RNA transformation vectors derived from a single-component RNA virus and contain an intervening sequence between the cap and the 5′ end

Information

  • Patent Grant
  • 6300134
  • Patent Number
    6,300,134
  • Date Filed
    Friday, February 11, 2000
    24 years ago
  • Date Issued
    Tuesday, October 9, 2001
    23 years ago
Abstract
This invention is directed to a plus strand RNA viral vector for transformation of a host organism with a foreign RNA, and expression of said foreign RNA. The foreign RNA is inserted into an infective RNA viral segment containing cis-acting viral replication elements, and allowed to infect the host organism. The RNA vector is modified to obtain infectivity by including an intervening sequence between the cap and the 5′ end. The modified RNA is able to tolerate the exogeneous RNA segment without disrupting the replication of the modified RNA, in the absence of a trans-acting viral replication element in a single component plant virus host cell.
Description




FIELD OF THE INVENTION




This invention relates to the field of plant viruses, more particularly to plus-sense RNA plant virus, and to modifications, made according to the teachings herein, which permit insertion of an exogenous RNA segment into the viral genome. The recombinant plant viral nucleic acid construct derived from insertion of an exogenous RNA segment into the viral genome can then be introduced into a host cell in order to modify the cell.




BACKGROUND OF THE INVENTION




RNA viruses whose genome is composed of a single RNA strand capable of replication in the cytoplasm of a host by direct RNA replication are widespread, many varieties of which are known to infect plants. Such viruses are sometimes termed “(+) strand RNA viruses” since the infective RNA strand, that normally found encapsidated in the virus particle, is a messenger-sense strand, capable of being directly translated, and also capable of being replicated under the proper conditions by a direct process of RNA replication. Viruses belonging to this group include “single component (+) strand RNA viruses”, which replicate in the absence of trans-acting viral replication elements. These viruses may include, but are not limited to any of the representatives of the following virus groups, Carlavirus, Closteroviridae, Luteoviridae, Potexvirus, Potyviridae, Tombusviridae, Tobamovirus and Tymovinis. (Similar viruses, which in the host cell produce a trans-acting replication element, are not included in this group.) In these cases, the entire virus genome is contained within a single RNA molecule, while in the multicomponent RNA plant viruses, the total genome of the virus consists of two or more distinct RNA segments, each separately encapsidated. For general review, see General Virology, S. Luria and J. Darnell; Plant Virology 2nd ed., R. E. F. Matthews, Academic Press (1981). For a general review of (+) strand RNA replication, see Davies and Hull (1982)


J. Gen. Virol.


61:1.




Despite the well-documented diversity between virus groups, recent studies have shown striking similarities between the proteins, which function in RNA replication. Sequence homologies have been reported between the cowpea mosaic virus, poliovirus and foot-and-mouth disease virus, (Franssen, H. (1984)


EMBO Journal


3,855). Sequence homologies have been reported between non-structural proteins encoded by alfalfa mosaic virus, brome mosaic virus and tobacco mosaic virus, Haseloff, J. et al. (1984), Proc. Nat. Acad. Sci. USA 81, 4358, and between non-structural proteins encoded by sindbis virus, Ahlquist, P. et al. (1985)


J. Virol.


53, 536. Evidence of such substantial homology in proteins related to the replication functions indicate that the viruses share mechanistic similarities in their replication strategies and may actually be evolutionarily related. Ahlquist et al., in U.S. Pat. No. 5,500,360 made modifications to the genomic RNA of a (+) strand RNA virus of a multipartite Brome mosaic virus. The modified RNA was used to transfer a desired RNA segment into a targeted host plant protoplast, and to replicate that segment and express its function within the host protoplast.




In contrast to the Brome mosaic virus (BMV), the tobacco mosaic virus (TMV) is one member of a class of plant viruses characterized by a single RNA genome. The genetic material of the virus is RNA, and the total genetic information required for replication and productive infection is contained in one discrete RNA molecule. Infection of a host plant cell occurs when the single RNA component of the viral genome has infected the cell, for example by exposing a plant to a virus preparation. Infection may also be achieved by exposing a plant cell or protoplast to a virus preparation. TMV does not require coat protein for infection. The RNA component is both necessary and sufficient for replication and productive infection. The TMV genome is a single messenger-sense RNA. The term “messenger-sense” denotes that the viral RNAs can be directly translated to yield viral proteins, without the need for an intervening transcription step.




Complete cDNA copies of the genetic component of TMV have been cloned. Construction of a library of subgenomic cDNA clones of TMV has been described in Dawson et al.,


Proc. Natl. Acad. Sci. USA


83:1832-1836 (1986) and Ahlquist et al.,


Proc. Natl. Acad. Sci. USA


81:7066-7070 (1984). Several examples of TMV transcription vectors are described below. DNA from each of the TMV cDNA-containing plasmids can be cleaved. The linear DNA thus produced can be transcribed in vitro in a reaction catalyzed by RNA polymerase. A T7 promoter in the transcription vector allows RNA synthesis to initiate at the 5′ terminus of each TMV sequence, and transcription continues to the end of the DNA template. The 5′ terminus of tobacco mosaic virus (TMV) RNA, was identified as m


7


G


5′


ppp


5′


Gp. Zimmern, D.,


Nucleic Acid Res.


2:1189-1201 (1975). Keith, J. and fraenkel-Conrat, H.


FEBS Lett.


57:31-33 (1975). Ahlquist, U.S. Pat. No. 5,500,360, working with Brome mosaic virus, reported that when transcription is carried out in the presence of a synthetic cap structure, m


7


GpppG, as described by Contreras, R., et al.


Nucleic Acids Res.


10:6353, (1982), RNA transcripts are produced with the same capped 5′ ends as authentic BMV RNAs. Ahlquist concluded that these RNAs are active messengers in in vitro translation systems and direct production of proteins with the same electrophoretic mobilities as those translated from authentic BMV RNAs. However, Ahlquist found that, “if the cap analog was omitted during in vitro transcription, no infection was detected, even if inoculum concentration was increased 20-fold.” Further, Ahlquist taught only a viral vector having “no extraneous nonviral sequences between the cap and the 5′ terminus of the viral sequence.” In Ahlquist's work on BMV, U.S. Pat. No. 5,500,360, a transcription vector was employed which preserved the exact 5′ terminal nucleotide sequence of viral RNA. It is now generally accepted that capping is necessary for infectivity and that no intervening sequence can be present between the cap and the 5′ terminus of the viral sequence.




The work of Ahlquist leaves us with difficult problems to overcome if we are to obtain a workable viral vector or a commercially viable viral vector. One such problem is the cost of using capping structures and cap analogs. Another such problem is that multipartite viral vectors are difficult to use relative to a single component viral vector. Multipartite viruses require more than one unit to infect and achieve replication in a host plant, and multipartite viruses require a trans acting replication element to achieve replication. No one has yet found a way to unite the multiple strands of a multipartite virus into an RNA molecule comprising the entire genome of a (+) strand RNA virus as suggested and claimed by Ahlquist.




Therefore, there is a need for a viral vector that can accept an intervening base or intervening sequence of bases between the cap and the 5′ terminus of the viral sequence and undergo transcription and replication. There is also a need for a viral vector that can undergo transcription and replication in the absence of a capping structure.




Here we teach solutions to the problem by demonstrating:




1. Infection of a host and replication of a viral vector in vivo in the presence of a base or a sequence of bases placed 5′ to the origin of replication in the absence of a capping structure or cap analog.




2. Infection of a host and replication of a viral vector in vivo in the absence of a capping structure or a cap analog, and in the absence of a base or a sequence of bases placed 5′ to the origin of replication.




3. Infection of a host and replication of a viral vector in vivo in the presence of an intervening base or an intervening sequence of bases placed 5′ to the origin of replication and in the presence of a capping structure or cap analog.




The viral vectors demonstrated here have utility in discovery the function of genes, and in production of therapeutic proteins.




SUMMARY OF THE INVENTION




The For the sake of brevity, the term “RNA virus” is used herein to mean (+) strand replicating RNA viruses. Most single component RNA viruses have the advantage over multicomponent RNA viruses of having a single RNA structure. Because they have a single RNA structure, the function of an exogenous RNA segment can be expressed in a host cell in the absence of a trans-acting replication element. Further, the single component RNA virus does not express the 3a movement gene that is indigenous to the Brome mosaic virus.




The invention is based on the discovery that the 5′ end of a single component RNA viral vector can be modified by leaving out the capping structure so that the virus transcript is uncapped. The invention is also based on the discovery that the 5′ end of a single component RNA viral vector can be modified by inserting a base or a sequence of bases ahead of the 5′ terminus of the viral sequence. The invention is also based on the discovery that the 5′ end of a single component RNA viral vector can be modified by inserting an intervening base or an intervening sequence of bases between the cap and the 5′ terminus of the viral sequence. The genome of a virus, modified in each of these three ways, can be further modified to include an exogenous RNA segment. The further modified RNA can be introduced into a host cell where it will replicate and express the exogenous RNA segment. The recipient cell is thereby phenotypically transformed and may contribute to a genotypically transformed organism, as well.




Phenotypically transformed plants and plant cells can be modified in vivo, in planta, in tissue culture, in cell culture or in the form of protoplasts. The exemplified embodiment of the invention is useful for producing phenotypically transformed plants under field or greenhouse growth conditions. Traits desirable for introduction in this manner include, but are not limited to, pest resistance, pathogen resistance, herbicide tolerance or resistance, modified growth habit and modified metabolic characteristics, such as the production of commercially useful peptides or pharmaceuticals in plants. The modifications can be applied at any time during the growth cycle, depending on the need for the trait. For example, resistance to a pest could be conferred only if the crop were at risk for that pest, and at the time when the crop was most likely to be affected by the pest. Other traits can be used to enhance secondary properties, for example to increase the protein content of post-harvest forage. Any plant variety susceptible to infection by a single component RNA virus can be phenotypically transformed. The choice of virus and the details of modification will be matters of choice depending on parameters known and understood by those of ordinary skill in the art. Other uses for cells and organisms phenotypically or genotypically modified by means of a modified RNA derived from an RNA virus will be readily apparent to those skilled in the art, given a wide range of RNA viruses to modify and a wide range of susceptible host cell types. Other uses for transformed animal cells, bacterial cells and the like can be readily envisioned but are not demonstrated here.




Generally, the steps of a process for phenotypically transforming a cell or organism are:




forming a full-length cDNA transcript of the RNA virus;




cloning the cDNA in a transcription vector;




modifying the cDNA by inserting a non-viral DNA segment in a region able to tolerate such insertion without disrupting RNA replication thereof;




transcribing the modified cDNA corresponding to the RNA component of the single component virus;




infecting virus-susceptible protoplasts, cells, tissues or whole plants with transcribed RNA, either in solution or encapsidated, of the modified RNA comprising messenger-sense RNA containing an exogenous RNA segment.




From this point, the steps to be followed will vary, depending on the type of material infected and the route of infection. Protoplasts, cells and tissues of plants can be propagated vegetatively, regenerated to yield whole plants by means of any technique suitable to the particular plant variety infected, and transplanted to the field. Whole plants can be infected in situ. Infected plants and plant cells can produce many copies per cell of the modified viral RNA containing the exogenous RNA segment. If desired and if suitably inserted, by means of principles and processes known in the art, the exogenous RNA segment can be caused to carry out a function within the cell. Such a function could be a coding function, translated within the cell to yield a desired peptide or protein, or it could be a regulatory function, increasing, decreasing, and turning on or off the expression of certain genes within the cell. In principle, any function, which a segment of RNA is capable of providing, can be expressed within the cell. The exogenous RNA segment thus expressed confers a new phenotypic trait to the transformed organism, plant, cells, protoplasts or tissues.




The invention is exemplified herein by the modification of TMV RNA to contain a structural gene encoding green fluorescent protein (GFP) and the phenotypic modification of Nicotiana plants and protoplasts therewith, yielding plants and protoplasts synthesizing GFP. The data presented herein are believed to represent the first instance of phenotypic modification of a cell by means of an RNA virus which is uncapped and which has no base at the 5′ end of the uncapped viral sequence.




The data presented herein are believed to represent the first instance of phenotypic modification of a cell by means of an RNA virus which is uncapped and which has a single base or a sequence of bases at the 5′ end of an uncapped viral sequence. The data presented herein are believed to represent the first instance of phenotypic modification of a cell by means of an RNA virus which contains an intervening base or intervening sequence of bases between the cap and the 5′ end of the viral sequence.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

shows the sequence of pBTI 30BGFPc3 (p1037)(SEQ ID NO: 22).





FIG. 2

shows the sequence of pBTI SBS60 (SEQ ID NO: 23).





FIG. 3

shows the sequence of pBTI SBS60-29 (SEQ ID NO: 24).





FIG. 4

shows the sequence of pBTI1056 (SEQ ID NO: 25).





FIG. 5

shows the sequence of pBTI SBS5 (p1057) (SEQ ID NO: 26).





FIG. 6

shows the sequence of pBTI1056-GTN28 (SEQ ID NO: 27).











DETAILED DESCRIPTION OF THE INVENTION




In order to facilitate understanding of the invention, certain terms used throughout are herein defined.




Base—The term base means adenine, thymidine, guanine, and cytosine, which in the form of a nucleotide can bond with other bases to form a nucleotide sequence. As used herein, a “base sequence” or a “sequence of bases” refers to a nucleotide sequence. The bases used herein are DNA bases, because all base or base sequence manipulations are performed on plasmid DNA prior to transcription. Base might be used interchangeably with “nucleotide”.




RNA virus—The term as used herein means a virus whose genome is RNA in single-stranded form, the single strand being a (+) strand, or messenger-sense strand. Replication of the viral (+) strand in a virus-infected cell occurs by a process of direct RNA replication and is therefore distinguishable from the replication mechanism of retroviruses which undergo an intermediate step of reverse transcription in the host cell.




Cis-acting replication element—This term denotes that portion of the RNA genome of an RNA virus which must be present in cis, that is, present as part of each viral strand as a necessary condition for replication. Virus replication of a single component virus such as TMV has only cis-acting replication elements in its RNA. The cis-acting replication element is composed of one or more segments of viral RNA, which must be present on any RNA molecule that is to be replicated within a host cell by RNA replication. The segment will most likely be the 5′ terminal portion of the viral RNA molecule, and may include other portions as well. As is demonstrated herein, using the example of TMV, substantial portions of an RNA virus molecule may be modified, by deletion, insertion, or by a combination of deletion and insertion, without disrupting replication.




Trans-acting replication element—In contrast to the single component (unipartite) virus, virus replication of a multipartite virus such as BMV presumably depends upon the existence of one or more trans (diffusible) elements which interact with the cis-acting element to carry out RNA replication. While trans-acting elements are necessary for replication of a multipartite virus such as BMV, they need not be present or coded for on the modified RNA provided they are made available within the infected cell by some other means. For example, in the case of a multipartite RNA virus, the trans-acting functions may be provided by other, unmodified components of the viral genome used to transform the cells simultaneously with the modified RNA. The target cell may also be modified in a previous step to provide constitutive expression of the trans-acting functions. In the case of a multipartite virus, the cis-acting element is therefore defined in functional terms: any modification which destroys the ability of the RNA to replicate in a cell known to contain the requisite trans-acting elements, is deemed to be a modification in the cis-acting replication element. Conversely, any modification, such as an insertion in a sequence region, which is able to tolerate such insertion without disrupting replication, is a modification outside the cis-acting replication element.




The term “derived from” is used to identify the viral source of an RNA segment, which comprises part of the modified RNA. For example, for the modified RNAs described herein, substantial portions thereof are derived from TMV. The manner of deriving, whether by direct recombination at the RNA level, by transcription or by reverse transcription does not matter for the purpose of the invention. Indeed, it is contemplated that modifications may be made within the cis-acting replication element and elsewhere for example to modify the rate or amount of replication that is obtained. In the case of modified RNAs exemplified herein, a transcription vector was employed which, preserved the exact 5′ terminal nucleotide sequence of viral RNA, but a) left the capping structure off, or b) left the capping structure off and added a single base to the 5′ terminal nucleotide sequence of the viral cDNA, or c) left the capping structure off and added a sequence of bases to the 5′ terminal nucleotide sequence of the viral cDNA, or d) inserted a single intervening base between the cap and the 5′ terminal nucleotide sequence of the viral eDNA, or e) inserted an intervening sequence of bases between the cap and the 5′ terminal nucleotide sequence. The use of such a vector in transcribing viral RNA from will be preferred if preservation of the exact nucleotide sequence at the 5′ end is desired. The use of such a vector in transcribing viral RNA from will be preferred if the objective is to only remove the cap without further objectives with respect to the 5′ end of the virus. An RNA segment which has been derived from a given source virus may, but need not be, identical in sequence to that segment as it exists in the virus. It will be understood that a cis-acting replicating element derived from a given RNA virus may have minor modifications in the nucleotide sequence thereof without substantially interfering with RNA replication.




Exogenous RNA segment is a term used to describe a segment of RNA to be inserted into the virus RNA to be modified, the source of the exogenous RNA segment being different from the RNA virus itself. The source may be another virus, a living organism such as a plant, animal, bacteria, virus or fungus, the exogenous RNA may be a chemically synthesized RNA or it may be a combination of the foregoing. The exogenous RNA segment may provide any function that is appropriate and known to be provided by an RNA segment. Such functions include, but are not limited to, a coding function in which the RNA acts as a messenger RNA encoding a sequence which, translated by the host cell, results in synthesis of a peptide or protein having useful or desired properties. The RNA segment may also be structural, as for example in ribosomal RNA, it may be regulatory, as for example with small nuclear RNAs or anti-sense RNA, or it may be catalytic. A particularly interesting function is provided by anti-sense RNA, sometimes termed (−) strand RNA, which is in fact a sequence complementary to another RNA sequence present in the target cell which can, through complementary base pairing, bind to and inhibit the function of the RNA in the target cell. An exogenous RNA segment can be a complete or partial coding sequence.




Various aspects of the stages outlined in the Summary section can be modified as needed, depending upon specific aspects of the virus selected as the transforming agent and of the RNA segment to be inserted. For example, if the inserted gene is in the form of messenger-sense RNA to be directly translated by the transformed cell, the gene must be free of intervening, nontranslated sequences, such as introns. On the other hand, the inserted gene need not be a naturally occurring gene, but it may be modified, it may be a composite of more than one coding segment, or it may encode more than one protein. Combining insertions and deletions in order to control the total length or other properties of the modified RNA molecule may also modify the RNA. The inserted non-viral gene may be either prokaryotic or eukaryotic in origin as long as it is in a form which can be directly translated by the translation machinery of the recipient cell. Eukaryotic genes containing introns within the coding sequence must therefore be inserted in the form of a cDNA copy of the eukaryotic messenger RNA encoding the gene. The inserted gene may contain its own translation start signals, for example, a ribosomal binding site and start (AUG) codon, or it may be inserted in a manner which takes advantage of one or more of these components preexisting in the viral RNA to be modified. Certain structural constraints must be observed to preserve correct translation of the inserted sequence, according to principles well understood in the art. For example, if it is intended that the exogenous coding segment be combined with an endogenous coding segment, the coding segment to be inserted must be inserted in reading frame phase therewith and in the same translational direction.




Host




A cell, tissue or organism capable of being infected by and capable of replicating a nucleic acid such as a plant viral nucleic acid and which is capable of being infected by a virus containing the viral vector or viral nucleic acid. As used herein, host is intended to include generally whole plant, plant protoplast, plant cell, and plant tissues, plant organ or plant part such as root, stem leaf, flower or seed.




Infection




The ability of a virus to transfer its nucleic acid to a host or introduce a viral nucleic acid into a host, wherein the viral nucleic acid is replicated, viral proteins are synthesized, and new viral particles assembled. In this context, the terms “transmissible” and “infective” are used interchangeably herein. The term is also meant to include the ability of a selected nucleic acid sequence to integrate into a genome, chromosome or gene of a target organism.




The term “non-viral” is used here in a special sense to include any RNA segment which is not normally contained within the virus whose modification is exploited for effecting gene transfer and is therefore used synonymously with “exogenous”. Therefore, a gene derived from a different virus species than that modified is included within the meaning of the terms “non-viral” and “exogenous” for the purposes of describing the invention. For example, a non-viral gene as the term is used herein could include a gene derived from a bacterial virus, an animal virus, or a plant virus of a type distinguishable from the virus modified to effect transformation. In addition, a non-viral gene may be a structural gene derived from any prokaryotic or eukaryotic organism. It will be understood by those ordinarily skilled in the art that there may exist certain genes whose transfer does not result in obvious phenotypic modification of the host cell. A phenotypic modification may occur, for example, if the translation product of the non-viral gene is toxic to the host cell, is degraded or processed in a manner which renders it non-functional or possesses structural features which render it impossible for the host cell to translate in sufficient quantities to confer a detectable phenotype on the transformed cells. However, the invention does not depend upon any specific property of an RNA segment or gene being transferred. Therefore, the possible existence of RNA segments or genes which fail to confer a readily observable phenotypic trait on recipient cells or plants is irrelevant to the invention and in any case will be readily recognizable by those of ordinary skill in the art without undue experimentation.




Plant host




A cell, tissue or organism capable of replicating a nucleic acid such as a plant viral nucleic acid and which is capable of being infected by a virus containing the viral vector or viral nucleic acid. As used herein, plant host is intended to include whole plant, plant cell, and plant tissues, plant organ or plant part such as root, stem leaf, flower or seed.




Phenotypic Trait




An observable, measurable or detectable property resulting from the expression or suppression of a gene or genes. Phenotype includes both easily observable traits and biochemical processes.




Plant Cell




The structural and physiological unit of plants, consisting of a protoplast and the cell wall.




Plant Organ




A distinct and visibly differentiated part of a plant, such as root, stem, leaf or embryo.




Plant Tissue




Any tissue of a plant in planta or in culture. This term is intended to include a whole plant, plant cell, plant organ, protoplast, cell culture, or any group of plant cells organized into a structural and functional unit.




Positive-sense Inhibition




A type of gene regulation based on inhibition of gene expression believed to be due to the presence in a cell of an RNA molecule substantially homologous to at least a portion of the mRNA being translated. The RNA molecule can be an exogenous coding sequence carried by an RNA viral vector of the type discussed herein.




Promoter




The 5′-flanking, non-coding sequence substantially adjacent a coding sequence which is involved in the initiation of transcription of the coding sequence.




Protoplast




As used herein means an isolated plant cell without some or all of its cell wall.




Single component virus




Is a virus having a single nucleic acid sequence; unipartite. The single component virus is contrasted with the multicomponent virus, which has more than one nucleic acid component. Each component of a multicomponent virus is individually encapsidated, separate from the other(s).




Subgenomic Promoter




A promoter of a subgenomic mRNA of a viral nucleic acid. Plant viral nucleic acid can be modified to contain an exogenous nucleic acid sequence under the control of a subgenomic promoter.




Systemic Infection




Denotes infection throughout a substantial part of an organism including mechanisms of spread other than mere direct cell inoculation but rather including transport from one infected cell to additional cells either nearby or distant.




Viral Vector




A self-replicating RNA or DNA molecule derived from a virus which transfers an RNA or DNA segment between cells, such as bacteria, yeast, plant, or animal cells and contains an exogenous DNA or RNA segment to be expressed in the host.




A first embodiment demonstrates a capped viral vector having a single base inserted at the 5′ terminus of the viral sequence.




Another embodiment demonstrates a capped viral vector having a sequence of bases inserted at the 5′ terminus of the viral sequence.




In another embodiment, a host cell is infected by a capped viral vector which has a single base inserted at the 5′ terminus of the viral sequence. The capped viral vector is able to infect, to reproduce, to systemically infect the host plant, and to express an exogenous RNA segment.




In another embodiment, a host cell is infected by a capped viral vector having a sequence of bases inserted at the 5′ terminus of the viral sequence. The capped viral vector is able to infect the host cell, to reproduce, to systemically infect the host plant, and to express an exogenous RNA segment.




Another embodiment demonstrates an uncapped viral vector.




In another embodiment, a host cell is infected by an uncapped viral vector. The uncapped viral vector is able to reproduce, to systemically infect the host and to express an exogenous RNA segment.




Another embodiment demonstrates an uncapped viral vector having a single base inserted at the 5′ terminus of the viral sequence.




In another embodiment, a host cell is infected by an uncapped viral vector having a single base inserted at the 5′ terminus of the viral sequence. The uncapped viral vector is able to reproduce, to systemically infect the host and to express an exogenous RNA segment.




Another embodiment demonstrates an uncapped viral vector having a sequence of bases inserted at the 5′ terminus of the viral sequence.




In another embodiment, a host cell is infected by an uncapped viral vector having a sequence of bases inserted at the 5′ terminus of the viral sequence. The uncapped viral vector is able to reproduce, to systemically infect the host and to express an exogenous RNA segment.




An exogenous RNA segment may be inserted at any convenient insertion site provided the insertion does not disrupt a sequence essential for replication of the RNA within the host cell. For example, Dual Heterologous Subgenomic Promoter Expression System (DHSPES) in a plus stranded RNA vector has two subgenomic promoters. An exogenous RNA segment can be expressed in this system by inserting the exogenous gene at the 3′ end of one of the subgenomic promoters. This system is described in U.S. Pat. Nos. 5,316,931, 5,811,653, 5,589,367 and 5,866,785, the disclosure of which is incorporated by reference. An exogenous RNA segment under the control of a subgenomic promoter will be expressed in the host plant. Each heterologous subgenomic promoter is capable of transcribing or expressing adjacent genes or nucleic acid sequences in the plant host and incapable of recombination with each other and with native subgenomic promoters. One or more non-native nucleic acids may be inserted adjacent to the native plant viral subgenomic promoter or the native and non-native plant viral subgenomic promoters if more than one nucleic acid sequence is included. Moreover, it is specifically contemplated that two or more heterologous non-native subgenomic promoters may be used. The exogenous RNA segment may be transcribed or expressed in the host plant under the control of the subgenomic promoter to produce the products of the exogenous RNA segment.




A virus, whose coat protein is not essential for replication, an exogenous RNA segment may be inserted within or substituted for the region, which normally codes for coat protein. As desired, regions which contribute to undesirable host cell responses may be deleted or inactivated, provided such changes do not adversely effect the ability of the RNA to be replicated in the host cell. For many single component viruses, a reduction in the rate of normal RNA replication is tolerable and will in some instances be preferred, since the amount of RNA produced in a nonnal infection is more than enough to saturate the ribosomes of the transformed cell.




The transformation process itself can be carried out by any means whereby RNA can be introduced into cells, whole plants, plant tissues or protoplasts. The RNA alone or encapsidated in a virus particle can infect host cells, except that the modified viral RNA containing a non-viral RNA segment is substituted for its counterpart in a normal infection. Any other suitable means for introducing RNA into target cells such as microinjection may be used. Other variables of the infection process, such as pretreatment of the recipients, use of encapsidated or unencapsidated RNA, are matters of choice which those of ordinary skill in the art will be able to manipulate to achieve desired transformation efficiency in a given situation. For instance, the choice of single component plant RNA virus to be modified to achieve gene expression in a given plant variety will depend upon known host range properties of single component plant RNA viruses. For example, TMV infects a variety of Nicotiana species and their related domesticated relatives.




Plant cells, which are infected in culture, will normally remain transformed as the cells grow and divide since the RNA components are able to replicate and thus become distributed to daughter cells upon cell division. Plants regenerated from phenotypically modified cells, tissues or protoplasts remain phenotypically modified. Similarly, plants transformed as seedlings remain transformed during growth. Timing of application of the transforming components will be governed by the result that is intended and by variations in susceptibility to the transforming virus or viral RNA during various stages of plant growth.




Using the various embodiments of the invention, an exogenous segment RNA sequence can be expressed in a host by adapting the invention to any of a variety of embodiments set forth below for expressing an exogenous RNA segment. In one embodiment, an exogenous RNA segment is introduced into a plant host by way of a viral nucleic acid which comprises a native plant viral subgenomic promoter, a plant viral coat protein coding sequence, and at least one exogenous RNA segment under the control of a non-native subgenomic promoter.




In a second embodiment, plant viral nucleic acid sequences used in the method of the present invention are characterized by the deletion of the native coat protein coding sequence in favor of a non-native plant viral coat protein coding sequence for the purpose of increasing host range. A non-native promoter, which could be the subgenomic promoter of the non-native coat protein coding sequence, controls expression of the non-native coat protein coding sequence. The non-native coat protein coding sequence is capable of expression in the plant host, of packaging the recombinant plant viral nucleic acid, and ensuring a systemic infection of a permissive host by the recombinant plant viral nucleic acid. The recombinant plant viral nucleic acid may contain one or more additional native or non-native subgenomic promoters.




In a third embodiment, plant viral nucleic acids are used in the present invention wherein the native coat protein coding sequence is placed adjacent to a non-native subgenomic promoter.




In a fourth embodiment, plant viral nucleic acids are used in the present invention wherein the native coat protein gene is adjacent its subgenomic promoter and one or more non-native subgenomic promoters have been inserted into the viral nucleic acid. The inserted non-native subgenomic promoters are capable of transcribing or expressing adjacent genes in a plant host and are incapable of recombination with each other and with native subgenomic promoters. Non-native nucleic acid sequences may be inserted adjacent the non-native subgenomic plant viral promoters such that the sequences are transcribed or expressed in the host plant under control of the subgenomic promoters to produce the product of the non-native nucleic acid. Alternatively, a non-native coat protein coding sequence may replace the native coat protein coding sequence.




In another embodiment, a viral expression vector contains an exogenous RNA segment encoding a polyprotein. At least one protein of the polyprotein is non-native to the vector. The non-native protein is released from the polyprotein by proteolytic processing catalyzed by at least one protease in the polyprotein. The vector comprises: a) at least one promoter; b) cDNA having a sequence which codes for at least one polyprotein from a polyprotein-producing virus; c) at least one unique restriction site flanking a 3′ terminus of the cDNA; and a cloning vehicle.




Additional embodiments use a viral expression vector encoding at least one protein non-native to the vector that is released from at least one polyprotein expressed by the vector by proteolytic processing. The vector comprises at least one promoter, cDNA having a sequence which codes for at least one polyprotein from a polyprotein-producing virus, may contain at least one restriction site flanking a 3′ terminus of said cDNA and a cloning vehicle. Preferred embodiments include using a potyvirus as the polyprotein-producing virus, and especially preferred embodiments may use TEV (tobacco etch virus). A more detailed description of such vectors useful according to the method of the present invention may be found in U.S. Pat. Nos. 5,491,076 and 5,766,885 to James C. Carrington et al. which are incorporated herein by reference.




In yet other embodiments, recombinant plant viruses are used which encode for the expression of a fusion between a plant viral coat protein and the amino acid product of the exogenous RNA of interest. Such a recombinant plant virus provides for high level expression of a nucleic acid of interest. The location or locations where the viral coat protein is joined to the amino acid product of the nucleic acid of interest may be referred to as the fusion joint. A given product of such a construct may have one or more fusion joints. The fusion joint may be located at the carboxyl terminus of the viral coat protein or the fusion joint may be located at the amino terminus of the coat protein portion of the construct. In instances where the nucleic acid of interest is located internal with respect to the 5′ and 3′ residues of the nucleic acid sequence encoding for the viral coat protein, there are two fusion joints. That is, the nucleic acid of interest may be located 5′, 3′, upstream, downstream or within the coat protein. In some embodiments of such recombinant plant viruses, a “leaky” start or stop codon may occur at a fusion joint which sometimes does not result in translational termination. A more detailed description of some recombinant plant viruses according to this embodiment of the invention may be found in U.S. Pat. No. 5,977,438, the disclosure of which is incorporated herein by reference.




In another embodiment an exogenous gene can be introduced into the site of the coat protein gene of Potato virus X. Alternatively, an exogenous gene can be added to the PVX genome by partial duplication of the viral genome, so that expression of the exogenous gene is under the control of the same promoter sequence that controls production of the coat protein gene. Chapman, S. et al.,


The Plant Journal


(1992) 2(4): 549-557.




Those skilled in the art will understand that these embodiments are representative only of many constructs which may be useful to produce localized or systemic expression of nucleic acids in host organisms such as plants. All such constructs are contemplated and intended to be within the scope of the present invention.




The following examples illustrate the principles of the invention as applied to modification of TMV and the use of modified TMV containing a gene coding for green fluorescent protein (GFP) in the phenotypic transformation of Nicotiana plants and protoplasts. The following examples utilize many techniques well known and accessible to those skilled in the arts of molecular biology, cloning, plant cell biology, plant virology and plant tissue culture. Such methods are fully described in one or more of the cited references if not described in detail herein. Unless specified otherwise, enzymes were obtained from commercial sources and were used according to the vendor's recommendations or other variations known to the art. Those in the art also know reagents, buffers and culture conditions and reaction conditions for various enzyme-catalyzed reactions. Reference works containing such standard techniques include the following: R. Wu, ed. (1979)


Meth. Enzymol.


68; R. Wu et al., eds. (1983)


Meth. Enzymol.


100, 101; L. Grossman and K. Moldave, eds. (1980)


Meth. Enzymol.


65; J. H. Miller (1972) Experiment's in Molecular Genetics; R. Davis et al. (1980) Advanced Bacterial Genetics; R. F. Schleif and P. C. Wensink (1982) Practical Methods in Molecular Biology; and T. Maniatis et al. (1982) Molecular Cloning.




Textual use of the name of a restriction endonuclease in isolation, e.g., “EcoRV” or “SphI” refers to use of that enzyme in an enzymatic digestion, except in a diagram where it can refer to the site of a sequence susceptible to action of that enzyme, e.g., a restriction site. In the text, restriction sites are indicated by the additional use of the word “site”, e.g., “EcoRV site”. The additional use of the word “fragment”, indicates a linear double-stranded DNA molecule having ends generated by action of the named enzyme (e.g., a restriction fragment). A phrase such as, “EcoRV/SphI” fragment” indicates that the restriction fragment was generated by the action of two different enzymes, here EcoRV and SphI, the two ends resulting from the action of different enzymes. Note that the ends will have the characteristics of being either sticky (i.e., having a single strand of protrusion capable of base pairing with a complementary single-stranded oligonucleotide) or blunt (i.e., having no single-stranded protrusion). The specificity of a sticky end will be determined by the sequence of nucleotides comprising the single-stranded protrusion, which in turn is determined by the specificity of the enzyme, which produces it.




All plasmids are designated by a sequence of letters and numbers prefaced by a lower case “p”, for example, pBTI1037, pBTI1056, pBTI1057, pBTI SBS60, pBTI SBS60-29, or pBTI1056-GTN 28. Certain steps of cloning, selection and vector increase employed strains of


E. Coli.


While the strains used herein have been designated, there are many equivalent strains, available to the public that may be employed. The use of a particular microorganism as a substitute for a strain designated herein is a matter of routine choice available to those of ordinary skill in the art, according to well-known principles.




EXAMPLES




Example 1




Infectivity of Uncapped and Capped Transcripts




This example demonstrates the production of highly infectious viral vector transcripts containing 5′ nucleotides with reference to the virus vector.




1. Insertion of base or base sequence at the 5′ end of the TMV cDNA.




Nucleotides were added between the transcriptional start site for in vitro transcription, in this case the T7 promoter, and the start of the cDNA of TMV in order to maximize transcription product yield and possibly obviate the need to cap virus transcripts to insure infectivity. The relevant sequence is the T7 promoter indicated in shorthand as


TATA


, followed by the transcription start site “G”, followed by TATTTT . . . , which is the continuation of the cDNA of TMV. These are put together as . . .


TATA


G{circumflex over ( )}TATTTT . . . (SEQ ID NO: 1). The base preceding the “{circumflex over ( )}” is the start site for transcription of the cDNA. The bolded letter is the first base followed by TATTTT . . . of the TMV cDNA. Three approaches were taken:




1) addition of G, GG or GGG between the start site of transcription and the first base of the cDNA (as in . . .


TATA


G{circumflex over ( )}GTATTTT . . . and associated sequences);


















(SEQ ID NO: 1)














I.




starting point




...


TATA




G


{circumflex over ( )}TATTTT...



















(SEQ ID NO: 2)














II.




addition of G




...


TATA


G{circumflex over ( )}


G


TATTTT...



















(SEQ ID NO: 3)














III.




addition of GG




...


TATA


G{circumflex over ( )}G


G


TATTTT...



















(SEQ ID NO: 4)














IV.




addition of GGG




...


TATA


G{circumflex over ( )}GG


G


TATTTT...














2) addition of G and a random base (GN). As used herein, [N=A, T, C, or G]. VI represents addition of two random bases (N2). VII represents a G and two random bases (GNN). VIII represents three random bases (N3) between the start site of transcription and the TMV cDNA.


















(SEQ ID NO: 5)














V.




addition of GN




...


TATA


G{circumflex over ( )}N


G


TATTTT...



















(SEQ ID NO: 6)














VI.




addition of N2




...


TATA


GN{circumflex over ( )}


N


NTATTTT...



















(SEQ ID NO: 7)














VII.




addition of GNN




...


TATA


G{circumflex over ( )}NN


G


TATTTT...



















(SEQ ID NO: 8)














VIII.




addition of NNN




...


TATA


GN{circumflex over ( )}N


N


TATTTT...



















(SEQ ID NO: 9)














IX.




addition of GNG




...


TATA


GG{circumflex over ( )}N


G


TATTT...














3) addition of a GT and a single random base (


GTN


) between the start site of transcription and the TMV cDNA ( . . . TATAG{circumflex over ( )}TNGTATTTT, SEQ ID NO: 10 . . . and associated sequences).




















X.




addition of GTN




...


TATA


G{circumflex over ( )}TN


G


TATTTT...




(SEQ ID NO:11)













XI.




addition of GTC,




...


TATA


G{circumflex over ( )}TC


G


TATTTT...




(SEQ ID NO:12)













XII.




addition of (GTN)


2






...


TATA


G{circumflex over ( )}TNGTN


G


TATTTT...




(SEQ ID NO:13)













XIII.




addition of (GTN)


4






...


TATA


G{circumflex over ( )}TNGTNGTNGTN


G


TATTTT...




(SEQ ID NO:14)













XIV.




addition of GTATTT




...


TATA


G{circumflex over ( )}TATTT


G


TATTTT,...




(SEQ ID NO:15)














The use of random bases was based on the hypothesis that a particular base may be best suited for an additional nucleotide attached to the cDNA, since it will be complementary to the normal nontemplated base incorporated at the 3′-end of the TMV (−) strand RNA. This allows for more ready mis-initiation and restoration of wild type sequence. The GTN would allow the mimicking of two potential sites for initiation, the added and the native sequence, and facilitate more ready mis-initiation of transcription in vivo to restore the native TMV cDNA sequence. Approaches included cloning GFP expressing TMV vector sequences into vectors containing:




1) an extra G,




2) an extra GG or




3) an extra GGG bases using standard molecular biology techniques.




Likewise, full length PCR of TMV expression clone 1056 was done to add




4) N2,




5) N3 and




6) GTN bases between the T7 promoter and the TMV cDNA.




Construction of Plasmid




DNA oligonucleotide primers were synthesized to contain a 5′ EcoRV site, an entire T7 RNA polymerase promoter, any extra nucleotides, and the 5′-terminal 20 bases of the TMV cDNA. These primers contain in the position for extra nucleotides, either none for constructs with sequence . . . TATAG{circumflex over ( )}TATTT . . . , a “G” for constructs with sequence . . . TATAG{circumflex over ( )}GTATTT . . . , a “GN” for constructs with sequence . . . TATAG{circumflex over ( )}NGTATTT . . . or a “GTN” for constructs with sequence . . . TATAG{circumflex over ( )}TNGTATTT . . . , where {circumflex over ( )} indicates the base preceding is the start site for transcription.




Examples of 5′ primers used to construct variant TMV constructs:






5′ GGCGATATC


TAATACGACTCACTATA


GTNGTATTTTTACAACAATTACC   (SEQ ID NO:16)








5′ GGCGATATC


TAATACGACTCACTATA


GNGTATTTTTACAACAATTACC   (SEQ ID NO:17)








5′ GGCGATATC


TAATACGACTCACTATA


GNNGTATTTTTACAACAATTACC   (SEQ ID NO:18)








5′ GGCGATATC


TAATACGACTCACTATA


GNNNGTATTTTTACAACAATTACC   (SEQ ID NO:19)








5′GGCGATATC


TAATACGACTCACTATA


GTNGTNGTATTTTTACAACAATTAC   (SEQ ID NO:20)






GATATC is the EcoRV restriction enzyme recognition site. Underlined is the T7 RNA polymerase promoter. The added bases between the T7 promoter and the TMV cDNA are in bold. The 5′ 20 bases of TMV cDNA are shown following the added bases.




We used the following 3′-primer, which anneals to TMV nucleotides 1034 to 1056:










5′ CACTATCTACACTTTTATGGGCC




  (SEQ ID NO:21).






These 5′ primers and a 3′ primer containing sequences in the TMV cDNA surrounding the SphI site at position 445 were used to amplify a portion of the TMV cDNA (˜500 bp in length) by the polymerase chain reaction (PCR). The PCR products were purified by agarose gel elcctrophoresis and standard gel extraction procedures and digested with EcoRV and SphI. The DNA fragments were then ligated into a plasmid digested with EcoRV and SphI. The digestion removed the identical portion of the genome and replaced it with the PCR fragment. The recombinants were analyzed by agarose gel electrophoresis and by DNA sequencing of the 5′ end of the TMV cDNA and T7 promoter junction. These plasmids were then used for in vitro transcription using T7 RNA polymerase.




In vitro Transcription




Several TMV-based virus expression vectors were initially used in these studies. Vector pBTI 1056 contains the T7 promoter (underlined) followed directly by the virus cDNA sequence ( . . .


TATA


GTATT . . . ), and vector pBTI SBS60-29 contains the T7 promoter followed by an extra guanine residue, then by the virus cDNA sequence ( . . .


TATA


GGTATT . . . ). Both expression vectors express an exogenous cycle 3 shuffled green fluorescent protein (GFPc3) in localized infection sites and systemically infected tissue of infected plants.




Transcriptions of each plasmid were carried out in the absence of cap analogue (uncapped) or in the presence of 8-fold greater concentration of RNA cap analogue than rGTP (capped). “r” means ribosomal.




Cap Transcriptions




1.2 μl 20 mM rATP, rCTP, rUTP, 2 mM rGTP solution




2 μl 10 mM RNA cap analogue (New England Biolabs catalog #1404, methylated cap analogue)




1 μl Rnase Inhibitor 20 U (Promega N2511)




1 μl T7 RNA polymerase 30 U (Ambion 2085)




2 μl T7 RNA polymerase buffer (Ambion ñ supplied with enzyme)




0.5 mg of transcriptional plasmid DNA




Raise volume to 20 μl




Incubate at 37° C. for 1.5 hours




Analyze by agarose gel electrophoresis of 0.5 μl solution.




Non-Cap Transcriptions




1.2 μl 20 mM rATP, rCTP, rUTP




4.3 μl 20 mM rGTP




1 μl Rnase Inhibitor 20 U (Promega N2511)




1 μl T7 RNA polymerase 30 U (Ambion 2085)




2 μl T7 RNA polymerase buffer (Ambion, supplied with enzyme)




0.5 mg of transcriptional plasmid DNA




Raise volume to 20 μl




Incubate at 37° C. for 1.5 hours.




Analyze by agarose gel electrophoresis of 0.5 μl solution.




There are other methods for transcription. This method is not intended to be limiting. The volume of rGTP is also not limiting. Other volumes can be used. While methylated cap is used in these experiments, for purposes of this invention, unmethylated cap, New England Biolabs catalog #1407, may also be used if cap is desired.




Description of Vectors pBTI SBS5, pBTI 1056, pBTI SBS60, pBTI SBS60-29, and pBTI 1056 GTN-28




Vector p30BGFPc3 is the base vector or starting point. Each clone comparison is outlined below. pBTI SBS5, pSBS60 and p1056 are compared with p30BGFPc3. P1056GTN-28 is compared with p1056 and pSBS60-29 s compared with pSBS60. “nt” means nucleotide. “aa” means amino acid.

















1. pBTI SBS5 (pBTI 1057) SEQ DATA vs pBTI 30BGFPc3 (pBTI 1037)












8 nt changes




4 aa changes

















nt 1138




pBTI SB




S5 A to G mutation




(E to G change of aa 357









of 126K protein)






nt 1268





T to C




(silent)






nt 2382




pBTI SBS5




A to G mutation




(K to E change of aa 772









of 126K protein)






nt 3120





T to C mutation




(silent)






nt 3632




pBTI SBS5




G to A mutation




(silent)






nt 5213





C to T mutation




(T to I change of aa 104









of 30K protein)






nt 5303




pBTI SBS5




A to G mutation




(K to R change of aa 134









of 30K protein)






nt 5896





C to A mutation




(silent)














2. pBTI SBS60 SEQ DATA vs. pBTI 30BGFPc3 (pBTI 1037)












6 nt changes




1 aa change

















nt 1268





T to C




(silent)






nt 3120





T to C mutation




(silent)






nt 4100




pBTI SBS60




T to C mutation




(silent)






nt 5213





C to T mutation









(T to I change of aa









104 of 30K protein,









shared with pBTI SBS5)







nt 5634




pBTI SBS60




A to G mutation




(silent)






nt 5896





C to A mutation




(silent)














There is no nucleotide “nt” sequence inserted between the T7 promoter sequence and the 5′ most base of the TMV U1 cDNA to form ( . . .


TATA


GTATTTT . . . ). In the short hand used herein . . .


TATA


represents the T7 promoter, there is no base or sequence of bases inserted between the T7 promoter and the GTATTTT . . . represents the 5′ most bases of the TMV U1 cDNA.















3. pBTI 1056 SEQ DATA vs. pBTI 30BGFPc3 (pBTI 1037)














2 nt changes




2 aa change











nt 5213 C to T mutation




(T to I change of aa 104 of 30 k)







nt 5402 G to A mutation




(R to K change of aa 167 of 30 k)















There is no nt sequence inserted between the T7 promoter sequence and the 5′ most base of the TMV U1 cDNA to form ( . . .


TATA


GTATTTT . . . ). In the short hand used herein . . .


TATA


represents the T7 promoter, there is no base or sequence of bases inserted between the T7 promoter and the GTATTTT . . . represents the 5′ most bases of the TMV U1 cDNA. pBTI1056.




4. pBTI 1056 GTN-28 SEQ DATA vs. pBTI 1056




nt sequence is GTC inserted between the T7 promoter sequence and the 5′ most base of the TMV U1 cDNA to form ( . . .


TATA


GTCGTATTTT . . . ). In the short hand used herein . . .


TATA


represents the T7 promoter, GTC is the inserted sequence of nucleotides, and GTATTTT . . . represents the 5′ most bases of the TMV U1 cDNA




5. pBTI SBS 60-29 SEQ DATA vs. pBTI SBS60




nt G is inserted between the T7 promoter sequence and the 5′ most base of the TMV U1 cDNA to form ( . . .


TATA


GGTATTTT . . . ). In the short hand used herein . . .


TATA


represents the T7 promoter, G is the inserted nucleotide, and GTATTTT . . . represents the 5′ most bases of the TMV U1 cDNA.




Table 1 summarizes the vectors and host plants used in the following experiments; the nucleotide sequence of each vector which contains the T7 promoter and the start of the cDNA of TMV is listed in the Table.

















TABLE 1









Viral





Cap




Host




Foreign




Plant






Vector




5′ nucleotide sequence




+, −




Plant




Gene




tissue











pBTI1056






TATA


GTATTTT




+ and




NB and




GFPc3




leaf













NB30K








pBTISBS60-






TATA


GGTATTTT




+ and




NB and




GFPc3




leaf






29










NB30K








pBTISBS60






TATA


GTATTTT




+ and




NB




GFPc3




proto-















plasts






pBTI1056-






TATA


GTCGTATTTT




+ and




NB and




GFPc3




leaf






GTN28










NB30K














Data of Cap and Non-cap Transcriptions of pBTI1056 and PBTI SBS60-29






Nicotiana tabacum


plants were infected with either capped or uncapped transcriptions (as described above) of pBTI 1056 and pBTI SBS60-29. Transcriptions were mixed with abrasive and inoculated on expanded older leaves of a wild type


Nicotiana benthamiana


(Nb) plant and a Nb plant expressing a TMV U1 30 k movement protein transgene (Nb 30K). Four days post inoculation (dpi), long wave UV light was used to judge the number of infection sites on the inoculated leaves of the plants. Systemic, noninoculated tissues were monitored from 4 dpi on for appearance of systemic infection indicating vascular movement of the inoculated virus. Table 2 shows the results of one representative experiment. An extra G, . . . TATAG{circumflex over ( )}GTATTTT . . . is found to be well tolerated as an additional 5′ nucleotide on the 5′ end of TMV vector RNA transcripts. Both capped and uncapped transcripts are infectious. Extra guanine residues located between the T7 promoter and the first base of a virus cDNA as demonstrated by pBTISBS60-29 lead to an increased amount of RNA transcript.

















TABLE 2













Local





Systemic








infection sites





Infection


















Construct




Nb




Nb 30K




Nb




Nb 30K











pBTI1056











Capped




5




6




yes




yes







Uncapped




0




5




no




yes







pBTI SBS60-29











Capped




6




6




yes




yes







Uncapped




1




5




yes




yes















Results of Cap and Non-cap Transcriptions of pBTI SBS60






Nicotiana tabacum


protoplasts were infected with either capped or uncapped transcriptions (as described above) of pBTI SBS60 which contains the T7 promoter followed directly by the virus cDNA sequence (


TATA


GTATT . . . ). This expression vector also expresses the GFPc3 gene in infected cells and tissues.


Nicotiana tabacum


protoplasts were transfected with 1 l of each transcription. Approximately 36 hours post infection transfected protoplasts were viewed under UV illumination and cells showing GFPc3 expression. Approximately 80% of cells transfected with the capped pBTI SBS60 transcripts showed GFP expression while 5% of cells transfected with uncapped transcripts showed GFP expression. These experiments were repeated with higher amounts of uncapped inoculum. In this case a higher proportion of cells, >30% were found to be infected at this time with uncapped transcripts, where >90% of cells infected with greater amounts of capped transcripts were scored infected.




Data of Cap and Non-cap Transcriptions of pBTI1056 GTN-28




TMV-based virus expression vector pBTI 1056 GTN-28 contains the T7 promoter (underlined) followed GTC bases (bold) then the virus cDNA sequence ( . . .


TATA


GTCGTATT, SEQ ID NO: 10, . . . ). This expression vector expresses the exogenous cycle 3 shuffled green fluorescent protein (GFPc3) in localized infection sites and systemically infected tissue of infected plants. This vector was transcribed in vitro in the presence (capped) and absence (uncapped) of cap analogue as described above. Transcriptions were mixed with abrasive and inoculated on expanded older leaves of a wild type


Nicotiana benthamiana


(Nb) plant and a Nb plant expressing a TMV U1 30k movement protein transgene (Nb 30K). Four days post inoculation (dpi) long wave UV light was used to judge the number of infection sites on the inoculated leaves of the plants. Systemic, non-inoculated tissues were monitored from 4 dpi on for appearance of systemic infection indicating vascular movement of the inoculated virus. Table 3 shows data from two representative experiments at 11 dpi.

















TABLE 3













Local





Systemic








infection sites





Infection


















Construct




Nb




Nb 30K




Nb




Nb











30K











Experiment 1







pBTI1056 GTN-28







Capped




18




25




yes




yes







Uncapped




 2




 4




yes




yes







Experiment 2











pBTI1056 GTN-28











Capped




 8




12




yes




yes







Uncapped




 3




 7




yes




yes















Extra GTN such as GTC residues located between the T7 promoter and the first base of a virus cDNA (pBTI 1056 GTN-28) lead to increased amount of RNA transcript as predicted by previous work with phage polymerases. These polymerases tend to initiate more efficiently at . . .


TATA


GTNG or . . .


TATA


GTCG than . . .


TATA


G. This has an indirect effect on the relative infectivity of uncapped transcripts in that greater amounts are synthesized per reaction resulting in enhanced infectivity.




Discussion and Conclusions




The foregoing examples demonstrate that, contrary to the practiced art in scientific literature and in issued patents (Ahlquist et al., U.S. Pat. No. 5,500,360), uncapped transcripts for virus expression vectors are infective in both whole plants and in plant cells, however with much lower specific infectivity. Therefore, capping is not a prerequisite for establishing an infection of a virus expression vector in plants; capping just increases the efficiency of infection. This reduced efficiency can be overcome, to some extent, by providing excess in vitro transcription product in an infection reaction for plants or plant cells. These data further support the claims concerning the utility of uncapped transcripts to initiate infections by plant virus expression vectors and further demonstrates that the introduction of extra, non-viral nucleotides at the 5′-end of in vitro transcripts does not preclude infectivity of uncapped transcripts. We conclude that while many similarities between plant viruses can be cited, there are specific differences between the Brome mosaic virus and the Tobamovirus group which provide specific advantages to using a single-component Tobamovirus-derived vector. The results also show that reduced efficiency can be overcome, to some extent, by using a transgenic host plant or transgenic host plant cell, which expresses one or more RNA binding viral proteins. The expression of the 30K movement protein of TMV in transgenic plants also has the unexpected effect of equalizing the relative specific infectivity of uncapped verses capped transcripts. The mechanism behind this effect is not fully understood.




Further modifications and improvements following and embodying the teachings and disclosures herein are deemed to be within the scope of the invention, as set forth in the appended claims.




Although the invention has been described with reference to the presently preferred embodiments, it should be understood that various modifications could be made without departing from the spirit of the invention. Further modifications and improvements following and embodying the teachings and disclosures herein are deemed to be within the scope of the invention, as set forth in the appended claims.







27




1


11


DNA


Tobacco mosaic virus



1
tatagtattt t 11




2


12


DNA


Tobacco mosaic virus



2
tataggtatt tt 12




3


13


DNA


Tobacco mosaic virus



3
tatagggtat ttt 13




4


13


DNA


Tobacco mosaic virus



4
tatagggtat ttt 13




5


13


DNA


Tobacco mosaic virus




misc_feature




(1)...(13)




N= A, T, C or G





5
tatagngtat ttt 13




6


13


DNA


Tobacco mosaic virus




misc_feature




(1)...(13)




N= A, T, C or G





6
tatagnntat ttt 13




7


14


DNA


Tobacco mosaic virus




misc_feature




(1)...(14)




N= A, T, C or G





7
tatagnngta tttt 14




8


14


DNA


Tobacco mosaic virus




misc_feature




(1)...(14)




N= A, T, C or G





8
tatagnnnta tttt 14




9


13


DNA


Tobacco mosaic virus




misc_feature




(1)...(13)




N= A, T, C or G





9
tataggngta ttt 13




10


17


DNA


Tobacco mosaic virus




misc_feature




(1)...(17)




N= A, T, C or G





10
tatagtngtn gtatttt 17




11


14


DNA


Tobacco mosaic virus




misc_feature




(1)...(14)




N= A, T, C or G





11
tatagtngta tttt 14




12


14


DNA


Tobacco mosaic virus




misc_feature




(1)...(14)




N= A, T, C or G





12
tatagtcgta tttt 14




13


17


DNA


Tobacco mosaic virus




misc_feature




(1)...(17)




N= A, T, C or G





13
tatagtngtn gtatttt 17




14


23


DNA


Tobacco mosaic virus




misc_feature




(1)...(23)




N= A, T, C or G





14
tatagtngtn gtngtngtat ttt 23




15


17


DNA


Tobacco mosaic virus



15
tatagtattt gtatttt 17




16


45


DNA


Tobacco mosaic virus




misc_feature




(1)...(45)




N= A, T, C OR G





16
ggcgatatct aatacgacta tagtngtatt tttacaacaa ttacc 45




17


48


DNA


Tobacco mosaic virus




misc_feature




(1)...(48)




N= A, T, C OR G





17
ggcgatatct aatacgactc actatagngt atttttacaa caattacc 48




18


50


DNA


Tobacco mosaic virus




misc_feature




(1)...(50)




N= A, T, C OR G





18
ggcgatatct aatacgactc actatagnng tatttttaca acaatttacc 50




19


50


DNA


Tobacco mosaic virus




misc_feature




(1)...(50)




N= A, T, C OR G





19
ggcgatatct aatacgactc actatagnnn gtatttttac aacaattacc 50




20


51


DNA


Tobacco mosaic virus




misc_feature




(1)...(51)




N= A, T, C OR G





20
ggcgatatct aatacgactc actatagtng tngtattttt acaacaatta c 51




21


23


DNA


Tobacco mosaic virus



21
cactatctac acttttatgg gcc 23




22


7685


DNA


Tobacco mosaic virus



22
gtatttttac aacaattacc aacaacaaca aacaacagac aacattacaa ttactattta 60
caattacaat ggcatacaca cagacagcta ccacatcagc tttgctggac actgtccgag 120
gaaacaactc cttggtcaat gatctagcaa agcgtcgtct ttacgacaca gcggttgaag 180
agtttaacgc tcgtgaccgc aggcccaagg tgaacttttc aaaagtaata agcgaggagc 240
agacgcttat tgctacccgg gcgtatccag aattccaaat tacattttat aacacgcaaa 300
atgccgtgca ttcgcttgca ggtggattgc gatctttaga actggaatat ctgatgatgc 360
aaattcccta cggatcattg acttatgaca taggcgggaa ttttgcatcg catctgttca 420
agggacgagc atatgtacac tgctgcatgc ccaacctgga cgttcgagac atcatgcggc 480
acgaaggcca gaaagacagt attgaactat acctttctag gctagagaga ggggggaaaa 540
cagtccccaa cttccaaaag gaagcatttg acagatacgc agaaattcct gaagacgctg 600
tctgtcacaa tactttccag acatgcgaac atcagccgat gcagcaatca ggcagagtgt 660
atgccattgc gctacacagc atatatgaca taccagccga tgagttcggg gcggcactct 720
tgaggaaaaa tgtccatacg tgctatgccg ctttccactt ctccgagaac ctgcttcttg 780
aagattcatg cgtcaatttg gacgaaatca acgcgtgttt ttcgcgcgat ggagacaagt 840
tgaccttttc ttttgcatca gagagtactc ttaattactg tcatagttat tctaatattc 900
ttaagtatgt gtgcaaaact tacttcccgg cctctaatag agaggtttac atgaaggagt 960
ttttagtcac cagagttaat acctggtttt gtaagttttc tagaatagat acttttcttt 1020
tgtacaaagg tgtggcccat aaaagtgtag atagtgagca gttttatact gcaatggaag 1080
acgcatggca ttacaaaaag actcttgcaa tgtgcaacag cgagagaatc ctccttgagg 1140
attcatcatc agtcaattac tggtttccca aaatgaggga tatggtcatc gtaccattat 1200
tcgacatttc tttggagact agtaagagga cgcgcaagga agtcttagtg tccaaggatt 1260
tcgtgtttac agtgcttaac cacattcgaa cataccaggc gaaagctctt acatacgcaa 1320
atgttttgtc cttcgtcgaa tcgattcgat cgagggtaat cattaacggt gtgacagcga 1380
ggtccgaatg ggatgtggac aaatctttgt tacaatcctt gtccatgacg ttttacctgc 1440
atactaagct tgccgttcta aaggatgact tactgattag caagtttagt ctcggttcga 1500
aaacggtgtg ccagcatgtg tgggatgaga tttcgctggc gtttgggaac gcatttccct 1560
ccgtgaaaga gaggctcttg aacaggaaac ttatcagagt ggcaggcgac gcattagaga 1620
tcagggtgcc tgatctatat gtgaccttcc acgacagatt agtgactgag tacaaggcct 1680
ctgtggacat gcctgcgctt gacattagga agaagatgga agaaacggaa gtgatgtaca 1740
atgcactttc agaattatcg gtgttaaggg agtctgacaa attcgatgtt gatgtttttt 1800
cccagatgtg ccaatctttg gaagttgacc caatgacggc agcgaaggtt atagtcgcgg 1860
tcatgagcaa tgagagcggt ctgactctca catttgaacg acctactgag gcgaatgttg 1920
cgctagcttt acaggatcaa gagaaggctt cagaaggtgc attggtagtt acctcaagag 1980
aagttgaaga accgtccatg aagggttcga tggccagagg agagttacaa ttagctggtc 2040
ttgctggaga tcatccggaa tcgtcctatt ctaagaacga ggagatagag tctttagagc 2100
agtttcatat ggcgacggca gattcgttaa ttcgtaagca gatgagctcg attgtgtaca 2160
cgggtccgat taaagttcag caaatgaaaa actttatcga tagcctggta gcatcactat 2220
ctgctgcggt gtcgaatctc gtcaagatcc tcaaagatac agctgctatt gaccttgaaa 2280
cccgtcaaaa gtttggagtc ttggatgttg catctaggaa gtggttaatc aaaccaacgg 2340
ccaagagtca tgcatggggt gttgttgaaa cccacgcgag gaagtatcat gtggcgcttt 2400
tggaatatga tgagcagggt gtggtgacat gcgatgattg gagaagagta gctgttagct 2460
ctgagtctgt tgtttattcc gacatggcga aactcagaac tctgcgcaga ctgcttcgaa 2520
acggagaacc gcatgtcagt agcgcaaagg ttgttcttgt ggacggagtt ccgggctgtg 2580
gaaaaaccaa agaaattctt tccagggtta attttgatga agatctaatt ttagtacctg 2640
ggaagcaagc cgcggaaatg atcagaagac gtgcgaattc ctcagggatt attgtggcca 2700
cgaaggacaa cgttaaaacc gttgattctt tcatgatgaa ttttgggaaa agcacacgct 2760
gtcagttcaa gaggttattc attgatgaag ggttgatgtt gcatactggt tgtgttaatt 2820
ttcttgtggc gatgtcattg tgcgaaattg catatgttta cggagacaca cagcagattc 2880
catacatcaa tagagtttca ggattcccgt accccgccca ttttgccaaa ttggaagttg 2940
acgaggtgga gacacgcaga actactctcc gttgtccagc cgatgtcaca cattatctga 3000
acaggagata tgagggcttt gtcatgagca cttcttcggt taaaaagtct gtttcgcagg 3060
agatggtcgg cggagccgcc gtgatcaatc cgatctcaaa acccttgcat ggcaagatct 3120
tgacttttac ccaatcggat aaagaagctc tgctttcaag agggtattca gatgttcaca 3180
ctgtgcatga agtgcaaggc gagacatact ctgatgtttc actagttagg ttaaccccta 3240
caccggtctc catcattgca ggagacagcc cacatgtttt ggtcgcattg tcaaggcaca 3300
cctgttcgct caagtactac actgttgtta tggatccttt agttagtatc attagagatc 3360
tagagaaact tagctcgtac ttgttagata tgtataaggt cgatgcagga acacaatagc 3420
aattacagat tgactcggtg ttcaaaggtt ccaatctttt tgttgcagcg ccaaagactg 3480
gtgatatttc tgatatgcag ttttactatg ataagtgtct cccaggcaac agcaccatga 3540
tgaataattt tgatgctgtt accatgaggt tgactgacat ttcattgaat gtcaaagatt 3600
gcatattgga tatgtctaag tctgttgctg cgcctaagga tcaaatcaaa ccactaatac 3660
ctatggtacg aacggcggca gaaatgccac gccagactgg actattggaa aatttagtgg 3720
cgatgattaa aagaaacttt aacgcacccg agttgtctgg catcattgat attgaaaata 3780
ctgcatcttt ggttgtagat aagttttttg atagttattt gcttaaagaa aaaagaaaac 3840
caaataaaaa tgtttctttg ttcagtagag agtctctcaa tagatggtta gaaaagcagg 3900
aacaggtaac aataggccag ctcgcagatt ttgattttgt ggatttgcca gcagttgatc 3960
agtacagaca catgattaaa gcacaaccca aacaaaagtt ggacacttca atccaaacgg 4020
agtacccggc tttgcagacg attgtgtacc attcaaaaaa gatcaatgca atattcggcc 4080
cgttgtttag tgagcttact aggcaattac tggacagtgt tgattcgagc agatttttgt 4140
ttttcacaag aaagacacca gcgcagattg aggatttctt cggagatctc gacagtcatg 4200
tgccgatgga tgtcttggag ctggatatat caaaatacga caaatctcag aatgaattcc 4260
actgtgcagt agaatacgag atctggcgaa gattgggttt cgaagacttc ttgggagaag 4320
tttggaaaca agggcataga aagaccaccc tcaaggatta taccgcaggt ataaaaactt 4380
gcatctggta tcaaagaaag agcggggacg tcacgacgtt cattggaaac actgtgatca 4440
ttgctgcatg tttggcctcg atgcttccga tggagaaaat aatcaaagga gccttttgcg 4500
gtgacgatag tctgctgtac tttccaaagg gttgtgagtt tccggatgtg caacactccg 4560
cgaatcttat gtggaatttt gaagcaaaac tgtttaaaaa acagtatgga tacttttgcg 4620
gaagatatgt aatacatcac gacagaggat gcattgtgta ttacgatccc ctaaagttga 4680
tctcgaaact tggtgctaaa cacatcaagg attgggaaca cttggaggag ttcagaaggt 4740
ctctttgtga tgttgctgtt tcgttgaaca attgtgcgta ttacacacag ttggacgacg 4800
ctgtatggga ggttcataag accgcccctc caggttcgtt tgtttataaa agtctggtga 4860
agtatttgtc tgataaagtt ctttttagaa gtttgtttat agatggctct agttgttaaa 4920
ggaaaagtga atatcaatga gtttatcgac ctgacaaaaa tggagaagat cttaccgtcg 4980
atgtttaccc ctgtaaagag tgttatgtgt tccaaagttg ataaaataat ggttcatgag 5040
aatgagtcat tgtcaggggt gaaccttctt aaaggagtta agcttattga tagtggatac 5100
gtctgtttag ccggtttggt cgtcacgggc gagtggaact tgcctgacaa ttgcagagga 5160
ggtgtgagcg tgtgtctggt ggacaaaagg atggaaagag ccgacgaggc cactctcgga 5220
tcttactaca cagcagctgc aaagaaaaga tttcagttca aggtcgttcc caattatgct 5280
ataaccaccc aggacgcgat gaaaaacgtc tggcaagttt tagttaatat tagaaatgtg 5340
aagatgtcag cgggtttctg tccgctttct ctggagtttg tgtcggtgtg tattgtttat 5400
agaaataata taaaattagg tttgagagag aagattacaa acgtgagaga cggagggccc 5460
atggaactta cagaagaagt cgttgatgag ttcatggaag atgtccctat gtcgatcagg 5520
cttgcaaagt ttcgatctcg aaccggaaaa aagagtgatg tccgcaaagg gaaaaatagt 5580
agtagtgatc ggtcagtgcc gaacaagaac tatagaaatg ttaaggattt tggaggaatg 5640
agttttaaaa agaataattt aatcgatgat gattcggagg ctactgtcgc cgaatcggat 5700
tcgttttaaa tagatcttac agtatcacta ctccatctca gttcgtgttc ttgtcattaa 5760
ttaaatggct agcaaaggag aagaactttt cactggagtt gtcccaattc ttgttgaatt 5820
agatggtgat gttaatgggc acaaattttc tgtcagtgga gagggtgaag gtgatgctac 5880
atacggaaag cttaccctta aatttatttg cactactgga aaactacctg ttccatggcc 5940
aacacttgtc actactttct cttatggtgt tcaatgcttt tcccgttatc cggatcatat 6000
gaaacggcat gactttttca agagtgccat gcccgaaggt tatgtacagg aacgcactat 6060
atctttcaaa gatgacggga actacaagac gcgtgctgaa gtcaagtttg aaggtgatac 6120
ccttgttaat cgtatcgagt taaaaggtat tgattttaaa gaagatggaa acattctcgg 6180
acacaaactc gagtacaact ataactcaca caatgtatac atcacggcag acaaacaaaa 6240
gaatggaatc aaagctaact tcaaaattcg ccacaacatt gaagatggat ccgttcaact 6300
agcagaccat tatcaacaaa atactccaat tggcgatggc cctgtccttt taccagacaa 6360
ccattacctg tcgacacaat ctgccctttc gaaagatccc aacgaaaagc gtgaccacat 6420
gggccttctt gagtttgtaa ctgctgctgg gattacacat ggcatggatg agctctacaa 6480
ataatgacac tcgaggggta gtcaagatgc ataataaata acggattgtg tccgtaatca 6540
cacgtggtgc gtacgataac gcatagtgtt tttccctcca cttaaatcga agggttgtgt 6600
cttggatcgc gcgggtcaaa tgtatatggt tcatatacat ccgcaggcac gtaataaagc 6660
gaggggttcg ggtcgaggtc ggctgtgaaa ctcgaaaagg ttccggaaaa caaaaaagag 6720
agtggtaggt aatagtgtta ataataagaa aataaataat agtggtaaga aaggtttgaa 6780
agttgaggaa attgaggata atgtaagtga tgacgagtct atcgcgtcat cgagtacgtt 6840
ttaatcaata tgccttatac aatcaactct ccgagccaat ttgtttactt aagttccgct 6900
tatgcagatc ctgtgcagct gatcaatctg tgtacaaatg cattgggtaa ccagtttcaa 6960
acgcaacaag ctaggacaac agtccaacag caatttgcgg atgcctggaa acctgtgcct 7020
agtatgacag tgagatttcc tgcatcggat ttctatgtgt atagatataa ttcgacgctt 7080
gatccgttga tcacggcgtt attaaatagc ttcgatacta gaaatagaat aatagaggtt 7140
gataatcaac ccgcaccgaa tactactgaa atcgttaacg cgactcagag ggtagacgat 7200
gcgactgtag ctataagggc ttcaatcaat aatttggcta atgaactggt tcgtggaact 7260
ggcatgttca atcaagcaag ctttgagact gctagtggac ttgtctggac cacaactccg 7320
gctacttagc tattgttgtg agatttccta aaataaagtc actgaagact taaaattcag 7380
ggtggctgat accaaaatca gcagtggttg ttcgtccact taaatataac gattgtcata 7440
tctggatcca acagttaaac catgtgatgg tgtatactgt ggtatggcgt aaaacaacgg 7500
aaaagtcgct gaagacttaa aattcagggt ggctgatacc aaaatcagca gtggttgttc 7560
gtccacttaa aaataacgat tgtcatatct ggatccaaca gttaaaccat gtgatggtgt 7620
atactgtggt atggcgtaaa caacggagag gttcgaatcc tcccctaacc gcgggtagcg 7680
gccca 7685




23


7686


DNA


Tobacco mosaic virus



23
gtatttttac aacaattacc aacaacaaca aacaacagac aacattacaa ttactattta 60
caattacaat ggcatacaca cagacagcta ccacatcagc tttgctggac actgtccgag 120
gaaacaactc cttggtcaat gatctagcaa agcgtcgtct ttacgacaca gcggttgaag 180
agtttaacgc tcgtgaccgc aggcccaagg tgaacttttc aaaagtaata agcgaggagc 240
agacgcttat tgctacccgg gcgtatccag aattccaaat tacattttat aacacgcaaa 300
atgccgtgca ttcgcttgca ggtggattgc gatctttaga actggaatat ctgatgatgc 360
aaattcccta cggatcattg acttatgaca taggcgggaa ttttgcatcg catctgttca 420
agggacgagc atatgtacac tgctgcatgc ccaacctgga cgttcgagac atcatgcggc 480
acgaaggcca gaaagacagt attgaactat acctttctag gctagagaga ggggggaaaa 540
cagtccccaa cttccaaaag gaagcatttg acagatacgc agaaattcct gaagacgctg 600
tctgtcacaa tactttccag acatgcgaac atcagccgat gcagcaatca ggcagagtgt 660
atgccattgc gctacacagc atatatgaca taccagccga tgagttcggg gcggcactct 720
tgaggaaaaa tgtccatacg tgctatgccg ctttccactt ctccgagaac ctgcttcttg 780
aagattcatg cgtcaatttg gacgaaatca acgcgtgttt ttcgcgcgat ggagacaagt 840
tgaccttttc ttttgcatca gagagtactc ttaattactg tcatagttat tctaatattc 900
ttaagtatgt gtgcaaaact tacttcccgg cctctaatag agaggtttac atgaaggagt 960
ttttagtcac cagagttaat acctggtttt gtaagttttc tagaatagat acttttcttt 1020
tgtacaaagg tgtggcccat aaaagtgtag atagtgagca gttttatact gcaatggaag 1080
acgcatggca ttacaaaaag actcttgcaa tgtgcaacag cgagagaatc ctccttgagg 1140
attcatcatc agtcaattac tggtttccca aaatgaggga tatggtcatc gtaccattat 1200
tcgacatttc tttggagact agtaagagga cgcgcaagga agtcttagtg tccaaggatt 1260
tcgtgttcac agtgcttaac cacattcgaa cataccaggc gaaagctctt acatacgcaa 1320
atgttttgtc cttcgtcgaa tcgattcgat cgagggtaat cattaacggt gtgacagcga 1380
ggtccgaatg ggatgtggac aaatctttgt tacaatcctt gtccatgacg ttttacctgc 1440
atactaagct tgccgttcta aaggatgact tactgattag caagtttagt ctcggttcga 1500
aaacggtgtg ccagcatgtg tgggatgaga tttcgctggc gtttgggaac gcatttccct 1560
ccgtgaaaga gaggctcttg aacaggaaac ttatcagagt ggcaggcgac gcattagaga 1620
tcagggtgcc tgatctatat gtgaccttcc acgacagatt agtgactgag tacaaggcct 1680
ctgtggacat gcctgcgctt gacattagga agaagatgga agaaacggaa gtgatgtaca 1740
atgcactttc agaattatcg gtgttaaggg agtctgacaa attcgatgtt gatgtttttt 1800
cccagatgtg ccaatctttg gaagttgacc caatgacggc agcgaaggtt atagtcgcgg 1860
tcatgagcaa tgagagcggt ctgactctca catttgaacg acctactgag gcgaatgttg 1920
cgctagcttt acaggatcaa gagaaggctt cagaaggtgc attggtagtt acctcaagag 1980
aagttgaaga accgtccatg aagggttcga tggccagagg agagttacaa ttagctggtc 2040
ttgctggaga tcatccggaa tcgtcctatt ctaagaacga ggagatagag tctttagagc 2100
agtttcatat ggcgacggca gattcgttaa ttcgtaagca gatgagctcg attgtgtaca 2160
cgggtccgat taaagttcag caaatgaaaa actttatcga tagcctggta gcatcactat 2220
ctgctgcggt gtcgaatctc gtcaagatcc tcaaagatac agctgctatt gaccttgaaa 2280
cccgtcaaaa gtttggagtc ttggatgttg catctaggaa gtggttaatc aaaccaacgg 2340
ccaagagtca tgcatggggt gttgttgaaa cccacgcgag gaagtatcat gtggcgcttt 2400
tggaatatga tgagcagggt gtggtgacat gcgatgattg gagaagagta gctgttagct 2460
ctgagtctgt tgtttattcc gacatggcga aactcagaac tctgcgcaga ctgcttcgaa 2520
acggagaacc gcatgtcagt agcgcaaagg ttgttcttgt ggacggagtt ccgggctgtg 2580
gaaaaaccaa agaaattctt tccagggtta attttgatga agatctaatt ttagtacctg 2640
ggaagcaagc cgcggaaatg atcagaagac gtgcgaattc ctcagggatt attgtggcca 2700
cgaaggacaa cgttaaaacc gttgattctt tcatgatgaa ttttgggaaa agcacacgct 2760
gtcagttcaa gaggttattc attgatgaag ggttgatgtt gcatactggt tgtgttaatt 2820
ttcttgtggc gatgtcattg tgcgaaattg catatgttta cggagacaca cagcagattc 2880
catacatcaa tagagtttca ggattcccgt accccgccca ttttgccaaa ttggaagttg 2940
acgaggtgga gacacgcaga actactctcc gttgtccagc cgatgtcaca cattatctga 3000
acaggagata tgagggcttt gtcatgagca cttcttcggt taaaaagtct gtttcgcagg 3060
agatggtcgg cggagccgcc gtgatcaatc cgatctcaaa acccttgcat ggcaagatcc 3120
tgacttttac ccaatcggat aaagaagctc tgctttcaag agggtattca gatgttcaca 3180
ctgtgcatga agtgcaaggc gagacatact ctgatgtttc actagttagg ttaaccccta 3240
caccggtctc catcattgca ggagacagcc cacatgtttt ggtcgcattg tcaaggcaca 3300
cctgttcgct caagtactac actgttgtta tggatccttt agttagtatc attagagatc 3360
tagagaaact tagctcgtac ttgttagata tgtataaggt cgatgcagga acacaatagc 3420
aattacagat tgactcggtg ttcaaaggtt ccaatctttt tgttgcagcg ccaaagactg 3480
gtgatatttc tgatatgcag ttttactatg ataagtgtct cccaggcaac agcaccatga 3540
tgaataattt tgatgctgtt accatgaggt tgactgacat ttcattgaat gtcaaagatt 3600
gcatattgga tatgtctaag tctgttgctg cgcctaagga tcaaatcaaa ccactaatac 3660
ctatggtacg aacggcggca gaaatgccac gccagactgg actattggaa aatttagtgg 3720
cgatgattaa aagaaacttt aacgcacccg agttgtctgg catcattgat attgaaaata 3780
ctgcatcttt ggttgtagat aagttttttg atagttattt gcttaaagaa aaaagaaaac 3840
caaataaaaa tgtttctttg ttcagtagag agtctctcaa tagatggtta gaaaagcagg 3900
aacaggtaac aataggccag ctcgcagatt ttgattttgt ggatttgcca gcagttgatc 3960
agtacagaca catgattaaa gcacaaccca aacaaaagtt ggacacttca atccaaacgg 4020
agtacccggc tttgcagacg attgtgtacc attcaaaaaa gatcaatgca atattcggcc 4080
cgttgtttag tgagcttacc aggcaattac tggacagtgt tgattcgagc agatttttgt 4140
ttttcacaag aaagacacca gcgcagattg aggatttctt cggagatctc gacagtcatg 4200
tgccgatgga tgtcttggag ctggatatat caaaatacga caaatctcag aatgaattcc 4260
actgtgcagt agaatacgag atctggcgaa gattgggttt cgaagacttc ttgggagaag 4320
tttggaaaca agggcataga aagaccaccc tcaaggatta taccgcaggt ataaaaactt 4380
gcatctggta tcaaagaaag agcggggacg tcacgacgtt cattggaaac actgtgatca 4440
ttgctgcatg tttggcctcg atgcttccga tggagaaaat aatcaaagga gccttttgcg 4500
gtgacgatag tctgctgtac tttccaaagg gttgtgagtt tccggatgtg caacactccg 4560
cgaatcttat gtggaatttt gaagcaaaac tgtttaaaaa acagtatgga tacttttgcg 4620
gaagatatgt aatacatcac gacagaggat gcattgtgta ttacgatccc ctaaagttga 4680
tctcgaaact tggtgctaaa cacatcaagg attgggaaca cttggaggag ttcagaaggt 4740
ctctttgtga tgttgctgtt tcgttgaaca attgtgcgta ttacacacag ttggacgacg 4800
ctgtatggga ggttcataag accgcccctc caggttcgtt tgtttataaa agtctggtga 4860
agtatttgtc tgataaagtt ctttttagaa gtttgtttat agatggctct agttgttaaa 4920
ggaaaagtga atatcaatga gtttatcgac ctgacaaaaa tggagaagat cttaccgtcg 4980
atgtttaccc ctgtaaagag tgttatgtgt tccaaagttg ataaaataat ggttcatgag 5040
aatgagtcat tgtcaggggt gaaccttctt aaaggagtta agcttattga tagtggatac 5100
gtctgtttag ccggtttggt cgtcacgggc gagtggaact tgcctgacaa ttgcagagga 5160
ggtgtgagcg tgtgtctggt ggacaaaagg atggaaagag ccgacgaggc cattctcgga 5220
tcttactaca cagcagctgc aaagaaaaga tttcagttca aggtcgttcc caattatgct 5280
ataaccaccc aggacgcgat gaaaaacgtc tggcaagttt tagttaatat tagaaatgtg 5340
aagatgtcag cgggtttctg tccgctttct ctggagtttg tgtcggtgtg tattgtttat 5400
agaaataata taaaattagg tttgagagag aagattacaa acgtgagaga cggagggccc 5460
atggaactta cagaagaagt cgttgatgag ttcatggaag atgtccctat gtcgatcagg 5520
cttgcaaagt ttcgatctcg aaccggaaaa aagagtgatg tccgcaaagg gaaaaatagt 5580
agtagtgatc ggtcagtgcc gaacaagaac tatagaaatg ttaaggattt tgggggaatg 5640
agttttaaaa agaataattt aatcgatgat gattcggagg ctactgtcgc cgaatcggat 5700
tcgttttaaa tagatcttac agtatcacta ctccatctca gttcgtgttc ttgtcattaa 5760
ttaaatggct agcaaaggag aagaactttt cactggagtt gtcccaattc ttgttgaatt 5820
agatggtgat gttaatgggc acaaattttc tgtcagtgga gagggtgaag gtgatgctac 5880
atacggaaag cttacactta aatttatttg cactactgga aaactacctg ttccatggcc 5940
aacacttgtc actactttct cttatggtgt tcaatgcttt tcccgttatc cggatcatat 6000
gaaacggcat gactttttca agagtgccat gcccgaaggt tatgtacagg aacgcactat 6060
atctttcaaa gatgacggga actacaagac gcgtgctgaa gtcaagtttg aaggtgatac 6120
ccttgttaat cgtatcgagt taaaaggtat tgattttaaa gaagatggaa acattctcgg 6180
acacaaactc gagtacaact ataactcaca caatgtatac atcacggcag acaaacaaaa 6240
gaatggaatc aaagctaact tcaaaattcg ccacaacatt gaagatggat ccgttcaact 6300
agcagaccat tatcaacaaa atactccaat tggcgatggc cctgtccttt taccagacaa 6360
ccattacctg tcgacacaat ctgccctttc gaaagatccc aacgaaaagc gtgaccacat 6420
ggtccttctt gagtttgtaa ctgctgctgg gattacacat ggcatggatg agctctacaa 6480
ataatgacac tcgaggggta gtcaagatgc ataataaata acggattgtg tccgtaatca 6540
cacgtggtgc gtacgataac gcatagtgtt tttccctcca cttaaatcga agggttgtgt 6600
cttggatcgc gcgggtcaaa tgtatatggt tcatatacat ccgcaggcac gtaataaagc 6660
gaggggttcg ggtcgaggtc ggctgtgaaa ctcgaaaagg ttccggaaaa caaaaaagag 6720
agtggtaggt aatagtgtta ataataagaa aataaataat agtggtaaga aaggtttgaa 6780
agttgaggaa attgaggata atgtaagtga tgacgagtct atcgcgtcat cgagtacgtt 6840
ttaatcaata tgccttatac aatcaactct ccgagccaat ttgtttactt aagttccgct 6900
tatgcagatc ctgtgcagct gatcaatctg tgtacaaatg cattgggtaa ccagtttcaa 6960
acgcaacaag ctaggacaac agtccaacag caatttgcgg atgcctggaa acctgtgcct 7020
agtatgacag tgagatttcc tgcatcggat ttctatgtgt atagatataa ttcgacgctt 7080
gatccgttga tcacggcgtt attaaatagc ttcgatacta gaaatagaat aatagaggtt 7140
gataatcaac ccgcaccgaa tactactgaa atcgttaacg cgactcagag ggtagacgat 7200
gcgactgtag ctataagggc ttcaatcaat aatttggcta atgaactggt tcgtggaact 7260
ggcatgttca atcaagcaag ctttgagact gctagtggac ttgtctggac cacaactccg 7320
gctacttagc tattgttgtg agatttccta aaataaagtc actgaagact taaaattcag 7380
ggtggctgat accaaaatca gcagtggttg ttcgtccact taaatataac gattgtcata 7440
tctggatcca acagttaaac catgtgatgg tgtatactgt ggtatggcgt aaaacaacgg 7500
aaaagtcgct gaagacttaa aattcagggt ggctgatacc aaaatcagca gtggttgttc 7560
gtccacttaa aaataacgat tgtcatatct ggatccaaca gttaaaccat gtgatggtgt 7620
atactgtggt atggcgtaaa acaacggaga ggttcgaatc ctcccctaac cgcgggtagc 7680
ggccca 7686




24


7687


DNA


Tobacco mosaic virus



24
ggtattttta caacaattac caacaacaac aaacaacaga caacattaca attactattt 60
acaattacaa tggcatacac acagacagct accacatcag ctttgctgga cactgtccga 120
ggaaacaact ccttggtcaa tgatctagca aagcgtcgtc tttacgacac agcggttgaa 180
gagtttaacg ctcgtgaccg caggcccaag gtgaactttt caaaagtaat aagcgaggag 240
cagacgctta ttgctacccg ggcgtatcca gaattccaaa ttacatttta taacacgcaa 300
aatgccgtgc attcgcttgc aggtggattg cgatctttag aactggaata tctgatgatg 360
caaattccct acggatcatt gacttatgac ataggcggga attttgcatc gcatctgttc 420
aagggacgag catatgtaca ctgctgcatg cccaacctgg acgttcgaga catcatgcgg 480
cacgaaggcc agaaagacag tattgaacta tacctttcta ggctagagag aggggggaaa 540
acagtcccca acttccaaaa ggaagcattt gacagatacg cagaaattcc tgaagacgct 600
gtctgtcaca atactttcca gacatgcgaa catcagccga tgcagcaatc aggcagagtg 660
tatgccattg cgctacacag catatatgac ataccagccg atgagttcgg ggcggcactc 720
ttgaggaaaa atgtccatac gtgctatgcc gctttccact tctccgagaa cctgcttctt 780
gaagattcat gcgtcaattt ggacgaaatc aacgcgtgtt tttcgcgcga tggagacaag 840
ttgacctttt cttttgcatc agagagtact cttaattact gtcatagtta ttctaatatt 900
cttaagtatg tgtgcaaaac ttacttcccg gcctctaata gagaggttta catgaaggag 960
tttttagtca ccagagttaa tacctggttt tgtaagtttt ctagaataga tacttttctt 1020
ttgtacaaag gtgtggccca taaaagtgta gatagtgagc agttttatac tgcaatggaa 1080
gacgcatggc attacaaaaa gactcttgca atgtgcaaca gcgagagaat cctccttgag 1140
gattcatcat cagtcaatta ctggtttccc aaaatgaggg atatggtcat cgtaccatta 1200
ttcgacattt ctttggagac tagtaagagg acgcgcaagg aagtcttagt gtccaaggat 1260
ttcgtgttca cagtgcttaa ccacattcga acataccagg cgaaagctct tacatacgca 1320
aatgttttgt ccttcgtcga atcgattcga tcgagggtaa tcattaacgg tgtgacagcg 1380
aggtccgaat gggatgtgga caaatctttg ttacaatcct tgtccatgac gttttacctg 1440
catactaagc ttgccgttct aaaggatgac ttactgatta gcaagtttag tctcggttcg 1500
aaaacggtgt gccagcatgt gtgggatgag atttcgctgg cgtttgggaa cgcatttccc 1560
tccgtgaaag agaggctctt gaacaggaaa cttatcagag tggcaggcga cgcattagag 1620
atcagggtgc ctgatctata tgtgaccttc cacgacagat tagtgactga gtacaaggcc 1680
tctgtggaca tgcctgcgct tgacattagg aagaagatgg aagaaacgga agtgatgtac 1740
aatgcacttt cagaattatc ggtgttaagg gagtctgaca aattcgatgt tgatgttttt 1800
tcccagatgt gccaatcttt ggaagttgac ccaatgacgg cagcgaaggt tatagtcgcg 1860
gtcatgagca atgagagcgg tctgactctc acatttgaac gacctactga ggcgaatgtt 1920
gcgctagctt tacaggatca agagaaggct tcagaaggtg cattggtagt tacctcaaga 1980
gaagttgaag aaccgtccat gaagggttcg atggccagag gagagttaca attagctggt 2040
cttgctggag atcatccgga atcgtcctat tctaagaacg aggagataga gtctttagag 2100
cagtttcata tggcgacggc agattcgtta attcgtaagc agatgagctc gattgtgtac 2160
acgggtccga ttaaagttca gcaaatgaaa aactttatcg atagcctggt agcatcacta 2220
tctgctgcgg tgtcgaatct cgtcaagatc ctcaaagata cagctgctat tgaccttgaa 2280
acccgtcaaa agtttggagt cttggatgtt gcatctagga agtggttaat caaaccaacg 2340
gccaagagtc atgcatgggg tgttgttgaa acccacgcga ggaagtatca tgtggcgctt 2400
ttggaatatg atgagcaggg tgtggtgaca tgcgatgatt ggagaagagt agctgttagc 2460
tctgagtctg ttgtttattc cgacatggcg aaactcagaa ctctgcgcag actgcttcga 2520
aacggagaac cgcatgtcag tagcgcaaag gttgttcttg tggacggagt tccgggctgt 2580
ggaaaaacca aagaaattct ttccagggtt aattttgatg aagatctaat tttagtacct 2640
gggaagcaag ccgcggaaat gatcagaaga cgtgcgaatt cctcagggat tattgtggcc 2700
acgaaggaca acgttaaaac cgttgattct ttcatgatga attttgggaa aagcacacgc 2760
tgtcagttca agaggttatt cattgatgaa gggttgatgt tgcatactgg ttgtgttaat 2820
tttcttgtgg cgatgtcatt gtgcgaaatt gcatatgttt acggagacac acagcagatt 2880
ccatacatca atagagtttc aggattcccg taccccgccc attttgccaa attggaagtt 2940
gacgaggtgg agacacgcag aactactctc cgttgtccag ccgatgtcac acattatctg 3000
aacaggagat atgagggctt tgtcatgagc acttcttcgg ttaaaaagtc tgtttcgcag 3060
gagatggtcg gcggagccgc cgtgatcaat ccgatctcaa aacccttgca tggcaagatc 3120
ctgactttta cccaatcgga taaagaagct ctgctttcaa gagggtattc agatgttcac 3180
actgtgcatg aagtgcaagg cgagacatac tctgatgttt cactagttag gttaacccct 3240
acaccggtct ccatcattgc aggagacagc ccacatgttt tggtcgcatt gtcaaggcac 3300
acctgttcgc tcaagtacta cactgttgtt atggatcctt tagttagtat cattagagat 3360
ctagagaaac ttagctcgta cttgttagat atgtataagg tcgatgcagg aacacaatag 3420
caattacaga ttgactcggt gttcaaaggt tccaatcttt ttgttgcagc gccaaagact 3480
ggtgatattt ctgatatgca gttttactat gataagtgtc tcccaggcaa cagcaccatg 3540
atgaataatt ttgatgctgt taccatgagg ttgactgaca tttcattgaa tgtcaaagat 3600
tgcatattgg atatgtctaa gtctgttgct gcgcctaagg atcaaatcaa accactaata 3660
cctatggtac gaacggcggc agaaatgcca cgccagactg gactattgga aaatttagtg 3720
gcgatgatta aaagaaactt taacgcaccc gagttgtctg gcatcattga tattgaaaat 3780
actgcatctt tggttgtaga taagtttttt gatagttatt tgcttaaaga aaaaagaaaa 3840
ccaaataaaa atgtttcttt gttcagtaga gagtctctca atagatggtt agaaaagcag 3900
gaacaggtaa caataggcca gctcgcagat tttgattttg tggatttgcc agcagttgat 3960
cagtacagac acatgattaa agcacaaccc aaacaaaagt tggacacttc aatccaaacg 4020
gagtacccgg ctttgcagac gattgtgtac cattcaaaaa agatcaatgc aatattcggc 4080
ccgttgttta gtgagcttac caggcaatta ctggacagtg ttgattcgag cagatttttg 4140
tttttcacaa gaaagacacc agcgcagatt gaggatttct tcggagatct cgacagtcat 4200
gtgccgatgg atgtcttgga gctggatata tcaaaatacg acaaatctca gaatgaattc 4260
cactgtgcag tagaatacga gatctggcga agattgggtt tcgaagactt cttgggagaa 4320
gtttggaaac aagggcatag aaagaccacc ctcaaggatt ataccgcagg tataaaaact 4380
tgcatctggt atcaaagaaa gagcggggac gtcacgacgt tcattggaaa cactgtgatc 4440
attgctgcat gtttggcctc gatgcttccg atggagaaaa taatcaaagg agccttttgc 4500
ggtgacgata gtctgctgta ctttccaaag ggttgtgagt ttccggatgt gcaacactcc 4560
gcgaatctta tgtggaattt tgaagcaaaa ctgtttaaaa aacagtatgg atacttttgc 4620
ggaagatatg taatacatca cgacagagga tgcattgtgt attacgatcc cctaaagttg 4680
atctcgaaac ttggtgctaa acacatcaag gattgggaac acttggagga gttcagaagg 4740
tctctttgtg atgttgctgt ttcgttgaac aattgtgcgt attacacaca gttggacgac 4800
gctgtatggg aggttcataa gaccgcccct ccaggttcgt ttgtttataa aagtctggtg 4860
aagtatttgt ctgataaagt tctttttaga agtttgttta tagatggctc tagttgttaa 4920
aggaaaagtg aatatcaatg agtttatcga cctgacaaaa atggagaaga tcttaccgtc 4980
gatgtttacc cctgtaaaga gtgttatgtg ttccaaagtt gataaaataa tggttcatga 5040
gaatgagtca ttgtcagggg tgaaccttct taaaggagtt aagcttattg atagtggata 5100
cgtctgttta gccggtttgg tcgtcacggg cgagtggaac ttgcctgaca attgcagagg 5160
aggtgtgagc gtgtgtctgg tggacaaaag gatggaaaga gccgacgagg ccattctcgg 5220
atcttactac acagcagctg caaagaaaag atttcagttc aaggtcgttc ccaattatgc 5280
tataaccacc caggacgcga tgaaaaacgt ctggcaagtt ttagttaata ttagaaatgt 5340
gaagatgtca gcgggtttct gtccgctttc tctggagttt gtgtcggtgt gtattgttta 5400
tagaaataat ataaaattag gtttgagaga gaagattaca aacgtgagag acggagggcc 5460
catggaactt acagaagaag tcgttgatga gttcatggaa gatgtcccta tgtcgatcag 5520
gcttgcaaag tttcgatctc gaaccggaaa aaagagtgat gtccgcaaag ggaaaaatag 5580
tagtagtgat cggtcagtgc cgaacaagaa ctatagaaat gttaaggatt ttgggggaat 5640
gagttttaaa aagaataatt taatcgatga tgattcggag gctactgtcg ccgaatcgga 5700
ttcgttttaa atagatctta cagtatcact actccatctc agttcgtgtt cttgtcatta 5760
attaaatggc tagcaaagga gaagaacttt tcactggagt tgtcccaatt cttgttgaat 5820
tagatggtga tgttaatggg cacaaatttt ctgtcagtgg agagggtgaa ggtgatgcta 5880
catacggaaa gcttacactt aaatttattt gcactactgg aaaactacct gttccatggc 5940
caacacttgt cactactttc tcttatggtg ttcaatgctt ttcccgttat ccggatcata 6000
tgaaacggca tgactttttc aagagtgcca tgcccgaagg ttatgtacag gaacgcacta 6060
tatctttcaa agatgacggg aactacaaga cgcgtgctga agtcaagttt gaaggtgata 6120
cccttgttaa tcgtatcgag ttaaaaggta ttgattttaa agaagatgga aacattctcg 6180
gacacaaact cgagtacaac tataactcac acaatgtata catcacggca gacaaacaaa 6240
agaatggaat caaagctaac ttcaaaattc gccacaacat tgaagatgga tccgttcaac 6300
tagcagacca ttatcaacaa aatactccaa ttggcgatgg ccctgtcctt ttaccagaca 6360
accattacct gtcgacacaa tctgcccttt cgaaagatcc caacgaaaag cgtgaccaca 6420
tggtccttct tgagtttgta actgctgctg ggattacaca tggcatggat gagctctaca 6480
aataatgaca ctcgaggggt agtcaagatg cataataaat aacggattgt gtccgtaatc 6540
acacgtggtg cgtacgataa cgcatagtgt ttttccctcc acttaaatcg aagggttgtg 6600
tcttggatcg cgcgggtcaa atgtatatgg ttcatataca tccgcaggca cgtaataaag 6660
cgaggggttc gggtcgaggt cggctgtgaa actcgaaaag gttccggaaa acaaaaaaga 6720
gagtggtagg taatagtgtt aataataaga aaataaataa tagtggtaag aaaggtttga 6780
aagttgagga aattgaggat aatgtaagtg atgacgagtc tatcgcgtca tcgagtacgt 6840
tttaatcaat atgccttata caatcaactc tccgagccaa tttgtttact taagttccgc 6900
ttatgcagat cctgtgcagc tgatcaatct gtgtacaaat gcattgggta accagtttca 6960
aacgcaacaa gctaggacaa cagtccaaca gcaatttgcg gatgcctgga aacctgtgcc 7020
tagtatgaca gtgagatttc ctgcatcgga tttctatgtg tatagatata attcgacgct 7080
tgatccgttg atcacggcgt tattaaatag cttcgatact agaaatagaa taatagaggt 7140
tgataatcaa cccgcaccga atactactga aatcgttaac gcgactcaga gggtagacga 7200
tgcgactgta gctataaggg cttcaatcaa taatttggct aatgaactgg ttcgtggaac 7260
tggcatgttc aatcaagcaa gctttgagac tgctagtgga cttgtctgga ccacaactcc 7320
ggctacttag ctattgttgt gagatttcct aaaataaagt cactgaagac ttaaaattca 7380
gggtggctga taccaaaatc agcagtggtt gttcgtccac ttaaatataa cgattgtcat 7440
atctggatcc aacagttaaa ccatgtgatg gtgtatactg tggtatggcg taaaacaacg 7500
gaaaagtcgc tgaagactta aaattcaggg tggctgatac caaaatcagc agtggttgtt 7560
cgtccactta aaaataacga ttgtcatatc tggatccaac agttaaacca tgtgatggtg 7620
tatactgtgg tatggcgtaa aacaacggag aggttcgaat cctcccctaa ccgcgggtag 7680
cggccca 7687




25


7685


DNA


Tobacco mosaic virus



25
gtatttttac aacaattacc aacaacaaca aacaacagac aacattacaa ttactattta 60
caattacaat ggcatacaca cagacagcta ccacatcagc tttgctggac actgtccgag 120
gaaacaactc cttggtcaat gatctagcaa agcgtcgtct ttacgacaca gcggttgaag 180
agtttaacgc tcgtgaccgc aggcccaagg tgaacttttc aaaagtaata agcgaggagc 240
agacgcttat tgctacccgg gcgtatccag aattccaaat tacattttat aacacgcaaa 300
atgccgtgca ttcgcttgca ggtggattgc gatctttaga actggaatat ctgatgatgc 360
aaattcccta cggatcattg acttatgaca taggcgggaa ttttgcatcg catctgttca 420
agggacgagc atatgtacac tgctgcatgc ccaacctgga cgttcgagac atcatgcggc 480
acgaaggcca gaaagacagt attgaactat acctttctag gctagagaga ggggggaaaa 540
cagtccccaa cttccaaaag gaagcatttg acagatacgc agaaattcct gaagacgctg 600
tctgtcacaa tactttccag acatgcgaac atcagccgat gcagcaatca ggcagagtgt 660
atgccattgc gctacacagc atatatgaca taccagccga tgagttcggg gcggcactct 720
tgaggaaaaa tgtccatacg tgctatgccg ctttccactt ctccgagaac ctgcttcttg 780
aagattcatg cgtcaatttg gacgaaatca acgcgtgttt ttcgcgcgat ggagacaagt 840
tgaccttttc ttttgcatca gagagtactc ttaattactg tcatagttat tctaatattc 900
ttaagtatgt gtgcaaaact tacttcccgg cctctaatag agaggtttac atgaaggagt 960
ttttagtcac cagagttaat acctggtttt gtaagttttc tagaatagat acttttcttt 1020
tgtacaaagg tgtggcccat aaaagtgtag atagtgagca gttttatact gcaatggaag 1080
acgcatggca ttacaaaaag actcttgcaa tgtgcaacag cgagagaatc ctccttgagg 1140
attcatcatc agtcaattac tggtttccca aaatgaggga tatggtcatc gtaccattat 1200
tcgacatttc tttggagact agtaagagga cgcgcaagga agtcttagtg tccaaggatt 1260
tcgtgtttac agtgcttaac cacattcgaa cataccaggc gaaagctctt acatacgcaa 1320
atgttttgtc cttcgtcgaa tcgattcgat cgagggtaat cattaacggt gtgacagcga 1380
ggtccgaatg ggatgtggac aaatctttgt tacaatcctt gtccatgacg ttttacctgc 1440
atactaagct tgccgttcta aaggatgact tactgattag caagtttagt ctcggttcga 1500
aaacggtgtg ccagcatgtg tgggatgaga tttcgctggc gtttgggaac gcatttccct 1560
ccgtgaaaga gaggctcttg aacaggaaac ttatcagagt ggcaggcgac gcattagaga 1620
tcagggtgcc tgatctatat gtgaccttcc acgacagatt agtgactgag tacaaggcct 1680
ctgtggacat gcctgcgctt gacattagga agaagatgga agaaacggaa gtgatgtaca 1740
atgcactttc agaattatcg gtgttaaggg agtctgacaa attcgatgtt gatgtttttt 1800
cccagatgtg ccaatctttg gaagttgacc caatgacggc agcgaaggtt atagtcgcgg 1860
tcatgagcaa tgagagcggt ctgactctca catttgaacg acctactgag gcgaatgttg 1920
cgctagcttt acaggatcaa gagaaggctt cagaaggtgc attggtagtt acctcaagag 1980
aagttgaaga accgtccatg aagggttcga tggccagagg agagttacaa ttagctggtc 2040
ttgctggaga tcatccggaa tcgtcctatt ctaagaacga ggagatagag tctttagagc 2100
agtttcatat ggcgacggca gattcgttaa ttcgtaagca gatgagctcg attgtgtaca 2160
cgggtccgat taaagttcag caaatgaaaa actttatcga tagcctggta gcatcactat 2220
ctgctgcggt gtcgaatctc gtcaagatcc tcaaagatac agctgctatt gaccttgaaa 2280
cccgtcaaaa gtttggagtc ttggatgttg catctaggaa gtggttaatc aaaccaacgg 2340
ccaagagtca tgcatggggt gttgttgaaa cccacgcgag gaagtatcat gtggcgcttt 2400
tggaatatga tgagcagggt gtggtgacat gcgatgattg gagaagagta gctgttagct 2460
ctgagtctgt tgtttattcc gacatggcga aactcagaac tctgcgcaga ctgcttcgaa 2520
acggagaacc gcatgtcagt agcgcaaagg ttgttcttgt ggacggagtt ccgggctgtg 2580
gaaaaaccaa agaaattctt tccagggtta attttgatga agatctaatt ttagtacctg 2640
ggaagcaagc cgcggaaatg atcagaagac gtgcgaattc ctcagggatt attgtggcca 2700
cgaaggacaa cgttaaaacc gttgattctt tcatgatgaa ttttgggaaa agcacacgct 2760
gtcagttcaa gaggttattc attgatgaag ggttgatgtt gcatactggt tgtgttaatt 2820
ttcttgtggc gatgtcattg tgcgaaattg catatgttta cggagacaca cagcagattc 2880
catacatcaa tagagtttca ggattcccgt accccgccca ttttgccaaa ttggaagttg 2940
acgaggtgga gacacgcaga actactctcc gttgtccagc cgatgtcaca cattatctga 3000
acaggagata tgagggcttt gtcatgagca cttcttcggt taaaaagtct gtttcgcagg 3060
agatggtcgg cggagccgcc gtgatcaatc cgatctcaaa acccttgcat ggcaagatct 3120
tgacttttac ccaatcggat aaagaagctc tgctttcaag agggtattca gatgttcaca 3180
ctgtgcatga agtgcaaggc gagacatact ctgatgtttc actagttagg ttaaccccta 3240
caccggtctc catcattgca ggagacagcc cacatgtttt ggtcgcattg tcaaggcaca 3300
cctgttcgct caagtactac actgttgtta tggatccttt agttagtatc attagagatc 3360
tagagaaact tagctcgtac ttgttagata tgtataaggt cgatgcagga acacaatagc 3420
aattacagat tgactcggtg ttcaaaggtt ccaatctttt tgttgcagcg ccaaagactg 3480
gtgatatttc tgatatgcag ttttactatg ataagtgtct cccaggcaac agcaccatga 3540
tgaataattt tgatgctgtt accatgaggt tgactgacat ttcattgaat gtcaaagatt 3600
gcatattgga tatgtctaag tctgttgctg cgcctaagga tcaaatcaaa ccactaatac 3660
ctatggtacg aacggcggca gaaatgccac gccagactgg actattggaa aatttagtgg 3720
cgatgattaa aagaaacttt aacgcacccg agttgtctgg catcattgat attgaaaata 3780
ctgcatcttt ggttgtagat aagttttttg atagttattt gcttaaagaa aaaagaaaac 3840
caaataaaaa tgtttctttg ttcagtagag agtctctcaa tagatggtta gaaaagcagg 3900
aacaggtaac aataggccag ctcgcagatt ttgattttgt ggatttgcca gcagttgatc 3960
agtacagaca catgattaaa gcacaaccca aacaaaagtt ggacacttca atccaaacgg 4020
agtacccggc tttgcagacg attgtgtacc attcaaaaaa gatcaatgca atattcggcc 4080
cgttgtttag tgagcttact aggcaattac tggacagtgt tgattcgagc agatttttgt 4140
ttttcacaag aaagacacca gcgcagattg aggatttctt cggagatctc gacagtcatg 4200
tgccgatgga tgtcttggag ctggatatat caaaatacga caaatctcag aatgaattcc 4260
actgtgcagt agaatacgag atctggcgaa gattgggttt cgaagacttc ttgggagaag 4320
tttggaaaca agggcataga aagaccaccc tcaaggatta taccgcaggt ataaaaactt 4380
gcatctggta tcaaagaaag agcggggacg tcacgacgtt cattggaaac actgtgatca 4440
ttgctgcatg tttggcctcg atgcttccga tggagaaaat aatcaaagga gccttttgcg 4500
gtgacgatag tctgctgtac tttccaaagg gttgtgagtt tccggatgtg caacactccg 4560
cgaatcttat gtggaatttt gaagcaaaac tgtttaaaaa acagtatgga tacttttgcg 4620
gaagatatgt aatacatcac gacagaggat gcattgtgta ttacgatccc ctaaagttga 4680
tctcgaaact tggtgctaaa cacatcaagg attgggaaca cttggaggag ttcagaaggt 4740
ctctttgtga tgttgctgtt tcgttgaaca attgtgcgta ttacacacag ttggacgacg 4800
ctgtatggga ggttcataag accgcccctc caggttcgtt tgtttataaa agtctggtga 4860
agtatttgtc tgataaagtt ctttttagaa gtttgtttat agatggctct agttgttaaa 4920
ggaaaagtga atatcaatga gtttatcgac ctgacaaaaa tggagaagat cttaccgtcg 4980
atgtttaccc ctgtaaagag tgttatgtgt tccaaagttg ataaaataat ggttcatgag 5040
aatgagtcat tgtcaggggt gaaccttctt aaaggagtta agcttattga tagtggatac 5100
gtctgtttag ccggtttggt cgtcacgggc gagtggaact tgcctgacaa ttgcagagga 5160
ggtgtgagcg tgtgtctggt ggacaaaagg atggaaagag ccgacgaggc cattctcgga 5220
tcttactaca cagcagctgc aaagaaaaga tttcagttca aggtcgttcc caattatgct 5280
ataaccaccc aggacgcgat gaaaaacgtc tggcaagttt tagttaatat tagaaatgtg 5340
aagatgtcag cgggtttctg tccgctttct ctggagtttg tgtcggtgtg tattgtttat 5400
aaaaataata taaaattagg tttgagagag aagattacaa acgtgagaga cggagggccc 5460
atggaactta cagaagaagt cgttgatgag ttcatggaag atgtccctat gtcgatcagg 5520
cttgcaaagt ttcgatctcg aaccggaaaa aagagtgatg tccgcaaagg gaaaaatagt 5580
agtagtgatc ggtcagtgcc gaacaagaac tatagaaatg ttaaggattt tggaggaatg 5640
agttttaaaa agaataattt aatcgatgat gattcggagg ctactgtcgc cgaatcggat 5700
tcgttttaaa tagatcttac agtatcacta ctccatctca gttcgtgttc ttgtcattaa 5760
ttaaatggct agcaaaggag aagaactttt cactggagtt gtcccaattc ttgttgaatt 5820
agatggtgat gttaatgggc acaaattttc tgtcagtgga gagggtgaag gtgatgctac 5880
atacggaaag cttaccctta aatttatttg cactactgga aaactacctg ttccatggcc 5940
aacacttgtc actactttct cttatggtgt tcaatgcttt tcccgttatc cggatcatat 6000
gaaacggcat gactttttca agagtgccat gcccgaaggt tatgtacagg aacgcactat 6060
atctttcaaa gatgacggga actacaagac gcgtgctgaa gtcaagtttg aaggtgatac 6120
ccttgttaat cgtatcgagt taaaaggtat tgattttaaa gaagatggaa acattctcgg 6180
acacaaactc gagtacaact ataactcaca caatgtatac atcacggcag acaaacaaaa 6240
gaatggaatc aaagctaact tcaaaattcg ccacaacatt gaagatggat ccgttcaact 6300
agcagaccat tatcaacaaa atactccaat tggcgatggc cctgtccttt taccagacaa 6360
ccattacctg tcgacacaat ctgccctttc gaaagatccc aacgaaaagc gtgaccacat 6420
gggccttctt gagtttgtaa ctgctgctgg gattacacat ggcatggatg agctctacaa 6480
ataatgacac tcgaggggta gtcaagatgc ataataaata acggattgtg tccgtaatca 6540
cacgtggtgc gtacgataac gcatagtgtt tttccctcca cttaaatcga agggttgtgt 6600
cttggatcgc gcgggtcaaa tgtatatggt tcatatacat ccgcaggcac gtaataaagc 6660
gaggggttcg ggtcgaggtc ggctgtgaaa ctcgaaaagg ttccggaaaa caaaaaagag 6720
agtggtaggt aatagtgtta ataataagaa aataaataat agtggtaaga aaggtttgaa 6780
agttgaggaa attgaggata atgtaagtga tgacgagtct atcgcgtcat cgagtacgtt 6840
ttaatcaata tgccttatac aatcaactct ccgagccaat ttgtttactt aagttccgct 6900
tatgcagatc ctgtgcagct gatcaatctg tgtacaaatg cattgggtaa ccagtttcaa 6960
acgcaacaag ctaggacaac agtccaacag caatttgcgg atgcctggaa acctgtgcct 7020
agtatgacag tgagatttcc tgcatcggat ttctatgtgt atagatataa ttcgacgctt 7080
gatccgttga tcacggcgtt attaaatagc ttcgatacta gaaatagaat aatagaggtt 7140
gataatcaac ccgcaccgaa tactactgaa atcgttaacg cgactcagag ggtagacgat 7200
gcgactgtag ctataagggc ttcaatcaat aatttggcta atgaactggt tcgtggaact 7260
ggcatgttca atcaagcaag ctttgagact gctagtggac ttgtctggac cacaactccg 7320
gctacttagc tattgttgtg agatttccta aaataaagtc actgaagact taaaattcag 7380
ggtggctgat accaaaatca gcagtggttg ttcgtccact taaatataac gattgtcata 7440
tctggatcca acagttaaac catgtgatgg tgtatactgt ggtatggcgt aaaacaacgg 7500
aaaagtcgct gaagacttaa aattcagggt ggctgatacc aaaatcagca gtggttgttc 7560
gtccacttaa aaataacgat tgtcatatct ggatccaaca gttaaaccat gtgatggtgt 7620
atactgtggt atggcgtaaa caacggagag gttcgaatcc tcccctaacc gcgggtagcg 7680
gccca 7685




26


7686


DNA


Tobacco mosaic virus



26
gtatttttac aacaattacc aacaacaaca aacaacagac aacattacaa ttactattta 60
caattacaat ggcatacaca cagacagcta ccacatcagc tttgctggac actgtccgag 120
gaaacaactc cttggtcaat gatctagcaa agcgtcgtct ttacgacaca gcggttgaag 180
agtttaacgc tcgtgaccgc aggcccaagg tgaacttttc aaaagtaata agcgaggagc 240
agacgcttat tgctacccgg gcgtatccag aattccaaat tacattttat aacacgcaaa 300
atgccgtgca ttcgcttgca ggtggattgc gatctttaga actggaatat ctgatgatgc 360
aaattcccta cggatcattg acttatgaca taggcgggaa ttttgcatcg catctgttca 420
agggacgagc atatgtacac tgctgcatgc ccaacctgga cgttcgagac atcatgcggc 480
acgaaggcca gaaagacagt attgaactat acctttctag gctagagaga ggggggaaaa 540
cagtccccaa cttccaaaag gaagcatttg acagatacgc agaaattcct gaagacgctg 600
tctgtcacaa tactttccag acatgcgaac atcagccgat gcagcaatca ggcagagtgt 660
atgccattgc gctacacagc atatatgaca taccagccga tgagttcggg gcggcactct 720
tgaggaaaaa tgtccatacg tgctatgccg ctttccactt ctccgagaac ctgcttcttg 780
aagattcatg cgtcaatttg gacgaaatca acgcgtgttt ttcgcgcgat ggagacaagt 840
tgaccttttc ttttgcatca gagagtactc ttaattactg tcatagttat tctaatattc 900
ttaagtatgt gtgcaaaact tacttcccgg cctctaatag agaggtttac atgaaggagt 960
ttttagtcac cagagttaat acctggtttt gtaagttttc tagaatagat acttttcttt 1020
tgtacaaagg tgtggcccat aaaagtgtag atagtgagca gttttatact gcaatggaag 1080
acgcatggca ttacaaaaag actcttgcaa tgtgcaacag cgagagaatc ctccttgggg 1140
attcatcatc agtcaattac tggtttccca aaatgaggga tatggtcatc gtaccattat 1200
tcgacatttc tttggagact agtaagagga cgcgcaagga agtcttagtg tccaaggatt 1260
tcgtgttcac agtgcttaac cacattcgaa cataccaggc gaaagctctt acatacgcaa 1320
atgttttgtc cttcgtcgaa tcgattcgat cgagggtaat cattaacggt gtgacagcga 1380
ggtccgaatg ggatgtggac aaatctttgt tacaatcctt gtccatgacg ttttacctgc 1440
atactaagct tgccgttcta aaggatgact tactgattag caagtttagt ctcggttcga 1500
aaacggtgtg ccagcatgtg tgggatgaga tttcgctggc gtttgggaac gcatttccct 1560
ccgtgaaaga gaggctcttg aacaggaaac ttatcagagt ggcaggcgac gcattagaga 1620
tcagggtgcc tgatctatat gtgaccttcc acgacagatt agtgactgag tacaaggcct 1680
ctgtggacat gcctgcgctt gacattagga agaagatgga agaaacggaa gtgatgtaca 1740
atgcactttc agaattatcg gtgttaaggg agtctgacaa attcgatgtt gatgtttttt 1800
cccagatgtg ccaatctttg gaagttgacc caatgacggc agcgaaggtt atagtcgcgg 1860
tcatgagcaa tgagagcggt ctgactctca catttgaacg acctactgag gcgaatgttg 1920
cgctagcttt acaggatcaa gagaaggctt cagaaggtgc attggtagtt acctcaagag 1980
aagttgaaga accgtccatg aagggttcga tggccagagg agagttacaa ttagctggtc 2040
ttgctggaga tcatccggaa tcgtcctatt ctaagaacga ggagatagag tctttagagc 2100
agtttcatat ggcgacggca gattcgttaa ttcgtaagca gatgagctcg attgtgtaca 2160
cgggtccgat taaagttcag caaatgaaaa actttatcga tagcctggta gcatcactat 2220
ctgctgcggt gtcgaatctc gtcaagatcc tcaaagatac agctgctatt gaccttgaaa 2280
cccgtcaaaa gtttggagtc ttggatgttg catctaggaa gtggttaatc aaaccaacgg 2340
ccaagagtca tgcatggggt gttgttgaaa cccacgcgag ggagtatcat gtggcgcttt 2400
tggaatatga tgagcagggt gtggtgacat gcgatgattg gagaagagta gctgttagct 2460
ctgagtctgt tgtttattcc gacatggcga aactcagaac tctgcgcaga ctgcttcgaa 2520
acggagaacc gcatgtcagt agcgcaaagg ttgttcttgt ggacggagtt ccgggctgtg 2580
gaaaaaccaa agaaattctt tccagggtta attttgatga agatctaatt ttagtacctg 2640
ggaagcaagc cgcggaaatg atcagaagac gtgcgaattc ctcagggatt attgtggcca 2700
cgaaggacaa cgttaaaacc gttgattctt tcatgatgaa ttttgggaaa agcacacgct 2760
gtcagttcaa gaggttattc attgatgaag ggttgatgtt gcatactggt tgtgttaatt 2820
ttcttgtggc gatgtcattg tgcgaaattg catatgttta cggagacaca cagcagattc 2880
catacatcaa tagagtttca ggattcccgt accccgccca ttttgccaaa ttggaagttg 2940
acgaggtgga gacacgcaga actactctcc gttgtccagc cgatgtcaca cattatctga 3000
acaggagata tgagggcttt gtcatgagca cttcttcggt taaaaagtct gtttcgcagg 3060
agatggtcgg cggagccgcc gtgatcaatc cgatctcaaa acccttgcat ggcaagatcc 3120
tgacttttac ccaatcggat aaagaagctc tgctttcaag agggtattca gatgttcaca 3180
ctgtgcatga agtgcaaggc gagacatact ctgatgtttc actagttagg ttaaccccta 3240
caccggtctc catcattgca ggagacagcc cacatgtttt ggtcgcattg tcaaggcaca 3300
cctgttcgct caagtactac actgttgtta tggatccttt agttagtatc attagagatc 3360
tagagaaact tagctcgtac ttgttagata tgtataaggt cgatgcagga acacaatagc 3420
aattacagat tgactcggtg ttcaaaggtt ccaatctttt tgttgcagcg ccaaagactg 3480
gtgatatttc tgatatgcag ttttactatg ataagtgtct cccaggcaac agcaccatga 3540
tgaataattt tgatgctgtt accatgaggt tgactgacat ttcattgaat gtcaaagatt 3600
gcatattgga tatgtctaag tctgttgctg cacctaagga tcaaatcaaa ccactaatac 3660
ctatggtacg aacggcggca gaaatgccac gccagactgg actattggaa aatttagtgg 3720
cgatgattaa aagaaacttt aacgcacccg agttgtctgg catcattgat attgaaaata 3780
ctgcatcttt ggttgtagat aagttttttg atagttattt gcttaaagaa aaaagaaaac 3840
caaataaaaa tgtttctttg ttcagtagag agtctctcaa tagatggtta gaaaagcagg 3900
aacaggtaac aataggccag ctcgcagatt ttgattttgt ggatttgcca gcagttgatc 3960
agtacagaca catgattaaa gcacaaccca aacaaaagtt ggacacttca atccaaacgg 4020
agtacccggc tttgcagacg attgtgtacc attcaaaaaa gatcaatgca atattcggcc 4080
cgttgtttag tgagcttact aggcaattac tggacagtgt tgattcgagc agatttttgt 4140
ttttcacaag aaagacacca gcgcagattg aggatttctt cggagatctc gacagtcatg 4200
tgccgatgga tgtcttggag ctggatatat caaaatacga caaatctcag aatgaattcc 4260
actgtgcagt agaatacgag atctggcgaa gattgggttt cgaagacttc ttgggagaag 4320
tttggaaaca agggcataga aagaccaccc tcaaggatta taccgcaggt ataaaaactt 4380
gcatctggta tcaaagaaag agcggggacg tcacgacgtt cattggaaac actgtgatca 4440
ttgctgcatg tttggcctcg atgcttccga tggagaaaat aatcaaagga gccttttgcg 4500
gtgacgatag tctgctgtac tttccaaagg gttgtgagtt tccggatgtg caacactccg 4560
cgaatcttat gtggaatttt gaagcaaaac tgtttaaaaa acagtatgga tacttttgcg 4620
gaagatatgt aatacatcac gacagaggat gcattgtgta ttacgatccc ctaaagttga 4680
tctcgaaact tggtgctaaa cacatcaagg attgggaaca cttggaggag ttcagaaggt 4740
ctctttgtga tgttgctgtt tcgttgaaca attgtgcgta ttacacacag ttggacgacg 4800
ctgtatggga ggttcataag accgcccctc caggttcgtt tgtttataaa agtctggtga 4860
agtatttgtc tgataaagtt ctttttagaa gtttgtttat agatggctct agttgttaaa 4920
ggaaaagtga atatcaatga gtttatcgac ctgacaaaaa tggagaagat cttaccgtcg 4980
atgtttaccc ctgtaaagag tgttatgtgt tccaaagttg ataaaataat ggttcatgag 5040
aatgagtcat tgtcaggggt gaaccttctt aaaggagtta agcttattga tagtggatac 5100
gtctgtttag ccggtttggt cgtcacgggc gagtggaact tgcctgacaa ttgcagagga 5160
ggtgtgagcg tgtgtctggt ggacaaaagg atggaaagag ccgacgaggc cattctcgga 5220
tcttactaca cagcagctgc aaagaaaaga tttcagttca aggtcgttcc caattatgct 5280
ataaccaccc aggacgcgat gagaaacgtc tggcaagttt tagttaatat tagaaatgtg 5340
aagatgtcag cgggtttctg tccgctttct ctggagtttg tgtcggtgtg tattgtttat 5400
agaaataata taaaattagg tttgagagag aagattacaa acgtgagaga cggagggccc 5460
atggaactta cagaagaagt cgttgatgag ttcatggaag atgtccctat gtcgatcagg 5520
cttgcaaagt ttcgatctcg aaccggaaaa aagagtgatg tccgcaaagg gaaaaatagt 5580
agtagtgatc ggtcagtgcc gaacaagaac tatagaaatg ttaaggattt tggaggaatg 5640
agttttaaaa agaataattt aatcgatgat gattcggagg ctactgtcgc cgaatcggat 5700
tcgttttaaa tagatcttac agtatcacta ctccatctca gttcgtgttc ttgtcattaa 5760
ttaaatggct agcaaaggag aagaactttt cactggagtt gtcccaattc ttgttgaatt 5820
agatggtgat gttaatgggc acaaattttc tgtcagtgga gagggtgaag gtgatgctac 5880
atacggaaag cttacactta aatttatttg cactactgga aaactacctg ttccatggcc 5940
aacacttgtc actactttct cttatggtgt tcaatgcttt tcccgttatc cggatcatat 6000
gaaacggcat gactttttca agagtgccat gcccgaaggt tatgtacagg aacgcactat 6060
atctttcaaa gatgacggga actacaagac gcgtgctgaa gtcaagtttg aaggtgatac 6120
ccttgttaat cgtatcgagt taaaaggtat tgattttaaa gaagatggaa acattctcgg 6180
acacaaactc gagtacaact ataactcaca caatgtatac atcacggcag acaaacaaaa 6240
gaatggaatc aaagctaact tcaaaattcg ccacaacatt gaagatggat ccgttcaact 6300
agcagaccat tatcaacaaa atactccaat tggcgatggc cctgtccttt taccagacaa 6360
ccattacctg tcgacacaat ctgccctttc gaaagatccc aacgaaaagc gtgaccacat 6420
ggtccttctt gagtttgtaa ctgctgctgg gattacacat ggcatggatg agctctacaa 6480
ataatgacac tcgaggggta gtcaagatgc ataataaata acggattgtg tccgtaatca 6540
cacgtggtgc gtacgataac gcatagtgtt tttccctcca cttaaatcga agggttgtgt 6600
cttggatcgc gcgggtcaaa tgtatatggt tcatatacat ccgcaggcac gtaataaagc 6660
gaggggttcg ggtcgaggtc ggctgtgaaa ctcgaaaagg ttccggaaaa caaaaaagag 6720
agtggtaggt aatagtgtta ataataagaa aataaataat agtggtaaga aaggtttgaa 6780
agttgaggaa attgaggata atgtaagtga tgacgagtct atcgcgtcat cgagtacgtt 6840
ttaatcaata tgccttatac aatcaactct ccgagccaat ttgtttactt aagttccgct 6900
tatgcagatc ctgtgcagct gatcaatctg tgtacaaatg cattgggtaa ccagtttcaa 6960
acgcaacaag ctaggacaac agtccaacag caatttgcgg atgcctggaa acctgtgcct 7020
agtatgacag tgagatttcc tgcatcggat ttctatgtgt atagatataa ttcgacgctt 7080
gatccgttga tcacggcgtt attaaatagc ttcgatacta gaaatagaat aatagaggtt 7140
gataatcaac ccgcaccgaa tactactgaa atcgttaacg cgactcagag ggtagacgat 7200
gcgactgtag ctataagggc ttcaatcaat aatttggcta atgaactggt tcgtggaact 7260
ggcatgttca atcaagcaag ctttgagact gctagtggac ttgtctggac cacaactccg 7320
gctacttagc tattgttgtg agatttccta aaataaagtc actgaagact taaaattcag 7380
ggtggctgat accaaaatca gcagtggttg ttcgtccact taaatataac gattgtcata 7440
tctggatcca acagttaaac catgtgatgg tgtatactgt ggtatggcgt aaaacaacgg 7500
aaaagtcgct gaagacttaa aattcagggt ggctgatacc aaaatcagca gtggttgttc 7560
gtccacttaa aaataacgat tgtcatatct ggatccaaca gttaaaccat gtgatggtgt 7620
atactgtggt atggcgtaaa acaacggaga ggttcgaatc ctcccctaac cgcgggtagc 7680
ggccca 7686




27


7688


DNA


Tobacco mosaic virus



27
gtcgtatttt tacaacaatt accaacaaca acaaacaaca gacaacatta caattactat 60
ttacaattac aatggcatac acacagacag ctaccacatc agctttgctg gacactgtcc 120
gaggaaacaa ctccttggtc aatgatctag caaagcgtcg tctttacgac acagcggttg 180
aagagtttaa cgctcgtgac cgcaggccca aggtgaactt ttcaaaagta ataagcgagg 240
agcagacgct tattgctacc cgggcgtatc cagaattcca aattacattt tataacacgc 300
aaaatgccgt gcattcgctt gcaggtggat tgcgatcttt agaactggaa tatctgatga 360
tgcaaattcc ctacggatca ttgacttatg acataggcgg gaattttgca tcgcatctgt 420
tcaagggacg agcatatgta cactgctgca tgcccaacct ggacgttcga gacatcatgc 480
ggcacgaagg ccagaaagac agtattgaac tatacctttc taggctagag agagggggga 540
aaacagtccc caacttccaa aaggaagcat ttgacagata cgcagaaatt cctgaagacg 600
ctgtctgtca caatactttc cagacatgcg aacatcagcc gatgcagcaa tcaggcagag 660
tgtatgccat tgcgctacac agcatatatg acataccagc cgatgagttc ggggcggcac 720
tcttgaggaa aaatgtccat acgtgctatg ccgctttcca cttctccgag aacctgcttc 780
ttgaagattc atgcgtcaat ttggacgaaa tcaacgcgtg tttttcgcgc gatggagaca 840
agttgacctt ttcttttgca tcagagagta ctcttaatta ctgtcatagt tattctaata 900
ttcttaagta tgtgtgcaaa acttacttcc cggcctctaa tagagaggtt tacatgaagg 960
agtttttagt caccagagtt aatacctggt tttgtaagtt ttctagaata gatacttttc 1020
ttttgtacaa aggtgtggcc cataaaagtg tagatagtga gcagttttat actgcaatgg 1080
aagacgcatg gcattacaaa aagactcttg caatgtgcaa cagcgagaga atcctccttg 1140
aggattcatc atcagtcaat tactggtttc ccaaaatgag ggatatggtc atcgtaccat 1200
tattcgacat ttctttggag actagtaaga ggacgcgcaa ggaagtctta gtgtccaagg 1260
atttcgtgtt tacagtgctt aaccacattc gaacatacca ggcgaaagct cttacatacg 1320
caaatgtttt gtccttcgtc gaatcgattc gatcgagggt aatcattaac ggtgtgacag 1380
cgaggtccga atgggatgtg gacaaatctt tgttacaatc cttgtccatg acgttttacc 1440
tgcatactaa gcttgccgtt ctaaaggatg acttactgat tagcaagttt agtctcggtt 1500
cgaaaacggt gtgccagcat gtgtgggatg agatttcgct ggcgtttggg aacgcatttc 1560
cctccgtgaa agagaggctc ttgaacagga aacttatcag agtggcaggc gacgcattag 1620
agatcagggt gcctgatcta tatgtgacct tccacgacag attagtgact gagtacaagg 1680
cctctgtgga catgcctgcg cttgacatta ggaagaagat ggaagaaacg gaagtgatgt 1740
acaatgcact ttcagaatta tcggtgttaa gggagtctga caaattcgat gttgatgttt 1800
tttcccagat gtgccaatct ttggaagttg acccaatgac ggcagcgaag gttatagtcg 1860
cggtcatgag caatgagagc ggtctgactc tcacatttga acgacctact gaggcgaatg 1920
ttgcgctagc tttacaggat caagagaagg cttcagaagg tgcattggta gttacctcaa 1980
gagaagttga agaaccgtcc atgaagggtt cgatggccag aggagagtta caattagctg 2040
gtcttgctgg agatcatccg gaatcgtcct attctaagaa cgaggagata gagtctttag 2100
agcagtttca tatggcgacg gcagattcgt taattcgtaa gcagatgagc tcgattgtgt 2160
acacgggtcc gattaaagtt cagcaaatga aaaactttat cgatagcctg gtagcatcac 2220
tatctgctgc ggtgtcgaat ctcgtcaaga tcctcaaaga tacagctgct attgaccttg 2280
aaacccgtca aaagtttgga gtcttggatg ttgcatctag gaagtggtta atcaaaccaa 2340
cggccaagag tcatgcatgg ggtgttgttg aaacccacgc gaggaagtat catgtggcgc 2400
ttttggaata tgatgagcag ggtgtggtga catgcgatga ttggagaaga gtagctgtta 2460
gctctgagtc tgttgtttat tccgacatgg cgaaactcag aactctgcgc agactgcttc 2520
gaaacggaga accgcatgtc agtagcgcaa aggttgttct tgtggacgga gttccgggct 2580
gtggaaaaac caaagaaatt ctttccaggg ttaattttga tgaagatcta attttagtac 2640
ctgggaagca agccgcggaa atgatcagaa gacgtgcgaa ttcctcaggg attattgtgg 2700
ccacgaagga caacgttaaa accgttgatt ctttcatgat gaattttggg aaaagcacac 2760
gctgtcagtt caagaggtta ttcattgatg aagggttgat gttgcatact ggttgtgtta 2820
attttcttgt ggcgatgtca ttgtgcgaaa ttgcatatgt ttacggagac acacagcaga 2880
ttccatacat caatagagtt tcaggattcc cgtaccccgc ccattttgcc aaattggaag 2940
ttgacgaggt ggagacacgc agaactactc tccgttgtcc agccgatgtc acacattatc 3000
tgaacaggag atatgagggc tttgtcatga gcacttcttc ggttaaaaag tctgtttcgc 3060
aggagatggt cggcggagcc gccgtgatca atccgatctc aaaacccttg catggcaaga 3120
tcttgacttt tacccaatcg gataaagaag ctctgctttc aagagggtat tcagatgttc 3180
acactgtgca tgaagtgcaa ggcgagacat actctgatgt ttcactagtt aggttaaccc 3240
ctacaccggt ctccatcatt gcaggagaca gcccacatgt tttggtcgca ttgtcaaggc 3300
acacctgttc gctcaagtac tacactgttg ttatggatcc tttagttagt atcattagag 3360
atctagagaa acttagctcg tacttgttag atatgtataa ggtcgatgca ggaacacaat 3420
agcaattaca gattgactcg gtgttcaaag gttccaatct ttttgttgca gcgccaaaga 3480
ctggtgatat ttctgatatg cagttttact atgataagtg tctcccaggc aacagcacca 3540
tgatgaataa ttttgatgct gttaccatga ggttgactga catttcattg aatgtcaaag 3600
attgcatatt ggatatgtct aagtctgttg ctgcgcctaa ggatcaaatc aaaccactaa 3660
tacctatggt acgaacggcg gcagaaatgc cacgccagac tggactattg gaaaatttag 3720
tggcgatgat taaaagaaac tttaacgcac ccgagttgtc tggcatcatt gatattgaaa 3780
atactgcatc tttggttgta gataagtttt ttgatagtta tttgcttaaa gaaaaaagaa 3840
aaccaaataa aaatgtttct ttgttcagta gagagtctct caatagatgg ttagaaaagc 3900
aggaacaggt aacaataggc cagctcgcag attttgattt tgtggatttg ccagcagttg 3960
atcagtacag acacatgatt aaagcacaac ccaaacaaaa gttggacact tcaatccaaa 4020
cggagtaccc ggctttgcag acgattgtgt accattcaaa aaagatcaat gcaatattcg 4080
gcccgttgtt tagtgagctt actaggcaat tactggacag tgttgattcg agcagatttt 4140
tgtttttcac aagaaagaca ccagcgcaga ttgaggattt cttcggagat ctcgacagtc 4200
atgtgccgat ggatgtcttg gagctggata tatcaaaata cgacaaatct cagaatgaat 4260
tccactgtgc agtagaatac gagatctggc gaagattggg tttcgaagac ttcttgggag 4320
aagtttggaa acaagggcat agaaagacca ccctcaagga ttataccgca ggtataaaaa 4380
cttgcatctg gtatcaaaga aagagcgggg acgtcacgac gttcattgga aacactgtga 4440
tcattgctgc atgtttggcc tcgatgcttc cgatggagaa aataatcaaa ggagcctttt 4500
gcggtgacga tagtctgctg tactttccaa agggttgtga gtttccggat gtgcaacact 4560
ccgcgaatct tatgtggaat tttgaagcaa aactgtttaa aaaacagtat ggatactttt 4620
gcggaagata tgtaatacat cacgacagag gatgcattgt gtattacgat cccctaaagt 4680
tgatctcgaa acttggtgct aaacacatca aggattggga acacttggag gagttcagaa 4740
ggtctctttg tgatgttgct gtttcgttga acaattgtgc gtattacaca cagttggacg 4800
acgctgtatg ggaggttcat aagaccgccc ctccaggttc gtttgtttat aaaagtctgg 4860
tgaagtattt gtctgataaa gttcttttta gaagtttgtt tatagatggc tctagttgtt 4920
aaaggaaaag tgaatatcaa tgagtttatc gacctgacaa aaatggagaa gatcttaccg 4980
tcgatgttta cccctgtaaa gagtgttatg tgttccaaag ttgataaaat aatggttcat 5040
gagaatgagt cattgtcagg ggtgaacctt cttaaaggag ttaagcttat tgatagtgga 5100
tacgtctgtt tagccggttt ggtcgtcacg ggcgagtgga acttgcctga caattgcaga 5160
ggaggtgtga gcgtgtgtct ggtggacaaa aggatggaaa gagccgacga ggccattctc 5220
ggatcttact acacagcagc tgcaaagaaa agatttcagt tcaaggtcgt tcccaattat 5280
gctataacca cccaggacgc gatgaaaaac gtctggcaag ttttagttaa tattagaaat 5340
gtgaagatgt cagcgggttt ctgtccgctt tctctggagt ttgtgtcggt gtgtattgtt 5400
tataaaaata atataaaatt aggtttgaga gagaagatta caaacgtgag agacggaggg 5460
cccatggaac ttacagaaga agtcgttgat gagttcatgg aagatgtccc tatgtcgatc 5520
aggcttgcaa agtttcgatc tcgaaccgga aaaaagagtg atgtccgcaa agggaaaaat 5580
agtagtagtg atcggtcagt gccgaacaag aactatagaa atgttaagga ttttggagga 5640
atgagtttta aaaagaataa tttaatcgat gatgattcgg aggctactgt cgccgaatcg 5700
gattcgtttt aaatagatct tacagtatca ctactccatc tcagttcgtg ttcttgtcat 5760
taattaaatg gctagcaaag gagaagaact tttcactgga gttgtcccaa ttcttgttga 5820
attagatggt gatgttaatg ggcacaaatt ttctgtcagt ggagagggtg aaggtgatgc 5880
tacatacgga aagcttaccc ttaaatttat ttgcactact ggaaaactac ctgttccatg 5940
gccaacactt gtcactactt tctcttatgg tgttcaatgc ttttcccgtt atccggatca 6000
tatgaaacgg catgactttt tcaagagtgc catgcccgaa ggttatgtac aggaacgcac 6060
tatatctttc aaagatgacg ggaactacaa gacgcgtgct gaagtcaagt ttgaaggtga 6120
tacccttgtt aatcgtatcg agttaaaagg tattgatttt aaagaagatg gaaacattct 6180
cggacacaaa ctcgagtaca actataactc acacaatgta tacatcacgg cagacaaaca 6240
aaagaatgga atcaaagcta acttcaaaat tcgccacaac attgaagatg gatccgttca 6300
actagcagac cattatcaac aaaatactcc aattggcgat ggccctgtcc ttttaccaga 6360
caaccattac ctgtcgacac aatctgccct ttcgaaagat cccaacgaaa agcgtgacca 6420
catgggcctt cttgagtttg taactgctgc tgggattaca catggcatgg atgagctcta 6480
caaataatga cactcgaggg gtagtcaaga tgcataataa ataacggatt gtgtccgtaa 6540
tcacacgtgg tgcgtacgat aacgcatagt gtttttccct ccacttaaat cgaagggttg 6600
tgtcttggat cgcgcgggtc aaatgtatat ggttcatata catccgcagg cacgtaataa 6660
agcgaggggt tcgggtcgag gtcggctgtg aaactcgaaa aggttccgga aaacaaaaaa 6720
gagagtggta ggtaatagtg ttaataataa gaaaataaat aatagtggta agaaaggttt 6780
gaaagttgag gaaattgagg ataatgtaag tgatgacgag tctatcgcgt catcgagtac 6840
gttttaatca atatgcctta tacaatcaac tctccgagcc aatttgttta cttaagttcc 6900
gcttatgcag atcctgtgca gctgatcaat ctgtgtacaa atgcattggg taaccagttt 6960
caaacgcaac aagctaggac aacagtccaa cagcaatttg cggatgcctg gaaacctgtg 7020
cctagtatga cagtgagatt tcctgcatcg gatttctatg tgtatagata taattcgacg 7080
cttgatccgt tgatcacggc gttattaaat agcttcgata ctagaaatag aataatagag 7140
gttgataatc aacccgcacc gaatactact gaaatcgtta acgcgactca gagggtagac 7200
gatgcgactg tagctataag ggcttcaatc aataatttgg ctaatgaact ggttcgtgga 7260
actggcatgt tcaatcaagc aagctttgag actgctagtg gacttgtctg gaccacaact 7320
ccggctactt agctattgtt gtgagatttc ctaaaataaa gtcactgaag acttaaaatt 7380
cagggtggct gataccaaaa tcagcagtgg ttgttcgtcc acttaaatat aacgattgtc 7440
atatctggat ccaacagtta aaccatgtga tggtgtatac tgtggtatgg cgtaaaacaa 7500
cggaaaagtc gctgaagact taaaattcag ggtggctgat accaaaatca gcagtggttg 7560
ttcgtccact taaaaataac gattgtcata tctggatcca acagttaaac catgtgatgg 7620
tgtatactgt ggtatggcgt aaacaacgga gaggttcgaa tcctccccta accgcgggta 7680
gcggccca 7688






Claims
  • 1. A capped RNA molecule capable of infecting a host plant cell comprising:a) a viral sequence comprising a cis-acting viral replication element derived from a single component (+) strand RNA plant virus; b) a sequence of one to three intervening bases located between a cap and the 5′ terminus of the viral sequence; c) an exogenous RNA segment capable of expressing its function in a plant host cell; wherein said exogenous RNA segment is located in a region of said capped RNA molecule able to tolerate said exogenous RNA segment without disrupting RNA replication of said capped RNA molecule; and wherein said capped RNA molecule is capable of replication in the absence of a trans-acting viral replication element.
  • 2. The RNA of claim 1, wherein the exogenous RNA segment codes for a peptide or protein.
  • 3. The RNA of claim 1, wherein the exogenous RNA segment comprises an antisense RNA.
  • 4. The RNA of claim 1, wherein the exogenous RNA segment comprises a structural RNA.
  • 5. The RNA of claim 1, wherein the exogenous RNA segment comprises a regulatory RNA.
  • 6. The RNA of claim 1, wherein the exogenous RNA segment comprises a RNA having catalytic properties.
  • 7. The RNA molecule of claim 1, wherein the cis-acting viral replication element is derived from a tobacco mosaic virus.
  • 8. The RNA molecule of claim 1, encapsidated with viral coat protein.
  • 9. The capped RNA molecule of claim 1, comprising a single intervening base located between the cap and the 5′ terminus of the viral sequence.
  • 10. The capped RNA molecule of claim 1, comprising a sequence of two intervening bases located between the cap and the 5′ terminus of the viral sequence.
  • 11. The capped RNA molecule of claim 1, comprising a sequence of three intervening bases located between the cap and the 5′ terminus of the viral sequence.
  • 12. The capped RNA molecule of claim 1, wherein said (+) strand RNA plant virus is a tobamovirus.
  • 13. The capped RNA molecule of claim 1, wherein said plant host is Nicotiana.
  • 14. A DNA transcription vector comprising cDNA having one strand complementary to a capped RNA molecule capable of infecting a host plant cell, said capped RNA molecule comprising:a) a viral sequence comprising a cis-acting viral replication element derived from a single component (+) strand RNA plant virus; b) a sequence of one to three intervening bases located between the cap and the 5′ terminus of the viral sequence; and c) an exogenous RNA segment capable of expressing its function in a plant host cell in a region of said capped RNA molecule able to tolerate said exogenous RNA segment without disrupting RNA replication of said capped RNA molecule; and wherein said capped RNA molecule is capable of replication in the absence of a trans-acting viral replication element.
  • 15. A DNA transcription vector selected from the group consisting of pBTI1037, pBTI SBS60, pBTI SBS60-29, pBTI1056, pBTI1057, and pBTI1056-GTN28.
  • 16. A method of modifying a host plant cell phenotypically, said method comprising introducing into the cell a capped RNA molecule capable of infecting said host cell, wherein said capped RNA molecule comprises:a) a cis-acting viral replication element derived from a single component single component (+) strand RNA plant virus; b) the same capped 5′ end as said virus; c) a sequence of one to three intervening bases located between the cap and the 5′ terminus of the viral sequence, and an exogenous RNA segment in a region of said capped RNA molecule able to tolerate said exogenous RNA segment without disrupting RNA replication of said capped RNA molecule, and wherein said capped RNA molecule is capable of replication in the absence of a trans-acting viral replication element; whereby the exogenous RNA segment confers a detectable trait in the host cell, thereby modifying said host cell.
  • 17. The method of claim 16, wherein the exogenous RNA segment codes for a peptide or protein.
  • 18. The method of claim 16, wherein the exogenous RNA segment comprises an antisense RNA.
  • 19. The method of claim 16, wherein the exogenous RNA segment comprises a structural RNA.
  • 20. The method of claim 16, wherein the exogenous RNA segment comprises a regulatory RNA.
  • 21. The method of claim 16, wherein the exogenous RNA segment comprises a RNA having catalytic properties.
  • 22. The method of claim 16, wherein the cis-acting viral replication element is derived from tobacco mosaic virus.
  • 23. The method of claim 16, wherein the host plant cell is a dicotyledonous plant cell.
  • 24. A capped RNA molecule capable of infecting a host plant cell, said capped RNA molecule having a sequence of one to three intervening bases located between the cap and the 5′ terminus of the viral sequence, said capped RNA molecule comprising:(a) the entire genome of a single component (+) strand RNA virus, said (+) strand RNA virus chosen from the group consisting of Carlavirus, Closteroviridae, Luteoviridae, Potexvirus, Potyviridae, Tombusviridae, Tymovirus and Tobamovirus, and (b) an exogenous RNA segment, capable of expressing its function in a host plant cell, said exogenous RNA segment inserted into said genome of the (+) strand RNA virus under the control of a subgenomic promoter.
  • 25. A method of modifying a host plant cell phenotypically, said method comprises introducing to the cell a capped RNA molecule capable of infecting a host plant cell, said capped RNA molecule having a sequence of one to three intervening bases located between the cap and the 5′ terminus of the viral sequence, said capped RNA molecule comprising:(a) the entire genome of a single component (+) strand RNA virus, said (+) strand RiA virus chosen from the group consisting of Carlavirus, Closteroviridae, Luteoviridae, Potexvirus, Potyviridae, Tombusviridae, Tymovirus and Tobamovirus; and (b) an exogenous RNA segment, capable of expressing its function in a host plant cell, said exogenous RNA segment inserted into said genome of the (+) strand RNA virus under the control of a subgenomic promoter; whereby the exogenous RNA segment confers a detectable trait in the host plant cell, thereby modifying said host plant cell.
  • 26. A DNA transcription vector comprising DNA having one strand complementary to a capped RNA molecule capable of infecting a host plant cell, said capped RNA molecule having a sequence of one to three intervening bases located between the cap and the 5′ terninus of the viral sequence, said capped RNA molecule comprising:(a) the entire genome of a single component (+) strand RNA virus, said (+) strand RNA virus chosen from the group consisting of Carlavirus, Closteroviridae, Luteoviridac, Potexvirus, Potyviridae, Tombusviridae, Tymovirus and Tobamovirus, and (b) an exogenous RNA segment, capable of expressing its function in a host plant cell, said exogenous RNA segment inserted into said genome of the (+) strand RNA virus under the control of a subgenomic promoter.
Parent Case Info

This application is a continuation-in-part of U.S. patent application Ser. Nos. 09/359,301 and 09/359,305, filed Jul. 21, 1999, which are continuations-in-part of U.S. patent application Ser. No. 09/232,170, filed Jan. 15, 1999, which is a continuation-in-part of U.S. patent application Ser. No. 09/008,186, filed Jan. 16, 1998. The above parent applications are incorporated herein by reference.

US Referenced Citations (10)
Number Name Date Kind
5173410 Ahlquist Dec 1992
5316931 Donson et al. May 1994
5491076 Carrington et al. Feb 1996
5500360 Ahlquist et al. Mar 1996
5589367 Donson et al. Dec 1996
5766885 Carrington et al. Jun 1998
5811653 Turpen Sep 1998
5846795 Ahlquist et al. Dec 1998
5866785 Donson et al. Feb 1999
5977438 Turpen et al. Nov 1999
Foreign Referenced Citations (5)
Number Date Country
0194809 B1 Mar 1991 EP
WO 9836083 Aug 1995 WO
WO 9534668 Dec 1995 WO
WO 9936516 Jul 1999 WO
WO 9950429 Oct 1999 WO
Non-Patent Literature Citations (23)
Entry
Scheets et al. Virology, vol. 193, pp. 1006-1009, 1993.*
Xiong et al., Virology, vol. 182, pp. 388-392, 1991.*
Ex parte Ahlquist, et al., Decision of the US PTO Board of Patent Appeals and Interferences, dated May 18, 1992 in file of U.S. Serial No. 07/368,939, filed Jun. 19, 1989, available in file of U.S. Patent No. 5,846,795, filed Jun. 5, 1995.
Ahlquist, P. et al., “Multicomponent RNA plant virus infection derived from cloned viral cDNA,” Proc. Natl. Acad. Sci. USA 81:7066-7070 (1984).
Ahlquist, P. et al., “Sindbis Virus Proteins nsP1 and nsP2 Contain Homology to Nonstructural Proteins from Several RNA Plant Viruses,” J. Virol., vol. 53(2):536-542 (1985).
Baulcombe, D., “Fast Forward genetics based on virus-induced gene silencing,” Current Opinion in Plant Biology, vol. 2(2): 109-113 (1999) XP002118432.
Chapman, S. et al., “Potato virus X as a vector for gene expression in plants,” The Plant Journal, vol. 2(4): 549-557 (1992).
Contreras, R., et al., “Simple, efficient in vitro synthesis of capped RNA useful for direct expression of cloned eukaryotic genes,” Nucleic Acids Res., vol. 10(20):6353-6362(1982).
Davies, J.W. and R. Hull, “Genome Expression of Plant Positive-strand RNA Viruses,”J. Gen. Virol, 61:1-14 (1982).
Davis, R., et al., Advanced Bacterial Genetics, (1980).
Dawson et al., “cDNA cloning of the conmplete genome of tobacco mosaic virus and production of infections transcripts,” Proc. Natl. Acad. Sci. USA 83:1832-1836 (1986).
Franssen, H, et al., “Homologous sequences in non-structural proteins from cowpea mosaic virus and picornaviruses,” EMBO Journal 3,855, vol. 3(4): 855-861 (1984).
Grossman, L. and K. Moldave, “Methods in Enzymology,” Meth. Enzymol., vol.65 (1980).
Haizel, T, et al., “Characterization of proteins that interact woth the GTP-bound form of the regulatory GTPase Ran in Arabidopsis,” Plant Journel, vol. 11(1):93-103 (1997).
Haseloff, J. et al., “Striking similarities in amino acid sequence among nonstructural proteins encoded by RNA viruses that have dissimilar genomic organization,” Proc. Nat. Acad. Sci. USA 81:4358-4362 (1984).
J. H. Miller, Experiment's in Molecular Genetics; Cold Spring Harbor Laboratory, New York (1972).
Keith, J. and Fraenkel-Conrat, “Tobacco Mosaic virus RNA carriers 5′-Terminal triphosphorylated guanosine blocked by 5′-linked 7-methylguanosine,” FEBS Lett. 57(1):31-33 (1975).
Maniatis, T., et al., Molecular Cloning—1st Edition., Cold Spring Harbor Laboratory (1982).
Sablowski, R., et al., “Expression of a Flower-specific Myb protein in leaf cells using a viral vector causes ectopic activation of a target promoter,” Proceedings of the National Academy of Sciences of USA, National Academy of Science, vol. 92:6901-6905 (1995).
Schleif, R.F. and P. C. Wensink, Practical Methods in Molecular Biology (1982).
Wu, R, “Recombinant DNA,” Methods in Enzymology, vol. 101(1983).
Wu, R, “Recombinant DNA,” Methods in Enzymology, vol. 68 (1979).
Zimmern, D., “The 5′ end group of tobacco mosaic virus RNA is m7 G5′ ppp5′ Gp,” Nucleic Acid Res., vol. 2(7):1189-1201 (1975).
Continuation in Parts (4)
Number Date Country
Parent 09/359301 Jul 1999 US
Child 09/502711 US
Parent 09/359305 Jul 1999 US
Child 09/359301 US
Parent 09/232170 Jan 1999 US
Child 09/359305 US
Parent 09/008186 Jan 1998 US
Child 09/232170 US