RNA profiling for individualized diet and treatment advice.

Information

  • Patent Application
  • 20200032347
  • Publication Number
    20200032347
  • Date Filed
    March 07, 2018
    6 years ago
  • Date Published
    January 30, 2020
    5 years ago
Abstract
The present invention relates to the field of medicine and molecular diagnostics. In particular, it relates to a novel RNA next generation sequencing-based profiling assay allowing simultaneous detection of transcripts and alternative splice variants thereof and mutations therein, from genes involved in disease. including genes involved in metabolism, resulting in an advice for personalized treatment with drugs targeting disease-associated molecular aberrations in combination with dietary compounds, food supplements or inhibitors of metabolism
Description
FIELD OF THE INVENTION

The present invention relates to the field of medicine and molecular diagnostics. In particular, it relates to a novel RNA profiling assay allowing simultaneous detection of inter alia transcripts and alternative splice variants thereof and mutations therein, from genes involved in disease, including genes involved in metabolism, resulting in a guidance for personalized treatment with drugs targeting disease-associated molecular aberrations, optionally in combination with dietary compounds, food supplements or inhibitors of metabolism.


BACKGROUND OF THE INVENTION

Malfunctioning cells are typically distinct from healthy cells in that they have altered metabolism. As an example, cells in diabetic patients have adapted to cope with lack of glycogenesis and high extracellular glucose concentrations. In another example, aberrantly growing cells such as in hyperplasia and in cancer need to process excessive amounts of nutrients to produce nucleotides, amino acids and fatty acids for DNA/RNA synthesis, protein synthesis and membrane synthesis. To accommodate this demand, growing cells have adapted by an altered metabolism. There is a number of compounds that can serve as fuel for malfunctioning cells. These include glucose, fatty acids and amino acids, such as glutamine and glutamate. A selection of genes that are involved in cell metabolism are presented in Table I here below. It should be noted that genes involved in a metabolic pathway may also be involved in another metabolic pathway; the person skilled in the art is aware of this.









TABLE I





Selection of genes that are involved in cell metabolism







Glucose processing (GLY1: glucose to pyruvate; PPP: pentose phosphate pathway: GLY2:


pyruvate to lactate; TCA: tricarboxylic acid cycle)








1.
Transmembrane glucose transporters GLUT1 and GLUT3 (SLC2A1 and SLC2A) to ensure



glucose import into the cytosol


2.
Hexokinase (HK1, 2, 3), to convert glucose to glucose-6-phosphate (GLY1)


3.
Glucose-6-phosphate dehydrogenase (G6PD) to convert glucose-6-phosphate to 6-



phosphogluconolactone (PPP)


4.
Gluconolactonase to convert 6-phosphogluconolactone to 6-phosphogluconate (PPP)


5.
6-phosphogluconate dehydrogenase (PGD) to convert 6-phosphogluconate to ribulose-5-



phosphate (PPP)


6.
ribulose-5-phosphateisomerase (RPIA) to convert ribulose-5-phosphate to ribose-5-



phosphate (PPP)


7.
ribulose-5-phosphate 3-epimerase (RPE) to convert ribulose-5-phosphate to xylulose-5-



phosphate (PPP)


8.
Transketolase (TKT) to convert products of step 5 and step 6 to glyceraldehyde-3-



phosphate and sedoheptulose 7-phosphate (PPP)


9.
Transaldolase to convert the products of step 8 to fryctose-6-phosphate and erythrose 4-



phosphate (PPP)


10.
Phosphoglucose isomerase (PGI) to convert glucose-6-hosphate to fructose 6-phosphate



(GLY1)


11.
Phosphofructokinase (PFK) to convert fructose-6-phosphate to fructose 1,6-biphosphate



(GLY1)


12.
Fructose bisphosphate aldolase (ALDOA) to convert fructose 1,6-biphosphate to



dihydroxyacetone phosphate and glyceraldehyde-3-phosphate (GLY1)


13.
Glyceraldehyde 3 phosphate dehydrogenase (GAPDH) to convert glyceraldehyde-3-



phosphate to 1,3-biphosphoglycerate (GLY1)


14.
Phosphoglycerate kinase (PGK) to convert 1,3-biphosphoglycerate to 3-phosphoglycerate



(GLY1)


15.
Phosphoglycerate mutase (PGAM1/2) to convert 3-phosphoglycerate to 2-



phosphoglycerate (GLY1)


16.
Enolase (ENO) to convert 2-phosphoglycerate to phosphoenolpyruvate (GLY1)


17.
Pyruvate kinase (PKM1/2) to convert phosphoenolpyruvate to pyruvate (GLY1)


18.
Pyruvate dehydrogenase (PDH) to convert pyruvate to Acetyl-CoA (TCA)


19.
Pyruvate carboxylase (PC) to convert Acetyl-CoA to oxaloacetic acid (TCA)


20.
Citrate synthase (CS) to produce citrate from Acetyl-CoA and oxaloacetic acid (TCA)


21.
Acotinase (ACO1) to convert citrate to cis-acotinate and isocitrate (TCA)


22.
Isocitrate dehydrogenase 1/2/3 (IDH1/2/3) to convert isocitrate to αKG (TCA)


23.
αKG dehydrogenase (OGDH) to convert αKG to succinyl-CoA (TCA)


24.
Succinyl-CoA synthetase (SUCLA2) to convert succinyl-CoA to succinate (TCA)


25.
NADH-coenzyem Q oxidoreductase (OXPHOS)


26.
Succinate-Q-oxidoreductase (OXPHOS)


27.
Flavoprotein_Q oxidoreductase (OXPOS


28.
Cytochrome C oxidase (OXPHOS)


29.
ATP synthase (OXPHOS)


30.
Succinate dehydrogenase (SDHA/B/C/D) to convert succinate to fumarate (TCA)


31.
Fumarate hydratase (FH) to convert fumarate to malate (TCA)


32.
Malate dehydrogenase (MDH1/2) to convert malate to oxaloacetate (TCA)


33.
Pyruvate dehydrogenase kinase (PDK), to phosphorylate and block PDH (step 11) (GLY2)


34.
Lactate dehydrogenase (LDHA) to produce lactate from pyruvate (GLY2)


35.
Lactate dehydrogenase (LDHB) to convert lactate to pyruvate.


36.
Monocarboxylate transporters MCT1 (SLC16A1) and MCT4 (SLC16A3) to transport lactate



and associated protons from the cell, to regulate pH homeostasis


37.
Carbonic anhydrases (CA9 and CA12) to produce HCO3— from H2O and CO2 at the cell



surface


38.
HCO3— importer (SLC4A10) to import HCO3— for pH homeostasis







Glutamine processing


There is a number of cells that also depend on the amino acid glutamine for proliferation. Genes


that are involved in glutamine metabolism include








39.
SLC1A5 or ASCT2, an membrane importer protein for glutamine


40.
Glutaminase (GLS) to convert glutamine to glutamate


41.
Glutamate dehydrogenase (GLUD1/2) to convert glutamate to alpha-ketoglutarate (αKG)


42.
Branched chain amino acid transferase 1 and 2 (BCAT1/2) to produce glutamate from αKG


43.
Excitatory amino acid transporter EAAT2 (SLC1A2) to import glutamate into the cell


44.
System Xc- (SLC7A11) to export glutamate from the cell in exchange for cystin







Fatty acids


Fatty acids are important building blocks for cells because they are the basis for synthesis of


phospholipid bilayers that make up membranes for nuclei, mitochondria, endoplasmic reticulum, golgi


apparatus and lysosomes and peroxisomes. Enzymes that are involved in fatty acid anabolism include








45.
CIC (SLC25A1) to transport citrate from mitochondria to cytosol


46.
ATP citrate lyase (ACLY) to convert citrate to oxaloacetate and acetyl-CoA


47.
Acetyl CoA carboxylase (ACACA, ACACB) to convert acetyl-CoA to malonyl-CoA


48.
Fatty acid synthase (FASN) to convert Acetyl-CoA, malonyl-CoA and NADPH to palmitate


49.
Fatty acid transporter (CPT1) for uptake of fatty acids


50.
choline transporter (SLC5A7) to import choline


51.
Choline kinase (CHKA) to convert choline to phosphatidylcholine


52.
Carnitine palmitoyltransferase 2 (CPT2) to convert acylcarnitine to long chain Acyl-CoA


53.
Acyl CoA dehydrogenase (VLCAD) to convert long chain acyl-CoA to 2-Enoyl-CoA


54.
Trifunctionalportein (HADHA/B) to convert 2-Enoyl-CoA to medium and short chain Acyl-



CoA


55.
Acyl CoA dehydrogenase (SCAD, MCAD, LCAD) to convert cyl-CoA to 2-Enoyl CoA


56.
2-Enoyl-VoA hydratase to convert 2-Enoyl-CoA to 3-hydroxyacyl-CoA


57.
3-hydroxyacyl-CoA dehydrogenase (SCHAD) to convert 3-hydroxyacyl-CoA to 3-ketoacyl



CoA


58.
3-ketoacyl-CoA thiolase (MCKAT) to convert 3-ketoacyl-CoA to acetyl-CoA









Metabolic Alterations in Cancer

Altered metabolism may be a result of cancerous transformation of cells, but for a number of cancer types it is also a cause of cancer. A well-known example of metabolic alterations (alterations within one or more metabolic pathway) resulting from cancer growth is the alterations that are a consequence of hypoxia, the lack of oxygen that occurs in growing tissues that have outgrown the vascular blood supply. Under oxygenated conditions, the transcription factors Hypoxia Inducible Factors HIF1α and HIF2α are hydroxylated by the oxygen-dependent enzyme proline hydroxylase (PHD). Proline-hydroxylated HIFs have binding sites for the VHL-E3 ubiquitin complex, resulting in HIF ubiquitinylation and proteasomal breakdown. This pathway is an important regulator of HIF-levels in cells. Under normoxic conditions glucose will be converted to pyruvate that will be processed to acetyl-CoA which enters the mitochondria for processing in the tricarboxylic acid (TCA) cycle. The TCA cycle is directly coupled to oxidative phosphorylation and yields for every mole of glucose the energy equivalent of 36 moles of ATP, CO2 and H2O. Full processing of glucose via this pathway does not yield carbon building blocks.


Under hypoxic conditions PHDs are inactive and as a result unhydroxylated HIF1/2a will accumulate in cells, heterodimerize with HIF-13 (ARNT) and activate genes that are needed to survive hypoxia. These genes (Table I, steps 1-38) regulate different processing of glucose, using pyruvate for lactate instead of acetyl CoA production. Conversion of pyruvate to lactate yields only 2 moles of ATP for every mole of glucose. The inefficiency of this process in terms of energy production requires extra intake of glucose, which is accomplished by increased expression of glucose transporters (GLUT1, GLUT3). Genes involved in the next steps of glucose processing are also activated (especially hexokinase 2). HIF accumulation also results in activation of the gene encoding vascular endothelial growth factor (VEGF-A), resulting in an angiogenic response.


Glycolysis in cancer is not restricted to hypoxic areas but can also occur under normoxic conditions. There is a number of causes for glycolysis in normoxic cancers, for example elevated expression of the Myc oncogene [resulting in activation of PDK (Table I, step 33) and preventing influx of acetyl-CoA into the TCA cycle], decreased function of tumor suppressors (VHL, PTEN) and elevated activity of oncogenic pathways (e.g. PI3K, AKT) all leading to increased HIF activity. Aerobic glycolysis in cancers is known as the Warburg effect.


Whereas aberrations in oncogenes and tumor suppressor genes in a cancer and conditions such as hypoxia induce metabolic alterations, these alterations depend on the specific nature of the molecular aberrations. As a consequence each tumor has its own specific metabolic demands.


Adding an extra level of complexity, instead of being a consequence of carcinogenesis, altered metabolism may also drive carcinogenesis. Hotspot mutations in isocitrate dehydrogenase 1 and 2 (Table I, step 22) in substantial percentages of diffuse gliomas of the brain, acute myeloid leukemia, chondrosarcomas and hepatic cholangiocarcinomas result in consumption of alpha ketoglutarate (α-KG) and NADPH to produce the oncometabolite D-2-hydroxyglutarate (D-2HG) that can accumulate to milliMolar concentrations. The small difference between the chemical structures of α-KG and D-2HG in combination with the high concentrations of the latter, results in competitive displacement of α-KG from α-KG-dependent enzymes that subsequently cannot function properly. Important examples are the Ten Eleven Translocation (TET)-family of enzymes that are involved in demethylation of CpG islands in the DNA, and JmJ proteins that are involved in histone demethylation. Consequently IDH-mutated cancers present with hypermethylated CpG islands and histones, resulting in deranged gene transcription profiles. Of importance, the consumption of NADPH in IDH-mutated cancer cells results in low levels of reduced glutathione and decreased resistance to reactive oxygen species (ROS). The increased activity of ROS in IDH mutated cancer cells may increase the chance of second hits in oncogenes and tumor suppressor genes, and result in cancer. Except for the known hotspot mutation that leads to 2-HG production, IDH-mutants have been described that are defective in NADPH production, but do not produce D-2HG (1).


Other examples of cancers in which mutations in metabolic enzymes are cancer drivers are phaeochromocytomas and paragangliomas, that carry inactivating mutations in one of the SDH subunits A-D (Table I, step 30) or in SDH assembly factor SDHAF2 (2). These mutations can be hereditary, leading to the HPGL/PCC syndrome, or somatic. Other mutations in metabolic genes that cause cancer occur in FH (Table I, step 31). Mutations in FH are associated with leyomyomatosis and papillary renal cell cancer (3). Mutations in VHL protein occur in clear cell renal cell cancers, and directly result in glycolysis via a defect in HIF breakdown, as described above. The IDH, SDH and FH genes can therefore be considered tumor suppressor genes.


Dietary compounds, food supplements or safe to use drugs exist that can inhibit metabolic pathways, and the use of such drugs have been considered as potentially beneficial for the treatment of cancer. Examples are deoxyglucose, inhibiting glucose uptake by the cell and preventing glycolysis (Table I, step 1 and following) (4), 3-bromopyruvate, blocking the activity of hexokinases (Table I, step 2 and following) (5, 6), 6-amino-niocotinamide (6-AN, blocking G6PD in the pentose phosphate pathway, Table I, step 3 (7)), metformin, blocking OXPHOS (8), bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES, blocking glutaminase, Table I, step 28), epigallo-3-catechin gallate (EGCG, blocking glutamate dehydrogenases and other NADPH-generating enzymes (Table I, step 41) and fatty acid synthase Table I, step 36 (9)) (10), cerulenin, inhibiting fatty acid synthase (Table I, step 48) (9). These inhibitors have been shown to have anti-tumor effects in different models of cancers.


Although these compounds have also been tested in humans, anti-cancer effects may require systemic concentrations that are not tolerated by healthy tissues. At non-toxic concentrations, treatment with metabolic inhibitors below maximal tolerated doses can however augment the activity of other treatments, such as radiotherapy, chemotherapy or targeted therapy.


Current treatment protocols for patients with cancers who cannot be cured by surgery are ineffective in that cancers generally develop resistance to treatment (11-14).


There is therefore a great need for safe and adjuvant treatments that increase the efficacy of the state of the art therapies. These state of the art therapies are applied according to guidelines that are based on the outcomes of phase III clinical trials. For some cancer types, the effects of treatment can be predicted (e.g. colon cancers with KRAS mutations do not respond to EGFR inhibitors, cancers with the BRAF-V600E mutation develop resistance to the BRAF inhibitor vemurafenib by upregulating signaling from EGFR, gliomas with hypermethylation of the DNA repair gene MGMT respond better to the DNA alkylating chemotherapy Temozolomide). Although some cancer types are now routinely analyzed for so called companion biomarkers-biomarkers based on which a personalized treatment can be initiated—analyses on such markers cannot be performed if tissue cannot be made available, such is e.g. the case in patients with inoperable cancer.


Therefore there is an urgent need for a test that measures parameters in a patient (subject) that are relevant for treatment decision making, with treatment protocols consisting of the most appropriate metabolic inhibitors, combined with the most appropriate available targeted drugs or radiotherapy or chemotherapy. Currently available tests to investigate metabolism in cancer include magnetic resonance spectroscopic imaging (MRSI), but this is a technically challenging technique that can only be performed in specialized centers and requires concomitant in depth knowledge of MR principles and cell biology. Furthermore, MRSI can only measure a limited number of metabolites. An alternative method to investigate metabolism in cancer is to make extracts of metabolites of a cancer and perform mass spectroscopy. In this case, results will be influenced by the fact that these assays are performed on tissues that have seen hypoxia after surgery.


Molecular diagnosis of cancer is currently performed by analysis of tumor DNA and aims for detection of actionable mutations. DNA analyses allow the identification of mutations and variations in metabolic enzymes such as FH, SDH and IDH, and actionable mutations and amplifications in oncogenes and tumor suppressor genes. DNA analyses can be performed using whole genome analyses or whole exome analyses but can also be performed with Molecular Inversion Probes as described in the literature (15). The technique is depicted in FIG. 1. MIPs inversely hybridize to a DNA of interest via an extension probe and a ligation probe that are connected by a backbone sequence, leaving a small gap on the target sequence. This gap is enzymatically filled and ligated, leaving a circular molecule that can be purified by exonuclease-based degradation of non-circularized nucleotide strands. PCR-based amplification of the filled gap using oligonucleotide primers in the backbone generates a library of amplicons that can be analyzed using e.g. next generation sequencing methodology. To make the assay quantitative, a unique molecular identifier (UMI) of e.g. 8 random nucleotides can be incorporated in the MIP, to allow a back calculation of all PCR products with the same UMI to one MIP. The chance of 2 different smMIPs having the same UMI is (1/4)8=1:65,536 which makes these UMIs unique for each MIP. MIPs with a UMI are called single molecule MIPs or smMIPs (16). The technique of smMIPs for analyses of DNA sequences is described in the literature.


DNA analyses cannot measure gene activity, e.g. activity of metabolic genes, which is regulated by epigenetic processes and the presence of transcription factors and transcription repressors (17).





DESCRIPTION OF THE FIGURES


FIG. 1 Principle of smMIP-based targeted RNA sequencing. The procedure depends on the hybridization of molecular inversion probes consisting of a ligation and an extension probe that are connected via a backbone sequence. Capture hybridization leaves for each smMIP a gap of 112 nt that is enzymatically extended and closed by ligation. After exonuclease digestion of non-ligated probes the remaining library of circularized smMIPS is PCR-amplified with primers in the smMIP backbone. The ligation probe is flanked by a random 8N unique molecular identifier (UMI) sequence that allows correction for PCR duplicates. During PCR, for each sample a unique barcode primer is used allowing identification of sample-specific reads.



FIG. 2 A,B Inegrative Genome Viewer (IGV) representation of the VHL locus of SKRC7 and SKRC7-VHLHA cells. BAM files containing whole RNAseq data from these cell lines were loaded into IGV. Note the CAA-UAA mutation, resulting in the VHLQ132-stop mutation at the protein level. C and D show SeqNext representations of the same VHL locus of SKRC7 (C) and SKRC7-VHLHA cells. E) bar graph showing VHL-related TPM and FPM values of SKRC7 and SKRC7-VHLHA. F) Western blot of SKRC7 cells and the VHL-expressing derivative, stained with an anti-HA antibody.



FIG. 3 smMIP-based targeted RNA sequencing correlates well with whole transcriptome RNAseq. Mean smMIP-based metabolic FPM levels (A,C) and tyrosine kinase transcript FPM levels (B,D) were plotted to TPM levels of the same transcripts, extracted from whole RNAseq data. Note that the transcripts with very low FPM values (10−2FPM) were not detected in the RNAseq dataset. We included these transcripts in these analyses although they may have lowered the Pearson coefficient.



FIG. 4 SmMIP-based targeted RNAseq reveals decreased expression levels of glycolysis related genes a.o. SLC2A1, CA9, HK2 and LDHA in two independent duplicate experiments (A,B). Relative values were comparable to those obtained from whole transcriptome RNA seq analysis (C), which is in agreement with the correlation shown in FIG. 3. Differences in expression levels were validated on the protein level for HK2 and CA9, using tubulin as housekeeping control (D).



FIG. 5 smMIP-based targeted RNA next generation sequencing can be used for adequate variant calling. Shown are the loci containing the IDH1-R132H mutation in E478 xenografts (A) and in a clinical grade III astrocytoma (C, this mutation was confirmed by genetic analysis), whereas the IDH1-R314C mutation in E98 cells could also be identified (B).



FIG. 6 Example of smMIP analysis of RNAs encoding metabolic enzymes in two different ccRCC cell lines.



FIG. 7 smMIPs allow specific detection of splice variants. The Mel57 cell line that does not express endogenous VEGF-A, was transfected with expression plasmids pIRESneo-VEGF-A121 and pIRESneo-VEGF-A165, and cultured in medium containing neomycin to generate stable transfectants. RNA from these transfectants were subjected to smMIP profiling with a panel of smMIPs, among which smMIP121 with ligation and extension probes in exons 5 and 8 of the VEGF-A transcript, respectively, hence detecting only VEGF-A121, and smMIPs with ligation and extension probes in exons 5 and 7 of the VEGF-A transcript respectively, hence detecting only VEGF-A165. Note that smMIP121 detects VEGF-A121, but not VEGF-A165, and smMIP165 detects only VEGF-A165, but not VEGF-A121.



FIG. 8 smMIP-based targeted RNA next generation sequencing can be used for adequate diagnosis. Shown is the IDH locus containing the IDH1-R132H mutation in a clinical grade III astrocytoma. Analysis of the tyrosine kinase transcriptome reveals high expression levels of the genes encoding the tyrosine kinases NTRK2 and PDGFRA in this tumor, suggestive of responsiveness to the corresponding tyrosine kinase inhibitors.



FIG. 9 smMIP based detection of EGFR splice variants in gliomas. Shown is that in the group of gliomas there is elevated expression of EGFR in 39/75 brain tumors (52%; mean FPM 738 in positives vs mean FPM 35 in negatives, using an arbitrary cut off FPM value of 100) and expression of EGFRvIII in 12/75 brain tumors (16%; mean FPM 642 in positives vs mean FPM 0.27 in negatives, using an arbitrary cut-off value of 6).



FIG. 10 smMIP based targeted RNA sequencing can be used for accurate diagnosis and prognosis.


A) Heat map of the individual gene profiles. Unsupervised agglomerative clustering of log-transformed expression levels of the targeted genes of interest was performed. Agglomerative clustering was performed according to WardD2 method by calculating Manhattan distance between individual profiles using bio-informatic R-software scripts.


B) Kaplan-Meier curve displaying the overall survival data of the computer-generated groups A and B of the heat-map in panel a). The results show that groups A and B have different survival with high significance (Fisher's exact test; p<0.0001), demonstrating that this test has high prognostic value in gliomas. Groups A and B are here annotated as IDH-MT and IDH-WT.


C) heterozygous IDH1R132H detection in one of the samples, in this case with 38% of transcripts being from the mutant allele and 62% of transcripts from the wt allele


D) Subgroup analysis of IDH-wild-type patients with very poor survival (OS<12 months) versus IDH-wild-type patients with better prognosis (OS>14 months) showed that high expression levels of carbonic anhydrase 12 are associated with poor prognosis (p<0.001; Fisher's exact test, see Kaplan-Meier curve in D).



FIG. 11 Immunhistochemistry of tumors with high and low PSMA transcript levels. Blood vessel expression of PSMA protein is observed in blood vessels from tumors with high transcript levels and not in tumors with low transcript levels (see FPM values under the different photographs.



FIG. 12 Tyrosine kinase profiles predict sensitivity and non-sensitivity to targeted therapies in vitro. A) the astrocytoma cell line E98 expresses similar levels of MET as the renal cancer cell line SKRC17 depicted in (B). C) However, in contrast to E98 cells, SKRC17 cells do not respond to compound A with decreased proliferation rates. D) Profiling of membrane tyrosine kinases reveals that within the selected group of membrane tyrosine kinases that are measured in the assay, MET is the only one expressed by E98, whereas SKRC17 cells express an additional number of other tyrosine kinase inhibitors, including AXL, EGFRs, FGFRs.



FIG. 13 HPV RNA profiling. Profile of 29 gynecological tissues, ranging from normal uterus extirpations to ovarian cancer, endometrial cancers and cervix carcinomas. HPV16 E6/E7 RNA expression was observed in 12 samples. All HPV16-positive samples were confirmed on DNA level, but five tissues that were negative in the HPV-RNA test, were positive in the HPV-DNA test arrow heads.





DETAILED DESCRIPTION OF THE INVENTION

The present inventors have used multiplex profiling of RNA transcripts to determine which genes that are involved in metabolism are active, and which genes that are involved in pathologies are active. The inventors have found that from the combined information in the RNA profiles, the metabolic pathways that are most prominent in the pathological tissue can be deduced, and the genes that are actively involved in pathologies can be identified. This information can result in a personalized advice to treat an individual suffering from a disease with e.g. drugs that target the product of the gene that is aberrantly expressed and is involved in disease progression. These drugs (pharmaceutical compounds) include but are not limited to drugs that are approved by the United States Food and Drug Administration (FDA) and/or the European Medicines Agency (EMA) and are known as targeted drugs to the person skilled in the art. Such treatment advice can be combined with an advice to treat the disease further with a compound that inhibits the most essential metabolic pathways in the pathological tissue. This concept is known as synthetic lethality to the person skilled in the art. Added value of the test is generated by concomitant information on mutation status of metabolic genes.


The test requires a small aliquot of an RNA of interest that may be derived from solid tissue, isolated cells or bodily fluids, including, but not limited to, saliva, urine, sperm, blood, blood platelets and cerebrospinal fluid. The sample RNA can be converted to copy-DNA (cDNA) using a method known in the art, such as using oligo-dT primers or a mixture of random hexamer oligonucleotide primers. These techniques are standard techniques and are known to the person skilled in the art ((see e.g. Green and Sambrook (2012) Molecular Cloning: A Laboratory Manual, Fourth Edition, Cold Spring Harbor Laboratory Press, NY).


The RNA of interest may be from human genes but may also be from genes of pathogens such as DNA viruses and RNA viruses, including but not limited to human immune deficiency virus (HIV); human papilloma viruses, including but not limited to the subtypes HPV16 and HPV18; hepatitis A virus; hepatitis B virus; hepatitis C virus; hepatitis E virus; Ebola virus; Epstein Bar Virus (EBV); influenza viruses; West-Nile virus, chikungunya virus, polyoma virus; cytomegalovirus; rhinovirus, but also genes from the category of oncolytic viruses that are known to persons skilled in the art to treat cancers. The RNA of interest may also be from genes of parasites, including but not limited to Plasmodium falciparum and Plasmodium vivax, parasites causing malaria, and trypanosoma. In addition, the RNA of interest may be from (pathogenic) fungi, including but not limited to Aspergillus. The RNA of interest may also be from (pathogenic) bacteria, such as Listeria, Legionella, Staphylococcus, Streptococcus, Mycobacterium and/or Yersinia.


The subject (interchangeably also referred to as patient) may be a human or an animal. Accordingly, the RNA of interest may also be from genes from domesticated, wild and farm animals and/or from genes that are present in pathogens such as the pathogens listed here above or their counterparts that cause disease in animals.


The present invention further provides for a set of single molecule molecular inversion probes (smMIPs) to detect the RNAs of interest that carry the information that is needed to formulate a treatment advice. A preferred set is selected from the group listed in Table II.


A preferred method of generating RNA profiles is by using smMIPs that can be designed with the published MIPGEN protocol (18) that selects optimal ligation and extension probe sequences that are predicted to hybridize against a cDNA of interest while leaving a gap between the ligation and extension parts of the probe. The ligation and extension parts of the probes may hybridize to any part of the cDNA, including sequences that are protein encoding and untranslated regions. Extension and ligation parts of the probes can be located in the same exon.


A preferred method is to locate the ligation and extension parts of the probes in different exons of a cDNA, which allows detection of specific splice variants.


A preferred method according to the invention is to contact a library of designed smMIPs according to the invention, that may consist of any number of smMIPs, with a population of cDNA molecules. After an initial heating and denaturation step followed by cooling, each smMIP will hybridize to its target cDNA sequence. By incubating the mixture with a DNA polymerase enzyme, all four deoxynucleotides and DNA ligase in an appropriate buffer, the extension probe part of the MIP will be extended until the 5′ end of the ligation probe is reached. The DNA ligase will then covalently link the 3′ end of the extended extension probe part to the ligation probe part, producing a circular smMIP molecule.


In the next step, a method known to the person skilled in the art, is used to remove unreacted, linear smMIPs and cDNA from the reaction mixture by exonuclease treatment, leaving a purified library of circular smMIPs.


Using a forward and a reverse oligonucleotide primer that specifically anneal to the backbone sequence that connects the ligation and extension probes parts of the MIP, a PCR amplification of the gap sequence is performed. Preferably, one of the oligonucleotide primers that are used in this PCR is equipped with a barcode, allowing easy selection of all PCR products that are obtained from a specific sample. In a next step, the library of PCR amplicons are preferably analyzed on a next generation sequencing platform that yields FASTQ files containing information on nucleotide sequences of all PCR amplicons in the sample. Using an algorithm all PCR amplicons with the same barcode are grouped, producing a list of sequences for each individual cDNA sample.


Next, using another algorithm that uses the UMI, all identical PCR products will be considered to be derived from one originating smMIP. In this manner for each original RNA sample a list can be created that contains values that represent the original number of circularized smMIPs in the original library. This number is proportional to the number of cDNAs in the original sample.


In a preferred method of interpretation, the values obtained for each individual smMIP are divided by the summated values of all smMIPs for each sample, followed by multiplying with a factor of one million, thus yielding a fragments per million value for each smMIP.


In a preferred method of interpretation, the mean FPM values of all different smMIPs that correspond to one transcript, are considered to be proportional to the number of transcripts that were present in the initial RNA sample of the analysis.


In another preferred method of interpretation, mean FPM values of individual transcripts are divided by mean FPM values of so-called house-keeping genes, to yield a relative abundance value of a transcript of interest.


In another preferred method, mean FPM values for transcripts from genes that are involved in metabolic pathways are used to deduce the predominant metabolic pathways in a tissue.


A preferred method to analyze the FASTQ files further is to detect mutations in the next generation sequencing data. Preferably, mutations are considered as relevant if they are detected in more than two reads. The sequence information as provided in the FASTQ files should not be so narrowly construed as to require inclusion of erroneously identified bases. The skilled person is capable of identifying such erroneously identified bases and knows how to correct for such errors. A list of relevant mutations in a sample can be included in a database, preferably a standard query language (SQL)-based database that allows statistical analyses, for example by multivariate analysis.


A preferred method of analysis of the database results in a list of metabolic pathways that are active in a tissue or in a person with a disease and that can be used to give a dietary advice to relieve the symptoms of the disease and to improve the efficacy of other therapies.


Another preferred method of analysis of the database results in a list of aberrancies that can be treated with available pharmacological drugs.


Yet another preferred method of the invention uses a software algorithm that translates RNA profiles of diseased tissues directly to a treatment advice that can be given via an application that can be installed on a personal computer or a mobile device.


The method according to the invention can be readily implemented in routine patient care in case RNA from diseased tissue or blood platelets is available.


Accordingly, in a first aspect, the present invention provides for a method for in vitro determination of the susceptibility and/or resistance of a subject suffering from or at risk of a disease or condition for a drug to treat the disease or condition, comprising:

    • providing a sample from the subject,
    • performing RNA profiling on the sample,


      wherein the presence of an aberrant level of a transcript, an alternative splice variant and/or a mutation is an indication for the susceptibility and/or resistance.


Said method is herein referred to as the method according to the invention. “RNA profiling” is herein also referred to as targeted RNA sequencing of transcripts. An aberrant level of a transcript is a level of transcription that can either be higher or lower than the transcript level as compared to a reference sample and/or as compared to the level of transcript in a healthy subject.


Preferably, in a method according to the invention, RNA profiling is performed by multiplex mRNA sequencing, targeting multiple regions of interest. The sample RNA of interest may first be converted to copy-DNA (cDNA) using a method known in the art, such as using oligo-dT primers or a mixture of random hexamer oligonucleotide primers. The RNA of interest may be from human genes but may also be from genes of pathogens such as DNA viruses and RNA viruses, including but not limited to human immune deficiency virus (HIV); human papilloma viruses, including but not limited to the subtypes HPV16 and HPV18; hepatitis A virus; hepatitis B virus; hepatitis C virus; hepatitis E virus; Ebola virus; Epstein Bar Virus (EBV); influenza viruses; West-Nile virus, chikungunya virus, polyoma virus; cytomegalovirus; rhinovirus, but also genes from the category of oncolytic viruses that are known to persons skilled in the art to treat cancers. The RNA of interest may also be from genes of parasites, including but not limited to Plasmodium falciparum and Plasmodium vivax, parasites causing malaria, and trypanosoma. In addition, the RNA of interest may be from (pathogenic) fungi, including but not limited to Aspergillus. The RNA of interest may also be from (pathogenic) bacteria, such as Listeria, Legionella, Staphylococcus, Streptococcus, Mycobacterium and/or Yersinia.


Preferably, in a method according to the invention, the multiplex mRNA sequencing is performed using molecular inversion probes (MIPs), preferably MIPs comprising a detectable moiety, preferably a unique identifier sequence of a string of 3 to 10 random nucleotides (depicted as “N” in a sequence listing), more preferably a string of 3, more preferably 4, more preferably 5, more preferably 6, more preferably 7, most preferably 8, or preferably more than 8 random nucleotides (N) adjacent to the ligation part of the MIP or to the extension part of the MIP sequence (smMIPs).


Preferably, in a method according to the invention, the aberrant level of a transcript, an alternative splice variant and/or a mutation is linked to a an aberrance in a metabolic pathway which is in turn linked to the susceptibility and/or resistance of a subject suffering from or at risk of a disease or condition for a drug. In all embodiments of the invention, a drug is as meant in the art, a pharmaceutical compound. Such pharmaceutical compound may be comprised in a pharmaceutical composition. In all embodiments of the invention, a subject is a human or an animal, preferably a human. An animal may be any animal, preferably a domestic, wild or farm animals.


Preferably, in a method according to the invention, the disease or condition is at least one selected from the group consisting of a cancer, a viral infection, a bacterial infection, an autoimmune disease and a genetic disease.


In a method according to the invention, the sample may be any appropriate sample known to the person skilled in the art, preferably selected from the group consisting of a tissue, a tumor tissue, urine, sperm, saliva, blood, blood plasma, cerebrospinal fluid, blood platelets, and/or exosomes, more preferably selected from tumor tissue and blood platelets.


In a method according to the invention, the metabolic pathway is preferably selected from the group consisting of a glucose processing pathway, a glutamine processing pathway and/or a fatty acid pathway.


Preferably, in a method according to the invention, the multiple regions of interest are within the mRNA of—glucose processing genes, glutamine processing genes, fatty acid anabolism genes, transporter genes, redox homeostasis genes, genes with potential involvement in cancer, such as oncogenes, genes involved in angiogenesis, genes involved in immune suppression, and viral genes.


Preferably, in a method according to the invention, the multiple regions of interest are within the mRNA of at least one, two, three, four, five or at least six genes selected from the group consisting of: ABAT, ACACA, ACACB, ACLY, ACO2, ACSS2, ADPGK, ALDOA, ARHGAP26, ATG4A. ATP5A1, CBR1, CBS, CHKA, CKB, CPT1A, CYCS, EGLN1, ENO1, G6PC, GAD1, GCLC, GCLM, GFPT1, GLDC, GSS, HK1, HK2, HK3, GLY1, G6PD, RGN, PGD, RPIA, RPE, TKT, PGI, ALDOA, GAPDH, PGAM1/2, ENO, PKM1/2, PDHA1, PDK1, PFKB1, PFKMb, PGAM1, PGD, PGK1, PKM, PRDX1, PRKAA1, RPIA, PC, CS, ACO1, IDH1, IDH2, IDH3A, IDH3B, IDH3G, OGDH, SUCLA2, SDHA/B/C/D, FH, MDH1, MDH2, PDK, LDHA, LDHB, SLC16A1, SLC16A3, CA9, CA12, SLC4A10, VHL, SDH, SDHAF2, HPGL/PCC, FH, CS, D-2HGDH, L-2HGDH, FH, IDH1-3A-G, MDH1-2, MYC, OGDH, SDHA-D, VHL, PHD, HIF1a, EPAS2 PDCD1, SLC1A5, ASCT2, GLS, GLUD1/2, GOT, GPI, GS, BCAT1, BCAT2, SLC1A2, SLC7A11, SLC25A1, ACLY, ACACA, ACACB, FASN, CPT1, SLC5A7, CHKA, CPT2, VLCAD, HADHA/B, SCAD, MCAD, LCAD, SCHA-D, 2-Enoyl-VoA hydratase, MCKAT, SLC16A1, SLC16A7, SLC2A1, SLC2A3, SLC5A1, SLC5A5, SLC7A1, SLC9A1, SLCA12, redox homeostasis genes: NAMPT, NAPRT1, NOX1, NOX3, NOX4A, NQO1, SOD, SOD2, CAT, TAL, TIGAR, TRX, PARP1, ALK, AXL, BRAF, KRAS, TP53, MAPK8, MYC, TP5313, FGFR1, FGFR2, IGF1-R, KDR, NTRK1, NTRK2, PDGFRA, PDGFRB, EGFR, EGFRvIII, ERBB2, ERBB3, ERBB4, MERTK, PLXND1, RET, Androgen receptor (AR), AR variant 7, AR variant 12, FOLH1, KLK3, MET, METdelta14, METdelta7-8, KIT, RON PTEN, VEGF-A121, VEGF-A144, VEGF-A165, VEGF-A189, CD274, CTLA4, HPV-E2, HPV-E6, and HPV-E7.


Preferably, in a method according to the invention, the multiple regions of interest are within the mRNA of:

    • glucose processing genes, such as, but not limited to: ABAT, ACACA, ACACB, ACLY, ACO2, ACSS2, ADPGK, ALDOA, ARHGAP26, ATG4A. ATP5A1, CBR1, CBS, CHKA, CKB, CPT1A, CYCS, EGLN1, ENO1, G6PC, GAD1, GCLC, GCLM, GFPT1, GLDC, GSS, HK1, HK2, HK3, GLY1, G6PD, Gluconolactonase, PGD, RPIA, RPE, TKT, PGI, ALDOA, GAPDH, PGAM1/2, ENO, PKM1/2, PDHA1, PDK1, PFKB1, PFKMb, PGAM1, PGD, PGK1, PKM, PRDX1, PRKAA1, RPIA, PC, CS, ACO1, IDH1, IDH2, IDH3A, IDH3B, IDH3G, OGDH, SUCLA2, SDHA/B/C/D, FH, MDH1, MDH2, PDK, LDHA, LDHB, SLC16A1, SLC16A3, CA9, CA12, SLC4A10, VHL, SDH, SDHAF2, HPGL/PCC, FH, CS, D-2HGDH, L-2HGDH, FH, IDH1-3A-G, MDH1-2, MYC, OGDH, SDHA-D, VHL, PHD, HIF1a, EPAS2 and/or PDCD1;
    • glutamine processing genes, such as, but not limited to: SLC1A5, ASCT2, GLS, GLUD1/2, GOT, GPI, GS, BCAT1, BCAT2, SLC1A2 and/or SLC7A11;
    • fatty acid anabolism genes, such as, but not limited to: SLC25A1, ACLY, ACACA, ACACB, FASN, CPT1, SLC5A7, CHKA, CPT2, VLCAD, HADHA/B, SCAD, MCAD, LCAD, SCHA-D, 2-Enoyl-VoA hydratase and/or MCKAT;
    • transporter genes, such as, but not limited to; SLC16A1, SLC16A7, SLC2A1, SLC2A3, SLC5A1, SLC5A5, SLC7A1, SLC9A1 and/or SLCA12;
    • redox homeostasis genes, such as, but not limited to: NAMPT, NAPRT1, NOX1, NOX3, NOX4A, NQO1, SOD, SOD2, CAT, TAL, TIGAR and/or TRX;
    • DNA repair genes, such as, but not limited to: PARP1;
    • genes with potential involvement in cancer, such as, but not limited to: ALK, AXL, BRAF, KRAS, HRAS, NRAS, GNAQ, GNA11, TP53, MAPK8, MYC, TP5313, FGFR1, FGFR2, IGF1-R, KDR, NTRK1, NTRK2, PDGFRA, PDGFRB, EGFR, EGFRvIII, ERBB2, ERBB3, ERBB4, MERTK, PLXND1, RET, Androgen receptor (AR), AR variant 7, AR variant 12, FOLH1, KLK3, MET, METdelta14, METdelta7-8, KIT, RON and/or PTEN;
    • genes involved in angiogenesis, such as, but not limited to: VEGF-A121, VEGF-A144, VEGF-A165 and/or VEGF-A189
    • genes involved in immune suppression, such as, but not limited to: CD274 and/or CTLA4; and/or,
    • viral genes, such as, but not limited to: HPV-E2, HPV-E6 and/or HPV-E7.


Preferably, in a method according to the invention, the presence of an aberrant level of a transcript, an alternative splice variant and/or a mutation also provides an indication for treatment with dietary compounds or phytochemicals, optionally in combination with a drug. The person skilled in the art knows that drug treatment can beneficially be combined with treatment with dietary compounds or phytochemicals.


The method according to the invention can conveniently be used for guiding treatment in a subject (personalized medicine). Accordingly, in a further aspect, the invention provides for a method of treatment of a subject suffering from or at risk of a disease or condition, comprising:

    • requesting performance or performing a method according to the invention, thus determining the susceptibility and/or resistance of the subject suffering from or at risk of a disease or condition for a drug to treat the disease or condition, and
    • treating the disease or condition of the subject with a drug where the disease or condition of the subject is susceptible to. In this aspect, all features are preferably those of the first aspect.


Preferably, in a method of treatment according to the invention, the disease or condition is at least one selected from the group consisting of: a cancer, including but not limited to glioma, meningioma, ependymoma, pilocytic astrocytoma, adenocarcinomas, sarcomas, hemangioma, head and neck cancer, breast cancer, lung cancer, prostate cancer, kidney cancer, ovarian cancer, endometrial cancer, cervical cancer, colon cancer, rectal cancer, pancreatic cancer, esophagus cancer, basal cell cancer, penile cancer, vulva cancer, melanoma, uveal melanoma, lymphoma, acute myeloid leukemia, acute lymphoblastic leukemia, cholangiocarcinoma, hepatocellular carcinoma, soft tissue sarcoma, and osteosarcoma; a viral infection; a bacterial infection; an autoimmune disease and a genetic disease.


Preferably, in a method of treatment according to the invention, the drug treatment is supplemented with treatment with dietary compounds or phytochemicals.


The invention further provides for a medicament (drug) for use in the treatment of a subject suffering from or at risk of a disease or condition, wherein:

    • a method according to the invention is performed or requested to be performed, thus determining the susceptibility and/or resistance of the subject suffering from or at risk of a disease or condition for a drug to treat the disease or condition, and
    • administrating to a subject suffering from or at risk of a disease or condition with a drug where the disease or condition of the subject is susceptible to.


Preferably, in the medicament (drug) for use according to the invention, the disease or condition is at least one selected from the group consisting of a cancer, a viral infection, a bacterial infection, an autoimmune disease and a genetic disease.


Preferably, in the medicament (drug) for use according to the invention, the drug treatment is supplemented with treatment with dietary compounds or phytochemicals.


The invention further provides for method for the production of a medicament (drug) for the treatment of a subject suffering from or at risk of a disease or condition, comprising:

    • requesting performance or performing a method according to the invention, thus determining the susceptibility and/or resistance of the subject suffering from or at risk of a disease or condition for a drug to treat the disease or condition, and
    • treating the disease or condition of the subject with a drug where the disease or condition of the subject is susceptible to.


Preferably, in the method for the production of a medicament (drug) for the treatment according to the invention, the disease or condition is at least one selected from the group consisting of a cancer, a viral infection, a bacterial infection, an autoimmune disease and a genetic disease.


Preferably, in the method for the production of a medicament (drug) for the treatment according to the invention, the drug treatment is supplemented with treatment with dietary compounds or phytochemicals.


The invention further provides for a molecular inversion probe selected from the group as set forward in Table II. The invention further provides for a set of molecular inversion probes of at least two, three, four, five, six or more selected from the group as set forward in Table II.


The invention further provides for a library of circularized molecular inversion probes obtainable by a method according to the first or second aspect of the invention.


Definitions

In this document and in its claims, the verb “to comprise” and its conjugations is used in its non-limiting sense to mean that items following the word are included, but items not specifically mentioned are not excluded. In addition, reference to an element by the indefinite article “a” or “an” does not exclude the possibility that more than one of the element is present, unless the context clearly requires that there be one and only one of the elements. The indefinite article “a” or “an” thus usually means “at least one”.


The word “about” or “approximately” when used in association with a numerical value (e.g. about 10) preferably means that the value may be the given value (of 10) more or less 5% of the value.


The sequence information as provided herein should not be so narrowly construed as to require inclusion of erroneously identified bases. The skilled person is capable of identifying such erroneously identified bases and knows how to correct for such errors. In case of sequence errors, the sequence of the polypeptides obtainable by expression of the genes present in SEQ ID NO: 1 containing the nucleic acid sequences coding for the polypeptides should prevail.


All patent and literature references cited in the present specification are hereby incorporated by reference in their entirety.









TABLE II







Description of the sequences









Seq ID




NO:
Seq name
Sequence












1
ABAT_0817
CGTTGAATTTGATTATGATGGGCCTCTGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTTGTCCCTCAAGGGGTCA





2
ABAT_0820
CAACAGACCCGCCCTCGGAATCNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTTTACCTGGTTGATGTGGACGGC





3
ABAT_0823
CCTCTCCTTCATGGGCGCGTTCCATGGNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTAAAACGCCTTAAAGACCA





4
ABAT_0827
GCCTTCTTGGTGGACGAGGTCCAGACCGGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTGGAAAAAGAAGAAGAC





5
ABAT_0831
GATTCCATACGGAATAAGCTCATTTTAATNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTATAATGCAGCCCATGC





6
ACACA_3334
GCTCATTTTGGAGGAATAATGGATGANNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTAGAGGCCCAAATTGAGG





7
ACACA_3360
GCTGGGAAGTTAATCCAGTACATTGTAGANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTATGATGGCAGCAGTTA





8
ACACA_3375
CTCCTCCAACCTCAACCACNNNNNNNNCTTCAGCTTCCCGATATC




CGACGGTAGTGTTATTGCCTATGAACTTAACAGCGTAC





9
ACACA_3390
GCAATGACATCACATACCGAATTGGGNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTGGATGATCAAGGTCAGCTG





10
ACACA_3408
GCGCTGGTTTGTGGAAGTGGAAGGAACAGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTAAAACATCCCGTACCT





11
ACACB_0664
TCCCACCAGAAGCCCCCAANNNNNNNNCTTCAGCTTCCCGATATC




CGACGGTAGTGTTCTGATAACTCAGGGGAGACACCGCA





12
ACACB_0681
GCAGGGACAGTGGAATACCTCTATANNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTTGCTCCATCCAGCGGCGGCA





13
ACACB_0698
CCCAGAGCATCGTGCAGTTGGTCCAGANNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTCAGTATGCCAGCAACATC





14
ACACB_0714
CCACTGTCATCATGGACCCCTTCAAGATCNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCTTCGAATACCTGCAG





15
ACACB_0730
GCAGGCAGGACAGGTGTGGTTNNNNNNNNCTTCAGCTTCCCGATA




TCCGACGGTAGTGTAGACCGTGGTGACAGGACGA





16
ACLY_1628
ACCACCTCAGCCATCCAGNNNNNNNNCTTCAGCTTCCCGATATCC




GACGGTAGTGTTTCGTCGGGCCTGTGGAAGAAGCGCCG





17
ACLY_1636
GCTGACCTTGCTGAACCCCAAAGGGANNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTACTGCCGACTACATCTGCA





18
ACLY_1644
GCTCCCGAGACGAGCCCTCAGTGGCTNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTAAAGAAGGCCAAGCCT





19
ACLY_1652
GCCAAGAACCAGGCTTTGAAGGAAGNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTAAGGAGGGCCGCCTCACTAA





20
ACLY_1660
GCTCGATTATGCACTGGAAGTAGAGAAGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTGATGAAGAAGGAAGGGA





21
ACO2_0767
CCTGGATGACCCCGCCAGCCAGGAANNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTGGTGGCGATGAGCCACTTTG





22
ACO2_0773
CGGTGAAAGGTGGCACAGGTGCAANNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTGTGGATGTCATGGCTGGG





23
ACO2_0777
GCTGCACCAATTCAAGCTATGAAGATATGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTTGAGCTGAAGCCACAC





24
ACO2_0783
GCAAGGACCTGGAGGACCTGCAGATNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTAAGGGGAGTTTGACCCAGGG





25
ACO2_0787
CGAGACCAACCTGAAGAAACAGGGCNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTTGGCATCAGGTGGGTGGTG





26
ACSS2_1192
GCAATGAGCCAGGGGAGACCACTCAGATCNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTGACTAAAGGGAAAATC





27
ACSS2_1196
GCTGCATTGTGGTCAAGCACCTNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTTCTTGGATTCCAGCTGCAGTCTT





28
ACSS2_1202
AGCCTGTCACCAAGCATAGCCGNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTGTGTTTTGTTTGAGGGGATTCCC





29
ACSS2_1206
CGCTTTGAGACAACCTACNNNNNNNNCTTCAGCTTCCCGATATCC




GACGGTAGTGTTTTCCCATTCTTTGGTGTAGCTCCTGC





30
ACSS2_1210
CTTGCCTAAAACCCGCTCAGNNNNNNNNCTTCAGCTTCCCGATAT




CCGACGGTAGTGTTGCCTCTACTGCTTTGTCACCTTGT





31
ALDOA_0076
CACTGGGAGCATTGCCAAGCGGCTNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTAACTTGCTACTACCAGCACCA





32
ALDOA_0080
GCCATCATGGAAAATGCCAATGTTCTGGCNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTAGACTACCACCCAAGG





33
ALDOA_0082
GCTCTGAGTGACCACCACATCTACNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTTTATGCCAGTATCTGCCAGCA





34
ALDOA_0084
GAGGCGTCCATCAACCTCAATGCCATTNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTCCATGCTTGCACTCAGAA





35
ALDOA_0086
GCCTGTCAAGGAAAGTACACTCCGAGCGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTGCCCTGACCTTCTCCT





36
ARHGAP26_2921
GTGCATAGGAGATGCAGAAACAGATGATGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTGACAAGACCAACAAAT





37
ARHGAP26_2925
GTTTGTGGAGCCTCTGCTGGCCTTNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTCCAAAAAGAAAGAATCTCAGC





38
ARHGAP26_2931
GTGAAGGGACTGCGCAGTTGGACAGCATTNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTGGAAGCAGTAGACAGG





39
ARHGAP26_2939
CAGCATCCTTAATTCCAGCAGCNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTTGACTCCAAGCCCCCGTCCTGCA





40
ARHGAP26_2944
GTTCACAGCAGGCACGGTCTTCGATAACGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCATCCAAACCTGCACT





41
ATG4A_3103
GCTGGTATGGATCTTAGGGAAGCAGNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTCGTAGTCAAGTTGCCGGTGG





42
ATG4A_3107
CAGTTGCACAGGTGTTAAAAAAACTTGCNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTAAGAATACCAACGCATC





43
ATG4A_3110
GTGTTTTAAGATGCCACAGTCTTTAGGGGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTGCTTCAAACCAGAGTA





44
ATG4A_3112
TCCATTGCCTGCAGTCCCCACAGCGAATGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTAAAACCAAATAACGCG





45
ATG4A_3114
GCCAAGCCAGAAGTGACAACCACTGGGNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTCAAAGAAGAAAAAGACT





46
ATP5A1_1339
GCCCGCGTACATGGGCTGAGGAATGTTNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTCACTCATCTTCAAAAGAC





47
ATP5A1_1342
GAGTTGGTCTGAAAGCCCCCGGTATCATTNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTAGTGAAGAGGACAGGA





48
ATP5A1_1347
ATGTCTCTGTTGCTCCGCCGACCNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTATGCTGCCCCACTTCAGTACCT





49
ATP5A1_1350
GCTGCCCAAACCAGGGCTATGAAGCAGGTNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCTTACATTCCAACAAA





50
ATP5A1_1353
GCCTTGTTGGGCACTATCAGGGCTGATNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTGGCTATTGAAGAACAAGT





51
ATP5C1_0551
GCTGAGAGAGAGCTGAAACCAGCTCNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTCCGCAATGGATTCAAGTTCG





52
ATP5C1_0553
GTTATGCTTGTTGGAATTGGTGACAANNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTAAGACAAGAAGAAACACC





53
ATP5C1_0555
AAATTCAGGTCTGTCATCTCCNNNNNNNNCTTCAGCTTCCCGATA




TCCGACGGTAGTGTTTCTGACCAGTTTCTGGTGGCATT





54
ATP5C1_0557
GCCAGGATGACAGCCATGGACAATGCCNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTAAGTGCTGACAGCATGAG





55
ATP5C1_0559
GTTCCATCCTCAGACAAGAGGTAAAGAAGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTGAATGCTTCTGAGATG





56
BCAT1_0990
TAGTCACACCAGCTACCANNNNNNNNCTTCAGCTTCCCGATATCC




GACGGTAGTGTCCTTTTTTGTGTTTGCCTGGGTCCTGG





57
BCAT1_0993
GCTGTGAGGGCAACTCTGCCGGTATTTNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTCCCTGGCTCATCAGCTTT





58
BCAT1_0996
GTGGAACTGGGGACTGCAAGATGGGAGGGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCAAGAAGCCTACCAAA





59
BCAT1_0998
GCATCATTCTTCCAGGAGTGACANNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTTGGGTGTCAGCAGGTCCTGTG





60
BCAT1_1000
GCGAGACAATACACATTCCAACTATGGAGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTGTCAGAGAGATACCTC





61
BCAT2_1494
GCCCAGTGGGTGCCTACTTNNNNNNNNCTTCAGCTTCCCGATATC




CGACGGTAGTGTTCATCGAAGTGGACAAGGACTGGGTC





62
BCAT2_1497
GCCTGCCGAGTTTCGACAAGCTGGAGTTNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTGCCTCCACTACTCCCT





63
BCAT2_1499
GTGGGAATTATGGGCCCACCGTNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTCGCTCCTGTTCGTCATTCTCT





64
BCAT2_1501
GCCTGGAGTGGTCAGACAGAGTCTANNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTGGTCCTCTGGCTGTATGGG





65
BCAT2_1503
CCTGTACAAAGACAGGAACCTCCNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTTGGGGTGAGTTCCGGGTGGTGG





66
CA12_3467
CCTGATGGGGAGAATAGCTGGTCCAAGANNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTCAGGAGCCCGCGAAGA





67
CA12_3470
ACCCGCACGGCTCTGAGCACANNNNNNNNCTTCAGCTTCCCGATA




TCCGACGGTAGTGTAACAAGCAGTTTCTCCTGACCAAC





68
CA12_3472
CACCTTCAACATGTAAAGTACAAAGGCNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTCCATTATAACTCAGACCT





69
CA12_3474
GCTGCTGGCTTTGGAGACAGNNNNNNNNCTTCAGCTTCCCGATAT




CCGACGGTAGTGTAACATTGAAGAGCTGCTTCCGGAGA





70
CA12_3476
GTGGTGGTGTCCATTTGGCTTTTNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTCCCCCAGAGAAATGATCAACAA





71
CA9_1143
GCCCAGTGAAGAGGATTCACCCAGAGAGGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCTGCTGCTGTCACTGC





72
CA9_1145
GAGGCTCCTGGAGATCCTCAAGAACCNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTAGGATCCACCCGGAGAGGA





73
CA9_1148
CCCTCTGACTTCAGCCGCTANNNNNNNNCTTCAGCTTCCCGATAT




CCGACGGTAGTGTTGTTGGCCGCCTTTCTGGAGGAGGG





74
CA9_1150
GCGACGCAGCCTTTGAATGGGCGAGTGANNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTTGTGCCCAGGGTGTCA





75
CA9_1152
GCAGATGAGAAGGCAGCACAGAAGGGGANNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTTGGAGTGGACAGCAGT





76
CBR1_1512
GTTGCTGATCCCACACCCTTTCATATNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTTGAGCCCGCGCTTCCACCA





77
CBR1_1515
CCCCAAGCATCCTGCGTACTNNNNNNNNCTTCAGCTTCCCGATAT




CCGACGGTAGTGTTGGTCAACAACGCGGGCATCGCCTT





78
CBR1_1516
ATCTGCCGCTGCTTAACTCTGGGCCNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTTGCACAGAATTACTCCCTCT





79
CBR1_1517
GTCTTTGGTTGTAAACTGCTGTGATAGTTNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTAGGAGGAAAGTCCAAG





80
CBS_0094
CCCTGTGGATCCGGCCCGATGCTNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTTCCCAGCATGCCTTCTGAGACC





81
CBS_0099
GCTCTTGGCCAAGTGTGAGTTCTTNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTAGTCCCCACATCACCACACT





82
CBS_0102
CGGAGTCACACGTGGGGGTNNNNNNNNCTTCAGCTTCCCGATATC




CGACGGTAGTGTTGGCTGCGGCAGTGAGGGGCTAT





83
CBS_0107
GCAAGAGGGGCTGCTGTGCGGTGGCAGTGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTACCTACGAGGTGGAAG





84
CBS_0112
GCTCTCGCACATCCTGGAGATGGANNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTTGGGAATGGTGACGCTTGGG





85
CHKA_3492
ACACCACAGCCACCCTTGGTGATGANNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTGCAGGGCCTATCTGTGGTGC





86
CHKA_3494
GCCGGCGATTAGATACTGAAGAATTAAGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTTGCAGATGGGGGCTGAG





87
CHKA_3496
GCTCAGTTACAATCTGCCCTTGGAACTGGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTGGTATGAAAATGCCAT





88
CHKA_3499
CCAGTTACTTGCCTGCATTCCAAAATGANNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTGGGGATTCGACATTGG





89
CHKA_3501
GCAAGGTTTGATGCCTATTTCCACCAGANNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTAAAGAAGAAATGTTGC





90
CKB_1938
CCACCTGCGGGTCATCTCCATNNNNNNNNCTTCAGCTTCCCGATA




TCCGACGGTAGTGTACCACTTCCTCTTCGACAAGCCC





91
CKB_1940
GCGACGACCTGGACCCCAACTACGTGCTGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCGACGAGGAGTCCTAC





92
CKB_1945
GGACTATGAGTTCATGTGGAACCCTCANNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTTGGTGTGGGTCAACGAGG





93
CKB_1947
GCACAGGCGGTGTGGACACGGCTNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTCTACATCCTCACCTGCCCAT





94
CKB_1948
GTGGTGGACGGAGTGAAGCTGCTNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTAGGTGCTTAAGCGGCTGCGAC





95
CPT1A_0611
GGACTTCATTCCTGGAAAAAGAAGTTCNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTGCTGACTCGGTACTCTCT





96
CPT1A_0615
GATCTGGATGGGTATGGTCAAGATCTTTTNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTGTGCTGTTTGGCACCG





97
CPT1A_0621
GCACATGAGAGACAGCAAGCACATCGNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTAAACTGGACCGGGAGGAAA





98
CPT1A_0629
GCTGGCGCACTACAAGGACATGGGCAAGTNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTAACACCGCAAATCTTC





99
CPT1A_0633
GTTTGACTTGGAGAATAACCCAGAGTACGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCACCTCTTCTGCCTTT





100
CYCS_3031
GGTCTCTTTGGGCGGAAGACAGGTCAGNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTGCGACTAAAAAGAGAAT





101
CYCS_3032
GGGAGAGGATACACTGATGGAGTATTTGGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTACCGTTGAAAAGGGAG





102
CYCS_3033
GGAAGAAAGGGCAGACTTAATAGCTTATCNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTTACACAGCCGCCAATA





103
CYCS_3034
CTTTTTTATGTGTACCATCCTTTAATAGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTTGATCTTTGTCGGCATT





104
EGLN1_3069
CGGGCAGCTGGTCAGCCAGAAGAGTGNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTGAGTACATCGTGCCGTG





105
EGLN1_3075
GGAACGGGTTATGTACGTCATGTTGNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTGGCTGCGAAACCATTGGG





106
EGLN1_3077
GATAGACTGCTGTTTTTCTGGTCTGNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTGGAGATGGAAGATGTGTG





107
EGLN1_3079
GGTCGGTAAAGACGTCTTCTAGAGCCNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTGCATATGCTACAAGGTACG





108
EGLN1_3080
GTGAATACGAATAAATGGGATAAAGANNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTGGTGAAAAAGGTGTGAGGG





109
ENO1_1724
GCTGTGCCCAGTGGTGCTTCAACTGGTANNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTAGACCCAGTGGCTAGAA





110
ENO1_1728
GCGGTTCTCATGCTGGCAANNNNNNNNCTTCAGCTTCCCGATATC




CGACGGTAGTGTTTCTGGGGGTGTCCCTTGCCGTCTG





111
ENO1_1732
GCCTGACCAGCTGGCTGACCTGTACAANNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTTTGGGAAAGCTGGCTACA





112
ENO1_1735
GCCAATGGTTGGGGCGTCATGGTGTCTCNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTACAGTGACCAACCCAAA





113
ENO1_1737
CGGCAGGAACTTCAGAAACCCCTTGNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTTGACCTGGTTGTGGGGCTGT





114
FASN_2387
CCCAGCCCCCACCCACAANNNNNNNNCTTCAGCTTCCCGATATCC




GACGGTAGTGTTCCACAGCCTGGCTGCCTACTACATC





115
FASN_2394
CGTGGAGCAGCTGAGGAAGGAGGGTGTNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTTGGCAGCCGTGGGCTT





116
FASN_2423
GCCATCCAGATAGGCCTCATAGACNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTCTTCCGAGATTCCATCCTAC





117
FASN_2438
GCGTTCTTCAACGAGAGCAGTGCTGANNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTGCGTGAGGTGCTTGGCT





118
FASN_2445
GTGCTGGCTGAGAAGGCTGNNNNNNNNCTTCAGCTTCCCGATATC




CGACGGTAGTGTGTGGGCATTTTGGTGGAGACGAT





119
FASN_2447
GGGCCTAGAGGAGCGTGTGGCAGCNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTAGAGCTACCGGGCAAAG





120
G6PC_0139
GCTGTGGGCATTAAACTCCTTTGGGTAGCNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCAACACATTACCTCCA





121
G6PC_0142
GCCGACCTACAGATTTCGGTGCTTGNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTGATAAAGCAGTTCCCTGTA





122
G6PC_0144
GCATCTATAATGCCAGCCNNNNNNNNCTTCAGCTTCCCGATATCC




GACGGTAGTGTTGGTTGGGATTCTGGGCTGTGCAGCTG





123
G6PC_0146
CACCCTTTGCCAGCCTCCTNNNNNNNNCTTCAGCTTCCCGATATC




CGACGGTAGTGTTTACCTTCTTCCTGTTCAGCTTCGCC





124
G6PC_0148
CGTCTTGTCCTTCTGCAAGAGTGCGGTNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTAGAGCTGCAAGGGGAAA





125
G6PD_0394
CAGAGTGAGCCCTTCTTCAAGGCCACCCCNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTACCTGGCCAAGAAGAA





126
G6PD_0397
ACCTGCAGAGCTCTGACCGGCTGTCNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTCCAACCGCCTCTTCTACCT





127
G6PD_0401
GTACGTGGGGAACCCCGATGGAGANNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTTGCAGATGCTGTGTCTGGTGG





128
G6PD_0405
GACGTCTTCTGCGGGAGCCAGATGCANNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTACACCAAGATGATGACCAA





129
G6PD_0407
CCAGTATGAGGGCACCTACAAGTGNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTGTGAGGCCTGGCGTATTTTC





130
GAD1_0451
GAAGAGTCGCCTTGTGAGTGCCTTCAANNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTACCCCAATACCACTAACC





131
GAD1_0455
GCACAGGTCATCCTCGATTTTTCAACCANNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTACTTTCATCACCCACAC





132
GAD1_0459
GATAAAGTGCAATGAAAGGGGGAAAATANNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTGGAAGTTAAGACAAAGG





133
GAD1_0463
GATGTCTCCTACGACACCGGGGACAAGGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTAACCCTCACAAGATGA





134
GAD1_0467
TTCCGGATGGTCATCTCCAACCCAGCCNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTTGTGCCAGACAGCCCTCA





135
GAPDH_1973
CCCCTTCATTGACCTCAACTACATGGTTTNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCCACATCGCTCAGACA





136
GAPDH_1975
GCTGGCGCTGAGTACGTCGTGGAGTNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTCAATATGATTCCACCCATGG





137
GAPDH_1978
CCATCACTGCCACCCAGAAGACNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTATGAGAAGTATGACAACAGCCTC





138
GAPDH_1980
GCCAACGTGTCAGTGGTGGACCTNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTTGTGGCGTGATGGCCGCGGGG





139
GAPDH_1982
GCATTGCCCTCAACGACCACTTTGTCAANNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTAGAAGGTGGTGAAGCAG





140
GCLC_1788
GAAAATAAAAAAGTCCGGTTGGTCCTGTCNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTACCACGTGCGGCGGCA





141
GCLC_1792
CCTCGCTTCAGTACCTTAACNNNNNNNNCTTCAGCTTCCCGATAT




CCGACGGTAGTGTCTCTTTGCACAATAACTTCATTTCC





142
GCLC_1796
GATCAGTAAATCCCGATATGACTCAATAGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTTCTCCCTTTTACCGAG





143
GCLC_1800
CCTACAAATTGGATTTTCTCATTCCACTGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCCCTCCTCCAAACTCA





144
GCLC_1804
GAACTAATGACAGTTGCCAGATGGATGNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTGGAAGGTGTGTTTCCTGG





145
GCLM_1678
GAAATGAAAGTTTCTGCAAAACTGTTCATNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTTGCTGAACTGGGGCCG





146
GCLM_1680
GCAAAAAGATTGTTGCCATAGGTACCNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTTTCAGTCCTTGGAGTTGCA





147
GCLM_1682
GCTTTCTGAAGCAAGTTTCCAAGAAGCNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTCACAGGTAAAACCAAATA





148
GCLM_1683
GCTACTGCGGTATTCGGTCATTGTGAAANNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTACAATTTGACATACAGC





149
GCLM_1684
CTTACCTGTAATTTCCTTCAATATGAGAGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTGAGTGGGTGCCGCTGT





150
GFPT1_1220
GCACTGGATGAAGAAGTTCACAAGCNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTGGCCTTCAGAGACTGGAGTA





151
GFPT1_1224
GCCCTCTGTTGATTGGTGTACGGAGTGNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTGAAAGTCAAGATACCA





152
GFPT1_1228
CACTCCAGATGGAACTCCAGCAGATCANNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTATAGAACACACCAATCGC





153
GFPT1_1234
GTTTGCCCTTATGATGTGTGATGATCGGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTCACAAACACAGTTGGCA





154
GFPT1_1238
GCTCTTCAGCAAGTGGTTGCTCGGNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTTACTTATATGCACTCTGAAGG





155
GLDC_0162
GACGGTCCCTGCCAACATCCGTTTGAAAANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCTGGAGCGCCTTCTGC





156
GLDC_0168
CAGACACGGAGGGGAAGGTGGAAGACTTNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTACCCACAGACAATAGC





157
GLDC_0177
GCATGATTCCACTGGGATCCTGCACCANNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTGGGTCTGTGTTCAAGAGG





158
GLDC_0183
GCCCTGGAGACTTCGGGTCTGATGTCTNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTACATACCCATCCACCAA





159
GLDC_0189
ACTGAGTCGGAGGACAAGGCAGAGCTGGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTACGAGACCCTTCAAAAA





160
GLS_1282
GCTGAAGGACAAGAGAAAATACCTGNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTAAGGACGGCCCCGGGGAGA





161
GLS_1285
GGTTGCAGATTATATTCCTCAACTGGCCANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCAGAGCAACATTGTTT





162
GLS_1288
GCTGGAGCAATTGTTGTGACTTCACNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTGCCATTGCTGTTAATGATCT





163
GLS_1292
GCAGTTCGAAATACATTGAGTTTGATGCANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTTAGACTTCTACTTCCA





164
GLS_1295
GAAGGTGGTGATCAAAGGCATTCCTTTGGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCTCTGGATAAGATGGG





165
GLUD1_2495
GCGGCATCCTGCGGATCATCAAGCCCTGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTACGACCCCAACTTCTT





166
GLUD1_2501
GTGAGCGGGAGATGTCCTGGATCGCTGATNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCAATCCCAAGAACTAT





167
GLUD1_2504
GCTAAATGTATTGCTGTTGGTGAGTCTNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTCATCAATGAAGCTTCTTA





168
GLUD1_2507
GCTGACAAGATCTTCCTGGAGAGAAACANNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTTTGGAGGCCGACTGTG





169
GLUD1_2510
GCACTCTGGCTTGGCATACACAATGGAGCNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTTTGCTCATGTCTGTTC





170
GLUD2_2853
GCGAGGAGCAGAAGCGGAACCGGGTNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTACTACAGCGAGTTGGTGG





171
GLUD2_2856
ACCGAAAATGAATTGGAAAAGATCACAAGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTGCACTGATGTGAGTGT





172
GLUD2_2859
GCATTTTAGGAATGACACCAGGGTTTAGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTATGCACACGCCTGTGTT





173
GLUD2_2862
TCGACTGTGACATACTGATCCCAGCTNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTGTCTGATGGGAGTATATGG





174
GLUD2_2867
GCCAGGCAAATTATGCACACAGCCATGAANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTAATTTGGAAAGCATGG





175
GOT_1990
GACCCCCGCAAGGTCAACCTGGGAGNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTGGGCGTGGGGTGAAAT





176
GOT_1993
CAAACAACAAGAACACACCNNNNNNNNCTTCAGCTTCCCGATATC




CGACGGTAGTGTGTGCTTCTCGTCTTGCCCTTGGGG





177
GOT_1996
GACTCAGCCTATCAGGGCTTCGCATCNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTCTCCTGAGTTCTCCATTG





178
GOT_1998
CCTGCAAGTCCTTTCCCAGNNNNNNNNCTTCAGCTTCCCGATATC




CGACGGTAGTGTTGCCTGGGCCATTCGCTATTTTGTGT





179
GOT_2000
AGCCCTCAAAACCCCTGGGACCTGGAANNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTAGGGAGCACGAATTGTGG





180
GPI_1522
GCTTTGACCAGTGGGGAGTGGAGCTGGGANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTTGAAGGAAATCGCCCA





181
GPI_1523
GCTCATCAACTTCATCAAGCAGCAGNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTCATCATCTGGGACATCAACA





182
GPI_1524
GTGCTCATCTGCAGCCTCCTCTGTNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTAAGCAGCTGGCTAAGAAAATA





183
GPT_2527
GGAGCTGCGCCAGGGTGTGAAGAANNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTGGAGCCAGGCGGTGAG





184
GPT_2528
GCATGGACTGAGGGCGAAGGTGCTGACGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTCACTAAGCCAGACCCA





185
GPT_2536
GGGCAGAGGCCCATCACCTTNNNNNNNNCTTCAGCTTCCCGATAT




CCGACGGTAGTGTGGAGAGTGGAGTACGCAGTGCGTGG





186
GPT_2537
CGATGCCAAGAAAAGGGCGGAGNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTTTTCACCGAGGTCATCCGTGCC





187
GPT_2540
GCTGGGTCGCCCTGGACTGTGTNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTAAGGCACCTACCACTTCC





188
GS_0645
TGGAGAAGGACTGCGCTGCAAGACCCGNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTAACGAACACCTTCCACCA





189
GS_0648
ACATGGTGAGCAACCAGCACCCNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTTCGTGCCTGCTGCCATGTTTCGG





190
GS_0650
GCTTGTATGCTGGAGTCAAGATTGCGGNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTACAGATGGGCACCCCTTT





191
GS_0653
CGAGGAGGCCATTGAGAAACTAAGCNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTGTGTGAAGACTTTGGAGTG





192
GS_0656
CCTCATCCGCACGTGTCTTCTCNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTCTTTTCTGCTGGTGTAGCCAATC





193
GSS_0206
GCTGTCAGCCAGAACGCTGCCTNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTACCTCACAGGAGCCCACTTCCT





194
GSS_0208
GCAGCGCAGATGGCTCCCCAGCCCTGAAANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCAGCACCATCAAACAG





195
GSS_0212
GCTGTTTGTGGATGGCCAGGAAATTGNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTGAGAAGGAAAGAAACATAT





196
GSS_0215
GATGTGGGTGAAGAAGGGGACCAGGCCATNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTTGGCTGGGACTAAGAA





197
GSS_0218
GCAGGAAAAGACACTCGTGATGAACAANNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTCCTCCTACATCCTCAT





198
HIF1A_1815
GTTTTTTATGAGCTTGCTCATCAGTTGCCNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTGCGGGGACCGATTCAC





199
HIF1A_1821
GCTTGGTGCTGATTTGTGAACCCATTNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTCCGAGGAAGAACTATGAAC





200
HIF1A_1827
GATGCTTTAACTTTGCTGGCCCCAGCNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTCCCTTCAACAAACAGAATG





201
HIF1A_1833
CACCATTAGAAAGCAGTTCCGCAAGCCCTNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTTGCTGAAGACACAGAA





202
HIF1A_1839
GCAGCTACTACATCACTTTCTTGGAAACGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTAAGAACTAAATCCAAA





203
HIF2A_1750
GCCTCCATCATGCGACTGGCAATCAGCTTNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTAGAGGAGGAAGGAGAA





204
HIF2A_1754
CACGGTCACCAACAGAGGCCNNNNNNNNCTTCAGCTTCCCGATAT




CCGACGGTAGTGTATCTTTGACTTCACTCATCCCTGCG





205
HIF2A_1760
GGACCAGACTGAATCCCTGTTCNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTTGGGGGCTACGTGTGGCTGG





206
HIF2A_1768
GTCTGCAAAGGGTTTTGGGGCTCGAGGNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTCAGATCCACCATTACA





207
HIF2A_1772
TTCCCCCCACAGTGCTACGCCANNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTCTGAGCGCAAATGTACCCAATG





208
HK1_0224
TGGCCTCTCCCGGGATTTTAATCCAACNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTCCTATTACTTCACGGAGC





209
HK1_0230
GCACATTGATCTGGTGGAAGGAGACGNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTAACATCGTAGCTGTGGTGA





210
HK1_0236
GCGCTTCCTCCTCTCGGAGAGTGGCAGNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTATAACAAGGGCACACCCA





211
HK1_0242
GCGGGAATCTTGATCACGTGGACAANNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTGGGGAAGAGCTGTTTGATCA





212
HK1_0248
GCTATCCTCCAGCAGCTAGGTCTGAANNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTACTTCACCAAGAAGGGATT





213
HK2_0268
CTACCACATGCGCCTCTCTGATNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTTCTCGCGTCTCCGCCTCGGTTTC





214
HK2_0274
GTTGGGACCATGATGACCTGTGGTTATGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTTCATGGACCAAGGGAT





215
HK2_0283
GCTGGTCCGTGTTCGGAATGGGAAGTGGGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTAAGGAGACTCATGCCA





216
HK2_0291
GTCTCAGATTGAGAGTGACTGCCTGGCNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTGTGGAATGTACCTGGGTG





217
HK2_0295
GCGGCGCTCATCACTGCTGTGGNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTGTGGGTGTGGATGGGACCCTCTA





218
HK3_2013
CGTCTGTGCGGCCGTGTGNNNNNNNNCTTCAGCTTCCCGATATCC




GACGGTAGTGTTGAGCCAAGGCAGCATCCTCCTG





219
HK3_2028
CTCTTTCCCTTGTCACCAGACGGNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTTTTGTGATCCCCCAAGAGGTG





220
HK3_2032
CGGAGGCCTGTACCTGGGTGAGCTNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTTCTGCGTCAGCGTCGAGT





221
HK3_2041
GGCCTCATTGTCGGAACCGGCANNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTGATGTCGTGAGTCTGTTGCGGG





222
HK3_2045
GAGATCGAAAGTGACAGCCTGGCCCTGCNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTATGTACCTGGGGGAGA





223
Housekeeping_
GCCCAGAGCAAGAGAGGCATCCTNNNNNNNNCTTCAGCTTCCCGA



ACTB_0800
TATCCGACGGTAGTGTGCATGTGCAAGGCCGGCTT





224
Housekeeping_
GAAGATGACCCAGATCATGTTTGAGACCTNNNNNNNNCTTCAGCT



ACTB_0802
TCCCGATATCCGACGGTAGTGTACCAACTGGGACGACA





225
Housekeeping_
GCTACGTCGCCCTGGACTTCGAGCAAGANNNNNNNNCTTCAGCTT



ACTB_0805
CCCGATATCCGACGGTAGTGTTGCGTCTGGACCTGGCT





226
Housekeeping_
ACCACCATGTACCCTGGCATTGCCGACANNNNNNNNCTTCAGCTT



ACTB_0808
CCCGATATCCGACGGTAGTGTTTCCAGCCTTCCTTCCT





227
Housekeeping_
GTGGATCAGCAAGCAGGAGTATGACGANNNNNNNNCTTCAGCTTC



ACTB_0810
CCGATATCCGACGGTAGTGTAGAAGGAGATCACTGCC





228
Housekeeping_
GCTCAGGTCCTTTTGGCCAGATCTTNNNNNNNNCTTCAGCTTCCC



TUBB_1551
GATATCCGACGGTAGTGTGAGGCGAGCAAAAAAATTAA





229
Housekeeping_
GCCTTCACCCAAAGTGTCTGACACNNNNNNNNCTTCAGCTTCCCG



TUBB_1554
ATATCCGACGGTAGTGTACTGCCTGCAGGGCTTCCAGC





230
Housekeeping_
GTCCCCTTCCCACGTCTCCATTTCTTTATNNNNNNNNCTTCAGCT



TUBB_1557
TCCCGATATCCGACGGTAGTGTTGACCACACCAACCTA





231
Housekeeping_
GTGGTCGGATGTCCATGAAGGAGGTCGATNNNNNNNNCTTCAGCT



TUBB_1559
TCCCGATATCCGACGGTAGTGTAAGCCAGCAGTATCGA





232
Housekeeping_
GCCGAAGAGGAGGCCTAAGGCAGAGNNNNNNNNCTTCAGCTTCCC



TUBB_1563
GATATCCGACGGTAGTGTTACACAGGCGAGGGCATGGA





233
IDH3A_2545
GCCATTCAAGGACCTGGAGGAAAGTGGANNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTGGTGGTGTTCAGACAGT





234
IDH3A_2546
TAGCAGCCGGTCACCCATCTATGAANNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTTTCAGTGGGAGGAGCGG





235
IDH3A_2547
CCCCTTACACCGATGTAAATATTGTGNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTGGGCTTGAAAGGCCCTTTG





236
IDH3A_2548
CGTGCAGAGTATCAAGCTCATCACCGAGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTTGTCCGACCATGTGTCT





237
IDH3A_2549
CGGAGCAACGTCACGGCGGTGCACANNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTGAAGGAGAATACAGTGG





238
IDH3A_2550
GAGATGTACCTTGATACAGTATGNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTATGCCCGGAACAACCAC





239
IDH3A_2551
GTGACTTGTGTGCAGGATTGATCGGAGNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTGCAGAAAGCTGTAAAGAT





240
IDH3A_2552
GTCGGTTCATGGGACGGCTCCNNNNNNNNCTTCAGCTTCCCGATA




TCCGACGGTAGTGTCCCAATTTGATGTTCTTGTTATGC





241
IDH3A_2553
GATGCTGCGCCACATGGGACTTTTTGACCNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTACACCAAGTGGCAACA





242
IDH3A_2554
GCAAAATGCTCAGACTTCACAGAGGANNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTTCCTGCTCAGTGCCGTGAT





243
IDH3A_2555
TCTACAACTGGCATTTACATCAGTCACNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTGAGGCTGCGTGTTTTG





244
IDH3B_2791
GCTGAGTTCCATGAAGGAGAACAANNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTGTGTGGGGCCTGAGCTGATG





245
IDH3B_2792
GCGGCTGAGGCGTAAGTTGGACTTATTTNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTGAATATGGCATCTGAGG





246
IDH3B_2793
GTGATCATTCGAGAGCAGACAGAAGGGNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTGGAGTATAAGGGGGAG





247
IDH3B_2794
GCGGATTGCAAAGTTCGCCTTTGACTATGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCACAACAATCTAGACC





248
IDH3B_2795
GAAACTTGGGGATGGGTTGTTCCTNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTGGGGTGTGATTGAGTGTTTG





249
IDH3B_2796
GTGCAGAATCCTTACCAGTTTGATGTGCTNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTACAAGGCCAACATCAT





250
IDH3B_2797
GCTGGTGTGGTCCCTGGTGAGAGCTNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTGAGACAATGATCATAGACAA





251
IDH3B_2798
GCCATGCTGCTGTCGGCTTCNNNNNNNNCTTCAGCTTCCCGATAT




CCGACGGTAGTGTTGGCTGCTGGCCTGGTTGGGGG





252
IDH3B_2799
GCAAGGTGCGGACTCGAGACATGGNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTGCAGTGGGCAGGAATATAG





253
IDH3B_2800
GCCCTTTATTTCTTCCAACCTTGCAAGGANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTAGATGCGGTGAAGAAG





254
IDH3G_3240
GCACACGGTGACCATGATCCCAGGGGATNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTGAAGGCGGTGCTCGGG





255
IDH3G_3241
GTACCAGTGGACTTTGAAGAGGTGCACGTNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCAGAACAAACAATTCC





256
IDH3G_3242
GCCCTGAAGGGCAACATCGAAACNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTTGCTGCATGTCAAGTCCGTCTT





257
IDH3G_3243
CGTCATCCACTGTAAGAGCCTTCCNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTATGCCATCATGGCCATCCGCC





258
IDH3G_3244
GTACAGCAGCCTGGAGCATGAGAGTNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTAAACAACATCCTTCGCACCA





259
IDH3G_3245
GCATTGCCGAGTATGCCTTCAAGCTGGCGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCAAGGACATAGACATC





260
IDH3G_3246
GCTTTTCCTCCAGTGCTGCAGGGAGGTGGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTAAGATCATCACCAAGG





261
IDH3G_3247
CGGCCCCAGCAGTTTGATGTCATGGTGATNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCCAACATCATGAAACT





262
IDH3G_3248
GTGGCTGGGGCCAACTATGGCCATGTGTANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTTGGATAACACCACCAT





263
IDH3G_3249
CCAACCCCACGGCCACCCTNNNNNNNNCTTCAGCTTCCCGATATC




CGACGGTAGTGTTCGTCAACAATGTCTGCGCGGGACTG





264
IDH3G_3250
GCTGTCCTGGCATCCATGGACAATGAGNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTTACGAGGAACACCGGCAA





265
IDH3G_3239
CACTGACCACAGCCCCCANNNNNNNNCTTCAGCTTCCCGATATCC




GACGGTAGTGTTGCACTCCTATGCCACCTCCATCCGT





266
L2HGDH_3084
GTCATCGTTGGTGGCGGANNNNNNNNCTTCAGCTTCCCGATATCC




GACGGTAGTGTTTTGGTTGGTGCCTGCGGACGGG





267
L2HGDH_3085
GTTCTGGAAAAGGAGAAAGATTTAGCTGTNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTTGTGTGGAGGTAGCCG





268
L2HGDH_3086
TGTGTACAAGGTGCAGCCCTCCTCTNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTCATCCATCACTTTCTATTGG





269
L2HGDH_3087
TTCCCAGACTTCAGGCCCNNNNNNNNCTTCAGCTTCCCGATATCC




GACGGTAGTGTTATTATAAACCTGAGTCTCTGAAAGCC





270
L2HGDH_3088
GCCATATTGTAGGGGTCTAATGGCTATTGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTAAGCTTATAGTAGCTG





271
L2HGDH_3089
GCAGGTGGCTCTGTCTTGNNNNNNNNCTTCAGCTTCCCGATATCC




GACGGTAGTGTGAGGCTGATCCAGCAGGAGGAT





272
L2HGDH_3090
GAATACAAAGGGAGAGGAAATTCGATGTCNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTGCCCAGGATTTCCAAG





273
L2HGDH_3091
GGCTGCACTCCTGATCCTCGAATTGNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTCCTTCAAGAAGTATAGATGG





274
L2HGDH_3092
GCCGGTTTCCTTTCCTAGGAGTTCNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTGACCGTATTTCAGAGTTGAGT





275
L2HGDH_3093
CCCTTTGACTTCAGTGCCACAGATGNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTGGAAATATTTATCCGGTCCC





276
L2HGDH_3094
GCATGTTTTCTTGGTGCAACAGTGAAGTNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTAAACGAGAGGGTTACAG





277
L2HGDH_3095
GCCCAGCTGGAGTAAGAGCCCAGNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTGATTAAACTGGCATCCCAGAAT





278
L2HGDH_3096
GGGGATATTGGAAATCGCATTCTTCATGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTCTTCAAAAATTCATCCC





279
L2HGDH_3097
GCAGATGAAGTACAACAAAGATTTGNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTGATGGAAATCTGGTAGAAG





280
L2HGDH_3098
GCAACAAGAATGTACTAATTGCATTCTTTNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTGCACCTTCTCCTGCTG





281
LDHA_0840
GCATGGCCTGTGCCATCAGTATCTNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTGCATTCCCGATTCCTTTTGGT





282
LDHA_0842
GTTATTGGAAGCGGTTGCAATCTGGANNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTTGAAGGGAGAGATGATGGA





283
LDHA_0844
GCACCCAGATTTAGGGACTGATAAAGANNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTTAATGGGGGAAAGGCTGG





284
LDHA_0846
GGATGATGTCTTCCTTAGTGTTCCTTGNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTAACTCAAAGGCTACACAT





285
LDHA_0848
GCATGTTGTCCTTTTTATCTGATCTGTGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTGGCCCGTTTGAAGAAGA





286
LDHB_0954
GTTGGTATGGCGTGTGCTATCAGCATTCNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTAAAACCAGGCCCTACT





287
LDHB_0956
GCAAGAAGGGGAGAGTCGGCTCAATCNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTAAAGGAGAAATGATGGATC





288
LDHB_0959
GTGTGGCTGTGTGGAGTGGTGTGNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTCAAACACCGCGTGATTGGAA





289
LDHB_0961
GTGTGGCTGATCTTATTGAATCCATGTTGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTGAATCCAGAAATGGGA





290
LDHB_0963
GCTCAAGAAAAGTGCAGATACCCTGTGGGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTACAATGGTAAAGGGGA





291
MAPK8_1429
CCTATAGGCTCAGGAGCTCAAGGAATAGTNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTGGATGAAGCCATTAAA





292
MAPK8_1432
GCAAATCTTTGCCAAGTGATTCAGATGNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTCAGAGAGCTAGTTCTTAT





293
MAPK8_1435
CGTTGACATTTGGTCAGTTGGGTGNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTGCACTTTGAAGATTCTTGACT





294
MAPK8_1438
GCTGGTAATAGATGCATCTAAAAGGATCTNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTGAAAACAGACCTAAAT





295
MAPK8_1441
GCTCTCAGCATCCATCATCATCGTCGTCTNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTGGAACACACAATAGAA





296
MYC_2089
CGACTCGGTGCAGCCGTATTTCTNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTCTTCTCTGAAAGGCTCTCCTTG





297
MYC_2090
TTCGAGCTGCTGCCCACCCCNNNNNNNNCTTCAGCTTCCCGATAT




CCGACGGTAGTGTACAGGAACTATGACCTCGACT





298
MYC_2093
TCTGTGGAAAAGAGGCAGGCTCCNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTTGCTCTCCTCGACGGAGTCCT





299
MYC_2094
CTGGTCCTCAAGAGGTGCCACGTCTNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTGAGGAGGAACAAGAAGA





300
MYC_2095
CAGTGTCAGAGTCCTGAGACAGATCAGNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTACAGCAAACCTCCTCACA





301
MYC_2096
GCGCCAGAGGAGGAACGAGCTAAAACGGANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTAAGAGGGTCAAGTTGG





302
MYC_2097
AGCCACAGCATACATCCTGTCCGTCCNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTCGAACACACAACGTCTTGG





303
MYC_2098
CTTGAACAGCTACGGAACTCTTGTGCGNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTGGCCCCCAAGGTAGTTAT





304
MYC_2099
CCTTCTAACAGAAATGTCCTGAGCAATCANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTAAGCAGAGGAGCAAAA





305
NAMPT_2562
CTTTGAATGCCGTGAAAAGAAGACAGAANNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTTGTCCTCCGGCCCGAGA





306
NAMPT_2565
GGAAATGTTCTCTTCACGGTGGAAAACACNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTACAAAGAACATTTCCA





307
NAMPT_2568
GTAGCAGGACTTGCTCTAATTANNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTGAAACTTCTGGTAACTTAGATGG





308
NAMPT_2572
GCCACCTTATCTTAGAGTTATTCAAGGGGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTACACAGGCACCACTAA





309
NAMPT_2575
CGCCAGCAGGGAATTTTGTTACACTGGNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTCTCTTGAATTGTTCCTTC





310
NAPRT1_3185
GCCCAGGTGGAGCCACTANNNNNNNNCTTCAGCTTCCCGATATCC




GACGGTAGTGTTTTCCGGCTCCTGGGCTCTGACGGGT





311
NAPRT1_3193
GTTCCAGGTGCCCTGGCTGGAGTNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTAACTTCCTAGCAGTCGCCCT





312
NAPRT1_3194
GTCATTGGCATTGGCACCAGTGTGGTCANNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTGTCTTCCGAGCTGCTG





313
NAPRT1_3195
CGAGGACCCCGAGAAGCAGACGTTGCCTGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTGAGGGCAGTGAGGTGA





314
NOX1_2825
GCCTTCCTGAAATATGAGAAGGCCGNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTTCTTCCCTGTTGCCTAGAAG





315
NOX1_2829
CCCATCCAGTCCCGAAACACNNNNNNNNCTTCAGCTTCCCGATAT




CCGACGGTAGTGTCTATTCACATCATTGCACACCTGTT





316
NOX1_2833
GCACCGGTCATTCTTTATATCTGTGNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTGAGAGCATGAATGAGAGTCA





317
NOX1_2837
GCTGGTTGGAGCAGGAATTGGGGTNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTCAGCAGGGGACTGGACAGAAA





318
NOX1_2841
GTCTGTAGTGGGAGTTTTCTTATGTGGCCNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTGGTCATGCAGCATTAA





319
NOX3_2954
CGAGTTATTTTGGGTTCAACACTGGCNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTTGGGGTGCTGGATTTTGAA





320
NOX3_2958
CCCCACAAACACAACCACNNNNNNNNCTTCAGCTTCCCGATATCC




GACGGTAGTGTACATCGTGGCGCATTTCTTCAACCTGG





321
NOX3_2962
GCGATTTCAACAAGAAGTTGTCATTACCANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTGCAGAATGGCAGACAG





322
NOX3_2966
GCGTTGCCGCGGGGATCGGAGTCACTCNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTCTACTGGAGGCCTTTGG





323
NOX3_2970
CAAGCAGATTGCCTACAATCACCCCANNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTTTTCTTACCGGCTGGGATG





324
NOX4a_3007
GTCCTGCTTTTCTGGAAAACCTTCNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTTCCTTCTCGGTCCGGCGGGCA





325
NOX4a_3011
ACTTCTCTTCACAACTGTTCCTGGNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTCTATCTGTATTTTCTCAGGCG





326
NOX4a_3015
GCCCAGATTCCAAGCTAATTTTCCACNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTACCAGCTCTCAGAATATTT





327
NOX4a_3019
GAAATTCTGCCCTTCATTCAATCNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTATCATCCATTTACCCTCACAAT





328
NOX4a_3023
CGGTGGAAACTTTTGTTTGATGAAATAGCNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTGGCAAGAGAACAGACC





329
NQO1_0486
GCGGCTTTGAAGAAGAAAGGATGGGANNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTAACCACGAGCCCAGCCAAT





330
NQO1_0488
GCTGGAAGCCGCAGACCTTGTGATATTCNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTCATTTCCAGAAAGGACA





331
NQO1_0490
CATCACCACTGGTGGCAGTGGCTCCATGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTGTGGTTTGGAGTCCCTG





332
NQO1_0492
GCCCGAATTCAAATCCTGGAAGGATGGAANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTAAGGGATCCACGGGGA





333
NQO1_0494
CAAGTCCATCCCAACTGACAACCNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTACACCACTGTATTTTGCTCCAA





334
OGDH_0591
GATTCGGTGCTATTCTGCACCTGTTGNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTAAAAACTTCAGGACAAAAA





335
OGDH_0592
GCTGGAAAACCCCAAAAGTGTACATAAGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTACAAAACAGACCAGCAG





336
OGDH_0593
CTGCCTACCAGAGTCCCCTTCNNNNNNNNCTTCAGCTTCCCGATA




TCCGACGGTAGTGTCCCTTTCTCAGTGGGACTAGTTCG





337
OGDH_0595
GCTGATCTGGACTCCTCCGTGCCCGCTGANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTTAGAAGCACAGCCCAA





338
OGDH_0596
TTCCACTTGCCCACCACCACNNNNNNNNCTTCAGCTTCCCGATAT




CCGACGGTAGTGTACCATGTAGCACAGCTGGACCCCCT





339
OGDH_0597
GCATATTGGGGTGGAGTTCATGTTCATNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTATGGCCTGGATGAGTCTG





340
OGDH_0598
GCAGTTCACAAATGAGGAGAAACGGACNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTTGCGGGAGATCATCCG





341
OGDH_0599
GCTTTGGTCTAGAAGGCTGCGAGGTACTNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTAGAAGTTTGAGACCCCT





342
OGDH_0600
GAGGGCGGCTGAACGTGCTTGCAAATNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTGAAGTGGTCCTCTGAGAAG





343
OGDH_0601
GCTGATGAGGGCTCCGGAGATGTGAAGTNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTGAGAATGGCGTGGACT





344
OGDH_0602
CTTGTCCTTGGTGGCCAACCCTTCNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTAGCTGGAACAGATCTTCTGTC





345
OGDH_0603
GCGACACTGAAGGGAAAAAGGTAAGGCCNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTACCGCAGGATCAATCGT





346
OGDH_0604
GGAGTTCCGCTCACCAACATAACCCAGANNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTTGACCCCGTGGTGATGG





347
RARP1_1853
AGCATCCCCAAGGACTCGCNNNNNNNNCTTCAGCTTCCCGATATC




CGACGGTAGTGTTGTTTCTAGGTCGTGGCGTCGGGCTT





348
RARP1_1859
GAGTGGATGAAGTGGCGAAGAAGAAATCTNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCGAGTACAGTGCGAGT





349
RARP1_1868
GCAAGGGCCAGGTCAAGGAGGAAGGTATCNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCAAGAGCCTTCAGGAG





350
RARP1_1877
GCTGGACATCGAGGTGGCCTACAGTNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTCTCTCAGATCCTGGATCTCT





351
RARP1_1883
CCTTCAGCTAACATTAGTCTGGATGGTGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTGGCTTAATCCTGTTGGG





352
PC_0499
GTGGATGTGGCAGCTGATTCCATGTCTGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTACCATGCTGGTCAGCT





353
PC_0507
GCATGAGGGTGGTGCACAGCTANNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTTTGCTGCGGGTGTTCCCGTTGTC





354
PC_0515
CCAAAAGCTGTTGCACTACCTCGGCCNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTAAGACCAACATCGCCTTCC





355
PC_0524
GCGCGTGTTTGACTACAGTGAGTACTGNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTAGGCTGGAGCTGATGTG





356
PC_0532
CAAGGACACCCAGGCCATGAAGGAGATGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTTGAGGTGGAGCTGGAG





357
PDHA1_0305
GAAATTAAGAAATGTGACCTTCACCGGCNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTCACTGCCTGTGCTTCAT





358
PDHA1_0308
GCTCACGGCTTTACTTTCACCCGGGGNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTCAGATCAGCTGTATAAACA





359
PDHA1_0311
GTGGAAATTACCTTGTATTTTCATCTGTGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCTGGGCGCTGGGATTG





360
PDHA1_0313
GTAGATCTGGGAAGGGGCCCATCCTGATGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTTGTTGAGAGAGCGGCA





361
PDHA1_0316
GGAAGAGCTGGGCTACCACATCTACTCCANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTAAGGACAGGATGGTGA





362
PDK1_1451
GATAATCTTCTCAGGACACCATCCGNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTCTCTCCATGAAGCAGTTCCT





363
PDK1_1453
GCAAGATGATCTTTACAGATACTGTGNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTCTGGTATATCCAGAGTCTT





364
PDK1_1456
GCTATGAAAATGCTAGGCGTCTGTGNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTCAATTAGAATGTTACTCAAT





365
PDK1_1459
GCGTTCCTTTGAGGAAAATTGACAGACTTNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCAAGAATGCAATGAGA





366
PDK1_1462
GCCTGGAAGCATTACAACACCAACCNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTTACGCACAATACTTCCAAGG





367
PFKB1_1411
TGCGCCCTGGCAGCCCTGAAGGATGTTCANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTAAGAAAAAACCTCTAG





368
PFKB1_1414
GAGGAACTGGACAGCCACCTGTCCTACATNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCAGAAAACATCAGGCA





369
PFKB1_1417
GTCACATGAAGAGGACCATCCAGACAGCNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTAACTCAACATCAGAGGC





370
PFKB1_1420
GCTGTCATGCGGTGCCTCCTGGCCTATTTNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTACCAAGATAAATATCG





371
PFKB1_1422
ACATCACCCGGGAACCTGANNNNNNNNCTTCAGCTTCCCGATATC




CGACGGTAGTGTAGCTTCCATATCTCAAGTGCCCTCTG





372
PFKMb_0914
GCTGGGGAAGCTTCTACTTCCAGCATGCTNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTAACCGCCTTCACAGCA





373
PFKMb_0920
GTGGAGTGACTTGTTGAGTGACCTCCNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTAAGGACTTTCGGGAACGAG





374
PFKMb_0926
GCAGGATGGGTGTGGAAGCAGTGATNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTAACCAATCACCTCAGAAGAC





375
PFKMb_0932
CATTGGGGGCTTTGAGGCTTACACAGGGGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTTATGTTGGGGGCTGGA





376
PFKMb_0940
GCTGAAGGACCAGACAGATTTTGAGCANNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTTGAACTGGATGTCTGGG





377
PGAM1_2160
GATGTGGCTGCCAGTGGTGAGGACTTGNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTACGAGGAGGCGAAGCG





378
PGAM1_2162
CGCAGGTATGCAGACCTCACAGAAGATNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTCAATAAAGCAGAAACTGC





379
PGAM1_2163
CAGATCAAGGAGGGGAAACGTGTACTGATNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTACAGCAACATCAGTAA





380
PGAM1_2165
GCGCAAAGCCATGGAAGCTGTGGCTNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTGGAGGGTCTCTCTGAAGAG





381
PGAM1_2166
GCCGGCGGGGAGGATACTGTNNNNNNNNCTTCAGCTTCCCGATAT




CCGACGGTAGTGTGGTATTCCCATTGTCTATGAATTGG





382
PGD_2169
GCCAATGAGGCAAAGGGAACCAAAGTGGTNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTAAGCTGACATCGCGCT





383
PGD_2173
GCTGCAAAAGTGGGAACTGGAGNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTGCCAAGGGAATTTTATTTGTGGG





384
PGD_2177
CCCGTCACCCTCATTGGAGAAGCTGTCTTNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCAGCCAATATTCTCAA





385
PGD_2181
GTCAGCTGTTGAAAACTGCCAGGACNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTTTATGGTGGCATCGCCCTGA





386
PGD_2183
CCAGGGCAGTTTATCCACACCAANNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTTTCCCATGCCCTGTTTTACCAC





387
PGI_1528
ACCGCTTCAACCACTTCAGCNNNNNNNNCTTCAGCTTCCCGATAT




CCGACGGTAGTGTCTCACTCAGTGTACCTTCTAGTCCC





388
PGI_1533
GTGGTTTCTCCAGGCGGCCAAGGATNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTCAACATTGATGGAACTCACA





389
PGI_1536
GCTGGGTATCTGGTACATCAACTGCTTTNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTACTCTCCATTGCCCTGC





390
PGI_1539
GCATCACAAGATCCTCCTGGCCAANNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTTTGTGTGGGGGGAGCCAGGG





391
PGI_1542
GCTGGCTAAGAAAATAGAGCCTGAGCTTGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTACCAAGCTCACACCAT





392
PGK1_0371
CAACCAGAGGATTAAGGCTGCTGTCCNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTCCCAGCTGTATTTCCAAAA





393
PGK1_0374
GCTGGAGAACCTCCGCTTTCATGTGGNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTTCCTTAGAGCCAGTTGCTG





394
PGK1_0377
GCAGACAAGATCCAGCTCATCANNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTTCCATGGTAGGAGTCAATCTGCC





395
PGK1_0380
GCTGGCTGGATGGGCTTGGACTGTGNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTAAAGACCTAATGTCCAAAGC





396
PGK1_0383
GTGGTGCCAGTTTGGAGCTCCTGGAAGGTNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCATGGATGAGGTGGTG





397
PGK2_3123
CCAGATTACAAACAACCAGAGGATCANNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTGGTGTCAGCCTATGTCTTT





398
PGK2_3125
GTTCCTGAAGGACTGTGTAGGCGCAGNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTAATGGAGCCAAGGCAGTAG





399
PGK2_3128
GCTAAAGCCTTGGAAAACCCAGTGAGANNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTGCTAGGGGACGTCTATGT





400
PGK2_3131
GTTTGACGAGAACGCTCAGGTTGGAAAAGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTATGGAGATTGGTGCTT





401
PGK2_3134
GATAAAGTCAGCCATGTCAGCACTGGNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTGGGATGCCTTTGCTAAGGG





402
PKM_1091
CCCAACCCCAGAGAACCAANNNNNNNNCTTCAGCTTCCCGATATC




CGACGGTAGTGTAGAAGTCCCCAGCGCCGTTCCTTCCA





403
PKM_1095
CACTAAAGGACCTGAGATCCGAACNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTTGGCTCGTCTGAACTTCTCTC





404
PKM_1099
GCAGGATGTTGATATGGTGTTTGCGTNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTCTGGTGACGGAGGTGGAAA





405
PKM_1103
GCCAAAGGGGACTATCCTCTGGANNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTCTGTCATCTGTGCTACTCAGAT





406
PKM_1107
ACCTCCGGGTGAACTTTGCCATGAATGTTNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTACGTGCCCCCATCATT





407
PRDX1_1078
GTTGTGTTCTTCTTTTACCCTCTTGNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTGCTGATAGGAAGATGTCTTC





408
PRDX1_1080
CGAAGCGCACCATTGCTCAGGATTATGNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTAAGAAACTCAACTGCCAA





409
PRDX1_1081
GCAGATCACTGTAAATGACCTCCCTGNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTCCCATGAACATTCCTTTGG





410
PRDX1_1082
ACAAACATGGGGAAGTGTGCCCAGCNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTTCTCGTTCAGGGGCCTTTTT





411
PRDX1_1083
GCTGGGCTGTTTTAGTGCCAGGCTNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTTAGTTCAGGCCTTCCAGTTCA





412
PRKAA1_2662
CAGAACCTCAAGCTTTTCAGGCATCCNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTTCGGCACCTTCGGCAAAGT





413
PRKAA1_2666
CACCCAACTATGCTGCACCAGAAGTANNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTGGTGGTCCATAGAGATTTG





414
PRKAA1_2670
GAGTGCTCAGAAGAGGAAGTTCTCAGCTGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTAAGATATCAGGGAACA





415
PRKAA1_2674
GGATTATGAATGGAAGGTTGTAAACCCATNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTGAATTAAATCCACAGA





416
PRKAA1_2678
GTGCAAATCTAATTAAAATTCTTGCACAANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTTGCTGAGGCTCAAGGA





417
PRKAA2_2685
CGAGAAATTCAAAATCTAAAACTCTTTCGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTTGGGCGTCGGCACCTT





418
PRKAA2_2688
GCCAAGATAGCCGATTTCGGATTATCTAANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTAAGAGATGGAAGCCAG





419
PRKAA2_2691
GCTGCAGGTTGACCCACTNNNNNNNNCTTCAGCTTCCCGATATCC




GACGGTAGTGTTGTATGCTCTTCTTTGTGGCACCCTCC





420
PRKAA2_2695
GCAGACAGCCCCAAAGCAAGATGNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTGAATAATGAACCAAGCCAGTGA





421
PRKAA2_2699
CCACAACTGCAGAGAGCCNNNNNNNNCTTCAGCTTCCCGATATCC




GACGGTAGTGTGTTGATAACAGGAGCTATCTTTTGGAC





422
RPIA_3164
CTACAATTGTCCATGCTGTGCAGCGNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTACTCCAACAGCATCTGCCC





423
RPIA_3166
CTCAATCTCATCAAGGGTGGCNNNNNNNNCTTCAGCTTCCCGATA




TCCGACGGTAGTGTCCTCGTCTGTATTCCCACTTCCTT





424
RPIA_3168
GCTGTGAGCCAGAAGTTTGGGGNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTGTGGCTGGCTATGCTAGTCGCTT





425
RPIA_3169
GTTTGACCGGGTACACAAATGGAGTGAANNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTGGCCTATGTCCCAGTGA





426
RPIA_3171
GGAGCAGAGTGTGTTCACCTTGAGTCTCCNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTATCAAAATGATCCCAG





427
SDHA_1569
GGGCATCTGCTAAAGTTTCAGATTCCATNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTTGTCGGGGGTCCGGGG





428
SDHA_1570
GCATTTGGCCTTTCTGAGGCAGGGTTTNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTCACTGTTGATGGGAACAA





429
SDHA_1571
GCACAGCTAGAAAATTATGGCATGCCGTNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTTTTGATGCAGTGGTGGT





430
SDHA_1572
GCCTCAAGTTTGGAAAGGGCGGGCAGNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTAGCATGTGTTACCAAGCTG





431
SDHA_1573
GCGATATGATACCAGCTATTTTGTGGAGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTTTATCAGCGTGCATTTG





432
SDHA_1574
GCATAGAGGACGGGTCCATCCATNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTGACTGGCCACTCGCTATTGCA





433
SDHA_1575
CTTCAGCTGCACGTCTGCCNNNNNNNNCTTCAGCTTCCCGATATC




CGACGGTAGTGTTTTTGCCTTGGATCTCCTGATGGAGA





434
SDHA_1576
GTTCAGTTCCACCCTACAGGCATATATGGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCTGTTGTTGCCACAGG





435
SDHA_1577
GCGAAAGGTTTATGGAGCGATACGCCCNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTAGGGCAGGCCTTCCTTG





436
SDHA_1578
CGAGAAGGAAGAGGCTGTGGCCCTGAGANNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTTGTCGTGGAGAGGGAGG





437
SDHA_1579
GCCTGGCATTTCAGAGACAGCNNNNNNNNCTTCAGCTTCCCGATA




TCCGACGGTAGTGTTGGCGTCTAGAGATGTGGTGTCTC





438
SDHA_1580
GCGGCATTCCCACCAACTACAANNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTTGCACCACCTACCTCCAGAGCA





439
SDHA_1581
GCCTCGGTACATGGTGCCAANNNNNNNNCTTCAGCTTCCCGATAT




CCGACGGTAGTGTTCCCTGTCCTCCCCACCGTGCATTA





440
SDHA_1582
GCCTGGAGATAAAGTCCCTCCAATTAANNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTTGTACGCCTGTGGGGAGG





441
SDHA_1583
GCTGATGGAAGCATAAGAACATCGGNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTCTGGTTGTCTTTGGTCGGGC





442
SDHA_1584
GCGTGTTGCAAGAAGGTTGTGGGANNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTGCTGGGGAAGAATCTGTCATG





443
SDHA_1585
GTCTGGAACACGGACCTGGTGGAGANNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTATGCAGAAGTCAATGCAAAA





444
SDHA_1586
CAGAGGCACGGAAGGAGTCACNNNNNNNNCTTCAGCTTCCCGATA




TCCGACGGTAGTGTATCAGCAAGCTCTATGGAGACCTA





445
SDHA_1587
GCCCATCCAGGGGCAACAGAAGAANNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTTGGAGCTGCAGAACCTGATGC





446
SDHA_1588
GGAAGGTCACTCTGGAATATAGACCCGTGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTGGAAGACTACAAGGTG





447
SDHA_1589
GTGGTGATGACAGAATCAGCTTTTGNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTGTCCTATGTGGACGTTGGCA





448
SDHB_2193
CCCAGACAAGGCTGGAGACAAACCTCANNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTTCTCCTTGAGGCGCCGGT





449
SDHB_2195
TGACTCTACTTTGACCTTCCGAAGATCNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTTTGCCATCTATCGATGGG





450
SDHB_2196
CACTCTAGCTTGCACCCGAAGGATTGNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTTGTGGCCCCATGGTATTGG





451
SDHB_2197
GATCTTGTTCCCGATTTGAGCAACTTCTANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTTCTGTGGCTCTTGTGC





452
SDHB_2198
GCAGCAGTATCTGCAGTCCATAGANNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTCAAAAATCTACCCTCTTCCAC





453
SDHB_2199
GCTACTGGTGGAACGGAGACAAATATCTGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTGAAGAAGAAGGATGAA





454
SDHB_2200
AGCGCCTGGCCAAGCTGCANNNNNNNNCTTCAGCTTCCCGATATC




CGACGGTAGTGTAGTGCATTCTCTGTGCCTGCTGTAGC





455
SDHB_2201
GCAGAGATCAAGAAAATGATGGCAACCTNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTAGAGATGACTTCACAG





456
SDHB_2202
CCAGCTCAGAGCTGAACANNNNNNNNCTTCAGCTTCCCGATATCC




GACGGTAGTGTATGAACTGCACAAGGACCTGTCCTAAG





457
SDHC_2206
GCTTTGAGTGCAGGGGTCTCTCTTTTTGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTGAAGAGATGGAGCGGT





458
SDHC_2207
GCACTGATCCACACAGCTAANNNNNNNNCTTCAGCTTCCCGATAT




CCGACGGTAGTGTTGTCCATCTGCCACCGTGGCACTGG





459
SDHC_2208
GCCTGAAGATTCCCCAGCTATACNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTTTTGGAACTTGTGAAGTCCCTG





460
SDHC_2209
CCCAGCATCATCTTCCTACACANNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTATCCGACACTTGATGTGGGACCT





461
SDHD_2214
CACTTGTCACCGAGCCACCATTCNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTTGAGTGCCGTTTGCGGTGCCCT





462
SDHD_2215
GTCTGCTTCCGGCTGCTTATTTGAATCCNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTACCGACCTATCCCAGAA





463
SDHD_2216
GTTGTTACTGACTATGTTCATGGGGATGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTGAGAGGGTTGTCAGTGT





464
SDHD_2217
GCTATTTCAACTATCACGATGTGGGCNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTCCTCACTCTTCATGGTCAC





465
SDHD_2218
GTATGCCTCTTTGCCTCTGCTTTGTNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTTGGCACTTTCAGCTTTAACC





466
SLC16A1_0891
CGGCTTCTCTTATGCATTTCCCNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTTTGGATTTGACCTGCATTTTGG





467
SLC16A1_0894
CGTCTGTATTGGAGTCATTGGAGGTNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTTGGAGGTCCTATCAGCAGTA





468
SLC16A1_0898
CAGATCTTATTGGAAGACACCCTAAACNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTGTTGCTGGAGCCCTCAT





469
SLC16A1_0902
GTTGGATTCTGTGTCTATGCGGGATTCTTNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTGACCATCTATGGGACT





470
SLC16A1_0906
GGAGGGCCCAAGGAGGAGGAAAGNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTTGGCAAAAGAACAGAAA





471
SLC16A3_1117
GCGGCTTTGTGCTTTACGNNNNNNNNCTTCAGCTTCCCGATATCC




GACGGTAGTGTATCCTGGGCGGCCTGCTGCTCAACTGC





472
SLC16A3_1120
GCTCTGCAGTGTGTGCGTGAACNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTCTTCTCCTACGCCTTCCCCAA





473
SLC16A3_1124
CGACACCAAGGCCGCCTTCCTNNNNNNNNCTTCAGCTTCCCGATA




TCCGACGGTAGTGTGCCTGCTAGACCTGAGCGTCTTCC





474
SLC16A3_1128
CGACCCACGTCTACATGTACGTGTTNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTTGCAGTTCGAGGTGCTCATG





475
SLC16A3_1130
GCATTTCCTGAAGGCTGAGCCTGAGAAAANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCTGGGCAACTTCTTCT





476
SLC16A7_1390
CCTATGCATTCCCCAAAGCNNNNNNNNCTTCAGCTTCCCGATATC




CGACGGTAGTGTCTCTTGGTGCCAACAGAGTTACTCT





477
SLC16A7_1393
GCAACCCGCCTTAACCATAATTGGCAAANNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTGGTGGTGATAGCAGGAG





478
SLC16A7_1397
CCCTTTTTAAGCATAGAGGATTTCTGATANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTACCCAATCAAACCACT





479
SLC16A7_1401
GTGTTAGCAGTGTTCTCTTTGNNNNNNNNCTTCAGCTTCCCGATA




TCCGACGGTAGTGTCGACCTCGAATTCAGTACTTCTTC





480
SLC16A7_1404
CCTTGAGCAAATCTAAACATTCGGANNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTTGTCCTGTGGGGCTATTGTG





481
SLC2A1_2721
GCTCTGGTCCCTCTCAGTGGCCATCTTTTNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTTCCCTGCAGTTTGGCT





482
SLC2A1_2724
TCACCCACAGCCCTTCGTNNNNNNNNCTTCAGCTTCCCGATATCC




GACGGTAGTGTCTTCGTGTCCGCCGTGCTCATGGGCTT





483
SLC2A1_2727
GCATCTTCGAGAAGGCGGGGGTGNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTGGAGAAGAAGGTCACCA





484
SLC2A1_2730
GCCCCATCCCATGGTTCATCGTGGNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTGCTGGCATGGCGGGTTGTG





485
SLC2A1_2733
TTCCATCCCCTGGGGGCTNNNNNNNNCTTCAGCTTCCCGATATCC




GACGGTAGTGTTGTGCTCCTGGTTCTGTTCTTCATCTT





486
SLC2A3_2804
CACTGGGGTCATCAATGCTCCTGAGAANNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTATCACCCCTAGATCTTTC





487
SLC2A3_2808
GCCCTGCGGGGTGCCTTTGNNNNNNNNCTTCAGCTTCCCGATATC




CGACGGTAGTGTGGCTGCTTTATGGGACTGTGT





488
SLC2A3_2812
CCATTGTGCTCCAGCTCTCTCAGCAGNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTCACCCAGGATGTATCCCAA





489
SLC2A3_2816
ACTCTTCAGCCAGGGCCCNNNNNNNNCTTCAGCTTCCCGATATCC




GACGGTAGTGTCGCTCATGACTGTTTCTTTGTTATTAA





490
SLC2A3_2819
GCCTGCTAAGGAGACCACCACCAANNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTTTACCTTCTTCAAAGTCCCTG





491
SLC5A1_1305
CATTTTCACCAAGATCTCGGCNNNNNNNNCTTCAGCTTCCCGATA




TCCGACGGTAGTGTTTGTGCTGGGCTGGCTGTTTGTCC





492
SLC5A1_1309
CATCTTCCGAGATCCCCTCACNNNNNNNNCTTCAGCTTCCCGATA




TCCGACGGTAGTGTTTGCTTTTCACGAAGTGGGAGGCT





493
SLC5A1_1313
GTCATGCTGGCCTCCCTCATGAGCTNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTATTGCCTGTGTCGTCCCTTC





494
SLC5A1_1317
AGCCCAGCAACTGTCCCACNNNNNNNNCTTCAGCTTCCCGATATC




CGACGGTAGTGTCTGTCTTCCTGCTTGCTATTTTCTGG





495
SLC5A1_1321
CATCCTGGTGACCGTGGCTGTCTTTTNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTTTTTGTGGGCTAGAGCAGC





496
SLC5A5_0875
GCCAGCAAGCAGATCACTGCAGNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTTCTTTCAACATGACAGATGCCGC





497
SLC5A5_0877
CCCAGTTTTGGCTCTACTTTGCAGGGNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTGGGAGTTCTGTCCTTCTGG





498
SLC5A5_0879
GCTTTAACGTGTCTGTGCAGGGTNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTTCTTGATTTTGCCCGTACCCGT





499
SLC5A5_0881
GCATGATGATGCAGTCAGGGCGCAAAGNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTGACACTGCAAAGGGAA





500
SLC5A5_0883
CATAAGTTATTTCCTAGGATTTTTCCCCCNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCTGGCGGAAGATTGCT





501
SLC7A1_2222
CACTTTTGATCTGGTGGCCCTCNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTTTCCCGTCATATTCCAGCTCTG





502
SLC7A1_2226
CCCCGGCGTGCTGGCTGAAAACNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTCGGCTGGAACTTAATCCTCTCCT





503
SLC7A1_2232
GCTGGGAAGGTGCCAAGTACGNNNNNNNNCTTCAGCTTCCCGATA




TCCGACGGTAGTGTGTGGGGATCGTGGCGTCCCTCTTG





504
SLC7A1_2236
GGCAAGCACCAATGATTCCCAGCTNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTCTCTCCTGGCTTACTCGTTG





505
SLC7A1_2240
CGTGAACGTCTATCTCATGATGCNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTTTTCTGCTCGCAGGGTCTGCCC





506
SLC9A1_2249
TCCCCTCACAGACTCTTCCACCANNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTCAGTGACAGCCCCAGCTCCCA





507
SLC9A1_2255
GCCTCATGAAGATAGGTTTCCATGTGNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTCCGCCCTGTTAATCATTCC





508
SLC9A1_2261
GCGGGGTGCTTGTGGGCGTGGTNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTGGGAGTCCTTGCTCAATGA





509
SLC9A1_2267
GCCCCTGGTAGACCTGTTGGCTGTNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTGAGGGGCCATCGCCTTCTCT





510
SLC9A1_2273
GCAGCTGGAGCAGAAGATCAACAACTACCNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTATCCTGAGGAACAACT





511
SLCA12_1015
GCCTGTGTGACAAGCTGGGGAAGAATNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTGGGAGGAGAGGTTAGATG





512
SLCA12_1019
GCTGGGGCCTGGGAAGAAGAATGATNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTTAAGGCTAGTGGCCGCTTGG





513
SLCA12_1023
GCTGATGGTGGATTTCTTCAACATTTTGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTGGAGGAGACTAAGATGG





514
SLCA12_1027
CGTCCTTCCTGTTGGAGCNNNNNNNNCTTCAGCTTCCCGATATCC




GACGGTAGTGTCCTTCTCCTTTTTTGCTGGCATTTTCC





515
SLCA12_1031
CGAGTGCATGAAGATATTGAAATGACCAANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTTGGCTGTGGACTGGCT





516
SOD_0414
GGACTGACTGAAGGCCTGCATGGATNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTGTGGCCTAGCGAGTTATG





517
SOD_0415
GTGGGCCAAAGGATGAAGAGAGGCATNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTGGTGTGGGGAAGCATTA





518
SOD_0416
TCTCACTCTCAGGAGACCATTGCNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTTCCTCACTTTAATCCTCTATCC





519
SOD_0417
GTACAAAGACAGGAAACGCTGGAAGTCNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTGGTGTGGCCGATGTGTCT





520
SOD_0418
CCCTTGGATGTAGTCTGAGGCCCCTTANNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTGCACACTGGTGGTCCATG





521
SOD2_0438
GCCCTGGAACCTCACATCAACGCGNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTTAGCACCAGCACTAGCAGCA





522
SOD2_0439
GCGTTGGCCAAGGGAGATGTTACAGCNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTACCTGCCCTACGACTAC





523
SOD2_0441
GCTCAGGTTGGGGTTGGCTTGGTTTNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTGGACAAACCTCAGCCCTAA





524
SOD2_0443
GGGAGAATGTAACTGAAAGATACATGGCTNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTACTGCAAGGAACAACA





525
SOD2_0444
GCTGAGTATGTTAAGCTCTTTATGACTGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTCGCTTACTACCTTCAGT





526
TAL_2770
GAAGATTCCGGGCCGAGTATCCNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTGATGCCCGCTTACCAGGA





527
TAL_2772
TCGAGGAGCAGCACGGCATCCACNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTTGATAAAGATGCGATGGTGGCC





528
TAL_2774
GTTTAGCTACAAAACCATTGTCATGGGCNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTCATCTCCCCATTTGTT





529
TAL_2776
CCACCTGGATGAGAAGTCTTTCCGNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTAAGCACTGGCCGGCTGTGAC





530
TAL_2778
GAGGCTGGACTCCAGATCTGCACCGNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTGAGGACCAGATGGCTGTGG





531
TIGAR_3037
CATGAGGACAAAGCAGACCATGCATGGNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTAGGAGAAAATAATCCAAG





532
TIGAR_3039
CGGAGGAGAGACGCTGGACCAGGTGAAANNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTGACGGTAAAGTATGAC





533
TIGAR_3041
GGATTAGCAGCCAGTGTCTTAGTTGTGNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTAGCGGATCAAAAAGAACA





534
TIGAR_3043
GAGGAAGGAAGAGAAGTTAAACCAACGGTNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTTGAGAAGTCTGTTTGA





535
TP53I3_2466
GTGAAGTCCTCCTGAAGGTGGCNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTCTGCCCTGTCCTGTCCTGCCCT





536
TP53I3_2467
GCAACATTTTGGGACTTGAGGCATCTGGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTTGAAGGAGGTGGCCAA





537
TP53I3_2468
GCCATGGCTCTGCTCCCCGGTGGNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTACTTAATGCAGAGACAAGGCCA





538
TP53I3_2470
GCTAATCCATGCAGGACTGAGTGGTGTNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTAAGGGCTCCTCATGCCTA





539
TP53I3_2471
GCTTCAAATGGCAGAAAAGCTTGGAGNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTGGAAATGTTCAGGCTGGAG





540
TP53I3_2472
GCTGGAGTTAATCTTATTCTAGACTGCNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTTATTCCTCTGGTCACAGC





541
TP53I3_2473
GTCGATGGGTTCTCTATGGTCTGATGGGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTACAAAAAAGAGGATTTC





542
TP53I3_2474
GCTGAGGTCTAGGGACAATAAGTACANNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTAAGAACGTCAACTGCCTGG





543
TP53I3_2475
AGGGCCCCCAACGTCTGCTNNNNNNNNCTTCAGCTTCCCGATATC




CGACGGTAGTGTGGCCCCTGTTTTCAAAGCTACTTTTT





544
TP53I3_2476
TCGTCCTGGAACTGCCCCAGTGAANNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTCAAATTCTGCCTCACTTCTCC





545
TRX_1250
CTTCTCAGCCACGTGGTGTNNNNNNNNCTTCAGCTTCCCGATATC




CGACGGTAGTGTTTTGGATCCATTTCCATCGGTCCTTA





546
TRX_1251
GTTTTTTAAGAAGGGACAAAAGGTGGGTGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTGCAGGTGATAAACTTG





547
TRX_1252
GTTTTCTGAAAATATAACCAGCCATTGGCNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTAGAGTGTGAAGTCAAA





548
FGFR2_4
GCCGTGATCAGTTGGACTAAGGATGNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTGTTTAGTTGAGGATACCACA





549
FGFR2_6
CGATGGTGCGGAAGATTTTGTCAGTGAGANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCCACGCCTAGAGACTC





550
FGFR2_8
GCCGGTGTTAACACCACGGACAAANNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTGACGTAGAGTTTGTCTGCAAG





551
FGFR2_10
ACTACCTGGAGATAGCCATTTACTGCATNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTTTTTGAGGACGCTGGGG





552
FGFR2_12
GCAGTGTTAAAACATGAATGACTGTGTCNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTCGAACAGTATTCACCTA





553
VHL_20
CGTGCTGCCCGTATGGCTCAACTNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTAAGAGTCCGGCCCGGAGGAACT





554
VHL_21
GCTCTTCAGAGATGCAGGGACACNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTTCTTCTGCAATCGCAGTCCGCG





555
VHL_22
GCGCCGAGGAGGAGATGGAGGNNNNNNNNCTTCAGCTTCCCGATA




TCCGACGGTAGTGTAGAACTGGGACGAGGCCGAGG





556
VHL_24
AGTCGGGCGCCGAGGAGTCCGNNNNNNNNCTTCAGCTTCCCGATA




TCCGACGGTAGTGTGGCGTCCGGCCCGGGTGGTCTGG





557
VHL_25
CTCAATGTTGACGGACAGCCTATTNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTTACCCAACGCTGCCGCCTGG





558
VHL_26
GTCCGGAGCCTAGTCAAGCCTGAGAATTANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCGATGGGCTTCTGGTT





559
VHL_27
GCGGCTGACACAGGAGCGCATTGCACATNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTAAAGAGCGATGCCTCCA





560
VHL_28
GCTTTTGATGGTACTGATGAGTCTTGNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTTACGAAGATCTGGAAGACC





561
NTRK1
GATGTGCACGCCCGGCTGCAANNNNNNNNCTTCAGCTTCCCGATA



(TRKa)_33
TCCGACGGTAGTGTAACACGGAGGCAATCGACTGCATC





562
NTRK1
GATGGTGTACCTGGCGGGTCTGCATTTTNNNNNNNNCTTCAGCTT



(TRKa)_36
CCCGATATCCGACGGTAGTGTCTCAACCGCTTCCTCC





563
NTRK1
CATCGTGAAGAGTGGTCTCCGTTTCGTGGNNNNNNNNCTTCAGCT



(TRKa)_50
TCCCGATATCCGACGGTAGTGTATAGCCTCCACCACCT





564
NTRK1
GCAAAGGCTCTGGGCTCCAAGGCCANNNNNNNNCTTCAGCTTCCC



(TRKa)_56
GATATCCGACGGTAGTGTCAACAAATGTGGACGGAGAA





565
NTRK1
GCAGGGATATCTACAGCACCGACTNNNNNNNNCTTCAGCTTCCCG



(TRKa)_59
ATATCCGACGGTAGTGTTGGCTAGCCAGGTCGCTGCGG





566
PDGFRB_69
AGTCAACACCTCCTCAACCNNNNNNNNCTTCAGCTTCCCGATATC




CGACGGTAGTGTCTCTATACTGCCGTGCAGCCCAATG





567
PDGFRB_74
CGGTGGTGTGGGAACGGATGTNNNNNNNNCTTCAGCTTCCCGATA




TCCGACGGTAGTGTTGCTGTTGCTGTCTCTCCTGT





568
PDGFRB_92
CGTGGCTTTTCTGGTATCTTTGAGGACAGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCATCTTTCTCACGGAA





569
PDGFRB_97
GTCCGAGTGCTGGAGCTAAGTGAGAGCNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTCGGTATGTGTCAGAGCTG





570
PDGFRB_101
GCCAATGGCATGGAGTTTCTGGCCTNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTCCAACTACATGGCCCCTTAC





571
ERBB2
TTCGGCCCCAGCCCCCTTNNNNNNNNCTTCAGCTTCCCGATATCC



(HER2)_118
GACGGTAGTGTTCCCCACACATGACCCCAGCCCTCTAC





572
ERBB2
GCCCTGGGACCAGCTCTTTCNNNNNNNNCTTCAGCTTCCCGATAT



(HER2)_123
CCGACGGTAGTGTACAATGGCGCCTACTCGCTGACCCT





573
ERBB2
CACGATTTTGTGGAAGGACATCTTCNNNNNNNNCTTCAGCTTCCC



(HER2)_131
GATATCCGACGGTAGTGTAACAATACCACCCCTGTCAC





574
ERBB2
GCAAGAAGATCTTTGGGAGCCTGGCATNNNNNNNNCTTCAGCTTC



(HER2)_136
CCGATATCCGACGGTAGTGTATGGAACACAGCGGTGTG





575
ERBB2
GCTGGCTCCGATGTATTTGATGGTGNNNNNNNNCTTCAGCTTCCC



(HER2)_157
GATATCCGACGGTAGTGTCTGGGGGCATGGTCCA





576
NTRK2
GCGAGAGCCCCACATGAGGAAGAACATCNNNNNNNNCTTCAGCTT



(TRKb)_172
CCCGATATCCGACGGTAGTGTAAACAGCCCTGGTACCA





577
NTRK2
GCAACCTGCAGCACATCAATTTTACCCNNNNNNNNCTTCAGCTTC



(TRKb)_179
CCGATATCCGACGGTAGTGTCAAACCAGAAAAGGTTAG





578
NTRK2
GCAGATCTCTTGTGTGGCGGAAAATCTNNNNNNNNCTTCAGCTTC



(TRKb)_184
CCGATATCCGACGGTAGTGTAGGTGATCCGGTTCCTAA





579
NTRK2
CGGGGACACCACGAACAGAAGTAATNNNNNNNNCTTCAGCTTCCC



(TRKb)_189
GATATCCGACGGTAGTGTGAGTATGGGAAGGATGAGAA





580
NTRK2
GCTGAATGCTATAACCTCTGTCCTGNNNNNNNNCTTCAGCTTCCC



(TRKb)_194
GATATCCGACGGTAGTGTATCCCCAGTACTTTGGCATC





581
PDGFRA_216
GCACAACTGATCCCGAGACTCCTGTNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTGAATGAGCTTGAAGGCAGGC





582
PDGFRA_226
GTAATAATGAAACTTCCTGGACTATTTNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTCATCCATTCTGGACTTG





583
PDGFRA_236
CGACATCCAGAGATCACTCTATGATCGTCNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTAAAGCACACGGAGCTA





584
PDGFRA_241
GTGGGTACCGGATGGCCAAGCCTGNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTACAACCTCTACACCACA





585
PDGFRA_246
CATCAAGAGAGAGGACGAGACCATNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTCTACATCATTCCTCTGCCTGA





586
FGFR1_258
CGTCAATGTTTCAGATGCTCTCCCCTCCNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTGAAAGCAACCGCACCC





587
FGFR1_259
GCATCACAGGGGAGGAGGTGGANNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTTGTGGAAGTGGAGTCCTTCCTGG





588
FGFR1_261
TGGCAAAGAATTCAAACCNNNNNNNNCTTCAGCTTCCCGATATCC




GACGGTAGTGTGCCCGTAGCTCCATATTGGACATCCCC





589
FGFR1_264
CAGATAACACCAAACCAAACCNNNNNNNNCTTCAGCTTCCCGATA




TCCGACGGTAGTGTTCTATGCTTGCGTAACCAGCAGCC





590
FGFR1_265
CATCCCTCTGCGCAGACAGGTAANNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTTCATCTATTGCACAGGGGCCTT





591
VEGFA_121
TGTGACAAGCCGAGGCGGTGAGCCNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTTCCAACATCACCATGCAGATT





592
VEGFA_121b
TCTCTCACCAGGAAAGACTGATACNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTTCCAACATCACCATGCAGATT





593
VEGFA_165
GAGGCGGTGAGCCGGGCAGGAGGANNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTAGAGCGGAGAAAGCAT





594
VEGFA_165_165b
CCTGTGGGCCTTGCTCAGAGCNNNNNNNNCTTCAGCTTCCCGATA




TCCGACGGTAGTGTAGTCCAACATCACCATGCAGATT





595
VEGFA_165b
CCACGCTGCCGCCACCACACCANNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTTCCGCAGACGTGTAAATGTTCCT





596
VEGF_189_189b
GTTCGAGGAAAGGGAAAGGGGCAAAAACNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTCCATGCAGATTATGCG





597
VEGFA_ex1_5
GGCGTGAGCCCTCCCCCTTGGGANNNNNNNNCTTCAGCTTCCCGA



(6)
TATCCGACGGTAGTGTAGCAAGAGCTCCAGAGAG





598
VEGFA_ex1_5
CGAAGTGGTGAAGTTCATGGATGTCTNNNNNNNNCTTCAGCTTCC



(7)
CGATATCCGACGGTAGTGTCCTCCGAAACCATGAAC





599
VEGFA_ex1_5
CGTTTTAATTTATTTTTGCTTGCCNNNNNNNNCTTCAGCTTCCCG



(13)
ATATCCGACGGTAGTGTGTTAGGTGGACCGGTCAGCGG





600
VEGFA_ex1_5
CACTGTGGATTTTGGAAACCAGCNNNNNNNNCTTCAGCTTCCCGA



(14)
TATCCGACGGTAGTGTCCCTCTTCTTTTTTCTTAAACA





601
VEGFA_ex1_5
GGCGCTCGGAAGCCGGGCTCATGGANNNNNNNNCTTCAGCTTCCC



(15)
GATATCCGACGGTAGTGTGCGCGGGGGAAGCCGAG





602
VEGFA_ex1_5
GCCTGGAGTGTGTGCCCACTGAGGAGNNNNNNNNCTTCAGCTTCC



(16)
CGATATCCGACGGTAGTGTAGCTACTGCCATCCAA





603
VEGFA_ex1_5
CCTACAGCACAACAAATGTGAATGCAGACNNNNNNNNCTTCAGCT



(17)
TCCCGATATCCGACGGTAGTGTGATGCGGGGGCTGCTG





604
VEGFA_ex1_5
CTGTGGGCCTTGCTCAGAGCGGANNNNNNNNCTTCAGCTTCCCGA



(18)
TATCCGACGGTAGTGTCCAACATCACCATGCAGATTA





605
ADPGK_0002
GCCAGAGCTGCCAGGCTCGGNNNNNNNNCTTCAGCTTCCCGATAT




CCGACGGTAGTGTCGGAAGAGGCGCGGGCTAGG





606
ADPGK_0004
CACCAGCCGAGTGTCTCTGAGGNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTATCCATTTCCACACGCTGGTCT





607
ADPGK_0011
GTGGGGCCAGTTAAAAGCTCCNNNNNNNNCTTCAGCTTCCCGATA




TCCGACGGTAGTGTGGTTCTTCTTTGCGGTCCAGTTGG





608
ADPGK_0015
TTCTCACCCAGTCAGCCTCNNNNNNNNCTTCAGCTTCCCGATATC




CGACGGTAGTGTTGACATCCCCACTGGTATTCCAGTTC





609
ADPGK_0017
GCAACTGTGGATGGACACTGGGCCNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTGGTGTTCCTGATGTGGG





610
AR_0041
AGTCGGCCCTGGAGTGCCACCCCGAGANNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTAGCAAGAGACTAGCCCCA





611
AR_0062
TGGCGGCGGCGGCGGCGGCNNNNNNNNCTTCAGCTTCCCGATATC




CGACGGTAGTGTAGCCTGCATGGCGCGGGTGCAGCGGG





612
AR_0068
GCTTGTACACGTGGTCAAGTGGGNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTGTCAGCCCATCTTTCTGAATGT





613
AR_0069
GCTCATGGTGTTTGCCATGGGCTGGNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTTCTAGCCTCAATGAACTGGG





614
AR_0074
CATGGTGAGCGTGGACTTTCCGGAAATGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTAAAAGAAAAAATCCCAC





615
AR_0075
CCACACCCAGTGAAGCATNNNNNNNNCTTCAGCTTCCCGATATCC




GACGGTAGTGTGCTGCATCAGTTCACTTTTGACCTGCT





616
ARV7_ARV_0009
GCATCTCAAAATGACCAGACCCTGNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTGTGCGCCAGCAGAAATGAT





617
ARV12_ARV_0002
GCAGAGATCATCTCTGTGCAAGTGNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTAGAGACAGCTTGTACACGTGG





618
BRAF_0106
CCCCAAATTCTCACCAGTCCNNNNNNNNCTTCAGCTTCCCGATAT




CCGACGGTAGTGTCCAACTTGATTTGCTGTTTGTCTCC





619
BRAF_0112
GACATGTGAATATCCTACTCTTCATGGGCNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTGGAACAGTCTACAAGG





620
BRAF_0115
GCTACAGTGAAATCTCGATGGAGTGGGTCNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTACGACAGACTGCACAG





621
BRAF_0116
CATACAGCTTTCAGTCAGATGTATATGCANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTATAGGTGATTTTGGTC





622
BRAF_0117
CAAACATCAACAACAGGGACCAGNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTGGATCCATTTTGTGGATGGCAC





623
CAT_0151
CGGACATGGTCTGGGACTTCTGGAGCCTANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTGAAGATGGTAACTGGG





624
CAT_0153
CCAGGGCATCAAAAACCTNNNNNNNNCTTCAGCTTCCCGATATCC




GACGGTAGTGTGGTTTCTTTCTTGTTCAGTGATCGGGG





625
CAT_0155
CACCAAGGTTTGGCCTCACAAGGACTANNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTTGACTATGGCATCCGGG





626
CAT_0159
CCTGAAGGATGCACAAATTTTCATCCAGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTTCTGGAGAAGTGCGGAG





627
CAT_0161
GCGGCAAGGGAGAAGGCAAATCTGTGAGGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCAAGAACTTCACTGAG





628
CD274_0182
GAGGGCCCGGCTGTTGAAGGACCAGCTNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTCCCAGTAGAAAAACAA





629
CD274_0184
TGGTTGTGGATCCAGTCACCTCTGNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTAGATCACAGATGTGAAATTGC





630
CD274_0186
GCACTTTTAGGAGATTAGATCCTGAGGANNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTAAGCAGTGACCATCAAG





631
CD274_0188
GGCATCCAAGATACAAACTCAAAGAAGCNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTCACATCCTCCAAATGAA





632
CD274_0189
CTTCTGATCTTCAAGCAGGGATTCTCNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTCTGACATTCATCTTCCGTT





633
CTLA4_0199
GCAAAGCAATGCACGTGGCCCAGCCTGNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTAACACCGCTCCCATAAA





634
CTLA4_0203
CTTCCTAGATGATTCCATCTGCACGGNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTGCTTTGTGTGTGAGTATGC





635
CTLA4_0205
TTGATCCAGAACCGTGCCCAGATTCNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTTCAAGTGAACCTCACTATCC





636
CTLA4_0207
CCCCCAACAGAGCCAGAANNNNNNNNCTTCAGCTTCCCGATATCC




GACGGTAGTGTGACTTCCTCCTCTGGATCCTTGCAGC





637
FBP1_0214
CCCAGCTGCTCAACTCGCTCNNNNNNNNCTTCAGCTTCCCGATAT




CCGACGGTAGTGTTTGCACCTGCAGCCCCGCGCTCT





638
FBP1_0222
GATCCCCTTGATGGATCTTCCNNNNNNNNCTTCAGCTTCCCGATA




TCCGACGGTAGTGTGTCCTCTCCAACGACCTGGTTATG





639
FBP1_0224
GTCCTTGCCATGGACTGTGGGGTNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTCGTTGGAACCATTTTTGGCATC





640
FBP1_0226
GCTCCTTATGGGGCCCGGTATGTGGGNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTGGACAAGGATGTGAAGATA





641
FBP1_0228
CCACTGGGAAGGAGGCCGTGTTAGACGTNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTTCTGGTCTACGGAGGG





642
FOLH1_0243
CCACCTCCTCCAGGATATGAANNNNNNNNCTTCAGCTTCCCGATA




TCCGACGGTAGTGTTTTGGCCTGGATTCTGTTGAGCT





643
FOLH1_0247
CCTCTCACACCAGGTTACCCAGCAANNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTTCATTCTCTACTCCGACCCT





644
FOLH1_0251
GTGGAGCAGCTGTTGTTCATGAAATTGTGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTAATGAAGTGACAAGAA





645
FOLH1_0255
GGGATCTGGAAATGATTTTGAGGTGTTNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTACACAACCTAACAAAAGA





646
FOLH1_0259
GTTCAGTGAGAGACTCCAGGACTTTGACNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTAGAAAGTATGCTGACAA





647
HP16-E7_0296
GGTTCTAAAACGAAAGTATTTGGGTAGTCNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCAGGTGAAGATTTGGT





648
HP16-E2_0316
TATTAACCACCAGGTGGTGCCAACACTGGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTACAAAATACTAACACA





649
HP16-E2_0318
GGATATACAGTGGAAGTGCAGTTTGATGGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTTGAACTGCAACTAACG





650
HP16-E2_0320
GTAAAAATAAAGTATGGGAAGTTCATGCGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTATTTGTGAAGAAGCAT





651
HP16-E2_0322
AGCCAGACACCGGAAACCCCNNNNNNNNCTTCAGCTTCCCGATAT




CCGACGGTAGTGTAGCAGCAACGAAGTATCCTCTCCTG





652
HP16-E2_0324
GCATTGTACATTGTATACTGCAGTGTCGTNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTTCCTCACTGCATTTAA





653
HP16-E6_0369
GTTACTGCGACGTGAGGTATATGACTNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTACCAAAAGAGAACTGCAA





654
HP16-E6_0370
GTTTTATTCTAAAATTAGTGAGTATAGACNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTTAGAATGTGTGTACTG





655
HP16-E6_0371
CGTTGTGTGATTTGTTAATTAGGTGTATTNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTAGAGATGGGAATCCAT





656
HP16-E6_0372
GTGGACCGGTCGATGTATGTCTNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTGAACAGCAATACAACAAAC





657
HP16-E7_0375
CGTAGACATTCGTACTTTGGAAGACCTGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTGAGGAGGAGGATGAAA





658
IGF1R_0464
GCGGGGTGGGGGGGGAGAGAGAGTTTTNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTACAGCCTTACGCCCACA





659
IGF1R_0467
CATTACTCGGGGGGCCATCAGGATTGNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTAGAGCCTCGGAGACCT





660
IGF1R_0489
GCTCAGATGCTCCAAGGATGCACCANNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTAGGAGTGCCCCTCGGGCTT





661
IGF1R_0505
TCTCTCTCTGGGAATGGGTCGTGGACNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTAAAATACGGATCACAAG





662
IGF1R_0513
GGTATGACGCGAGATATCTATGAGACAGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTAGATGGCCGGAGAGAT





663
KDR_0549
GCCCAATAATCAGAGTGGCAGTGNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTCTGTGGGTTTGCCTAGTGTTTC





664
KDR_0557
CCTGTGCAGCATCCAGTGGGCTGATGANNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTCGAAGCATCAGCATAAGA





665
KDR_0565
GCAGGAGAGCGTGTCTTTGTGGTGNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTGGCAAATGTGTCAGCTTTG





666
KDR_0581
GTGACTTTGGCTTGGCCCGGGATNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTGAGCATCTCATCTGTTACAGCT





667
KDR_0589
GCAGGGAGTCTGTGGCATCTGAAGGCTCNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTAAAAGTAATCCCAGATG





668
KLK3_0638
CAGTGTGTGGACCTCCATGTTATTTCCNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTGAGCTCACGGATGCTGTG





669
KLK3_0643
CCTGAAGAATCGATTCCTCAGGCCAGGTGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTACTGCATCAGGAACAA





670
KLK3_0645
GCTTCAAGGTATCACGTCATGGGGCAGNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTTGACGTGTGTGCGCAAGT





671
KLK3_0646
GTGGATCAAGGACACCATCGTGGCCAANNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTGGGTGATTCTGGGGGC





672
KLK3_0647
CTCAAGCCTCCCCAGTTCTACNNNNNNNNCTTCAGCTTCCCGATA




TCCGACGGTAGTGTCCTTCCCTGTACACCAAGGTGGTG





673
KRAS_0653
GATCCAACAATAGAGGATTCCTACAGGANNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTAGGTGCGGGAGAGAGG





674
KRAS_0654
GCAGGTCAAGAGGAGTACAGTGCNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTGAGTGCCTTGACGATACAG





675
KRAS_0655
CATTTGAAGATATTCACCATTATAGAGNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTGAGAAACCTGTCTCTTGG





676
KRAS_0656
GTGATTTGCCTTCTAGAACAGNNNNNNNNCTTCAGCTTCCCGATA




TCCGACGGTAGTGTGGGAGGGCTTTCTTTGTGTATTTG





677
KRAS_0657
GTGGAGGATGCTTTTTATACATTGGTGAGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTGGTCCTAGTAGGAAAT





678
KRAS_0658
GCATTATAATGTAATCTGGGTGTTGATGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTAGCAAAGACAAGACAGA





679
KRAS_0659
GCAAAGATGGTAAAAAGAAGAAAAAGAAGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTGCAAAGAAGAAAAGAC





680
PDCD1_0668
CAAAGAGAGCCTGCGGGCAGANNNNNNNNCTTCAGCTTCCCGATA




TCCGACGGTAGTGTGGACTGCCGCTTCCGTGTC





681
PDCD1_0670
GGACACTGCTCTTGGCCCCTCTNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTTGCCCTGTGTCCCTGAGCAGAC





682
PDCD1_0671
TACCGCATGAGCCCCAGCNNNNNNNNCTTCAGCTTCCCGATATCC




GACGGTAGTGTTTCTTAGACTCCCCAGACAGGCCCT





683
PDCD1_0673
GGAGGACCCCTCAGCCGTGCCTGTGTNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTTGGTGGTTGGTGTCGTGG





684
PDCD1_0682
CCAGCCGGCCAGTTCCAAACCNNNNNNNNCTTCAGCTTCCCGATA




TCCGACGGTAGTGTGGCACCTACCTCTGTGGGGC





685
TP53_0689
TCTGGCCCCTCCTCAGCATCTTNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTCTGTGGGTTGATTCCACACCCCC





686
TP53_0690
CCCCTGCACCAGCCCCCTNNNNNNNNCTTCAGCTTCCCGATATCC




GACGGTAGTGTTGGATGATTTGATGCTGTCCCCGGACG





687
TP53_0697
GCCTGAGGTTGGCTCTGACTGTNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTGAGCGCTGCTCAGATAGCGATGG





688
TP53_0699
CGGCGCACAGAGGAAGAGAATCTCNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTAGTTCCTGCATGGGCGGCATG





689
TP53_0703
TCCCACCCCCATCTCTCCCNNNNNNNNCTTCAGCTTCCCGATATC




CGACGGTAGTGTAGCAGGGCTCACTCCAGCCACCT





690
CS_2331
GCTTCCTCCACGAATTTGAAAGACNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTTCTCTCCCTTTCTTACCTCCC





691
CS_2332
GCAACATGGCAAGACGGTGGTGGGCCAANNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTAACCAAGAATGCATCT





692
CS_2333
GTTCTTGATCCTGATGAGGGCATCCGTTNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTAAGGAGCAGGCCAGAA





693
CS_2334
GCCTGAGGGCTTATTTTGGCTGCTGGNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTGGCATGAAGGGATTGGT





694
CS_2335
CCCATGTGGTCACCATGCTGGACAACNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTGGCTAAGGGTGGGGAAG





695
CS_2336
GCCCGAGCATATGCACAGGGTATNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTAAGAGTGGGCAAAGAGGG





696
CS_2337
GCTACCTTGTGTTGCAGCAAAGNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTGTCTCAGCTCAGTGCAGCTGTT





697
CS_2338
GGACTGGTCTCACAATTTCACCAACATGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTGTACTGGGAGTTGATTT





698
CS_2339
GTGACCATGAGGGTGGCAATGTAAGTGNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTAGAGAAGGCAGCGGTA





699
CS_2340
GCCTCTCCATGGACTGGCAAATCAGGAAGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTTACCTCACCATCCACA





700
CS_2341
GTTACGAGACTACATCTGGAACACACTCANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCTGTCCTTTGCAGCAG





701
CS_2342
GCGATATACCTGTCAGCGAGAGTTTGCNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTAGCTGCAGAAGGAAGTTG





702
CS_2343
GTGCCCAATGTCCTCTTAGAGCNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTGTTGTTCCAGGCTATGGCCATGC





703
CS_2344
GATGAATTACTACACGGTCCTGTTTGGGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTGTTGGTTGCTCAGCTGT





704
CS_2345
GAAAGGCCCAAGTCCATGAGCACAGANNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTGTGGGGTGCTGCTCCAGT





705
CS_2346
GAGACTGGGTGAAAGTGACTACCAGAAAGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTGCATTGGGTGTACTGG





706
D2HGDH_3222
GTCCCCGTCTTTGACGAGATCATCCTNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTGCTGTAGCAAGGTGCTGCT





707
D2HGDH_3223
GCTGAGCCGGTATGTGGAGGAANNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTAGGCATGGTGGGTGGCAG





708
D2HGDH_3224
GCTGGAGGCCTGCGGTTTCTTNNNNNNNNCTTCAGCTTCCCGATA




TCCGACGGTAGTGTAATTCTGGTTTGCCAGGCGGGCTG





709
D2HGDH_3225
GGAAGGACAACACGGGCTATGACCTGAAGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTAAACGTGGCAACCAAC





710
D2HGDH_3226
GCTGTGAACGTGGCTTTCCTCNNNNNNNNCTTCAGCTTCCCGATA




TCCGACGGTAGTGTTGTCCTGGACTGCCTGACCTCCCT





711
D2HGDH_3227
GCATTCGAGTTCATGGATGCTGTGTGNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTCGGTGTCCATCTTGTGTCC





712
D2HGDH_3228
GCTCCAACGCAGGCCATGACNNNNNNNNCTTCAGCTTCCCGATAT




CCGACGGTAGTGTGGGGATGCTGGGTGAGATCCTGTCT





713
D2HGDH_3229
GCCACCGACCAGAGGAAAGTCAANNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTCGGTGCAAGAGAGTCCGTTTT





714
D2HGDH_3230
TACAAGTACGACCTCTCCCTCCNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTTTCCTGGAGCACGCGCTGGGCTC





715
D2HGDH_3231
GCCAAGCACGTGGTGGGCTATGNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTTGGGCCCTGAGGGAAAGGATCA





716
D2HGDH_3218
GCACGGAGTGGGCTTCAGGAAGAGGGANNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTACCTTGGAGATGGTAACC





717
FH_0120
GTATTATGGCGCCCAGACCGTGNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTTTCGGCTCCCGGCTTGGGTG





718
FH_0121
GAAGCGAGCGGCCGCTGAAGTAAACCNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTGGTGAACTAAAGGTGCC





719
FH_0122
CATTTTCCTCTCGTGGTATGGCAGACTGGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTAAGCTTTTGGCATCTT





720
FH_0123
GTGAACTTGGCAGCAAGATACCTGTGCNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTGAGGTAGCTGAAGGTAAA





721
FH_0124
GCTGCAATAGAAGTTCATGAAGTACTGTNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTAGCAATAGAGCAATTGA





722
FH_0125
CGTACTCATACTCAGGATGCTGTTCCNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTTTCCCACAGCAATGCACAT





723
FH_0126
GCCAAGAATCTATGAGCTCGCAGCTGGAGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTGCACAGATCATCAAGA





724
FH_0127
GTGGCTGCACTTACAGGCTTGCCTTTTGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTAAATATGCAATGACAAG





725
FH_0128
GCCTGCAGTCTGATGAAGATAGCAAATGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTGAAAAGGTTGCTGCAAA





726
FH_0129
ACCAGGAAGCAGTATCATGCCAGGCAAGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTGGTTGAGCTCAGTGGAG





727
FH_0130
GTTGCTGTCACTGTCGGAGGCAGCAANNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTGGTCAGGTCTGGGAGA





728
FH_0131
GCTGCTGGGGGATGCTTCAGTTTNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTGCAATGACCATGGTTGCAG





729
FH_0132
GCTGATGAATGAGTCTCTAATGTTGGTGANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTGTTTTCAAGCCAATGA





730
FH_0133
GCACACAAAAATGGATCAACCTTAAAGGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTTGCGTGGTGGGAATCC





731
FH_0134
GGACATGCTGGGTCCAAAGTGATTTACNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTTAGGGTATGACAAGGCAG





732
IDH1_2593
CTACGTGGAATTGGATCTACATAGCTATGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCTGTCAAGGTTTATTG





733
IDH1_2594
GCATAATGTTGGCGTCAAATGTGCCACTNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTGATTAAAGAGAAACTCA





734
IDH1_2595
ATTCTGGGTGGCACGGTCTTCAGAGAAGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTGCAGAAGCTATAAAGAA





735
IDH1_2596
GCTTATGGGGATCAATACAGAGCAACTGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTAAATCACCAAATGGCAC





736
IDH1_2597
GAACCCAAAAGGTGACATACCTGGTNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTGGCTTGTGAGTGGATGGGTA





737
IDH1_2598
GTTCCTTCCAAATGGCTCTGTCTAAGGNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTATAACCTACACACCAAGT





738
IDH1_2599
GCGTTTTAAAGACATCTTTCAGGAGNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTCATGGGGATGTATAATCAAG





739
IDH1_2600
CGACGACATGGTGGCCCAAGCTATGAAANNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTCACCAAAAACACTATTC





740
IDH1_2601
GTCGGACTCTGTGGCCCAAGGGTATNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTCAAGTCCCAGTTTGAAGCTC





741
IDH1_2602
GCAGAGGCTGCCCACGGGACTGTAANNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTGGAGGCTTCATCTGGGCCTG





742
IDH1_2603
GCTTCCATTTTTGCCTGGACCAGAGGGTNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTATGATGACCAGCGTGCT





743
IDH1_2604
GAAGTCTCTATTGAGACAATTGAGGCTGGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTAGAAAGGACAGGAGAC





744
IDH1_2605
GCAACGTTCTGACTACTTGNNNNNNNNCTTCAGCTTCCCGATATC




CGACGGTAGTGTCAGAGCAAAGCTTGATAACAATAAAG





745
IDH1_2606
GTTCATACCTGAGCTAAGAAGGATAATNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTGGACTTGGCTGCTTGCAT





746
IDH2_2059
ACCCCTGATGAGGCCCGTGTGGAAGAGTTNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTACATCCAGCTAAAGTA





747
IDH2_2060
GAGCCCATCATCTGCAAAAACATCCCNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTGTGTGGCTGTCAAGTGTGC





748
IDH2_2061
GCGACCAGTACAAGGCCACAGANNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTAAAGTCCCAATGGAACTATCCGG





749
IDH2_2062
GAGTGGGAAGTGTACAACTTCCCCGCAGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTACCAAGCCCATCACCAT





750
IDH2_2063
GTATGCCATCCAGAAGAAATGGCCGCTGTNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTACCCCAAAAGATGGCA





751
IDH2_2064
GCACTATAAGACCGACTTCGACAAGNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTTTTTGCGCACAGCTGCTTCC





752
IDH2_2065
GCTTTGTGTGGGCCTGCAAGAACTATGNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTTTCAAGGACATCTTCCAG





753
IDH2_2066
GCCCTGATGGGAAGACGATTGANNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTTGGTGGCTCAGGTCCTCAAGTCT





754
IDH2_2067
CCACCAGCACCAACCCCANNNNNNNNCTTCAGCTTCCCGATATCC




GACGGTAGTGTATCCTGGCCCAGGGCTTTGGCTCCCTT





755
IDH2_2068
GCTGGAGAAGGTGTGCGTGGAGACGGTNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTGGGAGCACCAGAAGGG





756
IDH2_2069
GCAATGTGAAGCTGAACGAGCACTTCCTGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTGGGGAAGCTGGATGGG





757
MDH1_1041
GTGACTGGAGCAGCTGGTCAAATTGCATNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTTGGGAGAGGAGCGATCT





758
MDH1_1042
GCTGTTGGATATCACCCCCATGATGGGNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTAGGACGATAAGTCTGAAC





759
MDH1_1043
GCAACAGATAAAGAAGACGTTGCCTTNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTCTGTCTTTGGTAAAGATCA





760
MDH1_1044
GCAAATGTGAAAATCTTCAAATCCCAGGGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCCCTCCTGAAAGATGT





761
MDH1_1045
GCCAATACCAACTGCCTGACTGCTTCCAANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTGAAGGGAAGGCATGGA





762
MDH1_1046
GATCACAACCGAGCTAAAGCTCAAATTGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTAAATACGCCAAGAAGTC





763
MDH1_1047
GAAACCATTCCTCGACTCAGTATCCAGANNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTCTCCATCCATCCCCAA





764
MDH1_1048
GCTCTGAAAGATGACAGCTGGCTCAAGGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTCTTGGTGTGACTGCTAA





765
MDH1_1049
GCCATGTCTGCTGCAAAAGCCATCTGTGANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTTGCAAGGAAAGGAAGT





766
MDH1_1050
GCAACTCCTATGGTGTTCCTGATGATCTGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCATCAAGGCTCGAAAA





767
MDH1_1051
GATTTCTCACGTGAGAAGATGGATCTTNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTGTTTGTGTCCATGGGTGT





768
MDH1_1052
GCCTGACTAGACAATGATGTTACTAAATGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTAGAATAAGACCTGGAA





769
MDH1_1053
GCTATACTTAAATTACTTGTGAAAAACAANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTGAAGAAAAAGAAAGTG





770
MDH2_1470
GCCACTTTCACTTCTCCTGAAGAACNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTTCCCGCTCCAGCCATGCTCT





771
MDH2_1471
CCACATCGAGACCAAAGCCNNNNNNNNCTTCAGCTTCCCGATATC




CGACGGTAGTGTTAAAGTAGCTGTGCTAGGGGCCTCTG





772
MDH2_1472
GTGGTAGTTATTCCGGCTGGAGTCCNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTCTGACCCTCTATGATATCGC





773
MDH2_1473
GCTGCCTGTGCCCAGCACTGCNNNNNNNNCTTCAGCTTCCCGATA




TCCGACGGTAGTGTACCTGAACAGCTGCCTGACTGCCT





774
MDH2_1474
CATTGGTGGCCATGCTGGGAAGACCATCANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTTTCAACACCAATGCCA





775
MDH2_1475
CAGCTGACAGCACTCACTGGNNNNNNNNCTTCAGCTTCCCGATAT




CCGACGGTAGTGTTGATCTGCGTCATTGCCAATCCGGG





776
MDH2_1476
GCTTTGTCTTCTCCCTTGTGGATGNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTAAGGTGGACTTTCCCCAGGAC





777
MDH2_1477
GCTGCTGCTTGGGAAAAAGGGCATCGAGANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTATGGCGTATGCCGGCG





778
MDH2_1478
GCTGAAGGCCTCCATCAAGAAGGGGGANNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTAGGAAACGGAATGTACC





779
MDH2_1479
GCATCATGTCACTGCAAAGCCGTTGCAGANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTAGGAGAAGATGATCTC





780
VHL_3329
AAAGACCTGGAGCGGCTGACACAGNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTCCGAGTGTATACTCTGAAAGA





781
VHL_3330
GCTTTTGATGGTACTGATGAGTCTTGATNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTACGAAGATCTGGAAGAC





782
MET_control_
GTGACTTCTGCCACATTACCTGACNNNNNNNNCTTCAGCTTCCCG



intron_1_0002
ATATCCGACGGTAGTGTCCTGTAGCAAGTATTTTCGCC





783
MET_control_
CACACACACACACACACACACCAGCNNNNNNNNCTTCAGCTTCCC



intron_19_0025
GATATCCGACGGTAGTGTGATAGCGCTCTCATGGCTTG





784
MET_control_
GCATTTGAAGGATCAAACAATCAACATCNNNNNNNNCTTCAGCTT



intron_2_0057
CCCGATATCCGACGGTAGTGTGGAAAGATACCTGATAA





785
EGFR_0403
GCCCTGGGGATCGGCCTCTTCATNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTACCTGTGCCATCCAAACTGCAC





786
EGFR_0405
GCACGGTGTATAAGGGACTCTGGATNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTTGCTGCAGGAGAGGGAGCTT





787
EGFR_0406
GCCAACAAGGAAATCCTCGATGAAGCNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTAAAAGATCAAAGTGCTGGG





788
EGFR_0407
TCTGCCTCACCTCCACCGTGCANNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTAAGTTAAAATTCCCGTCGCTATC





789
EGFR_0408
GCTCCCAGTACCTGCTCAACTGGTGTGTNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTTGGACAACCCCCACGT





790
EGFR_0410
GCAGAAGGAGGCAAAGTGCCTATCAANNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTAGGACCGTCGCTTGGTGCA





791
EGFR_0411
GAGTTGATGACCTTTGGATCCAAGCCNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTCGGAAGAGAAAGAATACCA





792
EGFR_0414
GCCAAGTCCTACAGACTCCAACNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTCATGGTCAAGTGCTGGATGATAG





793
EGFR_0417
GACAGCATAGACGACACCTTCCTCCCAGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTAGTGCAACCAGCAACAA





794
EGFR_0420
GCCACCAAATTAGCCTGGACAACCCTGNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTAGAGACCCACACTACCA





795
EGFR_0383
GGAAATTACCTATGTGCAGAGGAATTATGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCTGGAGGAAAAGAAAG





796
EGFR_0385
GCAAATAAAACCGGACTGAAGGAGCNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTGTGGCTGGTTATGTCCTCAT





797
EGFR_0386
GCCCTGTGCAACGTGGAGAGCATCNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTCTACGAAAATTCCTATGCCTT





798
EGFR_0389
GCCTGGTCTGCCGCAAATTCCGAGACGAANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCCAGAAACTGACCAAA





799
ERBB4_0067
GTCACTGGTATTCATGGGGACCCTTNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTCACTGACATTTGCCCAAAA





800
ERBB4_0071
ACAACACTCTTCAGCACAATCAACCAGANNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTTGCTTATCCTCAAGCAA





801
ERBB4_0077
GTGGGCTCTTCATTCTGGTCATTGTGGGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTACCCATGCCATCCAAA





802
ERBB4_0085
GCCAATTAAATGGATGGCTCTGGAGTGNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTGCAGCCCGTAATGTCTTA





803
ERBB4_0087
TGCCTCAGCCTCCCATCTGCACTANNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTGAGTGACGTTTGGAGCTATGG





804
ERBB4_0088
GCTGAGTTTTCAAGGATGGCTCGAGNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTAGAGAAAGGAGAACGTT





805
ERBB4_0089
GCTTCCCAGTCCAAATGACAGCAAGNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTGTTGGATGATTGATGCTGAC





806
ERBB4_0058
GGGTGCTACTGCTGAGATTTTTGATGACTNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCCATGTCAGGAAACCA





807
ERBB4_0094
CAGTAGCACCCAGAGGTACAGTGCTGACCNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCCAACTAGCACAATTC





808
ERBB4_0060
GCAAGATATTGTTCGGAACCCATGGCCTTNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTACAGAAAAGATGGAAA





809
MERTK_0533
GCTGAGTAATGGCTCAGTCATGATTTTTNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTCCCACCAACTGAAGTCA





810
MERTK_0537
GTCCACAATGCTACGTGCACAGTGAGGANNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTAAGCAGCAGGATGGAG





811
MERTK_0540
AATCCTTCTGTCGGCGAGCCATNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTGTGGATTTATTTTGATTGGGTTG





812
MERTK_0546
GCGAGATGACATGACTGTCTGTGTTGNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTACAGGACCAAAGCATA





813
MERTK_0547
GCCTGTTAAATGGATCGCCATAGNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTCTTCATCGAGATTTAGCTGCTC





814
MERTK_0549
GAAGACTGCCTGGATGAACTGTATGANNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTGTGATGTGTGGGCATTTGG





815
MERTK_0550
CTCTTAGAAAGTTTGCCTGACGTTCGGNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTTGGCCACAGGTTGAAGCA





816
MERTK_0554
GCTGACGACTCCTCAGAAGGCTCAGNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTTCTGCTGCAGTCACAGCTG





817
MERTK_0527
TCGCTTCCTTCAGCATAACCAGTGTGNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTCTCAATCAGTGTACCTAAT





818
MERTK_0530
CGAACAGCCTGAAAAATCCCCCNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTTCCTCACTTTACTAAGCAGCCTG





819
PLXND1_0604
TTCCGCCCTTCCCCCCCAACNNNNNNNNCTTCAGCTTCCCGATAT




CCGACGGTAGTGTCAGCCTGCCCAGCCTCAGTGGCAT





820
PLXND1_0605
TCACCATCTACGACTGCAGCCNNNNNNNNCTTCAGCTTCCCGATA




TCCGACGGTAGTGTTTTGGTCACCAGATTGCCTACTGC





821
PLXND1_0589
CAGACCCCTGCACGGAGCTGANNNNNNNNCTTCAGCTTCCCGATA




TCCGACGGTAGTGTTTCTCCTACGTGCTGCCCCTGGTC





822
PLXND1_0612
CCGGGGAGCCTCTCACCCTCGTTANNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTGAGGTGGCTGTGGCTGAGG





823
PLXND1_0613
GCTGCGACATCCAGATTGTCTCTGACAGANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTGGCCAAGAGGGAGAAG





824
PLXND1_0614
TTCAACCAGACCATCGCCACACNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTTACCGGGTCAAGATAGGCCAAGT





825
PLXND1_0616
GCAAAGGCTTCGCTGAGCTGCAGANNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTGTCCTGCTGCTGCTCTCCGTG





826
PLXND1_0617
GGAGTATAAGCACTTCGTGACCCGCACNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTTGCTGCAGATGGAGGAG





827
PLXND1_0618
TCCCAGACCCTCAACTCCCAGGGNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTACATGACAGATCTCACCAAGGA





828
PLXND1_0622
GTCCATCTGCATGTACAGCTGTCTGCGGGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTTACTACACCAGCATCA





829
PLXND1_0626
TTCGCCTCCAGCACACAGANNNNNNNNCTTCAGCTTCCCGATATC




CGACGGTAGTGTATGGACTCGCTGAGCGTGCGGGCCAT





830
PLXND1_0630
CTTTTTCGACTTCCTGGAGGAGCAGGCNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTTGCTCCCGGAAATCTACC





831
PLXND1_0632
TCATCGCGCAGGCCTTCATCGACGCNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTACCCCGACACCCTACACATC





832
PLXND1_0634
CTGGCCGAGGAGTCGAGGAAATACCAGAANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTATTCGCCAACCAACAA





833
PLXND1_0636
GGTGGTGGCTTTGATGGAGGACAACATCTNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTAACACCAATGTGGCCA





834
RET_0681
TCTCCCAGCACCAAGACCNNNNNNNNCTTCAGCTTCCCGATATCC




GACGGTAGTGTCTGCCCCCTGTCCTGTGCAGTCAGC





835
RET_0683
GCTTCCCTGAGGAGGAGAAGTGCTTCTGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTGCGATGTTGTGGAGAC





836
RET_0687
ATTGTATGGGGCCTGCAGCCAGGNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTAAAGGCAGAGCAGGGTA





837
RET_0690
CGGCTTGTCCCGAGATGTTTATGNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTCTCATCTCATTTGCCTGGCAG





838
RET_0691
GATCATATCTACACCACGCAAAGTGATGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTGAGGGGCGGAAGATGA





839
RET_0693
GGAGATGTACCGCCTGATGCNNNNNNNNCTTCAGCTTCCCGATAT




CCGACGGTAGTGTTGGTCTTTTGGTGTCCTGCTGTGGG





840
RET_0695
CACCGCTGGTGGACTGTAATAATGCCNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTGGTGTTTGCGGACATCAG





841
RET_0697
GGATGCTTTCACCCTCAGCGGCAAAATNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTGAAAACAAACTCTATGGC





842
RET_0698
GTGAAAGGTAATGGACTCACAAGGGGAANNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTACGAGAGCTGATGGCA





843
RET_0673
GCTCCTGGGAGAAGCTCAGTNNNNNNNNCTTCAGCTTCCCGATAT




CCGACGGTAGTGTTGAGGAGGTGCCCAGCTTCCG





844
AXL_0731
TCGTCGGACCACTGAAGCTACCNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTCTGTGTCCTCATCTTGGCTCTCT





845
AXL_0735
TCCTCCTCTATTCCCGGCTNNNNNNNNCTTCAGCTTCCCGATATC




CGACGGTAGTGTTCTGCATGAAGGAATTTGACCATCCC





846
AXL_0737
GTCCGTGTGTGTGGCGGACTTCNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTAGTGTACCTGCCCACTCAGATG





847
AXL_0738
GCCATTGAGAGTCTAGCTGACCGTGTCTNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTAGGAACTGCATGCTGAA





848
AXL_0739
CGGGCGTGGAGAACAGCGAGATTTATGNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTAAGATGCCAGTCAAGTGG





849
AXL_0740
GGACTGTATGCCTTGATGTCGCGGTGCTNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTGGGGTGACAATGTGGG





850
AXL_0742
AGCTGACCCCCCAACCCANNNNNNNNCTTCAGCTTCCCGATATCC




GACGGTAGTGTGTTTTACAGAGCTGCGGGAAGATTTGG





851
AXL_0744
TTCCCACCCCACGCCTTATCNNNNNNNNCTTCAGCTTCCCGATAT




CCGACGGTAGTGTTCAGCCTGCTGATAGGGGCTCCCC





852
AXL_0727
GCCCGAAGACAGGACTGTGGCNNNNNNNNCTTCAGCTTCCCGATA




TCCGACGGTAGTGTAGCTCAGAATCACCTCCCTGCA





853
AXL_0717
TCCCCCTGGCCACGGCTCCANNNNNNNNCTTCAGCTTCCCGATAT




CCGACGGTAGTGTGCTGGAGGGCTTGCCTTACTTCCT





854
EGFR_delta_14_
GCCAGGTCTTGAAGGCTGTCCAANNNNNNNNCTTCAGCTTCCCGA



15_1808_nt_0001
TATCCGACGGTAGTGTGTCTGCCATGCCTTGTGCT





855
EGFR_delta_14_
GCCCTGGGGATCGGCCTCTTCATGCGAANNNNNNNNCTTCAGCTT



15_1808_nt_0002
CCCGATATCCGACGGTAGTGTGACAAGTGCAACCTTCT





856
EGFR_delta_2_7_
GTGGTGACAGATCACGGCTCGTGNNNNNNNNCTTCAGCTTCCCGA



265_nt_0006
TATCCGACGGTAGTGTGAGAGCCGGAGCGAGCTCTT





857
EGFR_delta_2_7_
GCCGCAAAGTGTGTAACGGAATAGGTANNNNNNNNCTTCAGCTTC



265_nt_0007
CCGATATCCGACGGTAGTGTCTGGAGGAAAAGAAAG





858
EGFR_delta_12_
GCCAAGGGAGTTTGTGGAGAACTCTGAGTNNNNNNNNCTTCAGCT



12_674_nt_0011
TCCCGATATCCGACGGTAGTGTATTCTGAAAACCGTAA





859
EGFR_delta_12_
CGGGGACCAGACAACTGTATCCAGTGTGNNNNNNNNCTTCAGCTT



12_674_nt_0012
CCCGATATCCGACGGTAGTGTAACCTAGAAATCATACG





860
EGFR_delta_25_
CACAATCAGCCTCTGAACCCNNNNNNNNCTTCAGCTTCCCGATAT



27_3123_nt_0017
CCGACGGTAGTGTCCAAAGTTCCGTGAGTTGATCATCG





861
MET_delta_14_3_
GTTTCCTAATTCATCTCAGAACGGTTCANNNNNNNNCTTCAGCTT



128_nt_0025
CCCGATATCCGACGGTAGTGTAATAGTTCAACCAGATC





862
MET_delta_14_3_
CAGTCCATTACTGCAAAATACTGTCCACANNNNNNNNCTTCAGCT



128_nt_0026
TCCCGATATCCGACGGTAGTGTAAAAAGAGAAAGCAAA





863
MET_delta_4_5_
GCAGGTTTTCCCAAATAGTGCACCCCTTGNNNNNNNNCTTCAGCT



1579_nt_0032
TCCCGATATCCGACGGTAGTGTGCTTTGCAGCGCGTTG





864
MET_delta_4_5_
ACTAGAGTTCTCCTTGGAAATGAGAGCNNNNNNNNCTTCAGCTTC



1579_nt_0033
CCGATATCCGACGGTAGTGTGACATCAGAGGGTCGCTT





865
MET_delta_7_8_
GCACGATGAATACTGTGTCAAACAGNNNNNNNNCTTCAGCTTCCC



2049_nt_0037
GATATCCGACGGTAGTGTTTGAAGGAGGGACAAGGCTG





866
MET_delta_7_8_
GCCAACCGAGAGACAAGCATCTTCANNNNNNNNCTTCAGCTTCCC



2049_nt_0038
GATATCCGACGGTAGTGTAATGAGAGCTGCACCTTGAC





867
MET_var_1_fusion_
ATTAGTACTTGGTGGAAAGAACCTCTCAANNNNNNNNCTTCAGCT



9_10A_2638_nt_
TCCCGATATCCGACGGTAGTGTCCCAAACCATTTCAAC



0042






868
MET_var_1_fusion_
CAGTTAGTGTCCCGAGAATGGTCATAAANNNNNNNNCTTCAGCTT



9_10A_2638_nt_
CCCGATATCCGACGGTAGTGTAAATTCATCCAACCAAA



0043






869
MET_var_2_fusion_
GTGGTGGGAGCACAATAACAGGTGTTGNNNNNNNNCTTCAGCTTC



9_10B_2664_nt_
CCGATATCCGACGGTAGTGTCAAACCATTTCAACTGAG



0047






870
MET_var_2_fusion_
GCATGTCAACATCGCTCTAATTCAGNNNNNNNNCTTCAGCTTCCC



9_10B_2664_nt_
GATATCCGACGGTAGTGTATTCATCCAACCAAATCTTT



0048






871
MET_var_2_fusion_
GCATGTCAACATCGCTCTAATTCAGNNNNNNNNCTTCAGCTTCCC



9_11_2464_nt_
GATATCCGACGGTAGTGTCCAAACCATTTCAACTGAGT



0052






872
MET_var_2_fusion_
GCCTTTTTCATGTTAGATGGGATCCTTTNNNNNNNNCTTCAGCTT



9_11_2464_nt_
CCCGATATCCGACGGTAGTGTCTATGAAATTCATCCAA



0053






873
KIT_0066
GTCACAACAACCTTGGAAGTAGTAGANNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTATAATAGCTGGCATCACGG





874
KIT_0069
CCGAAGGAGGCACTTACACATTCCTAGNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTGAACACCAGCAGTGGATC





875
KIT_0072
GCACAATGGCACGGTTGAATGTAAGGNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTTGTCCAGGAACTGAGCAGA





876
KIT_0075
CAAATGGGAGTTTCCCAGAAACAGGCTGANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTGTGATGATTCTGACCT





877
KIT_0078
GCTATGGTGATCTTTTGAATTTTTTGAGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTAACGGGAAGCCCTCATG





878
KIT_0080
GCCGACAAAAGGAGATCTGTGAGAATAGGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTAAGATCATGCAGAAGC





879
KIT_0083
GTGAAGTGGATGGCACCTGAAAGCANNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTAGAGACTTGGCAGCCAGAAA





880
KIT_0058
GCTGTTATGCACTGATCCGGGCTTNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTTTCTGCTCCTACTGCTTCGCG





881
KIT_0060
TGCCAAGCTTTTCCTTGTTGACCGCTCCNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTAACGAATGAGAATAAGC





882
KIT_0063
GCTGTGCCTGTTGTGTCTGTGTNNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTAAGGCGGGCATCATGATCAAAAG





883
PTEN_0098
GGATTCAAAGCATAAAAACCATTACAAGANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCAAGAGGATGGATTCG





884
PTEN_0100
CATGTTGCAGCAATTCACTGTAAAGCTGGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTACACCGCCAAATTTAA





885
PTEN_0101
GCCCTAGATTTCTATGGGGAAGTAAGGNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTCCAATGGCTAAGTGAAGA





886
PTEN_0102
GGATTATAGACCAGTGGCACTGTTGTTTNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTTTTAAAGGCACAAGAG





887
PTEN_0103
CCTCAGTTTGTGGTCTGCCAGCTNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTGTCAGAGGCGCTATGTGTATT





888
PTEN_0104
GCCGTTACCTGTGTGTGGTGATATNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTTTCCAATGTTCAGTGGCGG





889
PTEN_0105
ACCAGGACCAGAGGAAACCTCANNNNNNNNCTTCAGCTTCCCGAT




ATCCGACGGTAGTGTGTTCATGTACTTTGAGTTCCCTC





890
PTEN_0107
AGCCAACCGATACTTTTCTCCAANNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTGTAGAAAATGGAAGTCTATGTG





891
PTEN_0109
GATCAGCATACACAAATTACAAAAGTCTGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCGTCAAATCCAGAGGC





892
PTEN_0110
GGACCTTTTTTTTTTTAATGGCAATAGGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTTGACTCTGATCCAGAGA





893
ACTB_0129
TTGCTCCTCCTGAGCGCAAGTACTCNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTACATCCGCAAAGACCTGTAC





894
ACTB_0123
TCTGGCACCACACCTTCTACAATGNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTGTGATGGTGGGCATGGGTC





895
ACTB_0124
AACCCCAAGGCCAACCGCGANNNNNNNNCTTCAGCTTCCCGATAT




CCGACGGTAGTGTTGAAGTACCCCATCGAGCACGGCAT





896
ACTB_0126
GGTCATCACCATTGGCAATGAGCGGTNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTGAGCGGGAAATCGTGCGTG





897
ACTB_0127
GGCATCCACGAAACTACCTTCAACNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTTGCTTCCAGCTCCTCCCTGG





898
ACTB_0128
CCACCATGTACCCTGGCATTGCCNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTACTCTTCCAGCCTTCCTTCCT





899
MET_var_1_0147
GTTCCATAAACTCTGGATTGCATTCCTACNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTCAGAGATTCTTACCCC





900
MET_var_1_0150
GTGAGATGTCTCCAGCATTTTTACGGNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTTTCTTTTCGGGGTGTTCGC





901
MET_var_1_0153
ACTCCCATCCAGTGTCTCNNNNNNNNCTTCAGCTTCCCGATATCC




GACGGTAGTGTCTCTTAACATCTATATCCACCTTCATT





902
MET_var_1_0156
GCTGACCATATGTGGCTGGGACTTTGGATNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTTGGTGCCACGACAAAT





903
MET_var_1_0159
GCTGGTGGCACTTTACTTACTTTNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTGTCCTGCCATGAATAAGCATTT





904
MET_var_1_0162
GCTTTGCCAGTGGTGGGAGCACAATANNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTAGCCAACCGAGAGACAA





905
MET_var_1_0165
GCCTTTTGAAAAGCCAGTGATGATCNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTTTGTACCACTCCTTCCCTGC





906
MET_var_1_0169
GCAAATTAAAGATCTGGGCAGTGAATTAGNNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTGTCCTTGGAAAAGTAA





907
MET_var_1_0170
CCCAACTACAGAAATGGTTTCAAATGNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTCTTGGGTTTTTCCTGTGGC





908
MET_var_1_0171
GCAGTATCCTCTGACAGACATGTCCNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTGCTTGTAAGTGCCCGAAGTG





909
MET_var_1_0174
CAATTTCTGACCGAGGGAATCATCATGANNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTGAAGTCATAGGAAGAGG





910
MET_var_1_0178
GCAAACTCAAAAGTTTACCACCAAGTCNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTAAAAATTCACAGTCAAGG





911
MET_var_1_0181
ACTTTCATTGGGGAGCACTATGTCCATNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTACTCCTACAACCCGAATA





912
MET_var_1_0184
GTATTGTTATTTAAATTACTGGATTCTANNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTCATAGTGCTAGTACTAT





913
MET_var_1_0144
CGGTTCATCAACTTCTTTGTAGGNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTACAATCATACTGCTGACATACA





914
TUBB_0211
TCCGCCGGAAGGCCTTCCTCCACTNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTAACAATGTCAAGACAGCCGTC





915
TUBB_0202
CAGCTGACCCACTCACTGGNNNNNNNNCTTCAGCTTCCCGATATC




CGACGGTAGTGTTTTGTATTTGGTCAGTCTGGGGCAGG





916
TUBB_0205
CCACCTTGTCTCAGCCACCANNNNNNNNCTTCAGCTTCCCGATAT




CCGACGGTAGTGTTACAATGCCACCCTCTCCGTCCATC





917
TUBB_0208
TACCTCACCGTGGCTGCTNNNNNNNNCTTCAGCTTCCCGATATCC




GACGGTAGTGTCTTTATGCCTGGCTTTGCCCCTCTCAC





918
ERBB3_0013
CCACCACTCTTTGAACTGGACCAAGNNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTCGGGGCTTCTCATTGTTGAT





919
ERBB3_0015
GCCGAGGAGGTGTCTGTGTGANNNNNNNNCTTCAGCTTCCCGATA




TCCGACGGTAGTGTAGACATCAAGCATAATCGGCCG





920
ERBB3_0019
CCCATCTGACAATGGCTTTGACAGTGNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTCCCAATCTACAAGTACCCA





921
ERBB3_0025
GCCAAGGGAATGTACTACCTTGAGGANNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTGTCATCTCTGCAGCTTG





922
ERBB3_0027
GTGGATGGCCCTTGAGAGTATCCACTTNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTAAACGTGCTACTCAAGTC





923
ERBB3_0034
GCAGTTTCTGGGAGCAGTGAACGGTGCNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTAGCCTACCAGTTGGAA





924
ERBB3_0037
TACTCCCTCCTCCCGGGAAGGCANNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTCGGAGATAGCGCCTACCA





925
ERBB3_0043
CTCCTGCTCCCTGTGGCACTCNNNNNNNNCTTCAGCTTCCCGATA




TCCGACGGTAGTGTCCCCCCATGTCCATTATGCCC





926
ERBB3_0002
GCTTTGTCACATGGACACAATTGACTGNNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTGGAAGTTTGCCATCTTC





927
ERBB3_0005
GCCTGCCGGCACTTCAATGACAGTGGAGNNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTACATTGACCAAGACCA





928
RON_0255
TTTTGCCCCAACCCGCCTNNNNNNNNCTTCAGCTTCCCGATATCC




GACGGTAGTGTCCCCAACTCTGTCGTCTGTGCCTTCCC





929
RON_0263
AACTGGAGCCCTTGGGCACCCAGNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTTTCTGGTCTGGTGCCTGAGGG





930
RON_0265
GGCACCTGTCTCACTCTTGAAGGCNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTCCTCACCGTGACTAACATGCC





931
RON_0270
GGAGCTGCTGGCTTTACACTGCCTGGNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTGGCTTAGGGCAGTGGAAAG





932
RON_0274
GCACTGGTCTTCAGCTACTGGTGGNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTGGTCTGCGTAGATGGTG





933
RON_0279
GTGGAGGCCTTCCTGCGAGAGGGGCTNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTACAGTGACCGAGTCATTGG





934
RON_0281
CCTCATCAGCTTTGGCCTGCAGGTANNNNNNNNCTTCAGCTTCCC




GATATCCGACGGTAGTGTTGTGCTGGCTCTCATTGGT





935
RON_0282
CAGTCAAGGTGGCTGACTTTGGTTNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTAACCCCACCGTGAAGGA





936
RON_0287
CTCACCCATGCCAGGGAATGTACGNNNNNNNNCTTCAGCTTCCCG




ATATCCGACGGTAGTGTTGGGGGAGGTGGAGCAG





937
RON_0252
CCACACGGGAGCCTTCGTATACTNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTTTCAGCCCACGCTCAGTGTCT





938
ALK_0320
TGCCCAGAGGCTCCTTTCTCCNNNNNNNNCTTCAGCTTCCCGATA




TCCGACGGTAGTGTTGTGAGCTGGAGTATTCCCCTCC





939
ALK_0323
GTGGAAACCGCAGCTTGTCTGCAGTGGANNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTACAACGAGGCTGCAAGA





940
ALK_0328
CGTGTCCTTGGTGCTAGTGGNNNNNNNNCTTCAGCTTCCCGATAT




CCGACGGTAGTGTTTGCTCAGTACCACTGATGTCCC





941
ALK_0329
GCCTGTGGCAGTGGATGGTGTTGNNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTTGAGCTCCGAATGTCCTGG





942
ALK_0334
GCGGGAAAGGCGGGAAGAACACCATGANNNNNNNNCTTCAGCTTC




CCGATATCCGACGGTAGTGTAACAACGCCTACCAGAA





943
ALK_0335
GCTGTACATCCTGGTTGGGCAGCAGGGANNNNNNNNCTTCAGCTT




CCCGATATCCGACGGTAGTGTAGCCACCGACACCTACA





944
ALK_0347
CTGCCCCGGTTCATCCTGCTGGANNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTTGGCTGTGAAGACGCTGCCTG





945
ALK_0349
CAGACACATGGTCCTTTGGAGTGCTGNNNNNNNNCTTCAGCTTCC




CGATATCCGACGGTAGTGTTGGAGACTTCGGGATG





946
ALK_0355
CCCAACGTACGGCTCCTGGTTNNNNNNNNCTTCAGCTTCCCGATA




TCCGACGGTAGTGTTCTCTGTTCGAGTCCCTAGAGGGC





947
ALK_0358
GCCCCTGGAGCTGGTCATTACGANNNNNNNNCTTCAGCTTCCCGA




TATCCGACGGTAGTGTTGCTCCTAGAGCCCTCTTCGCT





948
EGFR_0391
GCCTGTGGGGCCGACAGCTATGAGATGGANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTTCTACAACCCCACCAC





949
EGFR_0394
CGTAAAGGAAATCACAGGGTTTTTGCTGANNNNNNNNCTTCAGCT




TCCCGATATCCGACGGTAGTGTAAACACTTCAAAAACT





950
forward primer
CTGGTAACGGCAATGCGGCT



HMBSFw






951
reverse primer
TTCTTCTCCAGGGCATGTTC



HMBSRv





Sequences 1 - 949 are smMIPs






EXAMPLES
Example 1—Targeted smMIP-Based RNA Sequencing Yields Relevant Information on Metabolism

In the past four decades an overwhelming amount of data has become available on the molecular events that underlie carcinogenesis. Research has mainly focused on molecular alterations and their consequences for among others the PI3K/pAKT/mTOR pathway(19-22) and cell cycle control, apoptosis (23, 24) and DNA repair pathways (25, 26). Currently, numerous FDA-approved drugs are available that target cancer cells based on these genetic defects with a level of specificity that is not attainable with conventional chemotherapies (27, 28), permitting personalized medicine. Whereas targeted cancer therapies may prolong survival, it is now widely recognized that inherent genetic instability ultimately leads to therapy resistance of most cancers (11-14).


For proliferation, cancer cells need to generate ATP to maintain energy balance and ion homeostasis, import carbon and nitrogen sources for synthesis of amino acids, nucleotides and lipids (29, 30) and maintain redox potential to protect cells against oxidative stress (31). Blocking one or more of these processes may prohibit proliferation and/or sensitize cells to toxic therapy in a synthetic lethality approach. As an example, increasing oxidative stress in a cancer with metabolic inhibitors may enhance the efficacy of radiotherapy (32) or chemotherapy (33). With the increasing knowledge of deranged metabolic pathways in cancer (34-37), (adjuvant) targeting of cancer-specific metabolic pathways may be a highly interesting addition to current treatment protocols. The best-known example of cancer-specific metabolic adaptation is aerobic glycolysis, also known as the Warburg effect (38). As glycolysis is inefficient in terms of ATP production, cancer cells characteristically upregulate glucose transporters GLUT1 and/or GLUT3. Besides glucose, glutamine and fatty acids are recognized as important fuels for cancer cells (39, 40) (41, 42).


While metabolic adaptations are mostly seen as a consequence of carcinogenesis, it has been unequivocally established that metabolic alterations can also cause cancer, examples being mutations in genes encoding mitochondrial (e.g. IDH2, FH, SDH) and cytosolic (e.g. IDH1) metabolic enzymes (43, 44) (45, 46) (1, 47, 48), the latter being prominent in among others low grade gliomas and secondary glioblastomas (1, 48). Clear cell renal cell carcinoma (ccRCC) is now considered a metabolic disease with metabolic alterations resulting indirectly from inactivating mutations in or epigenetic silencing of VHL, found in ˜80% of clear cell renal cell cancers (ccRCC) (49). pVHL is a major regulator of ubiquitination and breakdown of transcription factor hypoxia inducible factors HIF-1α and HIF-2α (49). Mutations in the aforementioned metabolic enzymes and in VHL have been shown to induce epigenetic alterations that affect expression of other metabolic enzymes in an unpredictable fashion (17, 50-52).


To apply metabolic inhibitors as potential additions to the current anti-tumor armamentarium, it is of high importance to identify which metabolic pathways are active in a specific cancer in a personalized fashion. Here we applied a novel next generation-sequencing based method using single molecule molecular inversion probes (smMIPs(15)), to detect expression levels of 104 genes involved in metabolism, and concomitantly identify variants therein. As a proof of concept, we applied smMIPs to map part of the metabolic transcriptome of a VHL-defective ccRCC cell line and a corresponding VHL-rescued isogenic derivative, as well as in patient derived glioma xenograft models. We validated the technique by correlating results with whole transcriptome RNAseq data (as gold standard for transcriptome analysis) and protein expression. We further verified the ability of the assay to detect oncogenic mutations in cell lines and patient tumor tissue.


Our data show that targeted RNA sequencing of transcripts encoding metabolic enzymes using smMIPs predict the predominant metabolic pathways that are operational in cancer (53) and simultaneously allows variant detection in the targeted transcripts.


Materials and Methods
Cell Lines—

The cell line SKRC7 is derived from a primary human ccRCC and has been described before (54). Cells were cultured in RPMI 1640 (Lonza Group, Switzerland) supplemented with 10% fetal calf serum (FCS) (Gibco, Thermo Fisher Scientific, Waltham, Mass., USA) and 40 μg/ml gentamycin (Centrafarm, Etten-Leur, The Netherlands). An isogenic SKRC7 cell line expressing a functional haemagglutinine (HA)-tagged VHL (SKRC7-VHLHA) was created by transfection with pcDNA3.1-VHLHA followed by selection of stable transfectants in the same medium with 400 μg/ml geneticin (Gibco, Thermo Fisher Scientific, Waltham, Mass., USA). The patient-derived glioma xenograft models E478 and E98 have been described before (55, 56).


Patient Material—

Use of patient material was according to the guidelines of the local ethical committee for use of patient material and was performed with informed consent. Surgically obtained tissue from a male patient with a grade III astrocytoma was snap frozen frozen in liquid nitrogen.


RNA and cDNA Preparation—


Total RNA was isolated from sections of snap-frozen E478 xenograft tissue, human tumor tissue and from 80% confluent SKRC7 and SKRC7-VHLHA cells using TRIzol reagent (Life Technologies, ThermoFisher Scientific, Waltham, Mass., USA) according to the manufacturers' instructions. RNA quality was estimated based on relative levels of 28S, 18S and 5S rRNA bands on agarose gel and with Bioanalyzer assays (Agilent Technologies, Amstelveen, The Netherlands). RNA was reverse transcribed to cDNA using Superscript II reverse transcriptase (Invitrogen, ThermoFisher Scientific, Waltham, Mass., USA) and random hexamer primers (Promega, Madison, Wis., USA) according to standard protocols. Next, cDNA was purified using the NucleoSpin Gel and PCR Clean-up kit (Macherey-Nagel, DOren, Germany). For quality control, cDNA was subjected to PCR for reference gene hydroxymethylbilane Synthase (HBMS) with forward primer HMBSFw (5′-CTGGTAACGGCAATGCGGCT-3′) and reverse primer HMBSRv (5′-TTCTTCTCCAGGGCATGTTC-3′) using AmpliTaq Gold 360 master mix (Applied Biosystems, ThermoFisher Scientific, Waltham, Mass. USA).


Whole Transcriptome RNAseq Analysis

High quality RNA with RIN scores >8 was subjected to whole transcriptome RNAseq according to standard protocols. Sequencing was performed on an Illumina Hiseq and yielded 30-50 million reads per sample (paired end sequencing protocol). The dataset was analyzed using the ‘Tuxedo’ protocol; reads were mapped against the RefSeq human genome (hg19) with TopHat and final transcript assembly was done with the Cufflinks package (57). Normalization was done with both Cuffquant and the calculation of fragments as transcript per million mapped reads (TPM) to obtain relative expression values. Occurrence of single nucleotide variants was visualized in the Integrated Genomics Viewer browser (IGV, the Broadinstitute).


smMIP Design


The technique of targeted RNAseq using smMIPs is depicted in FIG. 1. It is based on the hybridization of an extension and ligation probe, joined by a ‘constant’ backbone sequence in an inverted manner to a cDNA of interest, followed by gap-filling/ligation and PCR. SmMIPs against the antisense strand of 104 predicted transcripts (UCSC human genome assembly hg19) were designed based on the MIPgen algorithm as described by Boyle et al. (18). Whenever possible, smMIPs were designed with ligation and extension probes located on adjacent exons to prevent contribution of smMIP probes that hybridize to potential contaminations of genomic DNA. Transcripts of interest were encoding enzymes and transporters functioning in various metabolic pathways, including lipid metabolism, glycolysis, oxidative phosphorylation (OXPHOS), tricarboxylic acid (TCA) cycle, pentose phosphate pathway (PPP), glutaminolysis and control of reductive potential (see Table I). The smMIP set also contained probes for detection of β-actin and β-tubulin as housekeeping genes, and a number of tyrosine kinases with relevance for cancer. SmMIPs were designed with extension probes of 16 to 20 nt in length and ligation probes of 20-24 nt in length, joined by a constant backbone sequence (40 nt) with a stretch of 8 random nucleotides incorporated adjacent to the ligation probe. The random 8N sequence is incorporated to reduce all amplicons originating from one individual smMIP to one unique MIP (see below). The length of gap-fill was set at 112 nt. Whereas the design was based on full coverage, for the majority of transcripts 5-10 smMIPS per transcript were included in the panel with the target regions distributed evenly over the reading frame. For 18 transcripts (CS, D-2HGDH, L-2HGDH, FH, IDH1-3A-G, MDH1-2, MYC, OGDH, SDHA-D, VHL) smMIP sets were chosen that covered the full coding sequences.


Capture and Library Preparation

642 smMIPs (IDT, Leuven, Belgium) were pooled at 100 μM/smMIP. The smMIP pool was phosphorylated using T4 Polynucleotide Kinase (New England Biolabs, NEB, Ipswich, Mass., USA) in T4 DNA ligase buffer (NEB) at 37° C. for 45 min, followed by inactivation for 20 min at 65° C. The capture reaction was performed with 50 ng of cDNA and an estimated 8000-fold molar excess of the phosphorylated smMIP pool (16) in a 25 μL reaction mixture containing Ampligase buffer (Epicentre, Madison, Wis., USA), dNTPs, Hemo KlenTaq enzyme (New England Biolabs, NEB, Ipswich, Mass., USA) and thermostable DNA ligase (Ampligase, Epicentre). The capture mix was incubated for 10 min at 95° C. (denaturation), followed by incubation for 18 h at 60° C., during which hybridization and concomitant primer extension and ligation occurs. Directly after this step non-circularized smMIPs, RNA and cDNA were removed by treatment with 10 U Exonuclease I and 50 U of Exonuclease III (both NEB) for 45 min at 37° C., followed by heat inactivation (95° C., 2 min). The circularized smMIP library was subjected to standard PCR with 2× iProof High-Fidelity DNA Polymerase master Mix (Bio-Rad, Hercules, Calif.) with a primer set containing a unique barcoded reverse primer for each sample. Generation of PCR products of correct size (266 bp) was validated on agarose gel electrophoresis, and PCR-libraries from different samples were pooled based on relative band intensity. The pool was then purified using AMPureXP beads (Beckman Coulter Genomics, High Wycombe, UK) according to manufacturers' instructions. The purified library was run on a TapeStation 2200 (Agilent Technologies, Santa Clara, Calif., USA) and quantified via Qubit (Life Technologies, ThermoFisher Scientific, Waltham, Mass. USA) to assess quality of the library. Reproducibility of the technique was tested by preparing biological replica libraries, using different RNA preparations from the same cell lines.


Sequencing and Annotation

Libraries were sequenced on the Illumina NextSeq platform (Illumina, San Diego, Calif.) at the Radboudumc sequencing facility to produce 2×150 bp paired-end reads. Reads were mapped to the reference transcriptome (hg19) using the SeqNext module of JSI SequencePilot version 4.2.2 build 502 (JSI Medical Systems, Ettenheim, Germany). The random 8 nt sequence flanking the ligation probe was used to reduce PCR amplicates to one smMIP (unique reads).


Single Nucleotide Variant (SNV) Calling and Expression Analysis—

All single nucleotide variants (SNVs) called with a minimal variant percentage of 5% detected in at least 5 unique reads (forward and reverse) were selected for further analysis. Variants were annotated and classified into synonymous or non-synonymous. Next, they were validated in whole transcriptome RNAseq data, generated from different RNA isolations from the same cell lines.


Individual read counts for each smMIP were divided by the total read count within a sample and multiplied by 106 resulting in a fragment per million (FPM) value for each smMIP in a sample. We choose for this normalization procedure instead of normalization against housekeeping genes because perfect housekeeping genes do not exist. E.g. expression of metabolic genes is subject to variation, dependent on cell cycle, and the same is true for expression of genes such as actin and tubulin.


Western Blotting—

Cell extracts were prepared from SKRC7 and SKRC7-VHLHA cells by solubilizing in RIPA buffer (Cell Signaling) and protein concentrations were determined using BCA assays. 20 μg of protein was separated on 12% SDS-PAGE gels and electroblotted on nitrocellulose. After blocking in Odyssey blocking buffer (1:1 in PBS) membranes were incubated overnight in Odyssey blocking buffer containing antibodies against HK-2 (2867S, Cell signaling technology), CA9 (M75, Dr. Oosterwijk) or γ-tubulin (C20, Santa Cruz Biotechnology, Dallas, Tex.) as loading control. Antibodies were detected with secondary antibodies conjugated with Alexa680 or DyLight800, and signal was visualized with the Odyssey scanner (LI-COR).


Statistics

FPM values for each transcript (mean FPM values from all smMIPs targeting one transcript) were correlated with TPM values (transcripts per million values for the same transcript obtained from whole RNAseq data from the same cell lines. For three samples replicate assays were performed. Correlation analyses were performed using GraphPad Prism v.5.03 (GraphPad, San Diego, Calif., USA).


Results

SmMIP-based next generation sequencing (NGS) of genomic DNA was recently introduced in routine diagnostics in our institute to detect tumor-associated mutations in DNA (16). To investigate whether smMIPs can also be used for multiplex determination of gene expression levels, concomitant with variant detection, we designed a smMIP set for targeted detection and sequencing of transcripts encoding metabolic enzymes. To establish the strength of the technique we used the SKRC7 and SKRC7-VHLHA isogenic cell line pair as prototypical cell lines in which different metabolic pathways prevail. Like 80% of ccRCCs, the SKRC7 cell line carries a defective VHL gene resulting in constitutive stabilization of HIF-1α and HIF-2α and a pseudohypoxic response (53, 54, 58). Re-introduction of VHL was expected to result in rapid HIF1/2 breakdown and repair of this metabolic aberration.


Whole RNAseq-derived gene expression data of SKRC7 cells confirmed the presence of a nonsense and functionally inactivating Q132-stop mutation in 100% of VHL transcripts (FIG. 2A) whereas only wtVHL sequence was detected in the SKRC7VHLHA (FIG. 2B), and this was readily reproduced in the smMIP assay (FIG. 2C,D). Introduction of functional VHLHA in SKRC7 cells resulted in 100-fold increase in VHL expression (FIG. 2E, see also western blot in FIG. 2F).


Optimization of Library Preparation

Using an initial set of 642 smMIPs, covering 104 transcripts of interest for this study (see Table I), we tested our protocol of library preparation with 50 ng of hexamer-primed cDNA generated from 13 different RNA samples (cell line- and xenograft derived) of which also whole RNAseq datesets were available. A 25-cycle PCR with barcoded primers on the circularized smMIP library yielded PCR fragments of the expected size of 266 bp (not shown).


Based on initial experiments we also tested the procedure on 10 and 25 ng cDNA. Both conditions yielded less PCR fragments and less unique reads compared to 50 ng. We therefore continued with 50 ng cDNA input in subsequent experiments. Illumina NextSeq sequencing of the libraries generated of SKRC7 and SKRC7-VHL cells, yielded 286,000 and 69,000 annotated unique reads respectively (corrected for PCR-amplicates based on the random 8N sequence in the smMIP), which is in the range of other samples run with the same smMIP panel (not shown). For most transcripts performance of individual smMIPs was variable (see example in Table II, showing FPM values for 10 different smMIPs designed against the VHL transcript in both cell lines), a known phenomenon also in DNA smMIP NGS (16)). This was a priori reason to include at least 5 smMIPs per gene transcript in our panel, allowing transcriptome analysis using mean normalized smMIP values for each transcript. This number was a trade-off between generating expensive, large panels which would yield in part futile and irrelevant data, and too small panels resulting in under- or overestimation of transcript levels.


First we compared the targeted smMIP RNAseq dataset, generated with a 864 smMIP panel, to a whole transcriptome RNAseq dataset (considered as gold standard), performed on different RNA isolates from the same cell lines. The whole RNAseq dataset consisted of 3.2×107 and 3.4×107 reads, assigned to 44,503 different transcripts for SKRC7 and SKRC7-VHLHA, respectively. For each transcript of interest, TPM (transcripts per million) values from the whole RNAseq dataset were plotted against mean FPM values from smMIP analyses. Such analysis for metabolic transcripts and tyrosine kinase transcripts separately, gave correlation coefficients of 0.903 and 0.974, respectively, for SKRC7 (FIG. 3A,B) and 0.784 and 0.903, respectively, for SKRC7-VHLHA (FIG. 3C,D), suggesting that, as expected, expression of metabolic genes is subject to more variation than of tyrosine kinases. Plotting whole transcriptome RNAseq data against unique reads obtained with the best performing smMIP per transcript, or the median of unique reads for each transcript (to prevent bias by non- or poor-performing smMIPs) did not improve this correlation (not shown).


One of the appealing characteristics of targeted RNAseq using smMIPs is that panels can be expanded to detect novel transcripts of interest. To test how this affects the outcome of the assay, we added 222 smMIPs for detection and targeted sequencing of other transcripts of interest to our initial panel and re-performed the assay using newly isolated RNA from the same cell line. Relative levels of transcripts within samples correlated well between assays with the initial and the expanded smMIP set (SKRC7: r=0.903, SKRC7-VHLHA: r=0.876).


Functional Validation of Targeted smMIP Data


Having confirmed the validity of the smMIP dataset, we analyzed expression levels of genes involved in metabolism in SKRC7 and SKRC7-VHLHA cells. FIGS. 4A and 4B show two biological duplicates of smMIP-based mean FPM values for a number of transcripts involved in glycolysis. Expression of HIF target genes glucose transporter 1 and 3 (SLC2A1 and SCL2A3), monocarboxylate transporter MCT4 (SLC16A3), carbonic anhydrases 9 and 12 (CA9, CA12), hexokinase 2 (HK2), lactate dehydrogenase A (LDH-A) and phosphoglycerate kinase (PGK1) were significantly and reproducibly reduced in SKRC7-VHLHA cells relative to SKRC7 cells (FIG. 4A,B), in line with data obtained from whole transcriptome RNA seq data (FIG. 4C). Relative expression levels of CA9 and HK2 transcript levels were further confirmed on the protein level (FIG. 4D). The strong reduction of CA9, HK2 and LDHA, all target genes of HIF, was in line with expectations for a VHL-defective cell line.


Variant Detection

To investigate whether smMIP based RNAseq allows efficient detection of single nucleotide variants (SNVs), we performed variant calling of the smMIP library in SeqNext. Several heterozygous and homozygous variants were detected that could be validated in the whole RNAseq dataset (see VHL example in FIGS. 2C and D). We then further validated the sensitivity of the assay to detect SNVs (called a variant in relation to reference genome hg19) and performed smMIP analysis on RNA, isolated from the IDH1R132H mutant oligodendroglioma line E478 (56) and the astrocytoma cell line E98, in which we previously identified a novel mutation in IDH1 (IDH1R314C)(1). Both mutations were identified (FIG. 5A,B).


Discussion

Here we present a novel approach of library generation for targeted RNA next generation sequencing using smMIPs and show that the technique yields reproducible and biologically relevant information which is qualitatively comparable to whole transcriptome RNAseq. Especially for the evaluation of relative contributions of metabolic pathways in cancer, that are amenable to epigenetic and transcription-factor based regulation, DNA sequencing may not always yield relevant information. Using an isogenic pair of cell lines differing only in VHL expression as a test case, we here show that targeted RNA seq of transcripts involved in metabolism with our smMIP panel yields relevant information on metabolic pathways with relative abundancies that are similar to that of whole transcriptome RNAseq.


Although the generation of smMIP libraries for targeted RNAseq obviously yields only a fraction of the data compared with whole transcriptome RNAseq, it has distinct advantages: 1) costs of the technique are approximately 5-10% of the cost of whole transcriptome RNAseq; 2) by designing smMIPs with ligation and extension probes localized on neighbouring exons, the library is expected not to be contaminated with heteronuclear RNA, transfer RNAs and ribosomal RNAs that may account for a large number of reads in whole transcriptome RNAseq, dependent on preprocessing; 3) the choice of extension and ligation target sequences allows the design of smMIPs that specifically detect splice variants; 4) the technique allows detection of SNVs and indels with high efficiency, once smMIPs are chosen to cover the mutated region; 5) coverage per target sequence of transcript of interest is higher than with whole transcriptome RNAseq; 6) smMIP sets may be extended with novel smMIPs of interest without affecting performance; 7) data sets are much smaller and easier to handle.


The technique was validated with an isogenic ccRCC cell line pair, differing only in expression of VHL. Our targeted smMIP analysis revealed that, as expected, expression levels of HIF target genes HK-2, CA9, CA12 and LDH-A were downregulated upon rescue of VHL, a known regulator of HIF proteolysis. This suggests that rescue of VHL function reduces flux of glucose into the glycolytic pathway.


Because altered metabolic activity in cancer can be a consequence of general oncogenic stress but also of mutations in genes encoding metabolic enzymes and conditions relating to the microenvironement (oxygen tension, access to stromal cell-derived metabolites (59)) cancer metabolism is in an extremely complex landscape (60). Nevertheless, targeting of cancer-specific metabolic pathways is gaining importance in cancer research. Since decades glycolysis has been considered the predominant metabolic pathway in cancer, but it is increasingly clear that tumors can also thrive using glutamine as carbon and nitrogen donor. Identification of the fuel-processing pathways that represent metabolic Achilles heels in cancer is important to apply metabolic inhibition in a personalized fashion. Approaches to identify metabolic pathways in clinical cancers currently include carbon tracing using ex vivo mass spectroscopy (59, 61, 62) and in vivo 1H-, 13C carbon- or 31P-based magnetic resonance spectroscopic imaging (40, 63) but these approaches are not suitable for implementation in routine patient care. SmMIP-based transcript profiling may be a highly relevant alternative with added value in the field of cancer diagnostics as it can identify metabolic Achilles heels by simultaneously measuring smart combinations of relative gene expression levels and variants. When combined with smMIP sets that detect actionable mutations in oncogenes or tumor suppressor genes, personalized treatment protocols may be further optimized by including inhibitors of the most predominant metabolic pathways such as glycolysis (e.g. 3-bromopyruvate, dichloroacetate(64-66)), pentose phosphate pathway (e.g. 6-aminonicotinamide (33), glutaminolysis (e.g. epigallocathechin-3-gallate(67, 68)), mitochondrial oxidative phosphorylation (e.g. metformin(69-71)), fatty acid oxidation and lipid synthesis (e.g. cerulenin (72)).


Example 2—Glutaminolysis in Cancers Predicts Enhanced Sensitivity to a Combination of Epigallocatechin-3-Galate (EGCG) and Radiotherapy as Compared to Radiotherapy Alone

Clear cell renal cell carcinoma (ccRCC) are relatively resistant to radiotherapy and chemotherapy. Due to dysfunctional von Hippel-Lindau (VHL) protein these tumors accumulate hypoxia-inducible factors HIF-1α and HIF-2α resulting in pseudohypoxic responses that accompanying aberrant metabolism (49, 73). This translates in expression of a set of transporters and enzymes that increase glucose uptake for use in aerobic glycolysis and lactate production, instead of oxidative phosphorylation (73). Increased uptake of glucose and its conversion to glucose-6-phosphate by the hexokinase family of enzymes leads to an increased flux through the pentose phosphate pathway (PPP), providing the cell with NADPH, the most important form of reducing power in cells, and ribose-5-phosphate (R5P), a precursor of nucleotide synthesis (33). Whereas in normal cells oxidative glucose metabolism yields mitochondrial citrate as a major carbon source for lipid biosynthesis, this pathway is blocked in VHL-deficient cells that process pyruvate towards lactate instead of acetyl-CoA for TCA cycle feeding (74). Cells with a VHL defect therefore use glutamine as a metabolic rescue pathway. During glutaminolysis, glutamine is converted to glutamate and α-KG via the sequential activities of glutaminase and glutamate dehydrogenase. Subsequently cells employ reductive carboxylation of α-ketoglutarate (α-KG) in the cytoplasm to produce isocitrate (reverse reaction of IDH1) that is converted to citrate (aconitase) and acetyl-CoA (ATP-citrate lyase) that, together with NADPH, is processed to fatty acids (75). In VHL-mutated cancers high expression levels of enzymes of the pentose phosphate pathway (PPP), combined with low levels of TCA enzymes correlates with poor survival (76).


In ccRCC differential expression of HIF-1α and HIF-2α is observed, with tumors expressing either both subtypes or exclusively HIF-2a. Part of the effects of HIF-1α and HIF-2α are overlapping, but they also have distinct effects on cell metabolism. HIF-1α causes glycolytic enzyme expression (77) and limits mitochondrial pyruvate consumption (78, 79), thereby blocking anabolic biosynthesis via this pathway. Furthermore HIF-1α inhibits cell cycle progression via inhibition of c-myc (80). HIF-2α however, does not regulate glycolysis and stimulates cell-cycle progression (81). The exact metabolic pathways may therefore differ between different VHL-mutated cancers. Unraveling the metabolic pathways of cancer cells that facilitate malignant behavior is of high importance, since these may be amenable for targeting with the aim to inhibit cell growth and tumor progression, or induce oxidative stress sensitizing cells to radiotherapy or chemotherapy.


Here we investigated the metabolic pathways in two VHL impaired ccRCC cell lines, SKRC-17 (expressing only HIF-2) and SKRC-7 (expressing both HIF-1 and HIF2) (54, 58). Expression of metabolic enzymes was explored with smMIP sequencing, and carbon sources that are essential for proliferation of these cells were identified. Results show that SKRC-7 cells use glucose for lactate production (high levels of enzymes for glucose-to-pyruvate-to-lactate). Gene expression profiles of SKRC-17 suggest that cells use glucose mainly for the pentose phosphate pathway. Both cell types have high levels of glutaminase and glutamate dehydrogenase, suggesting sensitivity to the glutamate dehydrogenase inhibitor EGCG. The high levels of PPP in SKRC17 suggest additional activity of 6-aminonicotinamide (6-AN).


Materials and Methods
Cell Culture

SKRC-7, derived from primary human RCC, and SKRC-17, derived from a soft tissue metastatic lesion of human RCC (82) both carry a non-sense mutation in VHL (Q132X in SKRC-7 and S65X in SKRC-17) and therefore lack functional pVHL. In SKRC-7 this leads to high levels of HIF-1α and HIF-2α, whereas SKRC-17 presents with high levels of HIF-2α only (54, 58). Unless stated otherwise, cells were cultured in RPMI 1640 (Lonza Group, Switzerland) supplemented with 10% fetal calf serum (FCS) (Gibco, Thermo Fisher Scientific, Waltham, Mass., USA) and 40 μg/ml gentamycin (Centrafarm, Etten-Leur, The Netherlands).


SmMIP Sequencing

642 smMIPs (IDT, Leuven, Belgium) were pooled at 100 μM/smMIP. The smMIP pool was phosphorylated using T4 Polynucleotide Kinase (New England Biolabs, NEB, Ipswich, Mass., USA) in T4 DNA ligase buffer (NEB) at 37° C. for 45 min, followed by inactivation for 20 min at 65° C. The capture reaction was performed with 50 ng of cDNA and an estimated 8000-fold molar excess of the phosphorylated smMIP pool (16) in a 25 μL reaction mixture containing Ampligase buffer (Epicentre, Madison, Wis., USA), dNTPs, Hemo KlenTaq enzyme (New England Biolabs, NEB, Ipswich, Mass., USA) and thermostable DNA ligase (Ampligase, Epicentre). The capture mix was incubated for 10 min at 95° C. (denaturation), followed by incubation for 18 h at 60° C., during which hybridization and concomitant primer extension and ligation occurs. Directly after this step, non-circularized smMIPs, RNA and cDNA were removed by treatment with 10 U Exonuclease I and 50 U of Exonuclease III (both NEB) for 45 min at 37° C., followed by heat inactivation (95° C., 2 min). The circularized smMIP library was subjected to standard PCR with 2× iProof High-Fidelity DNA Polymerase master Mix (Bio-Rad, Hercules, Calif.) with a primer set containing a unique barcoded reverse primer for each sample. Generation of PCR products of correct size (266 bp) was validated on agarose gel electrophoresis, and PCR-libraries from different samples were pooled based on relative band intensity. The pool was then purified using AMPureXP beads (Beckman Coulter Genomics, High Wycombe, UK) according to manufacturers' instructions. The purified library was run on a TapeStation 2200 (Agilent Technologies, Santa Clara, Calif., USA) and quantified via Qubit (Life Technologies, ThermoFisher Scientific, Waltham, Mass. USA) to assess quality of the library.


Reproducibility of the technique was tested by preparing biological replica libraries, using different RNA preparations from the same cell lines.


Western Blottinq

To verify transcript levels observed in the smMIP sequencing data on protein level, western blots for some of the interesting enzymes active in glycolysis (HK2, PKM2, GAPDH), glutaminolysis (GLUD) and reverse carboxylation (IDH1) were performed. Cells were cultured in 6 well plates till 80% confluency, then cells were harvested and processed to cell lysates by scraping in 100 μl 10 mM Tris-HCL pH 7.5 and 0.32 M sucrose and sonicating on ice (3 cycles of 30 sec max power and 30 sec off, Bioruptor, Diagenode). Lysates were centrifuged (14000 rpm, 10 min, 4° C.) and supernatants were subjected to BCA assays (Pierce, Thermo Fisher Scientific, Waltham, Mass., USA) for protein concentration measurements. 20 μg of total cytosolic protein was subjected to SDS-PAGE and electroblotted onto a nitrocellulose membrane (Whatman Optitran BA-S85, GE healthcare, Little Chalfont, UK). After blocking in Odyssey Blocking buffer (LI-COR biosciences, Licoln, Nebr., USA) in PBS (1:1) the membrane was incubated with mouse-anti-HA (1:500, Sc-7932, Santa cruz, Dallas, Tex., USA), rabbit-anti-GLUD (1:400, GTX105765, GeneTex Inc, San Antonio, Tex., USA), rabbit-anti-IDH1 (1:1000, HPA035248, Sigma Aldrich, St. Louis, Mo., USA), mouse-anti-GAPDH (1:10,000, ab8245, Abcam, Cambridge, US), rabbit-anti-HK2 (1:1000, 2867S, Cell Signaling Technology, Danvers, Mass., USA), rabbit-anti-PKM2 (1:1000, D78A4, Cell Signaling Technology, Danvers, Mass., USA) and goat-anti-γtubulin (1:5000, sc-7396, Santa Cruz, Dallas, Tex., USA) in blocking buffer, followed by incubation with goat-anti-mouseDyLight800 (1:10.000, Thermo Fisher Scientific, Waltham, Mass., USA), goat-anti-rabbitAlexa680 (1:10.000, Invitrogen, Waltham, Mass., USA), or donkey-anti-goatAlexa680 (1:10,000, Invitrogen, Waltham, Mass., USA) in blocking buffer. After washing, blots were analyzed on the Odyssey scanner (LI-COR biotechnology, Lincoln, Nebr., USA). Signals were corrected for γ-tubulin and the mean of 3 independent experiments is plotted. Statistical significance was determined with an unpaired Student's T-test.


Cell Proliferation Assays

Cellular protein content was determined as a measure of cell proliferation, using suforhodamine B (SRB) assays as described in (83). Sensitivity to EGCG was determined by adding a concentration range of EGCG (0-50 μM) or DMSO solvent one day after seeding 1,000 cells per well in 96-wells plates (Nunc, Roskilde, Denmark). An SRB assay was performed after 3 days, and IC50 values were determined in GraphPad Prism using the sigmoidal dose response with variable slope nonlinear regression analysis.


Furthermore cell proliferation over 8 days in presence or absence of EGCG was determined. Cells were seeded at 1,000 cells per well and at day 1 and day 5 after seeding the medium was changed for medium with or without 10 μM EGCG. Controls were incubated with DMSO. Protein content was determined every 2 days. Experiments were performed in triplicate and statistical significance was determined using one-way ANOVA with bonferroni correction.


To determine the sensitivity of the cells to glutamine or glucose deprivation, the regular medium was changed for either D-glucose depleted (0 g/L D-glucose and 4 g/L L-glutamine), L-glutamine depleted (1 g/L L-glutamine and 5 g/L D-glucose) or regular RPMI medium supplemented with 10% FCS and antibiotics with or without 10 μM EGCG one day after seeding the cells. Again protein content was determined every 2 days. Experiments were performed in triplicate and statistical significance was determined using one-way ANOVA with bonferroni correction.


Cellular and Mitochondrial Respiration

Cells were grown till 80% confluency in culture flasks, and after trypsinization 1.5*106 cells were resuspended in culture medium and transferred to the thermostated (37° C.) chamber of an Oxygraph-2k equipped with Datlab recording and analysis software (Oroboros Instruments, Innsbruck, Austria). The basal respiration was measured and then the remaining mitochondrial respiration was inhibited with 2.5 μM complex V inhibitor oligomycin. Then maximal respiration was measured by sequential addition of 0.5 μM mitochondrial uncoupler FCCP. Subsequently 0.5 μM complex I inhibitor Rotenone and 2.5 μM complex III inhibitor Antimycin A were added to completely shut down the electron transport chain. The remaining oxygen consumption is due to non-mitochondrial respiration. Two separate experiments were performed and significance was determined with an unpaired Student's T test.


Radiotherapy Experiments

Since SKRC-7 and SKRC-17 cells are unable to grow as colonies, sensitivity to radiotherapy was analyzed by monitoring cell proliferation with the xCELLigence. This method has been shown to measure effects of radiotherapy that correlate with the conventional clonogenic assays (84). Cells were plated at 1,000 cells per well and left to adhere overnight. Then cells were treated with 10 μM EGCG for 24 hrs, after which they were irradiated with 4 Gy (IR, 3.1Gy/min; XRAD 320 ix, Precision XRT; N. Brandford, Conn., USA). The cell index was measured from the moment of seeding for 200 hrs in real time with intervals of 15 min, fresh medium supplemented with 10 μM EGCG was added every 72 hours. Cell index was normalized to the moment of applying radiotherapy, and cell growth was calculated by performing linear regression in GraphPad Prism. The experiment was performed with two internal duplicates, and statistical significance was determined with an unpaired Student's T test.


Results
VHL Rescue Causes Differential Changes in Metabolism of SKRC-7 and SKRC-17

SKRC7 and SKRC17 present with different expression profiles (FIG. 6A). Levels of PGK1 and PDK1 transcripts were 3-fold lower in SKRC17 than in SKRC7, suggesting relatively inefficient processing of glucose to pyruvate in SKRC17. On the other hand, in this cell line enzymes of the PPP (G6PD and RPIA) were upregulated compared SKRC7. To test whether this difference is reflected in altered sensitivity to the PPP inhibitor 6-AN, we tested this compound in proliferation assays. Of note, whereas SKRC-7 cells surprisingly responded with an increase of cell proliferation, SKRC-17 cells responded by significantly decreased cell proliferation. The high levels of glutamine and glutamate-processing enzymes suggest sensitivity to the GLUD1 inhibitor EGCG. A combination of EGCG and 6-AN was able to completely block cell growth (FIG. 6B).


Example 3—smMIP-Based Targeting Sequencing Allows the Distinction of Splice Variants

The melanoma cell line Mel57 expresses low levels of vascular endothelial growth factor (VEGF-A). VEGF-A consists of different splice variants, consisting of exons 1-5,8 (VEGF-A121), exons 1-5,7,8 (VEGF-165) and exons 1-8 (VEGF-189). These variants have differential activities, ranging from vessel dilatation to full neo-angiogenesis (85). We designed smMIP165 that has its ligation and extension probes in exon 5 and 7, smMIP121 that has its ligation and extension probes in exon 5 and 8, and smMIP189, that has its ligation and extension probes in exon 5 and 6. We performed the smMIP assay with a panel including smMIP121, smMIP165, smMIP189 and 5 smMIPs located in exons 1-5, recognizing all isoforms of VEGF on RNA isolated from the Mel57 cell line and from cell lines expressing the different VEGF isoforms, as described in (85). FIG. 7 and the accompanying table show that the different isoform-specific smMIPs specifically recognize the splice variants.


Cancer cells can induce changes in RNA splicing events if these give the cells a growth advantage. These changes may be an inherent characteristic of a cancer, but may also be selected under pressure of treatment. An example is EGFR variant III that results from an intragenic deletion in the EGFR gene that results in loss of exons 2 to 7 in the mature transcript. Whereas 50% of glioblastomas are characterized by amplification of the EGFR oncogene, in 50% of this population expression of EGFRvIII is found. By placing extension and ligation probes of an individual smMIP in exons 1 and 8, respectively, only the exon 1-8 fusion product is detected, because the backbone sequence of 40 nucleotides is physically not able to bridge exons 2-7 in the wild-type transcript (FIG. 9 shows that in the group of gliomas there is elevated expression of EGFR in 39/75 brain tumors (52%; mean FPM 738 in positives vs mean FPM 35 in negatives, using an arbitrary cut off FPM value of 100) and expression of EGFRvIII in 12/75 brain tumors (16%; mean FPM 642 in positives vs mean FPM 0.27 in negatives, using an arbitrary cut-off value of 6). Thus, smMIP based detection of EGFRvIII is highly specific and highly sensitive.


Another example is androgen receptor in prostate cancer. Patients with castration-resistant prostate cancer are treated with enzalutamide. However, a change in splicing that results in loss of exon 7 (ARv7) results in resistance to enzalutamide. By designing a smMIP with extension and ligation probe arms in exons 6 and 8, respectively, Arv7 is readily detected in cell lines derived from enzalutamide—resistant cancers, while it is not detected in any other cancer type (FPM=277 and 640 in VCAP and DuCAP prostate cancer lines, respectively vs mean FPM=0.01 in 130 other cancers).


Example 4—smMIP Based Targeting Sequencing can be Used for Accurate Diagnosis

A sample of brain tumor tissue, obtained from patient N16-10 who signed informed consent for the study, was snap-frozen directly after surgery. RNA was isolated from the tissue via the Trizol protocol, followed by cDNA synthesis and preparation of the smMIP library. After Illumina next generation sequencing a mutation in the IDH1 gene was identified that corresponds to the hotspot IDH1R132H mutation. The same analysis revealed low levels of carbonic anhydrase 9 and hexokinase 2, indicating lack of hypoxic responses. Furthermore the sample shows low ratios of glutaminase/glutamate dehydrogenase, suggesting that the tumor was using glutamate for metabolism, and therefore suggesting sensitivity to glutamate dehydrogenase inhibitors such as EGCG and chloroquine. Furthermore, the data show high expression levels of TrkB and, to a lesser extent, PDGFRα. The absence of hypoxia suggests that the tumor was not of a World Health Organization guidelines-defined grade IV type. The presence of high levels of tyrosine kinases suggests astrocytoma, and based on the data a diagnosis of IDH1-mutated grade III astrocytoma was made, concordant with the original diagnosis that was set on histopathology.


Example 5—smMIP Based Targeting Sequencing can be Used for Accurate Diagnosis and Prognosis

The data of example 4 were expanded with 74 additional samples of brain tumor tissues, obtained from patients who all signed informed consent for the study. The samples were snap-frozen directly after surgery and treated similarly to what has been described in example 4: RNA was isolated from the tissues via the Trizol protocol, followed by cDNA synthesis, preparation of the smMIP libraries and barcoded PCR. After Illumina next generation sequencing FASTQ files were processed by SeqNext software (JSI SequencePilot version 4.2.2 build 502 [JSI Medical Systems, Ettenheim, Germany]). All reads were mapped against the human genome (version hg19) and against manually added variant transcripts (e.g. EGFRvIII, Arv7, METd7/8, METd14). Thus, for every tumor sample a list of targeted transcript levels was generated and a list of all detected mutations/variations. From all 75 patients fully documented clinical follow-up was available.


In a first step, we performed unsupervised agglomerative clustering of log-transformed expression levels of the targeted genes of interest. Agglomerative clustering was performed according to Ward's method by calculating Manhattan distance between individual profiles using bio-informatic R-software scripts. The profiles were translated in a heat map which is represented in FIG. 10a. As is shown the computer generates two main groups A and B, that are subdivided in a number of subgroups.


In a next step, potential associations of the clusters with overall survival was investigated by now including survival data for the patients (overall survival, counted from first diagnosis) and generating a Kaplan-Meyer curve. The results in FIG. 10b show that the computer-generated groups have different survival with high significance (Fisher's exact test; p<0.0001). This shows that for gliomas this test has high prognostic value.


In a third step, associations between groups and mutations were analyzed by including the list of all detected mutations in a sample. Groups A and B were distinguished by mutations in the isocitrate dehydrogenase genes (IDH1 R132 and IDH2R172) with high significance (p<10E-11). FIG. 10c shows an example of the heterozygous IDH1R132H detection in one of the samples, in this case with 38% of transcripts being from the mutant allele and 62% of transcripts from the wt allele. The difference in transcript frequency is attributable to genetically normal stromal cells with only wild type IDH transcripts.


In a fourth step we performed a subgroup analysis to further refine prognosis. Analyzing IDH-wild-type patients with very poor survival (OS<12 months) versus IDH-wild-type patients with better prognosis (group B in the Kaplan-Meyer curves) in such subgroup analysis showed that high expression levels of carbonic anhydrase 12 are associated with extremely poor prognosis (p<0.001; Fisher's exact test, FIG. 10d).


In a fifth step we retrospectively analyzed all data with respect to molecular information that was obtained during routine patient care. All mutations that we observed on the RNA level and that are routinely tested for in glioma patient care, were confirmed with DNA sequencing technology (Table III)


The profiles also reveal expression of genes in brain tumors that are associated with other cancers. An example is the androgen receptor that is often expressed at high levels in prostate carcinoma, and prostate specific membrane protein (PSMA). Other groups have described expression of this target on blood vessels in malignant tumors, including glioma (87). To investigate this further we analyzed tumors with high and low PSMA transcript levels using immunhistochemisty. Results indeed revealed blood vessel expression of PSMA protein in blood vessels from tumors with high transcript levels, and not in tumors with low transcript levels (see three examples in FIG. 11).









TABLE III







Clinical characteristics. Diagnosis, histological type, and percentage


tumor cells were confirmed by a trained pathologist (BK). Annotations


as marked in this table are used in the heatmap of FIG. 10a.












Sample

Age (at time


% tumor


name
Sex
of surgery)
Histological type
IDH mutation
cells















13-02
M
40
Astrocytoma
IDH1-R132H
70


13-03
M
58
Oligodendroglioma
IDH1-R132H
70


13-04
F
62
Glioblastoma
WT
60


13-06
M
53
Oligodendroglioma
IDH2-R172K
60


13-08
M
67
Glioblastoma
WT
70


13-09
F
58
Glioblastoma
WT
70


13-10
M
45
Oligodendroglioma
IDH1-R132H
65


13-11
F
67
Glioblastoma
WT
70


13-13
M
52
Glioblastoma
IDH1-V178I
70


13-14
F
64
Glioblastoma
WT
70


13-15
F
44
Oligodendroglioma
IDH1-R132H
50


13-16
M
60
Glioblastoma
WT
70


13-17
M
45
Oligodendroglioma
IDH1-R132H
50


13-18
F
49
Oligodendroglioma
IDH1-R132H
50


14-01
F
52
Glioblastoma
WT
80


14-02
M
43
Oligodendroglioma
IDH1-R132H
50


14-03
F
62
Glioblastoma
WT
70


14-04
M
72
Glioblastoma
WT
60


14-05
M
21
Oligodendroglioma
IDH1-R132H
70


14-06
M
43
Oligodendroglioma
IDH1-R132H
50


14-07
M
65
Oligodendroglioma
IDH1-R132H
50


14-08
M
50
Astrocytoma
IDH1-R132H
50


14-09
F
43
Astrocytoma
IDH1-R132H
60


14-10
F
45
Glioblastoma
IDH1-R132H
50


14-11
M
50
Glioblastoma
WT
60


14-12
M
59
Oligodendroglioma
IDH1-R132H
50


15-01
M
66
Glioblastoma
WT
50


15-02
F
61
Glioblastoma
WT
70


15-03
F
76
Glioblastoma
WT
40


15-04
F
59
Glioblastoma
WT
40


15-05
M
31
Astrocytoma
IDH1-R132H
70


15-06
F
49
Astrocytoma
IDH1-R132H/V178I
70


15-07
M
63
Glioblastoma
IDH1-V178I
65


15-08
M
55
Astrocytoma
IDH1-R132H
60


15-09
M
70
Glioblastoma
WT
70


15-10
F
68
Oligodendroglioma
IDH1-R132H
70


15-12
M
46
Glioblastoma
WT
70


15-13
F
78
Glioblastoma
WT
80


15-14
M
79
Glioblastoma
WT
70


15-15
F
58
Glioblastoma
WT
70


15-16
M
25
Astrocytoma
IDH1-R132H/V178I
50


15-17
M
68
Glioblastoma
WT
60


15-18
F
64
Glioblastoma
WT
70


16-01
M
61
Glioblastoma
WT
70


16-02
M
47
Glioblastoma
WT
70


16-03
F
46
Astrocytoma
IDH1-R132H
25


16-04
M
59
Oligodendroglioma
IDH1-R132H
60


16-05
M
51
Glioblastoma
WT
50


16-06
F
*
Astrocytoma
IDH1-R132H
50


16-07
M
74
Glioblastoma
IDH1-Y183C
60


16-08
F
69
Glioblastoma
WT
50


16-09
F
49
Glioblastoma
WT
70


16-10
M
*
Astrocytoma
IDH1-R132H
60


16-11
M
67
Glioblastoma
WT
50


16-12
M
23
Astrocytoma
IDH1-R132H
60


16-13
M
60
Glioblastoma
WT
70


16-14
F
60
Oligodendroglioma
IDH2-R172M
70


16-15
F
61
Oligodendroglioma
IDH1-R132H
70


16-16
M
58
Glioblastoma
IDH1-V178I
40


16-17
F
18
Oligodendroglioma
IDH2-R172K
40


16-18
*
30
Oligodendroglioma
IDH2-R172W
70


16-19
M
48
Glioblastoma
WT
70


17-01
M
58
Oligodendroglioma
IDH1-R132H
50


17-02
M
40
Astrocytoma
IDH1-R132H/V178I
70


17-03
F
76
Glioblastoma
WT
65


17-04
M
42
Oligodendroglioma
IDH1-R132H
70


17-05
M
59
Astrocytoma
WT
70


17-06
M
65
Glioblastoma
WT
70


17-07
M
63
Glioblastoma
WT
70





Abbreviations M, male; F, female; IDH, isocitrate dehydrogenase; WT, IDH-wild type.


* data not available






Example 6—Metabolism in IDH-Mutated Glioma

Detailed analysis of expression of metabolic genes revealed that in the group of long survivors low levels of glucose importers, carbonic anhydrase and hexokinase 2 were expressed, indicating lack of hypoxia. Furthermore in this group high levels of glutamate dehydrogenase and aminobutyric acid aminotranferase (ABAT) RNA were observed, suggesting that these tumors use neurotransmitters (glutamate and GABA) for their catabolism, inducing sensitivity to glutamate dehydrogenase- and ABAT inhibitors (epigallocatechin-3-gallate, vigabatrine).


Example 7—Tyrosine Kinases in Glioma

In the group of IDH-mutated gliomas high expression levels of TrkB (mean FPM 15833 vs 4708 in IDHmut vs IDHwt, p=2×10E-11) were detected, suggesting sensitivity to the TrkB inhibitor entrectinib. EGFR expression was higher in IDHwt tumor (609 vs 116 in IDHwt vs IDHmut cancers, p=0.004), whereas EGFRvIII was exclusively expressed in this group (201 vs 0.16 in IDHwt vs IDHmut, p=0.0005, see also FIG. 9).


Whereas in the group of IDH wild type cancers EGFR/EGFRvIII expression was observed in 52% of samples, the tyrosine kinase MET is observed in 9/75 brain tumors (12%). Of interest, profiles showed that tumors that expressed relatively high levels of MET, were low in EGFR and vice versa (correlation coefficient r=−0.95). An interesting further finding was occurrence of a mutation in BRAF (BRAF-V600E) in one glioma. Wild-type BRAF is a crucial signaling intermediate that processes signals from activated membrane tyrosine kinases (e.g. EGFR, MET) to the nucleus, thereby inducing cell proliferation. BRAF-V600E is an auto-active molecule that signals to the nucleus without input from receptortyroinse kinases in an uncontrolled fashion. This BRAF mutation occurs in 50% of melanoma cancers and can be inhibited by the targeted drug vemurafenib. The glioma containing this mutation did not express MET nor EGFR. Although anecdotal, this case suggests susceptibility to vemurafenib and unsusceptibility to EGFR or MET inhibitors.


Example 7—Tyrosine Kinase Profiles Predict Sensitivity and Non-Sensitivity to Targeted Therapies In Vitro

The astrocytoma cell line E98 carries an auto-activating mutation in c-MET (22) and is highly sensitive to the multispecific VEGFR2/MET kinase inhibitor cabozantinib (86) and the MET-selective inhibitor Compound A (88). This sensitivity is reflected in decreased MET phosphorylation on western blot and decreased proliferation rates in vitro and delayed tumor development in vivo. The renal cancer cell line SKRC17 expresses similar levels of MET, phosphorylation of which is effectively inhibited by Compound A (FIG. 12). Yet, SKRC17 cells do not respond to compound A with decreased proliferation rates. Profiling of membrane tyrosine kinases reveals that within the selected group of membrane tyrosine kinases that are measured in the assay, MET is the only one expressed by E98, whereas SKRC17 cells express an additional number of other tyrosine kinase inhibitors, including AXL, EGFRs, FGFRs. These results suggest that targeted inhibition of one receptor tyrosine kinase is only effective in the absence of rescue kinases, and that effective treatment of a cancer requires concomitant blockade of all membrane receptor tyrosine kinases on a cell.


Example 8—HPV RNA Profiling Reduces False Positive Outcomes of HPV-DNA-Based Population Based Screening

The Netherlands is one of the first countries implementing detection of high risk human papilloma viruses (hrHPV) in cervical swabs in a population-wide screening program, to allow early detection and preventive treatment of cervical cancers. The life-time risk of an HPV infection is 80%, and in the group of participating women 8% will test positive in this assay. It is known on forehand that 90% of these women are overtreated because HPV infections may resolve spontaneously. Furthermore, sex with an HPV positive partner will result in positivity in the sensitive PCR-based HPV DNA detection tests, but does not mean that the virus will actually infects cervical epithelials cells.


To discriminate between contamination and actual cellular infection, we designed smMIPs for detection of hrHPV transcripts E2, E6 and E7, based on available knowledge that loss of E2 gene expression is associated with chromosomal integration in infected cells and overexpression of the HPV-E6 and E7 oncoproteins. With the entire panel of smMIP probes, supplemented with hrHPV-detecting smMIP probes, we profiled a series of 29 gynecological tissues, ranging from normal uterus extirpations to ovarian cancer, endometrial cancers and cervix carcinomas (FIG. 13). Samples were profiled blinded to pathology. HPV16 E6/E7 RNA expression was observed in 12 samples. In retrospect, these all were squamous cell carcinomas of the cervix. In a next step we analyzed all samples using the HPV-DNA PCR test. All HPV16-positive samples were confirmed on the DNA level, but 5 tissues that were negative in the HPV-RNA test, were positive in the HPV-DNA test (arrow heads). In retrospect, these samples consisted of two normal uteri and two endometrium carcinomas (that indeed are known not to be HPV-induced). These data clearly show that HPV-RNA screening is capable of reducing the number of false positive testing of HPV-DNA screening.


In a second step we investigated the sensitivity of HPV-testing by profiling 1, 10, 100, 1000, and 10,000 Hela cells, derived 490 years ago from a woman with an HPV-18 positive cervix carcinoma. Profiling of only 1 cell already detected 69 unique HPV18 reads, increasing to 168, 1419, 36767 reads in 10, 100 and 1000 cells respectively.


REFERENCES



  • 1. van Lith S A, Navis A C, Lenting K, Verrijp K, Schepens J T, Hendriks W J, et al. Identification of a novel inactivating mutation in Isocitrate Dehydrogenase 1 (IDH1-R314C) in a high grade astrocytoma. Sci Rep. 2016; 6:30486.

  • 2. Bardella C, Pollard P J, Tomlinson I. SDH mutations in cancer. Biochim Biophys Acta. 2011; 1807(11):1432-43.

  • 3. Linehan W M, Rouault T A. Molecular pathways: Fumarate hydratase-deficient kidney cancer—targeting the Warburg effect in cancer. Clin Cancer Res. 2013; 19(13):3345-52.

  • 4. Chuang J H, Chou M H, Tai M H, Lin T K, Liou C W, Chen T, et al. 2-Deoxyglucose treatment complements the cisplatin- or BH3-only mimetic-induced suppression of neuroblastoma cell growth. Int J Biochem Cell Biol. 2013; 45(5):944-51.

  • 5. Lis P, Dylag M, Niedzwiecka K, Ko Y H, Pedersen P L, Goffeau A, et al. The HK2 Dependent “Warburg Effect” and Mitochondrial Oxidative Phosphorylation in Cancer: Targets for Effective Therapy with 3-Bromopyruvate. Molecules. 2016; 21(12).

  • 6. Pedersen P L. 3-Bromopyruvate (3BP) a fast acting, promising, powerful, specific, and effective “small molecule” anti-cancer agent taken from labside to bedside: introduction to a special issue. J Bioenerg Biomembr. 2012; 44(1):1-6.

  • 7. Haghighat N, McCandless D W. Effect of 6-aminonicotinamide on metabolism of astrocytes and C6-glioma cells. Metab Brain Dis. 1997; 12(1):29-45.

  • 8. Song I S, Han J, Lee H K. Metformin as an anticancer drug: A Commentary on the metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. J Diabetes Investig. 2015; 6(5):516-8.

  • 9. Flavin R, Peluso S, Nguyen P L, Loda M. Fatty acid synthase as a potential therapeutic target in cancer. Future Oncol. 2010; 6(4):551-62.

  • 10. Burchardt P, Rzezniczak J, Dudziak J, Dzumak A, Marchlewski T, Ganowicz-Kaatz T, et al. Evaluation of plasma PCSK9 concentrations, transcript of LDL receptor, as well as the total number of monocyte LDL receptors in acute coronary syndrome patients. Cardiol J. 2016; 23(6):604-9.

  • 11. Lord C J, Ashworth A. Mechanisms of resistance to therapies targeting BRCA-mutant cancers. Nat Med. 2013; 19(11):1381-8.

  • 12. Hata A N, Niederst M J, Archibald H L, Gomez-Caraballo M, Siddiqui F M, Mulvey H E, et al.



Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat Med. 2016; 22(3):262-9.

  • 13. Chong C R, Janne P A. The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat Med. 2013; 19(11):1389-400.
  • 14. Bouwman P, Jonkers J. Molecular pathways: how can BRCA-mutated tumors become resistant to PARP inhibitors? Clin Cancer Res. 2014; 20(3):540-7.
  • 15. Hiatt J B, Pritchard C C, Salipante S J, O'Roak B J, Shendure J. Single molecule molecular inversion probes for targeted, high-accuracy detection of low-frequency variation. Genome Res. 2013; 23(5):843-54.
  • 16. Eijkelenboom A, Kamping E J, Kastner-van Raaij A W, Hendriks-Cornelissen S J, Neveling K, Kuiper R P, et al. Reliable Next-Generation Sequencing of Formalin-Fixed, Paraffin-Embedded Tissue Using Single Molecule Tags. J Mol Diagn. 2016; 18(6):851-63.
  • 17. Tonjes M, Barbus S, Park Y J, Wang W, Schlotter M, Lindroth A M, et al. BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1. Nat Med. 2013; 19(7):901-8.
  • 18. Boyle E A, O'Roak B J, Martin B K, Kumar A, Shendure J. MIPgen: optimized modeling and design of molecular inversion probes for targeted resequencing. Bioinformatics. 2014; 30(18):2670-2.
  • 19. Luo J, Manning B D, Cantley L C. Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell. 2003; 4(4):257-62.
  • 20. Carracedo A, Pandolfi P P. The PTEN-PI3K pathway: of feedbacks and cross-talks.


Oncogene. 2008; 27(41):5527-41.

  • 21. Yin Y, Shen W H. PTEN: a new guardian of the genome. Oncogene. 2008; 27(41):5443-53.
  • 22. Navis A C, van Lith S A, van Duijnhoven S M, de Pooter M, Yetkin-Arik B, Wesseling P, et al. Identification of a novel MET mutation in high-grade glioma resulting in an auto-active intracellular protein. Acta Neuropathol. 2015; 130(1):131-44.
  • 23. Soussi T, Wiman K G. Shaping genetic alterations in human cancer: the p53 mutation paradigm. Cancer Cell. 2007; 12(4):303-12.
  • 24. Sherr C J, McCormick F. The RB and p53 pathways in cancer. Cancer Cell. 2002; 2(2):103-12.
  • 25. Boulton S J. Cellular functions of the BRCA tumour-suppressor proteins. Biochem Soc Trans. 2006; 34(Pt 5):633-45.
  • 26. Burgess D J. Chromosome instability: Tumorigenesis via satellite link. Nat Rev Cancer. 2011; 11(3):158.
  • 27. Casaletto J B, McClatchey A I. Spatial regulation of receptor tyrosine kinases in development and cancer. Nat Rev Cancer. 2012; 12(6):387-400.
  • 28. Rocca A, Farolfi A, Bravaccini S, Schirone A, Amadori D. Palbociclib (PD 0332991): targeting the cell cycle machinery in breast cancer. Expert Opin Pharmacother. 2014; 15(3):407-20.
  • 29. Payen V L, Porporato P E, Baselet B, Sonveaux P. Metabolic changes associated with tumor metastasis, part 1: tumor pH, glycolysis and the pentose phosphate pathway. Cell Mol Life Sci. 2016; 73(7):1333-48.
  • 30. Patra K C, Hay N. The pentose phosphate pathway and cancer. Trends Biochem Sci. 2014; 39(8):347-54.
  • 31. Acharya A, Das I, Chandhok D, Saha T. Redox regulation in cancer: a double-edged sword with therapeutic potential. Oxid Med Cell Longev. 2010; 3(1):23-34.
  • 32. Hao J, Graham P, Chang L, Ni J, Wasinger V, Beretov J, et al. Proteomic identification of the lactate dehydrogenase A in a radioresistant prostate cancer xenograft mouse model for improving radiotherapy. Oncotarget. 2016.
  • 33. Lucarelli G, Galleggiante V, Rutigliano M, Sanguedolce F, Cagiano S, Bufo P, et al. Metabolomic profile of glycolysis and the pentose phosphate pathway identifies the central role of glucose-6-phosphate dehydrogenase in clear cell-renal cell carcinoma. Oncotarget. 2015; 6(15):13371-86.
  • 34. Cairns R A, Harris I S, Mak T W. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011; 11(2):85-95.
  • 35. Yang C, Ko B, Hensley C T, Jiang L, Wasti A T, Kim J, et al. Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport. Mol Cell. 2014; 56(3):414-24.
  • 36. Shanware N P, Mullen A R, DeBerardinis R J, Abraham R T. Glutamine: pleiotropic roles in tumor growth and stress resistance. J Mol Med (Berl). 2011; 89(3):229-36.
  • 37. Wise D R, DeBerardinis R J, Mancuso A, Sayed N, Zhang X Y, Pfeiffer H K, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA. 2008; 105(48):18782-7.
  • 38. Lunt S Y, Vander Heiden M G. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 2011; 27:441-64.
  • 39. Roodink I, van der Laak J, Kusters B, Wesseling P, Verrijp K, de Waal R, et al.


Development of the tumor vascular bed in response to hypoxia-induced VEGF-A differs from that in tumors with constitutive VEGF-A expression. Int J Cancer. 2006; 119(9):2054-62.

  • 40. Hamans B, Navis A C, Wright A, Wesseling P, Heerschap A, Leenders W. Multivoxel (1)H MR spectroscopy is superior to contrast-enhanced MRI for response assessment after anti-angiogenic treatment of orthotopic human glioma xenografts and provides handles for metabolic targeting. Neuro Oncol. 2013; 15(12):1615-24.
  • 41. Altman B J, Stine Z E, Dang C V. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer. 2016.
  • 42. Bensaad K, Favaro E, Lewis C A, Peck B, Lord S, Collins J M, et al. Fatty acid uptake and lipid storage induced by HIF-1alpha contribute to cell growth and survival after hypoxia-reoxygenation. Cell Rep. 2014; 9(1):349-65.
  • 43. Saxena N, Maio N, Crooks D R, Ricketts C J, Yang Y, Wei M H, et al. SDHB-Deficient Cancers: The Role of Mutations That Impair Iron Sulfur Cluster Delivery. J Natl Cancer Inst. 2016; 108(1).
  • 44. Lussey-Lepoutre C, Hollinshead K E, Ludwig C, Menara M, Morin A, Castro-Vega L J, et al. Loss of succinate dehydrogenase activity results in dependency on pyruvate carboxylation for cellular anabolism. Nat Commun. 2015; 6:8784.
  • 45. Cancer Genome Atlas Research N, Linehan W M, Spellman P T, Ricketts C J, Creighton C J, Fei S S, et al. Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma. N Engl J Med. 2016; 374(2):135-45.
  • 46. Kampjarvi K, Makinen N, Mehine M, Valipakka S, Uimari O, Pitkanen E, et al. MED12 mutations and F H inactivation are mutually exclusive in uterine leiomyomas. Br J Cancer. 2016; 114(12):1405-11.
  • 47. Molenaar R J, Botman D, Smits M A, Hira V V, van Lith S A, Stap J, et al. Radioprotection of IDH1-Mutated Cancer Cells by the IDH1-Mutant Inhibitor AGI-5198. Cancer Res. 2015; 75(22):4790-802.
  • 48. van Lith S A, Navis A C, Verrijp K, Niclou S P, Bjerkvig R, Wesseling P, et al. Glutamate as chemotactic fuel for diffuse glioma cells: are they glutamate suckers? Biochim Biophys Acta. 2014; 1846(1):66-74.
  • 49. Kim W Y, Kaelin W G. Role of VHL gene mutation in human cancer. J Clin Oncol. 2004; 22(24):4991-5004.
  • 50. Laukka T, Mariani C J, Ihantola T, Cao J Z, Hokkanen J, Kaelin W G, Jr., et al. Fumarate and Succinate Regulate Expression of Hypoxia-inducible Genes via TET Enzymes. J Biol Chem. 2016; 291 (8):4256-65.
  • 51. Losman J A, Kaelin W G, Jr. What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev. 2013; 27(8):836-52.
  • 52. Robinson C M, Ohh M. The multifaceted von Hippel-Lindau tumour suppressor protein.


FEBS Lett. 2014; 588(16):2704-11.

  • 53. Hakimi A A, Reznik E, Lee C H, Creighton C J, Brannon A R, Luna A, et al. An Integrated Metabolic Atlas of Clear Cell Renal Cell Carcinoma. Cancer Cell. 2016; 29(1):104-16.
  • 54. Grabmaier K, M C AdW, Verhaegh G W, Schalken J A, Oosterwijk E. Strict regulation of CAIX(G250/MN) by HIF-1alpha in clear cell renal cell carcinoma. Oncogene. 2004; 23(33):5624-31.
  • 55. Claes A, Schuuring J, Boots-Sprenger S, Hendriks-Cornelissen S, Dekkers M, van der Kogel A J, et al. Phenotypic and genotypic characterization of orthotopic human glioma models and its relevance for the study of anti-glioma therapy. Brain Pathol. 2008; 18(3):423-33.
  • 56. Navis A C, Niclou S P, Fack F, Stieber D, van Lith S, Verrijp K, et al. Increased mitochondrial activity in a novel IDH1-R132H mutant human oligodendroglioma xenograft model: in situ detection of 2-H G and alpha-K G. Acta Neuropathol Commun. 2013; 1:18.
  • 57. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley D R, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012; 7(3):562-78.
  • 58. Sjolund J, Johansson M, Manna S, Norin C, Pietras A, Beckman S, et al. Suppression of renal cell carcinoma growth by inhibition of Notch signaling in vitro and in vivo. The Journal of clinical investigation. 2008; 118(1):217-28.
  • 59. Tardito S, Oudin A, Ahmed S U, Fack F, Keunen O, Zheng L, et al. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma.


Nat Cell Biol. 2015; 17(12):1556-68.

  • 60. Martinez-Outschoorn U E, Peiris-Pages M, Pestell R G, Sotgia F, Lisanti M P. Cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol. 2016.
  • 61. Chaumeil M M, Radoul M, Najac C, Eriksson P, Viswanath P, Blough M D, et al. Hyperpolarized (13)C M R imaging detects no lactate production in mutant IDH1 gliomas: Implications for diagnosis and response monitoring. Neuroimage Clin. 2016; 12:180-9.
  • 62. Yizhak K, Chaneton B, Gottlieb E, Ruppin E. Modeling cancer metabolism on a genome scale. Mol Syst Biol. 2015; 11(6):817.
  • 63. Esmaeili M, Hamans B C, Navis A C, van Horssen R, Bathen T F, Gribbestad I S, et al.


IDH1 R132H mutation generates a distinct phospholipid metabolite profile in glioma. Cancer Res. 2014; 74(17):4898-907.

  • 64. Ganapathy-Kanniappan S, Vali M, Kunjithapatham R, Buijs M, Syed L H, Rao P P, et al. 3-bromopyruvate: a new targeted antiglycolytic agent and a promise for cancer therapy. Curr Pharm Biotechnol. 2010; 11(5):510-7.
  • 65. Ganapathy-Kanniappan S, Kunjithapatham R, Geschwind J F. Anticancer efficacy of the metabolic blocker 3-bromopyruvate: specific molecular targeting. Anticancer Res. 2013; 33(1):13-20.
  • 66. Kankotia S, Stacpoole P W. Dichloroacetate and cancer: new home for an orphan drug?Biochim Biophys Acta. 2014; 1846(2):617-29.
  • 67. Singh B N, Shankar S, Srivastava R K. Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol. 2011; 82(12):1807-21.
  • 68. Altman B J, Stine Z E, Dang C V. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer. 2016; 16(10):619-34.
  • 69. Sosnicki S, Kapral M, Weglarz L. Molecular targets of metformin antitumor action.


Pharmacol Rep. 2016; 68(5):918-25.

  • 70. Zhang H H, Guo X L. Combinational strategies of metformin and chemotherapy in cancers. Cancer Chemother Pharmacol. 2016; 78(1):13-26.
  • 71. Gong J, Kelekar G, Shen J, Shen J, Kaur S, Mita M. The expanding role of metformin in cancer: an update on antitumor mechanisms and clinical development. Target Oncol. 2016; 11(4):447-67.
  • 72. Thupari J N, Pinn M L, Kuhajda F P. Fatty acid synthase inhibition in human breast cancer cells leads to malonyl-CoA-induced inhibition of fatty acid oxidation and cytotoxicity. Biochem Biophys Res Commun. 2001; 285(2):217-23.
  • 73. Baldewijns M M, van Vlodrop I J, Vermeulen P B, Soetekouw P M, van Engeland M, de Bruine A P. VHL and HIF signalling in renal cell carcinogenesis. J Pathol. 2010; 221(2):125-38.
  • 74. Metallo C M, Gameiro P A, Bell E L, Mattaini K R, Yang J, Hiller K, et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature. 2012; 481(7381):380-4.
  • 75. Gameiro P A, Yang J, Metelo A M, Perez-Carro R, Baker R, Wang Z, et al. In vivo HIF-mediated reductive carboxylation is regulated by citrate levels and sensitizes VHL-deficient cells to glutamine deprivation. Cell metabolism. 2013; 17(3):372-85.
  • 76. Cancer Genome Atlas Research N. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013; 499(7456):43-9.
  • 77. Hu C J, Wang L Y, Chodosh L A, Keith B, Simon M C. Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Molecular and cellular biology. 2003; 23(24):9361-74.
  • 78. Kim J W, Tchernyshyov I, Semenza G L, Dang C V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell metabolism. 2006; 3(3):177-85.
  • 79. Papandreou I, Cairns R A, Fontana L, Lim A L, Denko N C. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell metabolism. 2006; 3(3):187-97.
  • 80. Koshiji M, Kageyama Y, Pete E A, Horikawa I, Barrett J C, Huang L E. HIF-1alpha induces cell cycle arrest by functionally counteracting Myc. EMBO J. 2004; 23(9):1949-56.
  • 81. Gordan J D, Bertout J A, Hu C J, Diehl J A, Simon M C. HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell. 2007; 11(4):335-47.
  • 82. Ebert T, Bander N H, Finstad C L, Ramsawak R D, Old L J. Establishment and characterization of human renal cancer and normal kidney cell lines. Cancer Res. 1990; 50(17):5531-6.
  • 83. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, et al. New colorimetric cytotoxicity assay for anticancer-drug screening. Journal of the National Cancer Institute. 1990; 82(13):1107-12.
  • 84. Ibahim M J, Crosbie J C, Paiva P, Yang Y, Zaitseva M, Rogers P A. An evaluation of novel real-time technology as a tool for measurement of radiobiological and radiation-induced bystander effects. Radiation and environmental biophysics. 2016; 55(2):185-94.
  • 85. Kusters B, de Waal R, Wesseling P, Verrijp K, Maass C, Heerschap A, et al. Differential effects of vascular endothelial growth factor a isoforms in a mouse brain metastasis model of human melanoma. Cancer Research. 2003; 63(17):5408-13.
  • 86. Navis, A. C., Bourgonje, A., Wesseling, P., Wright, A., Hendriks, W., Verrijp, K., van der Laak, J. A., Heerschap, A., and Leenders, W. P. (2013). Effects of dual targeting of tumor cells and stroma in human glioblastoma xenografts with a tyrosine kinase inhibitor against c-MET and VEGFR2. PLoS One 8, e58262.
  • 87. Nomura, N., Pastorino, S., Jiang, P., Lambert, G., Crawford, J. R., Gymnopoulos, M., Piccioni, D., Juarez, T., Pingle, S. C., Makale, M., et al. (2014). Prostate specific membrane antigen (PSMA) expression in primary gliomas and breast cancer brain metastases. Cancer Cell Int 14, 26.
  • 88. Van den Heuvel, C., Navis, A. C., de Bitter, T., Amiri, H., Verrijp, K., Heerschap, A., Rex, K., Dussault, I., Caenepeel, S., Coxon, A., et al. (2017). Selective MET Kinase Inhibition in MET-Dependent Glioma Models Alters Gene Expression and Induces Tumor Plasticity. Mol Cancer Res 15, 1587-1597.

Claims
  • 1. Method for in vitro determination of the susceptibility and/or resistance of a subject suffering from or at risk of a disease or condition for a drug to treat the disease or condition, comprising: providing a sample from the subject,performing RNA profiling on the sample,
  • 2. The method according to claim 1, wherein the RNA profiling is performed by multiplex mRNA sequencing, targeting multiple regions of interest.
  • 3. The method according to claim 1, wherein the multiplex mRNA sequencing is performed using molecular inversion probes (MIPs), preferably comprising a detectable moiety, preferably a unique identifier sequence of random nucleotides (N) adjacent to the ligation part of the MIP or to the extension part of the MIP sequence (smMIPs).
  • 4. The method according to claim 1, wherein the aberrant level of a transcript, an alternative splice variant and/or a mutation is linked to a an aberrance in a metabolic pathway which is in turn linked to the susceptibility and/or resistance of a subject suffering from or at risk of a disease or condition for a drug.
  • 5. The method according to claim 1, wherein the disease or condition is at least one selected from the group consisting of a cancer, a viral infection, a bacterial infection, an autoimmune disease and a genetic disease.
  • 6. The method according to claim 1, wherein the sample is selected from the group consisting of a tissue, a tumor tissue, urine, sperm, saliva, blood, blood plasma, cerebrospinal fluid, blood platelets, and/or exosomes, preferably selected from tumor tissue and blood platelets.
  • 7. The method according to claim 4, wherein the metabolic pathway is a glucose processing pathway, a glutamine processing pathway and/or a fatty acid pathway.
  • 8. The method according to claim 1, wherein the multiple regions of interest are within the mRNA of: glucose processing genes: ABAT, ACACA, ACACB, ACLY, ACO2, ACSS2, ADPGK, ALDOA, ARHGAP26, ATG4A. ATP5A1, CBR1, CBS, CHKA, CKB, CPT1A, CYCS, EGLN1, ENO1, G6PC, GAD1, GCLC, GCLM, GFPT1, GLDC, GSS, HK1, HK2, HK3, GLY1, G6PD, Gluconolactonase, PGD, RPIA, RPE, TKT, PGI, ALDOA, GAPDH, PGAM1/2, ENO, PKM1/2, PDHA1, PDK1, PFKB1, PFKMb, PGAM1, PGD, PGK1, PKM, PRDX1, PRKAA1, RPIA, PC, CS, ACO1, IDH1, IDH2, IDH3A, IDH3B, IDH3G, OGDH, SUCLA2, SDHA/B/C/D, FH, MDH1, MDH2, PDK, LDHA, LDHB, SLC16A1, SLC16A3, CA9, CA12, SLC4A10, VHL, SDH, SDHAF2, HPGL/PCC, FH, CS, D-2HGDH, L-2HGDH, FH, IDH1-3A-G, MDH1-2, MYC, OGDH, SDHA-D, VHL, PHD, HIF1a, EPAS2 and/or PDCD1;glutamine processing genes: SLC1A5, ASCT2, GLS, GLUD1/2, GOT, GPI, GS, BCAT1, BCAT2, SLC1A2 and/or SLC7A11;fatty acid anabolism genes: SLC25A1, ACLY, ACACA, ACACB, FASN, CPT1, SLC5A7, CHKA, CPT2, VLCAD, HADHA/B, SCAD, MCAD, LCAD, SCHA-D, 2-Enoyl-VoA hydratase and/or MCKAT;transporter genes; SLC16A1, SLC16A7, SLC2A1, SLC2A3, SLC5A1, SLC5A5, SLC7A1, SLC9A1 and/or SLCA12;redox homeostasis genes: NAMPT, NAPRT1, NOX1, NOX3, NOX4A, NQO1, SOD, SOD2, CAT, TAL, TIGAR and/or TRX;DNA repair genes: PARP1; MGMT, XRCC2, XRCC3, RAD54, H2AX, MSH2, MLH1, PMS2, MSH6.genes with potential involvement in cancer: ALK, AXL, BRAF, KRAS, TP53, MAPK8, MYC, TP5313, FGFR1, FGFR2, IGF1-R, KDR, NTRK1, NTRK2, PDGFRA, PDGFRB, EGFR, EGFRvIII, ERBB2, ERBB3, ERBB4, MERTK, PLXND1, RET, Androgen receptor (AR), AR variant 7, AR variant 12, FOLH1, KLK3, MET, METdelta14, METdelta7-8, KIT, RON and/or PTEN;genes involved in angiogenesis: VEGF-A121, VEGF-A144, VEGF-A165 and/or VEGF-A189genes involved in immune suppression: CD274 and/or CTLA4; and/or,viral genes: HPV-E2, HPV/E6 and/or HPV-E7.
  • 9. The method according to claim 1, wherein the presence of an aberrant level of a transcript, an alternative splice variant and/or a mutation also provides an indication for treatment with dietary compounds or phytochemicals, optionally in combination with a drug.
  • 10. A method of treatment of a subject suffering from or at risk of a disease or condition, comprising: requesting performance or performing a method according to claim 1, thus determining the susceptibility and/or resistance of the subject suffering from or at risk of a disease or condition for a drug to treat the disease or condition, andtreating the disease or condition of the subject with a drug where the disease or condition of the subject is susceptible to.
  • 11. (canceled)
  • 12. The method according to claim 10 wherein the disease or condition is at least one selected from the group consisting of a cancer, preferably glioma, meningioma, ependymoma, pilocytic astrocytoma, adenocarcinomas, sarcomas, hemangioma, head and neck cancer, breast cancer, lung cancer, prostate cancer, kidney cancer, ovarian cancer, endometrial cancer, cervical cancer, colon cancer, rectal cancer, pancreatic cancer, esophagus cancer, basal cell cancer, penile cancer, vulva cancer, melanoma, uveal melanoma, lymphoma, acute myeloid leukemia, acute lymphoblastic leukemia, cholangiocarcinoma, hepatocellular carcinoma, soft tissue sarcoma or osteosarcoma; a viral infection; a bacterial infection; an autoimmune disease and a genetic disease.
  • 13. The method according to claim 10 wherein the drug treatment is supplemented with treatment with dietary compounds or phytochemicals.
  • 14. A molecular inversion probe selected from the group as set forward in Table II.
  • 15. (canceled)
Priority Claims (1)
Number Date Country Kind
17159630.7 Mar 2017 EP regional
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2018/055548 3/7/2018 WO 00