderm; located in the red bone marrow, which is contained in the core of most bones. HSCs of the invention include cells having a phenotype of hematopoietic stem cells, identified by small size, lack of lineage (lin) markers, and markers that belong to the cluster of differentiation series, like: CD34, CD38, CD90, CD133, CD105, CD45, and also c-kit, —the receptor for stem cell factor. Hematopoietic stem cells are negative for the markers that are used for detection of lineage commitment, and are, thus, called Lin−; and, during their purification by FACS, a number of up to 14 different mature blood-lineage markers, e.g., CD13 & CD33 for myeloid, CD71 for erythroid, CD19 for B cells, CD61 for megakaryocytic, etc. for humans; and, B220 (murine CD45) for B cells, Mac-1 (CD11b/CD18) for monocytes, Gr-1 for Granulocytes, Ter119 for erythroid cells, Il7Ra, CD3, CD4, CD5, CD8 for T cells, etc. Mouse HSC markers: CD34lo/−, SCA-1+, Thy1.1+/lo, CD38+, C-kit+, lin−, and Human HSC markers: CD34+, CD59+, Thy1/CD90+, CD38lo/−, C-kit/CD117+, and lin-. HSCs are identified by markers. Hence in embodiments discussed herein, the HSCs can be CD34+ cells. HSCs can also be hematopoietic stem cells that are CD34−/CD38−. Stem cells that may lack c-kit on the cell surface that are considered in the art as HSCs are within the ambit of the invention, as well as CD133+ cells likewise considered HSCs in the art.
In some embodiments, the treatment or prevention for treating a circulatory system or blood disease can include modifying a human cord blood cell with any modification described herein. In some embodiments, the treatment or prevention for treating a circulatory system or blood disease can include modifying a granulocyte colony-stimulating factor-mobilized peripheral blood cell (mPB) with any modification described herein. In some embodiments, the human cord blood cell or mPB can be CD34+. In some embodiments, the cord blood cell(s) or mPB cell(s) modified can be autologous. In some embodiments, the cord blood cell(s) or mPB cell(s) can be allogenic. In addition to the modification of the disease gene(s), allogenic cells can be further modified using the composition, system, described herein to reduce the immunogenicity of the cells when delivered to the recipient. Such techniques are described elsewhere herein and e.g., Cartier, “MINI-SYMPOSIUM: X-Linked Adrenoleukodystrophypa, Hematopoietic Stem Cell Transplantation and Hematopoietic Stem Cell Gene Therapy in X-Linked Adrenoleukodystrophy,” Brain Pathology 20 (2010) 857-862, which can be adapted for use with the composition, system, herein. The modified cord blood cell(s) or mPB cell(s) can be optionally expanded in vitro. The modified cord blood cell(s) or mPB cell(s) can be derived to a subject in need thereof using any suitable delivery technique.
The CRISPR-Cas (system may be engineered to target genetic locus or loci in HSCs. In some embodiments, the Cas effector(s) can be codon-optimized for a eukaryotic cell and especially a mammalian cell, e.g., a human cell, for instance, HSC, or iPSC and sgRNA targeting a locus or loci in HSC, such as circulatory disease, can be prepared. These may be delivered via particles. The particles may be formed by the Cas effector (e.g., Cas13 or dCas13) protein and the gRNA being admixed. The gRNA and Cas effector (e.g., Cas13 or dCas13) protein mixture can be, for example, admixed with a mixture comprising or consisting essentially of or consisting of surfactant, phospholipid, biodegradable polymer, lipoprotein and alcohol, whereby particles containing the gRNA and Cas effector (e.g., Cas13 or dCas13) protein may be formed. The invention comprehends so making particles and particles from such a method as well as uses thereof. Particles suitable delivery of the CRISRP-Cas systems in the context of blood or circulatory system or HSC delivery to the blood or circulatory system are described in greater detail elsewhere herein.
In some embodiments, after ex vivo modification the HSCs or iPCS can be expanded prior to administration to the subject. Expansion of HSCs can be via any suitable method such as that described by, Lee, “Improved ex vivo expansion of adult hematopoietic stem cells by overcoming CUL4-mediated degradation of HOXB4.” Blood. 2013 May 16; 121(20):4082-9. doi: 10.1182/blood-2012-09-455204. Epub 2013 Mar. 21.
In some embodiments, the HSCs or iPSCs modified can be autologous. In some embodiments, the HSCs or iPSCs can be allogenic. In addition to the modification of the disease gene(s), allogenic cells can be further modified using the CRISPR-Cas system described herein to reduce the immunogenicity of the cells when delivered to the recipient. Such techniques are described elsewhere herein and e.g., Cartier, “MINI-SYMPOSIUM: X-Linked Adrenoleukodystrophypa, Hematopoietic Stem Cell Transplantation and Hematopoietic Stem Cell Gene Therapy in X-Linked Adrenoleukodystrophy,” Brain Pathology 20 (2010) 857-862, which can be adapted for use with the CRISPR-Cas system herein.
In some embodiments, the CRISPR-Cas systems described herein can be used to treat diseases of the brain and CNS. Delivery options for the brain include encapsulation of CRISPR enzyme and guide RNA in the form of either DNA or RNA into liposomes and conjugating to molecular Trojan horses for trans-blood brain barrier (BBB) delivery. Molecular Trojan horses have been shown to be effective for delivery of B-gal expression vectors into the brain of non-human primates. The same approach can be used to delivery vectors containing CRISPR enzyme and guide RNA. For instance, Xia C F and Boado R J, Pardridge W M (“Antibody-mediated targeting of siRNA via the human insulin receptor using avidin-biotin technology.” Mol Pharm. 2009 May-June; 6(3):747-51. doi: 10.1021/mp800194) describes how delivery of short interfering RNA (siRNA) to cells in culture, and in vivo, is possible with combined use of a receptor-specific monoclonal antibody (mAb) and avidin-biotin technology. The authors also report that because the bond between the targeting mAb and the siRNA is stable with avidin-biotin technology, and RNAi effects at distant sites such as brain are observed in vivo following an intravenous administration of the targeted siRNA, the teachings of which can be adapted for use with the CRISPR-Cas systems herein. In other embodiments, an artificial virus can be generated for CNS and/or brain delivery. See e.g., Zhang et al. (Mol Ther. 2003 January; 7(1):11-8)), the teachings of which can be adapted for use with the CRISPR-Cas systems herein.
In some embodiments the CRISPR-Cas system described herein can be used to treat a hearing disease or hearing loss in one or both ears. Deafness is often caused by lost or damaged hair cells that cannot relay signals to auditory neurons. In such cases, cochlear implants may be used to respond to sound and transmit electrical signals to the nerve cells. But these neurons often degenerate and retract from the cochlea as fewer growth factors are released by impaired hair cells.
In some embodiments, the CRISPR-Cas system or modified cells can be delivered to one or both ears for treating or preventing hearing disease or loss by any suitable method or technique. Suitable methods and techniques include, but are not limited to, those set forth in US patent application 20120328580 describes injection of a pharmaceutical composition into the ear (e.g., auricular administration), such as into the luminae of the cochlea (e.g., the Scala media, Sc vestibulae, and Sc tympani), e.g., using a syringe, e.g., a single-dose syringe. For example, one or more of the compounds described herein can be administered by intratympanic injection (e.g., into the middle ear), and/or injections into the outer, middle, and/or inner ear; administration in situ, via a catheter or pump (see e.g. McKenna et al., (U.S. Publication No. 2006/0030837) and Jacobsen et al., (U.S. Pat. No. 7,206,639); administration in combination with a mechanical device such as a cochlear implant or a hearing aid, which is worn in the outer ear (see e.g. U.S. Publication No. 2007/0093878, which provides an exemplary cochlear implant suitable for delivery of the CRISPR-Cas systems described herein to the ear). Such methods are routinely used in the art, for example, for the administration of steroids and antibiotics into human ears. Injection can be, for example, through the round window of the ear or through the cochlear capsule. Other inner ear administration methods are known in the art (see, e.g., Salt and Plontke, Drug Discovery Today, 10:1299-1306, 2005). In some embodiments, a catheter or pump can be positioned, e.g., in the ear (e.g., the outer, middle, and/or inner ear) of a patient during a surgical procedure. In some embodiments, a catheter or pump can be positioned, e.g., in the ear (e.g., the outer, middle, and/or inner ear) of a patient without the need for a surgical procedure.
In general, the cell therapy methods described in US patent application 20120328580 can be used to promote complete or partial differentiation of a cell to or towards a mature cell type of the inner ear (e.g., a hair cell) in vitro. Cells resulting from such methods can then be transplanted or implanted into a patient in need of such treatment. The cell culture methods required to practice these methods, including methods for identifying and selecting suitable cell types, methods for promoting complete or partial differentiation of selected cells, methods for identifying complete or partially differentiated cell types, and methods for implanting complete or partially differentiated cells are described below.
Cells suitable for use in the present invention include, but are not limited to, cells that are capable of differentiating completely or partially into a mature cell of the inner ear, e.g., a hair cell (e.g., an inner and/or outer hair cell), when contacted, e.g., in vitro, with one or more of the compounds described herein. Exemplary cells that are capable of differentiating into a hair cell include, but are not limited to stem cells (e.g., inner ear stem cells, adult stem cells, bone marrow derived stem cells, embryonic stem cells, mesenchymal stem cells, skin stem cells, iPS cells, and fat derived stem cells), progenitor cells (e.g., inner ear progenitor cells), support cells (e.g., Deiters' cells, pillar cells, inner phalangeal cells, tectal cells and Hensen's cells), and/or germ cells. The use of stem cells for the replacement of inner ear sensory cells is described in Li et al., (U.S. Publication No. 2005/0287127) and Li et al., (U.S. patent Ser. No. 11/953,797). The use of bone marrow derived stem cells for the replacement of inner ear sensory cells is described in Edge et al., PCT/US2007/084654. iPS cells are described, e.g., at Takahashi et al., Cell, Volume 131, Issue 5, Pages 861-872 (2007); Takahashi and Yamanaka, Cell 126, 663-76 (2006); Okita et al., Nature 448, 260-262 (2007); Yu, J. et al., Science 318(5858):1917-1920 (2007); Nakagawa et al., Nat. Biotechnol. 26:101-106 (2008); and Zaehres and Scholer, Cell 131(5):834-835 (2007). Such suitable cells can be identified by analyzing (e.g., qualitatively or quantitatively) the presence of one or more tissue specific genes. For example, gene expression can be detected by detecting the protein product of one or more tissue-specific genes. Protein detection techniques involve staining proteins (e.g., using cell extracts or whole cells) using antibodies against the appropriate antigen. In this case, the appropriate antigen is the protein product of the tissue-specific gene expression. Although, in principle, a first antibody (i.e., the antibody that binds the antigen) can be labeled, it is more common (and improves the visualization) to use a second antibody directed against the first (e.g., an anti-IgG). This second antibody is conjugated either with fluorochromes, or appropriate enzymes for colorimetric reactions, or gold beads (for electron microscopy), or with the biotin-avidin system, so that the location of the primary antibody, and thus the antigen, can be recognized.
The CRISPR Cas molecules of the present invention may be delivered to the ear by direct application of pharmaceutical composition to the outer ear, with compositions modified from US Published application, 20110142917. In some embodiments the pharmaceutical composition is applied to the ear canal. Delivery to the ear may also be referred to as aural or otic delivery.
In some embodiments, the CRISPR-Cas systems or components thereof and/or vectors or vector systems can be delivered to ear via a transfection to the inner ear through the intact round window by a novel proteidic delivery technology which may be applied to the nucleic acid-targeting system of the present invention (see, e.g., Qi et al., Gene Therapy (2013), 1-9). About 40 μl of 10 mM RNA may be contemplated as the dosage for administration to the ear.
According to Rejali et al. (Hear Res. 2007 June; 228(1-2):180-7), cochlear implant function can be improved by good preservation of the spiral ganglion neurons, which are the target of electrical stimulation by the implant and brain derived neurotrophic factor (BDNF) has previously been shown to enhance spiral ganglion survival in experimentally deafened ears. Rejali et al. tested a modified design of the cochlear implant electrode that includes a coating of fibroblast cells transduced by a viral vector with a BDNF gene insert. To accomplish this type of ex vivo gene transfer, Rejali et al. transduced guinea pig fibroblasts with an adenovirus with a BDNF gene cassette insert, and determined that these cells secreted BDNF and then attached BDNF-secreting cells to the cochlear implant electrode via an agarose gel, and implanted the electrode in the scala tympani. Rejali et al. determined that the BDNF expressing electrodes were able to preserve significantly more spiral ganglion neurons in the basal turns of the cochlea after 48 days of implantation when compared to control electrodes and demonstrated the feasibility of combining cochlear implant therapy with ex vivo gene transfer for enhancing spiral ganglion neuron survival. Such a system may be applied to the nucleic acid-targeting system of the present invention for delivery to the ear.
In some embodiments, the system set forth in Mukherjea et al. (Antioxidants & Redox Signaling, Volume 13, Number 5, 2010) can be adapted for transtympanic administration of the CRISPR-Cas system or component thereof to the ear. In some embodiments, a dosage of about 2 mg to about 4 mg of CRISPR Cas for administration to a human.
In some embodiments, the system set forth in [Jung et al. (Molecular Therapy, vol. 21 no. 4, 834-841 April 2013) can be adapted for vestibular epithelial delivery of the CRISPR-Cas system or component thereof to the ear. In some embodiments, a dosage of about 1 to about 30 mg of CRISPR Cas for administration to a human.
In some embodiments, the gene or transcript to be corrected is in a non-dividing cell. Exemplary non-dividing cells are muscle cells or neurons. Non-dividing (especially non-dividing, fully differentiated) cell types present issues for gene targeting or genome engineering, for example because homologous recombination (HR) is generally suppressed in the G1 cell-cycle phase. However, while studying the mechanisms by which cells control normal DNA repair systems, Durocher discovered a previously unknown switch that keeps HR “off” in non-dividing cells and devised a strategy to toggle this switch back on. Orthwein et al. (Daniel Durocher's lab at the Mount Sinai Hospital in Ottawa, Canada) recently reported (Nature 16142, published online 9 Dec. 2015) have shown that the suppression of HR can be lifted and gene targeting successfully concluded in both kidney (293T) and osteosarcoma (U20S) cells. Tumor suppressors, BRCA1, PALB2 and BRAC2 are known to promote DNA DSB repair by HR. They found that formation of a complex of BRCA1 with PALB2-BRAC2 is governed by a ubiquitin site on PALB2, such that action on the site by an E3 ubiquitin ligase. This E3 ubiquitin ligase is composed of KEAP1 (a PALB2-interacting protein) in complex with cullin-3 (CUL3)-RBX1. PALB2 ubiquitylation suppresses its interaction with BRCA1 and is counteracted by the deubiquitylase USP11, which is itself under cell cycle control. Restoration of the BRCA1-PALB2 interaction combined with the activation of DNA-end resection is sufficient to induce homologous recombination in G1, as measured by a number of methods including a CRISPR-Cas9-based gene-targeting assay directed at USP11 or KEAP1 (expressed from a pX459 vector). However, when the BRCA1-PALB2 interaction was restored in resection-competent G1 cells using either KEAP1 depletion or expression of the PALB2-KR mutant, a robust increase in gene-targeting events was detected. These teachings can be adapted for and/or applied to the Cas CRISPR-Cas systems described herein.
Thus, reactivation of HR in cells, especially non-dividing, fully differentiated cell types is preferred, in some embodiments. In some embodiments, promotion of the BRCA1-PALB2 interaction is preferred in some embodiments. In some embodiments, the target ell is a non-dividing cell. In some embodiments, the target cell is a neuron or muscle cell. In some embodiments, the target cell is targeted in vivo. In some embodiments, the cell is in G1 and HR is suppressed. In some embodiments, use of KEAP1 depletion, for example inhibition of expression of KEAP1 activity, is preferred. KEAP1 depletion may be achieved through siRNA, for example as shown in Orthwein et al. Alternatively, expression of the PALB2-KR mutant (lacking all eight Lys residues in the BRCA1-interaction domain is preferred, either in combination with KEAP1 depletion or alone. PALB2-KR interacts with BRCA1 irrespective of cell cycle position. Thus, promotion or restoration of the BRCA1-PALB2 interaction, especially in G1 cells, is preferred in some embodiments, especially where the target cells are non-dividing, or where removal and return (ex vivo gene targeting) is problematic, for example neuron or muscle cells. KEAP1 siRNA is available from ThermoFischer. In some embodiments, a BRCA1-PALB2 complex may be delivered to the G1 cell. In some embodiments, PALB2 deubiquitylation may be promoted for example by increased expression of the deubiquitylase USP11, so it is envisaged that a construct may be provided to promote or up-regulate expression or activity of the deubiquitylase USP11.
In some embodiments, the disease to be treated is a disease that affects the eyes. Thus, in some embodiments, the CRISPR-Cas system or component thereof described herein is delivered to one or both eyes.
The CRISPR-Cas system can be used to correct ocular defects that arise from several genetic mutations further described in Genetic Diseases of the Eye, Second Edition, edited by Elias I. Traboulsi, Oxford University Press, 2012.
In some embodiments, the condition to be treated or targeted is an eye disorder. In some embodiments, the eye disorder may include glaucoma. In some embodiments, the eye disorder includes a retinal degenerative disease. In some embodiments, the retinal degenerative disease is selected from Stargardt disease, Bardet-Biedl Syndrome, Best disease, Blue Cone Monochromacy, Choroidermia, Cone-rod dystrophy, Congenital Stationary Night Blindness, Enhanced S-Cone Syndrome, Juvenile X-Linked Retinoschisis, Leber Congenital Amaurosis, Malattia Leventinesse, Norrie Disease or X-linked Familial Exudative Vitreoretinopathy, Pattern Dystrophy, Sorsby Dystrophy, Usher Syndrome, Retinitis Pigmentosa, Achromatopsia or Macular dystrophies or degeneration, Retinitis Pigmentosa, Achromatopsia, and age related macular degeneration. In some embodiments, the retinal degenerative disease is Leber Congenital Amaurosis (LCA) or Retinitis Pigmentosa. Other exemplary eye diseases are described in greater detail elsewhere herein.
In some embodiments, the CRISPR-Cas system is delivered to the eye, optionally via intravitreal injection or subretinal injection. Intraocular injections may be performed with the aid of an operating microscope. For subretinal and intravitreal injections, eyes may be prolapsed by gentle digital pressure and fundi visualized using a contact lens system consisting of a drop of a coupling medium solution on the cornea covered with a glass microscope slide coverslip. For subretinal injections, the tip of a 10-mm 34-gauge needle, mounted on a 5-μl Hamilton syringe may be advanced under direct visualization through the superior equatorial sclera tangentially towards the posterior pole until the aperture of the needle was visible in the subretinal space. Then, 2 μl of vector suspension may be injected to produce a superior bullous retinal detachment, thus confirming subretinal vector administration. This approach creates a self-sealing sclerotomy allowing the vector suspension to be retained in the subretinal space until it is absorbed by the RPE, usually within 48 h of the procedure. This procedure may be repeated in the inferior hemisphere to produce an inferior retinal detachment. This technique results in the exposure of approximately 70% of neurosensory retina and RPE to the vector suspension. For intravitreal injections, the needle tip may be advanced through the sclera 1 mm posterior to the corneoscleral limbus and 2 μl of vector suspension injected into the vitreous cavity. For intracameral injections, the needle tip may be advanced through a corneoscleral limbal paracentesis, directed towards the central cornea, and 2 μl of vector suspension may be injected. For intracameral injections, the needle tip may be advanced through a corneoscleral limbal paracentesis, directed towards the central cornea, and 2 μl of vector suspension may be injected. These vectors may be injected at titers of either 1.0-1.4×1010 or 1.0-1.4×101 transducing units (TU)/ml.
In some embodiments, for administration to the eye, lentiviral vectors. In some embodiments, the lentiviral vector is an equine infectious anemia virus (EIAV) vector. Exemplary EIAV vectors for eye delivery are described in Balagaan, J Gene Med 2006; 8: 275-285, Published online 21 Nov. 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/jgm.845; Binley et al., HUMAN GENE THERAPY 23:980-991 (September 2012), which can be adapted for use with the CRISPR-Cas system described herein. In some embodiments, the dosage can be 1.1×105 transducing units per eye (TU/eye) in a total volume of 100 μl.
Other viral vectors can also be used for delivery to the eye, such as AAV vectors, such as those described in Campochiaro et al., Human Gene Therapy 17:167-176 (February 2006), Millington-Ward et al. (Molecular Therapy, vol. 19 no. 4, 642-649 April 2011; Dalkara et al. (Sci Transl Med 5, 189ra76 (2013)), which can be adapted for use with the CRISPR-Cas system described herein. In some embodiments, the dose can range from about 106 to 109.5 particle units. In the context of the Millington-Ward AAV vectors, a dose of about 2×1011 to about 6×1013 virus particles can be administered. In the context of Dalkara vectors, a dose of about 1×1015 to about 1×1016 vg/ml administered to a human.
In some embodiments, the sd-rxRNA® system of RXi Pharmaceuticals may be used/and or adapted for delivering CRISPR-Cas system to the eye. In this system, a single intravitreal administration of 3 μg of sd-rxRNA results in sequence-specific reduction of PPIB mRNA levels for 14 days. The sd-rxRNA® system may be applied to the nucleic acid-targeting system of the present invention, contemplating a dose of about 3 to 20 mg of CRISPR administered to a human.
In other embodiments, the methods of US Patent Publication No. 20130183282, which is directed to methods of cleaving a target sequence from the human rhodopsin gene, may also be modified to the nucleic acid-targeting system of the present invention.
In other embodiments, the methods of US Patent Publication No. 20130202678 for treating retinopathies and sight-threatening ophthalmologic disorders relating to delivering of the Puf-A gene (which is expressed in retinal ganglion and pigmented cells of eye tissues and displays a unique anti-apoptotic activity) to the sub-retinal or intravitreal space in the eye. In particular, desirable targets are zgc:193933, prdmla, spata2, tex10, rbb4, ddx3, zp2.2, Blimp-1 and HtrA2, all of which may be targeted by the CRISPR-Cas system of the present invention.
Wu (Cell Stem Cell, 13:659-62, 2013) designed a guide RNA that led Cas9 to a single base pair mutation that causes cataracts in mice, where it induced DNA cleavage. Then using either the other wild-type allele or oligos given to the zygotes repair mechanisms corrected the sequence of the broken allele and corrected the cataract-causing genetic defect in mutant mouse. This approach can be adapted to and/or applied to the CRISPR-Cas systems described herein.
US Patent Publication No. 20120159653, describes use of zinc finger nucleases to genetically modify cells, animals and proteins associated with macular degeneration (MD), the teachings of which can be applied to and/or adapted for the CRISPR-Cas systems described herein.
One aspect of US Patent Publication No. 20120159653 relates to editing of any chromosomal sequences that encode proteins associated with MD which may be applied to the nucleic acid-targeting system of the present invention.
In some embodiments, the CRISPR-Cas system can be used to treat and/or prevent a muscle disease and associated circulatory or cardiovascular disease or disorder. The present invention also contemplates delivering the CRISPR-Cas system described herein, e.g., Cas effector protein systems, to the heart. For the heart, a myocardium tropic adeno-associated virus (AAVM) is preferred, in particular AAVM41 which showed preferential gene transfer in the heart (see, e.g., Lin-Yanga et al., PNAS, Mar. 10, 2009, vol. 106, no. 10). Administration may be systemic or local. A dosage of about 1-10×1014 vector genomes is contemplated for systemic administration. See also, e.g., Eulalio et al. (2012) Nature 492: 376 and Somasuntharam et al. (2013) Biomaterials 34: 7790, the teachings of which can be adapted for and/or applied to the CRISPR-Cas systems described herein.
For example, US Patent Publication No. 20110023139, the teachings of which can be adapted for and/or applied to the CRISPR-Cas systems described herein describes use of zinc finger nucleases to genetically modify cells, animals and proteins associated with cardiovascular disease. Cardiovascular diseases generally include high blood pressure, heart attacks, heart failure, and stroke and TIA. Any chromosomal sequence involved in cardiovascular disease, or the protein encoded by any chromosomal sequence involved in cardiovascular disease, may be utilized in the methods described in this disclosure. The cardiovascular-related proteins are typically selected based on an experimental association of the cardiovascular-related protein to the development of cardiovascular disease. For example, the production rate or circulating concentration of a cardiovascular-related protein may be elevated or depressed in a population having a cardiovascular disorder relative to a population lacking the cardiovascular disorder. Differences in protein levels may be assessed using proteomic techniques including but not limited to Western blot, immunohistochemical staining, enzyme linked immunosorbent assay (ELISA), and mass spectrometry. Alternatively, the cardiovascular-related proteins may be identified by obtaining gene expression profiles of the genes encoding the proteins using genomic techniques including but not limited to DNA microarray analysis, serial analysis of gene expression (SAGE), and quantitative real-time polymerase chain reaction (Q-PCR). Exemplary chromosomal sequences can be found in Table A.
The CRISPR-Cas systems herein can be used for treating diseases of the muscular system. The present invention also contemplates delivering the CRISPR-Cas system described herein, e.g., Cas (e.g. Cas13 or dCas13) effector protein systems, to muscle(s).
In some embodiments, the muscle disease to be treated is a muscle dystrophy such as DMD. In some embodiments, the CRISPR-Cas system, such as a system capable of RNA modification, described herein can be used to achieve exon skipping to achieve correction of the diseased gene. As used herein, the term “exon skipping” refers to the modification of pre-mRNA splicing by the targeting of splice donor and/or acceptor sites within a pre-mRNA with one or more complementary antisense oligonucleotide(s) (AONs). By blocking access of a spliceosome to one or more splice donor or acceptor site, an AON may prevent a splicing reaction thereby causing the deletion of one or more exons from a fully-processed mRNA. Exon skipping may be achieved in the nucleus during the maturation process of pre-mRNAs. In some examples, exon skipping may include the masking of key sequences involved in the splicing of targeted exons by using a CRISPR-Cas system described herein capable of RNA modification. In some embodiments, exon skipping can be achieved in dystrophin mRNA. In some embodiments, the CRISPR-Cas system can induce exon skipping at exon 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 45, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, or any combination thereof of the dystrophin mRNA. In some embodiments, the CRISPR-Cas system can induce exon skipping at exon 43, 44, 50, 51, 52, 55, or any combination thereof of the dystrophin mRNA. Mutations in these exons, can also be corrected using non-exon skipping polynucleotide modification methods.
In some embodiments, for treatment of a muscle disease, the method of Bortolanza et al. Molecular Therapy vol. 19 no. 11, 2055-264 November 2011) may be applied to an AAV expressing CRISPR Cas and injected into humans at a dosage of about 2×1015 or 2×1016 vg of vector. The teachings of Bortolanza et al., can be adapted for and/or applied to the CRISPR-Cas systems described herein.
In some embodiments, the method of Dumonceaux et al. (Molecular Therapy vol. 18 no. 5, 881-887 May 2010) may be applied to an AAV expressing CRISPR Cas and injected into humans, for example, at a dosage of about 1014 to about 1015 vg of vector. The teachings of Dumonceaux described herein can be adapted for and/or applied to the CRISPR-Cas systems described herein.
In some embodiments, the method of Kinouchi et al. (Gene Therapy (2008) 15, 1126-1130) may be applied to CRISPR Cas systems described herein and injected into a human, for example, at a dosage of about 500 to 1000 ml of a 40 μM solution into the muscle.
In some embodiments, the method of Hagstrom et al. (Molecular Therapy Vol. 10, No. 2, August 2004) can be adapted for and/or applied to the CRISPR-Cas systems herein and injected at a dose of about 15 to about 50 mg into the great saphenous vein of a human.
In some embodiments, the CRISPR-Cas system or component thereof described herein can be used to treat a disease of the kidney or liver. Thus, in some embodiments, delivery of the CRISRP-Cas system or component thereof described herein is to the liver or kidney.
Delivery strategies to induce cellular uptake of the therapeutic nucleic acid include physical force or vector systems such as viral-, lipid- or complex-based delivery, or nanocarriers. From the initial applications with less possible clinical relevance, when nucleic acids were addressed to renal cells with hydrodynamic high-pressure injection systemically, a wide range of gene therapeutic viral and non-viral carriers have been applied already to target posttranscriptional events in different animal kidney disease models in vivo (Csaba Révész and Péter Hamar (2011). Delivery Methods to Target RNAs in the Kidney, Gene Therapy Applications, Prof Chunsheng Kang (Ed.), ISBN: 978-953-307-541-9, InTech, Available from: www.intechopen.com/books/gene-therapy-applications/delivery-methods-to-target-rnas-inthe-kidney). Delivery methods to the kidney may include those in Yuan et al. (Am J Physiol Renal Physiol 295: F605-F617, 2008). The method of Yuang et al. may be applied to the CRISPR Cas system of the present invention contemplating a 1-2 g subcutaneous injection of CRISPR Cas conjugated with cholesterol to a human for delivery to the kidneys. In some embodiments, the method of Molitoris et al. (J Am Soc Nephrol 20: 1754-1764, 2009) can be adapted to the CRISRP-Cas system of the present invention and a cumulative dose of 12-20 mg/kg to a human can be used for delivery to the proximal tubule cells of the kidneys. In some embodiments, the methods of Thompson et al. (Nucleic Acid Therapeutics, Volume 22, Number 4, 2012) can be adapted to the CRISRP-Cas system of the present invention and a dose of up to 25 mg/kg can be delivered via i.v. administration. In some embodiments, the method of Shimizu et al. (J Am Soc Nephrol 21: 622-633, 2010) can be adapted to the CRISRP-Cas system of the present invention and a dose of about of 10-20 μmol CRISPR Cas complexed with nanocarriers in about 1-2 liters of a physiologic fluid for i.p. administration can be used.
Other various delivery vehicles can be used to deliver the CRISPR-Cas system to the kidney such as viral, hydrodynamic, lipid, polymer nanoparticles, aptamers and various combinations thereof (see e.g. Larson et al., Surgery, (August 2007), Vol. 142, No. 2, pp. (262-269); Hamar et al., Proc Natl Acad Sci, (October 2004), Vol. 101, No. 41, pp. (14883-14888); Zheng et al., Am J Pathol, (October 2008), Vol. 173, No. 4, pp. (973-980); Feng et al., Transplantation, (May 2009), Vol. 87, No. 9, pp. (1283-1289); Q. Zhang et al., PloS ONE, (July 2010), Vol. 5, No. 7, e11709, pp. (1-13); Kushibikia et al., J Controlled Release, (July 2005), Vol. 105, No. 3, pp. (318-331); Wang et al., Gene Therapy, (July 2006), Vol. 13, No. 14, pp. (1097-1103); Kobayashi et al., Journal of Pharmacology and Experimental Therapeutics, (February 2004), Vol. 308, No. 2, pp. (688-693); Wolfrum et al., Nature Biotechnology, (September 2007), Vol. 25, No. 10, pp. (1149-1157); Molitoris et al., J Am Soc Nephrol, (August 2009), Vol. 20, No. 8 pp. (1754-1764); Mikhaylova et al., Cancer Gene Therapy, (March 2011), Vol. 16, No. 3, pp. (217-226); Y. Zhang et al., J Am Soc Nephrol, (April 2006), Vol. 17, No. 4, pp. (1090-1101); Singhal et al., Cancer Res, (May 2009), Vol. 69, No. 10, pp. (4244-4251); Malek et al., Toxicology and Applied Pharmacology, (April 2009), Vol. 236, No. 1, pp. (97-108); Shimizu et al., J Am Soc Nephrology, (April 2010), Vol. 21, No. 4, pp. (622-633); Jiang et al., Molecular Pharmaceutics, (May-June 2009), Vol. 6, No. 3, pp. (727-737); Cao et al, J Controlled Release, (June 2010), Vol. 144, No. 2, pp. (203-212); Ninichuk et al., Am J Pathol, (March 2008), Vol. 172, No. 3, pp. (628-637); Purschke et al., Proc Natl Acad Sci, (March 2006), Vol. 103, No. 13, pp. (5173-5178).
In some embodiments, delivery is to liver cells. In some embodiments, the liver cell is a hepatocyte. Delivery of the CRISPR protein, such as Cas effector (e.g. Cas13 or dCas13) herein may be via viral vectors, especially AAV (and in particular AAV2/6) vectors. These can be administered by intravenous injection. A preferred target for the liver, whether in vitro or in vivo, is the albumin gene. This is a so-called ‘safe harbor” as albumin is expressed at very high levels and so some reduction in the production of albumin following successful gene editing is tolerated. It is also preferred as the high levels of expression seen from the albumin promoter/enhancer allows for useful levels of correct or transgene production (from the inserted donor template) to be achieved even if only a small fraction of hepatocytes are edited. See sites identified by Wechsler et al. (reported at the 57th Annual Meeting and Exposition of the American Society of Hematology—abstract available online at https://ash.confex.com/ash/2015/webprogram/Paper86495.html and presented on 6 Dec. 2015) which can be adapted for use with the CRISPR-Cas systems herein.
Exemplary liver and kidney diseases that can be treated and/or prevented are described elsewhere herein.
In some embodiments, the disease treated or prevented by the CRISPR-Cas system described herein can be a lung or epithelial disease. The CRISPR-Cas systems described herein can be used for treating epithelial and/or lung diseases. The present invention also contemplates delivering the CRISPR-Cas system described herein, e.g., Cas (e.g. Cas13 or dCas13) effector systems, to one or both lungs.
In some embodiments, as viral vector can be used to deliver the CRISPR-Cas system or component thereof to the lungs. In some embodiments, the AAV is an AAV-1, AAV-2, AAV-5, AAV-6, and/or AAV-9 for delivery to the lungs. (See, e.g., Li et al., Molecular Therapy, vol. 17 no. 12, 2067-277 December 2009). In some embodiments, the MOI can vary from 1×103 to 4×105 vector genomes/cell. In some embodiments, the delivery vector can be an RSV vector as in Zamora et al. (Am J Respir Crit Care Med Vol 183. pp 531-538, 2011. The method of Zamora et al. may be applied to the nucleic acid-targeting system of the present invention and an aerosolized CRISPR Cas, for example with a dosage of 0.6 mg/kg, may be contemplated for the present invention.
Subjects treated for a lung disease may for example receive pharmaceutically effective amount of aerosolized AAV vector system per lung endobronchially delivered while spontaneously breathing. As such, aerosolized delivery is preferred for AAV delivery in general. An adenovirus or an AAV particle may be used for delivery. Suitable gene constructs, each operably linked to one or more regulatory sequences, may be cloned into the delivery vector. In this instance, the following constructs are provided as examples: Cbh or EF1α promoter for Cas (Cas (e.g. Cas13 or dCas13)), U6 or H1 promoter for guide RNA), A preferred arrangement is to use a CFTRdelta508 targeting guide, a repair template for deltaF508 mutation and a codon optimized Cas (e.g. Cas13 or dCas13) enzyme, with optionally one or more nuclear localization signal or sequence(s) (NLS(s)), e.g., two (2) NLSs.
The CRISPR-Cas systems described herein can be used for the treatment of skin diseases. The present invention also contemplates delivering the CRISPR-Cas system described herein, e.g., Cas (e.g., Cas13 or dCas13) effector protein systems, to the skin
In some embodiments, delivery to the skin (intradermal delivery) of the CRISPR-Cas system or component thereof can be via one or more microneedles or microneedle containing device. For example, in some embodiments the device and methods of Hickerson et al. (Molecular Therapy—Nucleic Acids (2013) 2, e129) can be used and/or adapted to deliver the CRISPR-Cas system described herein, for example, at a dosage of up to 300 μl of 0.1 mg/ml CRISPR-Cas (e.g., Cas13 or dCas13) system to the skin.
In some embodiments, the methods and techniques of Leachman et al. (Molecular Therapy, vol. 18 no. 2, 442-446 February 2010) can be used and/or adapted for delivery of a CIRPSR-Cas system described herein to the skin.
In some embodiments, the methods and techniques of [1785] Zheng et al. (PNAS, Jul. 24, 2012, vol. 109, no. 30, 11975-11980) can be used and/or adapted for nanoparticle delivery of a CIRPSR-Cas system described herein to the skin. In some embodiments, as dosage of about 25 nM applied in a single application can achieve gene knockdown in the skin.
The CRISPR-Cas systems described herein can be used for the treatment of cancer. The present invention also contemplates delivering the CRISPR-Cas system described herein, e.g., Cas (e.g. Cas13 or dCas13) effector protein systems, to a cancer cell. Also, as is described elsewhere herein the CRISPR-Cas systems can be used to modify an immune cell, such as a CAR or CAR T cell, which can then in turn be used to treat and/or prevent cancer. This is also described in WO2015161276, the disclosure of which is hereby incorporated by reference and described herein below.
Target genes suitable for the treatment or prophylaxis of cancer can include those set forth in Tables A and B and those identified at mitoMap.org. In some embodiments, target genes for cancer treatment and prevention can also include those described in WO2015048577 the disclosure of which is hereby incorporated by reference and can be adapted for and/or applied to the CRISPR-Cas system described herein.
Genetic Diseases and Diseases with a Genetic and/or Epigenetic Aspect
The CRISPR-Cas systems or components thereof can be used to treat and/or prevent a genetic disease or a disease with a genetic and/or epigenetic aspect. The genes and conditions exemplified herein are not exhaustive. In some embodiments, a method of treating and/or preventing a genetic disease can include administering a CRISPR-Cas system and/or one or more components thereof to a subject, where the CRISPR-Cas system and/or one or more components thereof is capable of modifying one or more copies of one or more genes associated with the genetic disease or a disease with a genetic and/or epigenetic aspect in one or more cells of the subject. In some embodiments, modifying one or more copies of one or more genes associated with a genetic disease or a disease with a genetic and/or epigenetic aspect in the subject can eliminate a genetic disease or a symptom thereof in the subject. In some embodiments, modifying one or more copies of one or more genes associated with a genetic disease or a disease with a genetic and/or epigenetic aspect in the subject can decrease the severity of a genetic disease or a symptom thereof in the subject. In some embodiments, the CRISPR-Cas systems or components thereof can modify one or more genes or polynucleotides associated with one or more diseases, including genetic diseases and/or those having a genetic aspect and/or epigenetic aspect, including but not limited to, any one or more set forth in Table A. It will be appreciated that those diseases and associated genes listed herein are non-exhaustive and non-limiting. Further some genes play roles in the development of multiple diseases.
In some embodiments, the CRISPR-Cas systems or components thereof can be used treat or prevent a disease in a subject by modifying one or more genes associated with one or more cellular functions, such as any one or more of those in Table B. In some embodiments, the disease is a genetic disease or disorder. In some of embodiments, the CRISPR-Cas system or component thereof can modify one or more genes or polynucleotides associated with one or more genetic diseases such as any set forth in Table B.
Further non-limiting examples of disease-associated genes and polynucleotides and disease specific information is available from McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, Md.) and National Center for Biotechnology Information, National Library of Medicine (Bethesda, Md.), available on the World Wide Web.
In an aspect, the invention provides a method of individualized or personalized treatment of a genetic disease in a subject in need of such treatment comprising: (a) introducing one or more mutations ex vivo in a tissue, organ or a cell line, or in vivo in a transgenic non-human mammal, comprising delivering to cell(s) of the tissue, organ, cell or mammal a composition comprising the particle delivery system or the delivery system or the virus particle of any one of the above embodiment or the cell of any one of the above embodiment, wherein the specific mutations or precise sequence substitutions are or have been correlated to the genetic disease; (b) testing treatment(s) for the genetic disease on the cells to which the vector has been delivered that have the specific mutations or precise sequence substitutions correlated to the genetic disease; and (c) treating the subject based on results from the testing of treatment(s) of step (b).
In some embodiments, the CRISPR-Cas system(s) or component(s) thereof can be used to diagnose, prognose, treat, and/or prevent an infectious disease caused by a microorganism, such as bacteria, virus, fungi, parasites, or combinations thereof.
In some embodiments, the Cas system(s) or component(s) thereof can be capable of targeting specific microorganism within a mixed population. Exemplary methods of such techniques are described in e.g., Gomaa A A, Klumpe H E, Luo M L, Selle K, Barrangou R, Beisel C L. 2014. Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. mBio 5:e00928-13; Citorik R J, Mimee M, Lu T K. 2014. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol 32:1141-1145, the teachings of which can be adapted for use with the CRISPR-Cas systems and components thereof described herein.
In some embodiments, the CRISPR-Cas system(s) and/or components thereof can be capable of targeting pathogenic and/or drug-resistant microorganisms, such as bacteria, virus, parasites, and fungi. In some embodiments, the CRISPR-Cas system(s) and/or components thereof can be capable of targeting and modifying one or more polynucleotides in a pathogenic microorganism such that the microorganism is less virulent, killed, inhibited, or is otherwise rendered incapable of causing disease and/or infecting and/or replicating in a host cell.
In some embodiments, the pathogenic bacteria that can be targeted and/or modified by the CRISPR-Cas system(s) and/or component(s) thereof described herein include, but are not limited to, those of the genus Actinomyces (e.g. A. israelii), Bacillus (e.g. B. anthracis, B. cereus), Bactereoides (e.g. B. fragilis), Bartonella (B. henselae, B. quintana), Bordetella (B. pertussis), Borrelia (e.g. B. burgdorferi, B. garinii, B. afzelii, and B. recurreentis), Brucella (e.g. B. abortus, B. canis, B. melitensis, and B. suis), Campylobacter (e.g. C. jejuni), Chlamydia (e.g. C. pneumoniae and C. trachomatis), Chlamydophila (e.g. C. psittaci), Clostridium (e.g. C. botulinum, C. difficile, C. perfringens. C. tetani), Corynebacterium (e.g. C. diptheriae), Enterococcus (e.g. E. Faecalis, E. faecium), Ehrlichia (E. canis and E. chaffensis) Escherichia (e.g. E. coli), Francisella (e.g. F. tularensis), Haemophilus (e.g. H. influenzae), Helicobacter (H. pylori), Klebsiella (E.g. K. pneumoniae), Legionella (e.g. L. pneumophila), Leptospira (e.g. L. interrogans, L. santarosai, L. weilii, L. noguchii), Listereia (e.g. L. monocytogeenes), Mycobacterium (e.g. M. leprae, M. tuberculosis, M. ulcerans), Mycoplasma (M. pneumoniae), Neisseria (N. gonorrhoeae and N. menigitidis), Nocardia (e.g. N. asteeroides), Pseudomonas (P. aeruginosa), Rickettsia (R. rickettsia), Salmonella (S. typhi and S. typhimurium), Shigella (S. sonnei and S. dysenteriae), Staphylococcus (S. aureus, S. epidermidis, and S. saprophyticus), Streptococcus (S. agalactiaee, S. pneumoniae, S. pyogenes), Treponema (T. pallidum), Ureaplasma (e.g. U. urealyticum), Vibrio (e.g. V. cholerae), Yersinia (e.g. Y. pestis, Y. enteerocolitica, and Y. pseudotuberculosis).
In some embodiments, the pathogenic fungi that can be targeted and/or modified by the CRISPR-Cas system(s) and/or component(s) thereof described herein include, but are not limited to, those of the genus Candida (e.g. C. albicans), Aspergillus (e.g. A. fumigatus, A. flavus, A. clavatus), Cryptococcus (e.g. C. neoformans, C. gattii), Histoplasma (H. capsulatum), Pneumocystis (e.g. P. jiroveecii), Stachybotrys (e.g. S. chartarum).
In some embodiments, the pathogenic parasites that can be targeted and/or modified by the CRISPR-Cas system(s) and/or component(s) thereof described herein include, but are not limited to, protozoa, helminths, and ectoparasites. In some embodiments, the pathogenic protozoa that can be targeted and/or modified by the CRISPR-Cas system(s) and/or component(s) thereof described herein include, but are not limited to, those from the groups Sarcodina (e.g., ameba such as Entamoeba), Mastigophora (e.g., flagellates such as Giardia and Leishmania), Cilophora (e.g. ciliates such as Balantidum), and sporozoa (e.g. plasmodium and cryptosporidium). In some embodiments, the pathogenic helminths that can be targeted and/or modified by the CRISPR-Cas system(s) and/or component(s) thereof described herein include, but are not limited to, flatworms (platyhelminths), thorny-headed worms (acanthoceephalins), and roundworms (nematodes). In some embodiments, the pathogenic ectoparasites that can be targeted and/or modified by the CRISPR-Cas system(s) and/or component(s) thereof described herein include, but are not limited to, ticks, fleas, lice, and mites.
In some embodiments, the pathogenic parasite that can be targeted and/or modified by the CRISPR-Cas system(s) and/or component(s) thereof described herein include, but are not limited to, Acanthamoeba spp., Balamuthia mandrillaris, Babesiosis spp. (e.g., Babesia B. divergens, B. bigemina, B. equi, B. microfti, B. duncani), Balantidiasis spp. (e.g., Balantidium coli), Blastocystis spp., Cryptosporidium spp., Cyclosporiasis spp. (e.g., Cyclospora cayetanensis), Dientamoebiasis spp. (e.g., Dientamoeba fragilis), Amoebiasis spp. (e.g., Entamoeba histolytica), Giardiasis spp. (e.g., Giardia lamblia), Isosporiasis spp. (e.g., Isospora belli), Leishmania spp., Naegleria spp. (e.g., Naegleria fowleri), Plasmodium spp. (e.g., Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale curtisi, Plasmodium ovale wallikeri, Plasmodium malariae, Plasmodium knowlesi), Rhinosporidiosis spp. (e.g. Rhinosporidium seeberi), Sarcocystosis spp. (e.g., Sarcocystis bovihominis, Sarcocystis suihominis), Toxoplasma spp. (e.g., Toxoplasma gondii), Trichomonas spp. (e.g. Trichomonas vaginalis), Trypanosoma spp. (e.g., Trypanosoma brucei), Trypanosoma spp. (e.g., Trypanosoma cruzi), Tapeworm (e.g., Cestoda, Taenia multiceps, Taenia saginata, Taenia solium), Diphyllobothrium latum spp., Echinococcus spp. (e.g., Echinococcus granulosus, Echinococcus multilocularis, E. vogeli, E. oligarthrus), Hymenolepis spp. (e.g. Hymenolepis nana, Hymenolepis diminuta), Bertiella spp. (e.g., Bertiella mucronata, Bertiella studeri), Spirometra (e.g. Spirometra erinaceieuropaei), Clonorchis spp. (e.g., Clonorchis sinensis; Clonorchis viverrini), Dicrocoelium spp. (e.g. Dicrocoelium dendriticum), Fasciola spp. (e.g., Fasciola hepatica, Fasciola gigantica), Fasciolopsis spp. (e.g., Fasciolopsis buski), Metagonimus spp. (e.g., Metagonimus yokogawai), Metorchis spp. (e.g., Metorchis conjunctus), Opisthorchis spp. (e.g., Opisthorchis viverrini, Opisthorchis felineus), Clonorchis spp. (e.g., Clonorchis sinensis), Paragonimus spp. (e.g., Paragonimus westermani; Paragonimus africanus; Paragonimus caliensis; Paragonimus kellicotti; Paragonimus skrjabini; Paragonimus uterobilateralis), Schistosoma sp., Schistosoma spp. (e.g., Schistosoma mansoni, Schistosoma haematobium, Schistosoma japonicum, Schistosoma mekongi, and Schistosoma intercalatum), Echinostoma spp. (e.g., E. echinatum), Trichobilharzia spp. (e.g., Trichobilharzia regent), Ancylostoma spp. (e.g., Ancylostoma duodenale), Necator spp. (e.g., Necator americanus), Angiostrongylus spp., Anisakis spp., Ascaris spp. (e.g., Ascaris lumbricoides), Baylisascaris spp. (e.g., Baylisascaris procyonis), Brugia spp. (e.g., Brugia malayi, Brugia timori), Dioctophyme spp. (e.g., Dioctophyme renale), Dracunculus spp. (e.g., Dracunculus medinensis), Enterobius spp. (e.g., Enterobius vermicularis, Enterobius gregorii), Gnathostoma spp. (e.g., Gnathostoma spinigerum, Gnathostoma hispidum), Halicephalobus spp. (e.g., Halicephalobus gingivalis), Loa loa spp. (e.g., Loa loa filaria), Mansonella spp. (e.g., Mansonella streptocerca), Onchocerca spp. (e.g., Onchocerca volvulus), Strongyloides spp. (e.g., Strongyloides stercoralis), Thelazia spp. (e.g., Thelazia californiensis, Thelazia callipaeda), Toxocara spp. (e.g. Toxocara canis, Toxocara cati, Toxascaris leonine), Trichinella spp. (e.g., Trichinella spiralis, Trichinella britovi, Trichinella nelsoni, Trichinella nativa), Trichuris spp. (e.g. Trichuris trichiura, Trichuris vulpis), Wuchereria spp. (e.g., Wuchereria bancrofti), Dermatobia spp. (e.g., Dermatobia hominis), Tunga spp. (e.g., Tunga penetrans), Cochliomyia spp. (e.g., Cochliomyia hominivorax), Linguatula spp. (e.g., Linguatula serrata), Archiacanthocephala sp., Moniliformis sp. (e.g., Moniliformis moniliformis), Pediculus spp. (e.g., Pediculus humanus capitis, Pediculus humanus humanus), Pthirus spp. (e.g., Pthirus pubis), Arachnida spp. (e.g., Trombiculidae, Ixodidae, Argaside), Siphonaptera spp (e.g., Siphonaptera: Pulicinae), Cimicidae spp. (e.g., Cimex lectularius and Cimex hemipterus), Diptera spp., Demodex spp. (e.g., Demodex folliculorum/brevis/canis), Sarcoptes spp. (e.g., Sarcoptes scabiei), Dermanyssus spp. (e.g., Dermanyssus gallinae), Ornithonyssus spp. (e.g., Ornithonyssus sylviarum, Ornithonyssus bursa, Ornithonyssus bacoti), Laelaps spp. (e.g., Laelaps echidnina), Liponyssoides spp. (e.g., Liponyssoides sanguineus).
In some embodiments the gene targets can be any of those as set forth in Table 1 of Strich and Chertow. 2019. J. Clin. Microbio. 57:4 e01307-18, which is incorporated herein as if expressed in its entirety herein.
In some embodiments, the method can include delivering a CRISPR-Cas system and/or component thereof to a pathogenic organism described herein, allowing the CRISPR-Cas system and/or component thereof to specifically bind and modify one or more targets in the pathogenic organism, whereby the modification kills, inhibits, reduces the pathogenicity of the pathogenic organism, or otherwise renders the pathogenic organism non-pathogenic. In some embodiments, delivery of the CRISPR-Cas system occurs in vivo (i.e., in the subject being treated). In some embodiments occurs by an intermediary, such as microorganism or phage that is non-pathogenic to the subject but is capable of transferring polynucleotides and/or infecting the pathogenic microorganism. In some embodiments, the intermediary microorganism can be an engineered bacteria, virus, or phage that contains the CRISPR-Cas system(s) and/or component(s) thereof and/or CRISPR-Cas vectors and/or vector systems. The method can include administering an intermediary microorganism containing the CRISPR-Cas system(s) and/or component(s) thereof and/or CRISPR-Cas vectors and/or vector systems to the subject to be treated. The intermediary microorganism can then produce the CRISPR-system and/or component thereof or transfer a CRISPR-Cas system polynucleotide to the pathogenic organism. In embodiments, where the CRISPR-system and/or component thereof, vector, or vector system is transferred to the pathogenic microorganism, the CRISPR-Cas system or component thereof is then produced in the pathogenic microorganism and modifies the pathogenic microorganism such that it is less virulent, killed, inhibited, or is otherwise rendered incapable of causing disease and/or infecting and/or replicating in a host or cell thereof.
In some embodiments, where the pathogenic microorganism inserts its genetic material into the host cell's genome (e.g., a virus), the CRISPR-Cas system can be designed such that it modifies the host cell's genome such that the viral DNA or cDNA cannot be replicated by the host cell's machinery into a functional virus. In some embodiments, where the pathogenic microorganism inserts its genetic material into the host cell's genome (e.g., a virus), the CRISPR-Cas system can be designed such that it modifies the host cell's genome such that the viral DNA or cDNA is deleted from the host cell's genome.
It will be appreciated that inhibiting or killing the pathogenic microorganism, the disease and/or condition that its infection causes in the subject can be treated or prevented. Thus, also provided herein are methods of treating and/or preventing one or more diseases or symptoms thereof caused by any one or more pathogenic microorganisms, such as any of those described herein.
Microbiomes play important roles in health and disease. For example, the gut microbiome can play a role in health by controlling digestion, preventing growth of pathogenic microorganisms and have been suggested to influence mood and emotion. Imbalanced microbiomes can promote disease and are suggested to contribute to weight gain, unregulated blood sugar, high cholesterol, cancer, and other disorders. A healthy microbiome has a series of joint characteristics that can be distinguished from non-healthy individuals, thus detection and identification of the disease-associated microbiome can be used to diagnose and detect disease in an individual. The CRISPR-Cas systems and components thereof can be used to screen the microbiome cell population and be used to identify a disease associated microbiome. Cell screening methods utilizing CRISPR-Cas systems and components thereof are described elsewhere herein and can be applied to screening a microbiome, such as a gut, skin, vagina, and/or oral microbiome, of a subject.
In some embodiments, the microbe population of a microbiome in a subject can be modified using a CRISPR-Cas system and/or component thereof described herein. In some embodiments, the CRISPR-Cas system and/or component thereof can be used to identify and select one or more cell types in the microbiome and remove them from the microbiome population. Exemplary methods of selecting cells using a CRISPR-Cas system and/or component thereof are described elsewhere herein. In this way the make-up or microorganism profile of the microbiome can be altered. In some embodiments, the alteration causes a change from a diseased microbiome composition to a healthy microbiome composition. In this way the ratio of one type or species of microorganism to another can be modified, such as going from a diseased ratio to a healthy ratio. In some embodiments, the cells selected are pathogenic microorganisms.
In some embodiments, the CRISPR-Cas systems described herein can be used to modify a polynucleotide in a microorganism of a microbiome in a subject. In some embodiments, the microorganism is a pathogenic microorganism. In some embodiments, the microorganism is a commensal and non-pathogenic microorganism. Methods of modifying polynucleotides in a cell in the subject are described elsewhere herein and can be applied to these embodiments.
The CRISPR-Cas systems and components thereof described herein can be used to modify cells for an adoptive cell therapy or other cell therapy.
Aspects of the invention accordingly involve the adoptive transfer of immune system cells, such as T cells, specific for selected antigens, such as tumor associated antigens (see Maus et al., 2014, Adoptive Immunotherapy for Cancer or Viruses, Annual Review of Immunology, Vol. 32: 189-225; Rosenberg and Restifo, 2015, Adoptive cell transfer as personalized immunotherapy for human cancer, Science Vol. 348 no. 6230 pp. 62-68; and, Restifo et al., 2015, Adoptive immunotherapy for cancer: harnessing the T cell response. Nat. Rev. Immunol. 12(4): 269-281; and Jenson and Riddell, 2014, Design and implementation of adoptive therapy with chimeric antigen receptor-modified T cells. Immunol Rev. 257(1): 127-144). Various strategies may for example be employed to genetically modify T cells by altering the specificity of the T cell receptor (TCR) for example by introducing new TCR α and β chains with selected peptide specificity (see U.S. Pat. No. 8,697,854; PCT Patent Publications: WO2003020763, WO2004033685, WO2004044004, WO2005114215, WO2006000830, WO2008038002, WO2008039818, WO2004074322, WO2005113595, WO2006125962, WO2013166321, WO2013039889, WO2014018863, WO2014083173; U.S. Pat. No. 8,088,379).
As an alternative to, or addition to, TCR modifications, chimeric antigen receptors (CARs) may be used in order to generate immunoresponsive cells, such as T cells, specific for selected targets, such as malignant cells, with a wide variety of receptor chimera constructs having been described (see U.S. Pat. Nos. 5,843,728; 5,851,828; 5,912,170; 6,004,811; 6,284,240; 6,392,013; 6,410,014; 6,753,162; 8,211,422; and PCT Publication WO9215322). Alternative CAR constructs may be characterized as belonging to successive generations. First-generation CARs typically consist of a single-chain variable fragment of an antibody specific for an antigen, for example comprising a VL linked to a VH of a specific antibody, linked by a flexible linker, for example by a CD8α hinge domain and a CD8α transmembrane domain, to the transmembrane and intracellular signaling domains of either CD3ζ or FcRγ (scFv-CD3ζ or scFv-FcRγ; see U.S. Pat. Nos. 7,741,465; 5,912,172; 5,906,936). Second-generation CARs incorporate the intracellular domains of one or more costimulatory molecules, such as CD28, OX40 (CD134), or 4-1BB (CD137) within the endodomain (for example scFv-CD28/OX40/4-1BB-CD3ζ; see U.S. Pat. Nos. 8,911,993; 8,916,381; 8,975,071; 9,101,584; 9,102,760; 9,102,761). Third-generation CARs include a combination of costimulatory endodomains, such a CD3ζ-chain, CD97, GDI la-CD18, CD2, ICOS, CD27, CD154, CDS, OX40, 4-1BB, or CD28 signaling domains (for example scFv-CD28-4-1BB-CD3ζ or scFv-CD28-OX40-CD3ζ; see U.S. Pat. Nos. 8,906,682; 8,399,645; 5,686,281; PCT Publication No. WO2014134165; PCT Publication No. WO2012079000). Alternatively, costimulation may be orchestrated by expressing CARs in antigen-specific T cells, chosen so as to be activated and expanded following engagement of their native αβTCR, for example by antigen on professional antigen-presenting cells, with attendant costimulation. In addition, additional engineered receptors may be provided on the immunoresponsive cells, for example to improve targeting of a T-cell attack and/or minimize side effects.
Alternative techniques may be used to transform target immunoresponsive cells, such as protoplast fusion, lipofection, transfection or electroporation. A wide variety of vectors may be used, such as retroviral vectors, lentiviral vectors, adenoviral vectors, adeno-associated viral vectors, plasmids or transposons, such as a Sleeping Beauty transposon (see U.S. Pat. Nos. 6,489,458; 7,148,203; 7,160,682; 7,985,739; 8,227,432), may be used to introduce CARs, for example using 2nd generation antigen-specific CARs signaling through CD3ζ and either CD28 or CD137. Viral vectors may for example include vectors based on HIV, SV40, EBV, HSV or BPV.
Cells that are targeted for transformation may for example include T cells, Natural Killer (NK) cells, cytotoxic T lymphocytes (CTL), regulatory T cells, human embryonic stem cells, tumor-infiltrating lymphocytes (TIL) or a pluripotent stem cell from which lymphoid cells may be differentiated. T cells expressing a desired CAR may for example be selected through co-culture with 7-irradiated activating and propagating cells (AaPC), which co-express the cancer antigen and co-stimulatory molecules. The engineered CAR T-cells may be expanded, for example by co-culture on AaPC in presence of soluble factors, such as IL-2 and IL-21. This expansion may for example be carried out so as to provide memory CAR+ T cells (which may for example be assayed by non-enzymatic digital array and/or multi-panel flow cytometry). In this way, CAR T cells may be provided that have specific cytotoxic activity against antigen-bearing tumors (optionally in conjunction with production of desired chemokines such as interferon-γ). CAR T cells of this kind may for example be used in animal models, for example to threat tumor xenografts.
Approaches such as the foregoing may be adapted to provide methods of treating and/or increasing survival of a subject having a disease, such as a neoplasia, for example by administering an effective amount of an immunoresponsive cell comprising an antigen recognizing receptor that binds a selected antigen, wherein the binding activates the immunoreponsive cell, thereby treating or preventing the disease (such as a neoplasia, a pathogen infection, an autoimmune disorder, or an allogeneic transplant reaction). Dosing in CAR T cell therapies may for example involve administration of from 106 to 109 cells/kg, with or without a course of lymphodepletion, for example with cyclophosphamide.
In one embodiment, the treatment can be administrated into patients undergoing an immunosuppressive treatment. The cells, or population of cells, may be made resistant to at least one immunosuppressive agent due to the inactivation of a gene encoding a receptor for such immunosuppressive agent. Not being bound by a theory, the immunosuppressive treatment should help the selection and expansion of the immunoresponsive or T cells according to the invention within the patient.
The administration of the cells or population of cells according to the present invention may be carried out in any convenient manner, including by aerosol inhalation, injection, ingestion, transfusion, implantation, or transplantation. The cells or population of cells may be administered to a patient subcutaneously, intradermally, intratumorally, intranodally, intramedullary, intramuscularly, by intravenous or intralymphatic injection, or intraperitoneally. In one embodiment, the cell compositions of the present invention are preferably administered by intravenous injection.
The administration of the cells or population of cells can consist of the administration of 104-109 cells per kg body weight, preferably 105 to 106 cells/kg body weight including all integer values of cell numbers within those ranges. Dosing in CAR T cell therapies may for example involve administration of from 106 to 109 cells/kg, with or without a course of lymphodepletion, for example with cyclophosphamide. The cells or population of cells can be administrated in one or more doses. In another embodiment, the effective amount of cells are administrated as a single dose. In another embodiment, the effective amount of cells are administrated as more than one dose over a period time. Timing of administration is within the judgment of managing physician and depends on the clinical condition of the patient. The cells or population of cells may be obtained from any source, such as a blood bank or a donor. While individual needs vary, determination of optimal ranges of effective amounts of a given cell type for a particular disease or conditions are within the skill of one in the art. An effective amount means an amount which provides a therapeutic or prophylactic benefit. The dosage administrated will be dependent upon the age, health and weight of the recipient, kind of concurrent treatment, if any, frequency of treatment and the nature of the effect desired.
In another embodiment, the effective amount of cells or composition comprising those cells are administrated parenterally. The administration can be an intravenous administration. The administration can be directly done by injection within a tumor.
To guard against possible adverse reactions, engineered immunoresponsive cells may be equipped with a transgenic safety switch, in the form of a transgene that renders the cells vulnerable to exposure to a specific signal. For example, the herpes simplex viral thymidine kinase (TK) gene may be used in this way, for example by introduction into allogeneic T lymphocytes used as donor lymphocyte infusions following stem cell transplantation (Greco, et al., Improving the safety of cell therapy with the TK-suicide gene. Front. Pharmacol. 2015; 6: 95). In such cells, administration of a nucleoside prodrug such as ganciclovir or acyclovir causes cell death. Alternative safety switch constructs include inducible caspase 9, for example triggered by administration of a small-molecule dimerizer that brings together two nonfunctional icasp9 molecules to form the active enzyme. A wide variety of alternative approaches to implementing cellular proliferation controls have been described (see U.S. Patent Publication No. 20130071414; PCT Patent Publication WO2011146862; PCT Patent Publication WO2014011987; PCT Patent Publication WO2013040371; Zhou et al. BLOOD, 2014, 123/25:3895-3905; Di Stasi et al., The New England Journal of Medicine 2011; 365:1673-1683; Sadelain M, The New England Journal of Medicine 2011; 365:1735-173; Ramos et al., Stem Cells 28(6):1107-15 (2010)).
In a further refinement of adoptive therapies, genome editing with a CRISPR-Cas system as described herein may be used to tailor immunoresponsive cells to alternative implementations, for example providing edited CAR T cells (see Poirot et al., 2015, Multiplex genome edited T-cell manufacturing platform for “off-the-shelf” adoptive T-cell immunotherapies, Cancer Res 75 (18): 3853). For example, immunoresponsive cells may be edited to delete expression of some or all of the class of HLA type II and/or type I molecules, or to knockout selected genes that may inhibit the desired immune response, such as the PD1 gene.
Cells may be edited using any CRISPR system and method of use thereof as described herein. CRISPR systems may be delivered to an immune cell by any method described herein. In preferred embodiments, cells are edited ex vivo and transferred to a subject in need thereof. Immunoresponsive cells, CAR T cells or any cells used for adoptive cell transfer may be edited. Editing may be performed to eliminate potential alloreactive T-cell receptors (TCR), disrupt the target of a chemotherapeutic agent, block an immune checkpoint, activate a T cell, and/or increase the differentiation and/or proliferation of functionally exhausted or dysfunctional CD8+ T-cells (see PCT Patent Publications: WO2013176915, WO2014059173, WO2014172606, WO2014184744, and WO2014191128). Editing may result in inactivation of a gene.
T cell receptors (TCR) are cell surface receptors that participate in the activation of T cells in response to the presentation of antigen. The TCR is generally made from two chains, α and β, which assemble to form a heterodimer and associates with the CD3-transducing subunits to form the T cell receptor complex present on the cell surface. Each α and β chain of the TCR consists of an immunoglobulin-like N-terminal variable (V) and constant (C) region, a hydrophobic transmembrane domain, and a short cytoplasmic region. As for immunoglobulin molecules, the variable region of the α and β chains are generated by V(D)J recombination, creating a large diversity of antigen specificities within the population of T cells. However, in contrast to immunoglobulins that recognize intact antigen, T cells are activated by processed peptide fragments in association with an MHC molecule, introducing an extra dimension to antigen recognition by T cells, known as MHC restriction. Recognition of MHC disparities between the donor and recipient through the T cell receptor leads to T cell proliferation and the potential development of graft versus host disease (GVHD). The inactivation of TCRα or TCRβ can result in the elimination of the TCR from the surface of T cells preventing recognition of alloantigen and thus GVHD. However, TCR disruption generally results in the elimination of the CD3 signaling component and alters the means of further T cell expansion.
Allogeneic cells are rapidly rejected by the host immune system. It has been demonstrated that, allogeneic leukocytes present in non-irradiated blood products will persist for no more than 5 to 6 days (Boni, Muranski et al. 2008 Blood 1; 112(12):4746-54). Thus, to prevent rejection of allogeneic cells, the host's immune system usually has to be suppressed to some extent. However, in the case of adoptive cell transfer the use of immunosuppressive drugs also have a detrimental effect on the introduced therapeutic T cells. Therefore, to effectively use an adoptive immunotherapy approach in these conditions, the introduced cells would need to be resistant to the immunosuppressive treatment. Thus, in a particular embodiment, the present invention further comprises a step of modifying T cells to make them resistant to an immunosuppressive agent, preferably by inactivating at least one gene encoding a target for an immunosuppressive agent. An immunosuppressive agent is an agent that suppresses immune function by one of several mechanisms of action. An immunosuppressive agent can be, but is not limited to a calcineurin inhibitor, a target of rapamycin, an interleukin-2 receptor α-chain blocker, an inhibitor of inosine monophosphate dehydrogenase, an inhibitor of dihydrofolic acid reductase, a corticosteroid or an immunosuppressive antimetabolite. The present invention allows conferring immunosuppressive resistance to T cells for immunotherapy by inactivating the target of the immunosuppressive agent in T cells. As non-limiting examples, targets for an immunosuppressive agent can be a receptor for an immunosuppressive agent such as: CD52, glucocorticoid receptor (GR), a FKBP family gene member and a cyclophilin family gene member.
Immune checkpoints are inhibitory pathways that slow down or stop immune reactions and prevent excessive tissue damage from uncontrolled activity of immune cells. In certain embodiments, the immune checkpoint targeted is the programmed death-1 (PD-1 or CD279) gene (PDCD1). In other embodiments, the immune checkpoint targeted is cytotoxic T-lymphocyte-associated antigen (CTLA-4). In additional embodiments, the immune checkpoint targeted is another member of the CD28 and CTLA4 Ig superfamily such as BTLA, LAG3, ICOS, PDL1 or KIR. In further additional embodiments, the immune checkpoint targeted is a member of the TNFR superfamily such as CD40, OX40, CD137, GITR, CD27 or TIM-3.
Additional immune checkpoints include Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1) (Watson H A, et al., SHP-1: the next checkpoint target for cancer immunotherapy? Biochem Soc Trans. 2016 Apr. 15; 44(2):356-62). SHP-1 is a widely expressed inhibitory protein tyrosine phosphatase (PTP). In T-cells, it is a negative regulator of antigen-dependent activation and proliferation. It is a cytosolic protein, and therefore not amenable to antibody-mediated therapies, but its role in activation and proliferation makes it an attractive target for genetic manipulation in adoptive transfer strategies, such as chimeric antigen receptor (CAR) T cells. Immune checkpoints may also include T cell immunoreceptor with Ig and ITIM domains (TIGIT/Vstm3/WUCAM/VSIG9) and VISTA (Le Mercier I, et al., (2015) Beyond CTLA-4 and PD-1, the generation Z of negative checkpoint regulators. Front. Immunol. 6:418).
WO2014172606 relates to the use of MT1 and/or MT1 inhibitors to increase proliferation and/or activity of exhausted CD8+ T-cells and to decrease CD8+ T-cell exhaustion (e.g., decrease functionally exhausted or unresponsive CD8+ immune cells). In certain embodiments, metallothioneins are targeted by gene editing in adoptively transferred T cells.
In certain embodiments, targets of gene editing may be at least one targeted locus involved in the expression of an immune checkpoint protein. Such targets may include, but are not limited to CTLA4, PPP2CA, PPP2CB, PTPN6, PTPN22, PDCD1, ICOS (CD278), PDL1, KIR, LAG3, HAVCR2, BTLA, CD160, TIGIT, CD96, CRTAM, LAIR1, SIGLEC7, SIGLEC9, CD244 (2B4), TNFRSF10B, TNFRSF10A, CASP8, CASP10, CASP3, CASP6, CASP7, FADD, FAS, TGFBRII, TGFRBRI, SMAD2, SMAD3, SMAD4, SMAD10, SKI, SKIL, TGIF1, IL10RA, IL10RB, HMOX2, IL6R, IL6ST, EIF2AK4, CSK, PAG1, SIT1, FOXP3, PRDM1, BATF, VISTA, GUCY1A2, GUCY1A3, GUCY1B2, GUCY1B3, MT1, MT2, CD40, OX40, CD137, GITR, CD27, SHP-1 or TIM-3. In preferred embodiments, the gene locus involved in the expression of PD-1 or CTLA-4 genes is targeted. In other preferred embodiments, combinations of genes are targeted, such as but not limited to PD-1 and TIGIT.
In other embodiments, at least two genes are edited. Pairs of genes may include, but are not limited to PD1 and TCRα, PD1 and TCRβ, CTLA-4 and TCRα, CTLA-4 and TCRβ, LAG3 and TCRα, LAG3 and TCRβ, Tim3 and TCRα, Tim3 and TCRβ, BTLA and TCRα, BTLA and TCRβ, BY55 and TCRα, BY55 and TCRβ, TIGIT and TCRα, TIGIT and TCRβ, B7H5 and TCRα, B7H5 and TCRβ, LAIR1 and TCRα, LAIR1 and TCRβ, SIGLEC10 and TCRα, SIGLEC10 and TCRβ, 2B4 and TCRα, 2B4 and TCRβ.
Whether prior to or after genetic modification of the T cells, the T cells can be activated and expanded generally using methods as described, for example, in U.S. Pat. Nos. 6,352,694; 6,534,055; 6,905,680; 5,858,358; 6,887,466; 6,905,681; 7,144,575; 7,232,566; 7,175,843; 5,883,223; 6,905,874; 6,797,514; 6,867,041; and 7,572,631. T cells can be expanded in vitro or in vivo.
The practice of the present invention employs, unless otherwise indicated, conventional techniques of immunology, biochemistry, chemistry, molecular biology, microbiology, cell biology, genomics and recombinant DNA, which are within the skill of the art. See MOLECULAR CLONING: A LABORATORY MANUAL, 2nd edition (1989) (Sambrook, Fritsch and Maniatis); MOLECULAR CLONING: A LABORATORY MANUAL, 4th edition (2012) (Green and Sambrook); CURRENT PROTOCOLS IN MOLECULAR BIOLOGY (1987) (F. M. Ausubel, et al. eds.); the series METHODS IN ENZYMOLOGY (Academic Press, Inc.); PCR 2: A PRACTICAL APPROACH (1995) (M. J.
MacPherson, B. D. Hames and G. R. Taylor eds.); ANTIBODIES, A LABORATORY MANUAL (1988) (Harlow and Lane, eds.); ANTIBODIES A LABORATORY MANUAL, 2nd edition (2013) (E. A. Greenfield ed.); and ANIMAL CELL CULTURE (1987) (R. I. Freshney, ed.).
The practice of the present invention employs, unless otherwise indicated, conventional techniques for generation of genetically modified mice. See Marten H. Hofker and Jan van Deursen, TRANSGENIC MOUSE METHODS AND PROTOCOLS, 2nd edition (2011).
In some embodiments, the invention described herein relates to a method for adoptive immunotherapy, in which T cells are edited ex vivo by CRISPR to modulate at least one gene and subsequently administered to a patient in need thereof. In some embodiments, the CRISPR editing comprising knocking-out or knocking-down the expression of a target gene in the edited T cells. In some embodiments, in addition to modulating the target gene, the T cells are also edited ex vivo by CRISPR to (1) knock-in an exogenous gene encoding a chimeric antigen receptor (CAR) or a T-cell receptor (TCR), (2) knock-out or knock-down expression of an immune checkpoint receptor, (3) knock-out or knock-down expression of an endogenous TCR, (4) knock-out or knock-down expression of a human leukocyte antigen class I (HLA-I) proteins, and/or (5) knock-out or knock-down expression of an endogenous gene encoding an antigen targeted by an exogenous CAR or TCR.
In some embodiments, the T cells are contacted ex vivo with an adeno-associated virus (AAV) vector encoding a CRISPR effector protein, and a guide molecule comprising a guide sequence hybridizable to a target sequence, a tracr mate sequence, and a tracr sequence hybridizable to the tracr mate sequence. In some embodiments, the T cells are contacted ex vivo (e.g., by electroporation) with a ribonucleoprotein (RNP) comprising a CRISPR effector protein complexed with a guide molecule, wherein the guide molecule comprising a guide sequence hybridizable to a target sequence, a tracr mate sequence, and a tracr sequence hybridizable to the tracr mate sequence. See Rupp et al., Scientific Reports 7:737 (2017); Liu et al., Cell Research 27:154-157 (2017). In some embodiments, the T cells are contacted ex vivo (e.g., by electroporation) with an mRNA encoding a CRISPR effector protein, and a guide molecule comprising a guide sequence hybridizable to a target sequence, a tracr mate sequence, and a tracr sequence hybridizable to the tracr mate sequence. See Eyquem et al., Nature 543:113-117 (2017). In some embodiments, the T cells are not contacted ex vivo with a lentivirus or retrovirus vector.
In some embodiments, the method comprises editing T cells ex vivo by CRISPR to knock-in an exogenous gene encoding a CAR, thereby allowing the edited T cells to recognize cancer cells based on the expression of specific proteins located on the cell surface. In some embodiments, T cells are edited ex vivo by CRISPR to knock-in an exogenous gene encoding a TCR, thereby allowing the edited T cells to recognize proteins derived from either the surface or inside of the cancer cells. In some embodiments, the method comprising providing an exogenous CAR-encoding or TCR-encoding sequence as a donor sequence, which can be integrated by homology-directed repair (HDR) into a genomic locus targeted by a CRISPR guide sequence. In some embodiments, targeting the exogenous CAR or TCR to an endogenous TCR α constant (TRAC) locus can reduce tonic CAR signaling and facilitate effective internalization and re-expression of the CAR following single or repeated exposure to antigen, thereby delaying effector T-cell differentiation and exhaustion. See Eyquem et al., Nature 543:113-117 (2017).
In some embodiments, the method comprises editing T cells ex vivo by CRISPR to block one or more immune checkpoint receptors to reduce immunosuppression by cancer cells. In some embodiments, T cells are edited ex vivo by CRISPR to knock-out or knock-down an endogenous gene involved in the programmed death-1 (PD-1) signaling pathway, such as PD-1 and PD-L1. In some embodiments, T cells are edited ex vivo by CRISPR to mutate the Pdcd1 locus or the CD274 locus. In some embodiments, T cells are edited ex vivo by CRISPR using one or more guide sequences targeting the first exon of PD-1. See Rupp et al., Scientific Reports 7:737 (2017); Liu et al., Cell Research 27:154-157 (2017).
In some embodiments, the method comprises editing T cells ex vivo by CRISPR to eliminate potential alloreactive TCRs to allow allogeneic adoptive transfer. In some embodiments, T cells are edited ex vivo by CRISPR to knock-out or knock-down an endogenous gene encoding a TCR (e.g., an αβ TCR) to avoid graft-versus-host-disease (GVHD). In some embodiments, T cells are edited ex vivo by CRISPR to mutate the TRAC locus. In some embodiments, T cells are edited ex vivo by CRISPR using one or more guide sequences targeting the first exon of TRAC. See Liu et al., Cell Research 27:154-157 (2017). In some embodiments, the method comprises use of CRISPR to knock-in an exogenous gene encoding a CAR or a TCR into the TRAC locus, while simultaneously knocking-out the endogenous TCR (e.g., with a donor sequence encoding a self-cleaving P2A peptide following the CAR cDNA). See Eyquem et al., Nature 543:113-117 (2017). In some embodiments, the exogenous gene comprises a promoter-less CAR-encoding or TCR-encoding sequence which is inserted operably downstream of an endogenous TCR promoter.
In some embodiments, the method comprises editing T cells ex vivo by CRISPR to knock-out or knock-down an endogenous gene encoding an HLA-I protein to minimize immunogenicity of the edited T cells. In some embodiments, T cells are edited ex vivo by CRISPR to mutate the beta-2 microglobulin (B2M) locus. In some embodiments, T cells are edited ex vivo by CRISPR using one or more guide sequences targeting the first exon of B2M. See Liu et al., Cell Research 27:154-157 (2017). In some embodiments, the method comprises use of CRISPR to knock-in an exogenous gene encoding a CAR or a TCR into the B2M locus, while simultaneously knocking-out the endogenous B2M (e.g., with a donor sequence encoding a self-cleaving P2A peptide following the CAR cDNA). See Eyquem et al., Nature 543:113-117 (2017). In some embodiments, the exogenous gene comprises a promoter-less CAR-encoding or TCR-encoding sequence which is inserted operably downstream of an endogenous B2M promoter.
In some embodiments, the method comprises editing T cells ex vivo by CRISPR to knock-out or knock-down an endogenous gene encoding an antigen targeted by an exogenous CAR or TCR. In some embodiments, the T cells are edited ex vivo by CRISPR to knock-out or knock-down the expression of a tumor antigen selected from human telomerase reverse transcriptase (hTERT), survivin, mouse double minute 2 homolog (MDM2), cytochrome P450 1B 1 (CYP1B), HER2/neu, Wilms' tumor gene 1 (WT1), livin, alphafetoprotein (AFP), carcinoembryonic antigen (CEA), mucin 16 (MUC16), MUC1, prostate-specific membrane antigen (PSMA), p53 or cyclin (DI) (see WO2016/011210). In some embodiments, the T cells are edited ex vivo by CRISPR to knock-out or knock-down the expression of an antigen selected from B cell maturation antigen (BCMA), transmembrane activator and CAML Interactor (TACI), or B-cell activating factor receptor (BAFF-R), CD38, CD138, CS-1, CD33, CD26, CD30, CD53, CD92, CD100, CD148, CD150, CD200, CD261, CD262, or CD362 (see WO2017/011804).
In some embodiments, the disease, disorder, and/or condition or symptom thereof can be treated or prevented using an RNA editing system described herein. In some embodiments, the CRISPR-Cas system described herein is an RNA editing system. In some embodiments, treatment or prevention using a CRISPR-Cas RNA editing system described herein can have the advantage of less immunogenicity than a DNA editing CRISPR-Cas system and is not as hindered by limitations on viral vector packaging size. Further, as the effect is transient, the effect can be better controlled over time and can potentially be reversible. Thus, they pose less risk of causing permeant detrimental effects than DNA editing-based preventatives and treatments.
In some of these embodiments, the CRISPR-Cas system contains an ADAR enzyme or effector domain thereof. Such systems are described elsewhere herein. In some embodiments, the CIRSPR-Cas system includes a Cas13 or Cas13d effector.
Any disease involving a dysfunctional RNA molecule, where the dysfunction is the result of a mutation in the RNA sequence can be treated or prevented by modifying its sequence using a CRISPR-Cas system capable of RNA modification described elsewhere herein. In some embodiments, the disease that can be treated or prevented using a CRISPR-Cas system capable of RNA modification can be one or more of those listed in Tables A-B, one or more of those set forth in any of a disease identified as being caused or attributed to a mtDNA mutation set forth at mitomap.org, or a combination thereof. In some embodiments, the coding sequence for the gene involved in the disease is greater than the packaging capacity of a viral vector system, particularly an AAV vector system.
The potential for RNA editing has now been demonstrated in vitro and in vivo for pathogenic mutations in genes related to cystic fibrosis, Duchenne's muscular dystrophy, Hurler's syndrome, and Ornithine transcarbamylase (OTC) deficiency, among others. See e.g. Katrekar et al. Nat. Methods. 2019. 16:239-242; Montieel-Gonzalez et al. 2013. PNAS USA. 110: 18285-18290; Sinnamon et al. PNAS USA 2017; Wettengel et al. Curr. Gene Ther. 2018, 18:31-39; Qu et al. BioRxiv. 2019, 605972; and Fry et al. 2020. Int. J. Mol. Sci. 12:777, which are incorporated by reference as if expressed in their entirety here and the teachings of which can be adapted in view of the description herein to the CRISPR-Cas Systems described herein.
In some embodiments, the disease is an inherited retinal degeneration disease. In some embodiments, gene whose transcript can be modified using a CRISPR-Cas system described herein capable of RNA modification that is associated with inherited retinal degeneration and whose coding sequence is too large for packaging in a single AAV can be ABC4, USH2A, CEP290, MYO7A, EYS, and CDH23.
In an aspect, the invention provides a method of modeling a disease associated with a genomic locus in a eukaryotic organism or a non-human organism comprising manipulation of a target sequence within a coding, non-coding or regulatory element of said genomic locus comprising delivering a non-naturally occurring or engineered composition comprising a viral vector system comprising one or more viral vectors operably encoding a composition for expression thereof, wherein the composition comprises particle delivery system or the delivery system or the virus particle of any one of the above embodiments or the cell of any one of the above embodiment.
In one aspect, the invention provides a method of generating a model eukaryotic cell that can include one or more a mutated disease genes and/or infectious microorganisms. In some embodiments, a disease gene is any gene associated an increase in the risk of having or developing a disease. In some embodiments, the method includes (a) introducing one or more vectors into a eukaryotic cell, wherein the one or more vectors comprise a CRISPR-Cas system and/or component thereof and/or a CRISPR-Cas vector or vector system that is capable of driving expression of a CRISPR-Cas system and/or component thereof including, but not limited to: a guide sequence optionally linked to a tracr mate sequence, a tracr sequence, one or more Cas effectors, and combinations thereof and (b) allowing a CRISPR-Cas complex to bind to one or more target polynucleotides, e.g., to effect cleavage, nicking, or other modification of the target polynucleotide within said disease gene, wherein the CRISPR-Cas complex is composed of one or more CRISPR-Cas effectors complexed with (1) one or more guide sequences that is/are hybridized to the target sequence(s) within the target polynucleotide(s), and optionally (2) the tracr mate sequence(s) that is/are hybridized to the tracr sequence(s), thereby generating a model eukaryotic cell comprising one or more mutated disease gene(s). Thus, in some embodiments the CRISPR-Cas system contains nucleic acid molecules for and drives expression of one or more of: a Cas effector, a guide sequence linked to a tracr mate sequence, and a tracr sequence and/or a Homologous Recombination template and/or a stabilizing ligand if the Cas effector has a destabilization domain. In some embodiments, said cleavage comprises cleaving one or two strands at the location of the target sequence by the Cas effector(s). In some embodiments, nicking comprises nicking one or two strands at the location of the target sequence by the Cas effector(s). In some embodiments, said cleavage or nicking results in modified transcription of a target polynucleotide. In some embodiments, modification results in decreased transcription of the target polynucleotide. In some embodiments, the method further comprises repairing said cleaved or nicked target polynucleotide by homologous recombination with an exogenous template polynucleotide, wherein said repair results in a mutation comprising an insertion, deletion, or substitution of one or more nucleotides of said target polynucleotide. In some embodiments, said mutation results in one or more amino acid changes in a protein expression from a gene comprising the target sequence.
The disease modeled can be any disease with a genetic or epigenetic component. In some embodiments, the disease modeled can be any as discussed elsewhere herein, including but not limited to any as set forth in Tables A and B herein or any as set forth in any one or more of a disease identified as being caused or attributed to a mtDNA mutation set forth at mitomap.org.
The CRISPR-Cas systems and/or components thereof can be used for diagnostic methods of detection such as in CASFISH (see e.g., Deng et al. 2015. PNAS USA 112(38): 11870-11875), CRISPR-Live FISH (see e.g., Wang et al. 2020. Science; 365(6459):1301-1305), sm-FISH (Lee and Jefcoate. 2017. Front. Endocrinol. doi.org/10.3389/fendo.2017.00289), sequential FISH CRISPRainbow (Ma et al. Nat Biotechnol, 34 (2016), pp. 528-530), CRISPR-Sirius (Nat Methods, 15 (2018), pp. 928-931), Casilio (Cheng et al. Cell Res, 26 (2016), pp. 254-257), Halo-Tag based genomic loci visualization techniques (e.g., Deng et al. 2015. PNAS USA 112(38): 11870-11875; Knight et al., Science, 350 (2015), pp. 823-826), RNA-aptamer based methods (e.g., Ma et al., J Cell Biol, 214 (2016), pp. 529-537), molecular beacon-based methods (e.g., Zhao et al. Biomaterials, 100 (2016), pp. 172-183; Wu et al. Nucleic Acids Res (2018)), Quantum Dot-based systems (e.g. Ma et al. Anal Chem, 89 (2017), pp. 12896-12901), multiplexed methods (e.g., Ma et al., Proc Natl Acad Sci USA, 112 (2015), pp. 3002-3007; Fu et al. Nat Commun, 7 (2016), p. 11707; Ma et al. Nat Biotechnol, 34 (2016), pp. 528-530; Shao et al. Nucleic Acids Res, 44 (2016), Article e86); Wang et al. Sci Rep, 6 (2016), p. 26857), and other in situ CRISPR-hybridization based methods (e.g. Chen et al. Cell, 155 (2013), pp. 1479-1491; Gu et al. Science, 359 (2018), pp. 1050-1055; Tanebaum et al. Cell, 159 (2014), pp. 635-646; Ye et al. Protein Cell, 8 (2017), pp. 853-855; Chen et al. Nat Commun, 9 (2018), p. 5065; Shao et al. ACS Synth Biol (2017); Fu et al. Nat Commun, 7 (2016), p. 11707; Shao et al. Nucleic Acids Res, 44 (2016), Article e86; Wang et al., Sci Rep, 6 (2016), p. 26857), all of which are incorporated by reference herein as if expressed in their entirety and whose teachings can be adapted to the CRISPR-Cas systems and components thereof described herein in view of the description herein.
In some embodiments, the CRISPR-Cas system or component thereof can be used in a detection method, such as an in situ detection method described herein. In some embodiments, the CRISPR-Cas system or component thereof can include a catalytically inactivate Cas effector described herein, preferably an inactivated Cas9 (dCas9) and/or inactivated Cas12 (dCas12) protein(s) and use this system in detection methods such as fluorescence in situ hybridization (FISH) or any other described herein. In some embodiments, the inactivated Cas effector, which lacks the ability to produce DNA double-strand breaks may be fused with a marker, such as fluorescent protein, such as the enhanced green fluorescent protein (eEGFP) and co-expressed with small guide RNAs to target pericentric, centric and telomeric repeats in vivo. The dCas effector or system thereof can be used to visualize both repetitive sequences and individual genes in the human genome. Such new applications of labelled dCas effector and CRISPR-Cas systems thereof can be important in imaging cells and studying the functional nuclear architecture, especially in cases with a small nucleus volume or complex 3-D structures.
In some embodiments, the CRISPR-Cas systems and/or components thereof described herein can be used in a method to screen and/or select cells. In some embodiments, CRISPR-Cas system-based screening/selection method can be used to identify diseased cells in a cell population. In some embodiments, the heterologous sequence expressed via a CRISPR-Cas system of the present invention is a reporter sequence that, when expressed, produced a signal that can be sensed. For example, the reporter can be an optically active reporter that produces a visible, UV, IR, or near IR signal that can be detected using conventional detections methods, techniques, and devices. Cells can be identified and selected based on reporter expression. In some embodiments, selection of the cells results in a modification in the cells such that the selected cells die. In this way, diseased cells can be identified, and removed from the healthy cell population. In some embodiments, the diseased cells can be a cancer cell, pre-cancerous cell, a virus or other pathogenic organism infected cells, or otherwise abnormal cell. In some embodiments, the modification can impart another detectable change in the cells to be selected (e.g., a functional change and/or genomic barcode) that facilitates selection of the desired cells. In some embodiments a negative selection scheme can be used to obtain a desired cell population. In these embodiments, the cells to be selected against are modified, thus can be removed from the cell population based on their death or identification or sorting based the detectable change imparted on the cells. Thus, in these embodiments, the remaining cells after selection are the desired cell population.
In some embodiments, a method of selecting one or more cell(s) containing a polynucleotide modification can include: introducing one or more CRISPR-Cas system(s) and/or components thereof, and/or CRISPR-Cas vectors or vector systems into the cell(s), wherein the CRISPR-Cas system(s) and/or components thereof, and/or CRISPR-Cas vectors or vector systems contains and/or is capable of expressing one or more of: a Cas effector, a guide sequence optionally linked to a tracr mate sequence, a tracr sequence, and an editing template; wherein, for example that which is being expressed is within and expressed in vivo by the CRISPR-Cas system vector or vector system and/or the editing template comprises the one or more mutations that abolish Cas effector cleavage; allowing homologous recombination of the editing template with the target polynucleotide in the cell(s) to be selected; allowing a CRISPR complex to bind to a target polynucleotide to effect cleavage of the target polynucleotide within said gene, wherein the AAV-CRISPR complex comprises the Cas effector complexed with (1) the guide sequence that is hybridized to the target sequence within the target polynucleotide, and (2) the tracr mate sequence that is hybridized to the tracr sequence, wherein binding of the CRISPR complex to the target polynucleotide induces cell death or imparts some other detectable change to the cell, thereby allowing one or more cell(s) in which one or more mutations have been introduced to be selected. In a preferred embodiment, the Cas effector is a Cas 9 or Cas12. In some embodiments, the cell to be selected may be a eukaryotic cell. In some embodiments, the cell to be selected may be a prokaryotic cell. Selection of specific cells via the methods herein can be performed without requiring a selection marker or a two-step process that may include a counter-selection system.
The CRISPR-Cas systems and components thereof described herein can be used to develop CRISPR-Cas-based and non-CRISPR-Cas-based biologically active agents, such as small molecule therapeutics. As used herein, “active agent” or “active ingredient” refers to a substance, compound, or molecule, which is biologically active or otherwise, induces a biological or physiological effect on a subject to which it is administered to. In other words, “active agent” or “active ingredient” refers to a component or components of a composition to which the whole or part of the effect of the composition is attributed. As used herein, “agent” refers to any substance, compound, molecule, and the like, which can be biologically active or otherwise can induce a biological and/or physiological effect on a subject to which it is administered to. An agent can be a primary active agent, or in other words, the component(s) of a composition to which the whole or part of the effect of the composition is attributed. An agent can be a secondary agent, or in other words, the component(s) of a composition to which an additional part and/or other effect of the composition is attributed. Thus, described herein are methods for developing a biologically active agent that modulates a cell function and/or signaling event associated with a disease and/or disease gene. In some embodiments, the method comprises (a) contacting a test compound with a diseased cell and/or a cell containing a disease gene cell; and (b) detecting a change in a readout that is indicative of a reduction or an augmentation of a cell signaling event or other cell functionality associated with said disease or disease gene, thereby developing said biologically active agent that modulates said cell signaling event or other functionality associated with said disease gene. In some embodiments, the diseased cell is a model cell described elsewhere herein. In some embodiments, the diseased cell is a diseased cell isolated from a subject in need of treatment. In some embodiments, the test compound is a small molecule agent. In some embodiments, test compound is a small molecule agent. In some embodiments, the test compound is a biologic molecule agent.
In some embodiments, the method involves developing a therapeutic based on the CRISPR-Cas system described herein. In particular embodiments, the therapeutic comprises a Cas effector and/or a guide RNA capable of hybridizing to a target sequence of interest. In particular embodiments, the therapeutic is a CRISPR-Cas vector or vector system that can contain a) a first regulatory element operably linked to a nucleotide sequence encoding the Cas effector protein(s); and b) a second regulatory element operably linked to one or more nucleotide sequences encoding one or more nucleic acid molecules comprising a guide RNA comprising a guide sequence, a direct repeat sequence; wherein components (a) and (b) are located on same or different vectors. In particular embodiments, the biologically active agent is a composition comprising a delivery system operably configured to deliver CRISPR-Cas system or components thereof, and/or or one or more polynucleotide sequences, vectors, or vector systems containing or encoding said components into a cell and capable of forming a CRISPR-Cas complex, and wherein said CRISPR-Cas complex is operable in the cell. In some embodiments, the CRISPR-Cas complex can include the Cas effector protein(s) as described herein, guide RNA comprising the guide sequence, and a direct repeat sequence. In any such compositions, the delivery system can be a yeast system, a lipofection system, a microinjection system, a biolistic system, virosomes, liposomes, immunoliposomes, polycations, lipid:nucleic acid conjugates or artificial virions, or any other system as described herein. In particular embodiments, the delivery is via a particle, a nanoparticle, a lipid or a cell penetrating peptide (CPP).
Also described herein are methods for developing or designing a CRISPR-Cas system, optionally a CRISPR-Cas system based therapy or therapeutic, comprising (a) selecting for a (therapeutic) locus of interest gRNA target sites, wherein said target sites have minimal sequence variation across a population, and from said selected target sites subselecting target sites, wherein a gRNA directed against said target sites recognizes a minimal number of off-target sites across said population, or (b) selecting for a (therapeutic) locus of interest gRNA target sites, wherein said target sites have minimal sequence variation across a population, or selecting for a (therapeutic) locus of interest gRNA target sites, wherein a gRNA directed against said target sites recognizes a minimal number of off-target sites across said population, and optionally estimating the number of (sub)selected target sites needed to treat or otherwise modulate or manipulate a population, and optionally validating one or more of the (sub)selected target sites for an individual subject, optionally designing one or more gRNA recognizing one or more of said (sub)selected target sites.
In some embodiments, the method for developing or designing a gRNA for use in a CRISPR-Cas system, optionally a CRISPR-Cas system based therapy or therapeutic, can include (a) selecting for a (therapeutic) locus of interest gRNA target sites, wherein said target sites have minimal sequence variation across a population, and from said selected target sites subselecting target sites, wherein a gRNA directed against said target sites recognizes a minimal number of off-target sites across said population, or (b) selecting for a (therapeutic) locus of interest gRNA target sites, wherein said target sites have minimal sequence variation across a population, or selecting for a (therapeutic) locus of interest gRNA target sites, wherein a gRNA directed against said target sites recognizes a minimal number of off-target sites across said population, and optionally estimating the number of (sub)selected target sites needed to treat or otherwise modulate or manipulate a population, optionally validating one or more of the (sub)selected target sites for an individual subject, optionally designing one or more gRNA recognizing one or more of said (sub)selected target sites.
In some embodiments, the method for developing or designing a CRISPR-Cas system, optionally a CRISPR-Cas system based therapy or therapeutic in a population, can include (a) selecting for a (therapeutic) locus of interest gRNA target sites, wherein said target sites have minimal sequence variation across a population, and from said selected target sites subselecting target sites, wherein a gRNA directed against said target sites recognizes a minimal number of off-target sites across said population, or (b) selecting for a (therapeutic) locus of interest gRNA target sites, wherein said target sites have minimal sequence variation across a population, or selecting for a (therapeutic) locus of interest gRNA target sites, wherein a gRNA directed against said target sites recognizes a minimal number of off-target sites across said population, and optionally estimating the number of (sub)selected target sites needed to treat or otherwise modulate or manipulate a population, optionally validating one or more of the (sub)selected target sites for an individual subject, optionally designing one or more gRNA recognizing one or more of said (sub)selected target sites.
In some embodiments the method for developing or designing a gRNA for use in a CRISPR-Cas system, optionally a CRISPR-Cas system based therapy or therapeutic in a population, can include (a) selecting for a (therapeutic) locus of interest gRNA target sites, wherein said target sites have minimal sequence variation across a population, and from said selected target sites subselecting target sites, wherein a gRNA directed against said target sites recognizes a minimal number of off-target sites across said population, or (b) selecting for a (therapeutic) locus of interest gRNA target sites, wherein said target sites have minimal sequence variation across a population, or selecting for a (therapeutic) locus of interest gRNA target sites, wherein a gRNA directed against said target sites recognizes a minimal number of off-target sites across said population, and optionally estimating the number of (sub)selected target sites needed to treat or otherwise modulate or manipulate a population, optionally validating one or more of the (sub)selected target sites for an individual subject, optionally designing one or more gRNA recognizing one or more of said (sub)selected target sites.
In some embodiments, the method for developing or designing a CRISPR-Cas system, such as a CRISPR-Cas system based therapy or therapeutic, optionally in a population; or for developing or designing a gRNA for use in a CRISPR-Cas system, optionally a CRISPR-Cas system based therapy or therapeutic, optionally in a population, can include: selecting a set of target sequences for one or more loci in a target population, wherein the target sequences do not contain variants occurring above a threshold allele frequency in the target population (i.e. platinum target sequences); removing from said selected (platinum) target sequences any target sequences having high frequency off-target candidates (relative to other (platinum) targets in the set) to define a final target sequence set; preparing one or more, such as a set of CRISPR-Cas systems based on the final target sequence set, optionally wherein a number of CRISP-Cas systems prepared is based (at least in part) on the size of a target population.
In certain embodiments, off-target candidates/off-targets, PAM restrictiveness, target cleavage efficiency, or effector protein specificity is identified or determined using a sequencing-based double-strand break (DSB) detection assay, such as described herein elsewhere. In certain embodiments, off-target candidates/off-targets are identified or determined using a sequencing-based double-strand break (DSB) detection assay, such as described herein elsewhere. In certain embodiments, off-targets, or off target candidates have at least 1, preferably 1-3, mismatches or (distal) PAM mismatches, such as 1 or more, such as 1, 2, 3, or more (distal) PAM mismatches. In certain embodiments, sequencing-based DSB detection assay comprises labeling a site of a DSB with an adapter comprising a primer binding site, labeling a site of a DSB with a barcode or unique molecular identifier, or combination thereof, as described herein elsewhere.
It will be understood that the guide sequence of the gRNA is 100% complementary to the target site, i.e., does not comprise any mismatch with the target site. It will be further understood that “recognition” of an (off-)target site by a gRNA presupposes CRISPR-Cas system functionality, i.e., an (off-)target site is only recognized by a gRNA if binding of the gRNA to the (off-)target site leads to CRISPR-Cas system activity (such as induction of single or double strand DNA cleavage, transcriptional modulation, etc.).
In certain embodiments, the target sites having minimal sequence variation across a population are characterized by absence of sequence variation in at least 99%, preferably at least 99.9%, more preferably at least 99.99% of the population. In certain embodiments, optimizing target location comprises selecting target sequences or loci having an absence of sequence variation in at least 99%, %, preferably at least 99.9%, more preferably at least 99.99% of a population. These targets are referred to herein elsewhere also as “platinum targets”. In certain embodiments, said population comprises at least 1000 individuals, such as at least 5000 individuals, such as at least 10000 individuals, such as at least 50000 individuals.
In certain embodiments, the off-target sites are characterized by at least one mismatch between the off-target site and the gRNA. In certain embodiments, the off-target sites are characterized by at most five, preferably at most four, more preferably at most three mismatches between the off-target site and the gRNA. In certain embodiments, the off-target sites are characterized by at least one mismatch between the off-target site and the gRNA and by at most five, preferably at most four, more preferably at most three mismatches between the off-target site and the gRNA.
In certain embodiments, said minimal number of off-target sites across said population is determined for high-frequency haplotypes in said population. In certain embodiments, said minimal number of off-target sites across said population is determined for high-frequency haplotypes of the off-target site locus in said population. In certain embodiments, said minimal number of off-target sites across said population is determined for high-frequency haplotypes of the target site locus in said population. In certain embodiments, the high-frequency haplotypes are characterized by occurrence in at least 0.1% of the population.
In certain embodiments, the number of (sub)selected target sites needed to treat a population is estimated based on based low frequency sequence variation, such as low frequency sequence variation captured in large scale sequencing datasets. In certain embodiments, the number of (sub)selected target sites needed to treat a population of a given size is estimated.
In certain embodiments, the method further comprises obtaining genome sequencing data of a subject to be treated; and treating the subject with a CRISPR-Cas system selected from the set of CRISPR-Cas systems, wherein the CRISPR-Cas system selected is based (at least in part) on the genome sequencing data of the individual. In certain embodiments, the ((sub)selected) target is validated by genome sequencing, preferably whole genome sequencing.
In certain embodiments, target sequences or loci as described herein are (further) selected based on optimization of one or more parameters, such as PAM type (natural or modified), PAM nucleotide content, PAM length, target sequence length, PAM restrictiveness, target cleavage efficiency, and target sequence position within a gene, a locus or other genomic region. Methods of optimization are discussed in greater detail elsewhere herein.
In certain embodiments, target sequences or loci as described herein are (further) selected based on optimization of one or more of target loci location, target length, target specificity, and PAM characteristics. As used herein, PAM characteristics may comprise for instance PAM sequence, PAM length, and/or PAM GC contents. In certain embodiments, optimizing PAM characteristics comprises optimizing nucleotide content of a PAM. In certain embodiments, optimizing nucleotide content of PAM is selecting a PAM with a motif that maximizes abundance in the one or more target loci, minimizes mutation frequency, or both. Minimizing mutation frequency can for instance be achieved by selecting PAM sequences devoid of or having low or minimal CpG.
In certain embodiments, the effector protein for each CRISPR-Cas system in the set of CRISPR-Cas systems is selected based on optimization of one or more parameters selected from the group consisting of; effector protein size, ability of effector protein to access regions of high chromatin accessibility, degree of uniform enzyme activity across genomic targets, epigenetic tolerance, mismatch/budge tolerance, effector protein specificity, effector protein stability or half-life, effector protein immunogenicity or toxicity. Methods of optimization are discussed in greater detail elsewhere herein.
In some embodiments, the CRISPR-Cas systems described herein can be used to provide RNA-guided gene drives, for example in systems analogous to gene drives described in PCT Patent Publication WO 2015/105928. Systems of this kind may for example provide methods for altering eukaryotic germline cells, by introducing into the germline cell a nucleic acid sequence encoding an RNA-guided DNA nuclease and one or more guide RNAs. The guide RNAs may be designed to be complementary to one or more target locations on genomic DNA of the germline cell. The nucleic acid sequence encoding the RNA guided DNA nuclease and the nucleic acid sequence encoding the guide RNAs may be provided on constructs between flanking sequences, with promoters arranged such that the germline cell may express the RNA guided DNA nuclease and the guide RNAs, together with any desired cargo-encoding sequences that are also situated between the flanking sequences. The flanking sequences will typically include a sequence which is identical to a corresponding sequence on a selected target chromosome, so that the flanking sequences work with the components encoded by the construct to facilitate insertion of the foreign nucleic acid construct sequences into genomic DNA at a target cut site by mechanisms such as homologous recombination, to render the germline cell homozygous for the foreign nucleic acid sequence. In this way, gene-drive systems are capable of introgressing desired cargo genes throughout a breeding population (Gantz et al., 2015, Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi, PNAS 2015, published ahead of print Nov. 23, 2015, doi:10.1073/pnas.1521077112; Esvelt et al., 2014, Concerning RNA-guided gene drives for the alteration of wild populations eLife 2014; 3:e03401). In select embodiments, target sequences may be selected which have few potential off-target sites in a genome. Targeting multiple sites within a target locus, using multiple guide RNAs, may increase the cutting frequency and hinder the evolution of drive resistant alleles. Truncated guide RNAs may reduce off-target cutting. Paired nickases may be used instead of a single nuclease, to further increase specificity. Gene drive constructs may include cargo sequences encoding transcriptional regulators, for example to activate homologous recombination genes and/or repress non-homologous end-joining. Target sites may be chosen within an essential gene, so that non-homologous end-joining events may cause lethality rather than creating a drive-resistant allele. The gene drive constructs can be engineered to function in a range of hosts at a range of temperatures (Cho et al. 2013, Rapid and Tunable Control of Protein Stability in Caenorhabditis elegans Using a Small Molecule, PLoS ONE 8(8): e72393. doi:10.1371/journal.pone.0072393).
In some embodiments, the CRISPR-Cas systems described herein can be used to provide modified tissues for transplantation. For example, the CRISPR-Cas system of the present invention can be used to knockout, knockdown or disrupt selected genes in an animal, such as a transgenic pig (such as the human heme oxygenase-1 transgenic pig line), for example by disrupting expression of genes that encode epitopes recognized by the human immune system, i.e., xenoantigen genes. Candidate porcine genes for disruption may for example include α(1,3)-galactosyltransferase and cytidine monophosphate-N-acetylneuraminic acid hydroxylase genes (see PCT Patent Publication WO 2014/066505). In addition, genes encoding endogenous retroviruses may be disrupted, for example the genes encoding all porcine endogenous retroviruses (see Yang et al., 2015, Genome-wide inactivation of porcine endogenous retroviruses (PERVs), Science 27 Nov. 2015: Vol. 350 no. 6264 pp. 1101-1104). In addition, RNA-guided DNA nucleases may be used to target a site for integration of additional genes in xenotransplant donor animals, such as a human CD55 gene to improve protection against hyperacute rejection.
Further embodiments are illustrated in the following Examples which are given for illustrative purposes only and are not intended to limit the scope of the invention.
An important application of the invention described herein is the conditional or constitutive expression of a transgene or transgenes in cells containing a desired target pre-mRNA. This can be accomplished by designing the Cas crRNA to target a transcript that is uniquely expressed in a cell type of interest. The trans-splicing donor RNA can carry a gene (e.g., a transgene(s)) to be expressed but lacking the ribosomal binding site and start codon so the gene cannot be translated without being successfully trans-spliced onto the target mRNA. One way to design this splice donor is to replace the final endogenous exon with a new exon containing the protein-coding sequence for the target gene's final exon and fused in-frame to a linker (e.g., 2A) followed by the transgene to be expressed and a polyA tail.
Trans-splicing can also be carried out using catalytic introns (e.g., Group I introns).
Various modifications and variations of the described methods, pharmaceutical compositions, and kits of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific embodiments, it will be understood that it is capable of further modifications and that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention that are obvious to those skilled in the art are intended to be within the scope of the invention. This application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure come within known customary practice within the art to which the invention pertains and may be applied to the essential features herein before set forth.
This application claims the benefit of and priority to U.S. Provisional Patent Application No. 63/256,337, filed on Oct. 15, 2021, the contents of which is incorporated by reference herein in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2022/078108 | 10/14/2022 | WO |
Number | Date | Country | |
---|---|---|---|
63256337 | Oct 2021 | US |