RNAi CONSTRUCTS AND METHODS FOR INHIBITING MARC1 EXPRESSION

Information

  • Patent Application
  • 20220047621
  • Publication Number
    20220047621
  • Date Filed
    August 12, 2021
    3 years ago
  • Date Published
    February 17, 2022
    3 years ago
Abstract
The present invention relates to RNAi constructs for reducing expression of the MARC1 gene. Methods of using such RNAi constructs to treat or prevent liver fibrosis and fatty liver diseases, such as nonalcoholic fatty liver disease and nonalcoholic steatohepatitis, are also described.
Description
DESCRIPTION OF THE TEXT FILE SUBMITTED ELECTRONICALLY

The present application contains a Sequence Listing, which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. The computer readable format copy of the Sequence Listing, which was created on Aug. 9, 2021, is named A-2664-US-NP ST25 and is 1,064 kilobytes in size.


FIELD OF THE INVENTION

The present invention relates to compositions and methods for modulating liver expression of mitochondrial amidoxime-reducing component 1 (mARC1) protein. In particular, the present invention relates to nucleic acid-based therapeutics for reducing MARC1 gene expression via RNA interference and methods of using such nucleic acid-based therapeutics to reduce circulating lipid levels and to treat or prevent fatty liver disease and liver fibrosis.


BACKGROUND OF THE INVENTION

Comprising a spectrum of hepatic pathologies, nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the world, the prevalence of which doubled in the last 20 years and now is estimated to affect approximately 20-30% of the world population. In some individuals the accumulation of ectopic fat in the liver, called steatosis, triggers inflammation and hepatocellular injury leading to a more advanced stage of disease called, nonalcoholic steatohepatitis (NASH). NASH is defined as lipid accumulation with evidence of cellular damage, inflammation, and different degrees of scarring or fibrosis. As of 2015, 75-100 million Americans are predicted to have NAFLD, whereas NASH accounts for approximately 10-30% of NAFLD diagnoses.


The mARC1 protein is a molybdenum-containing protein in the mitochondrial outer membrane that catalyzes the reduction of N-oxygenated molecules (Klein et al., J Biol Chem, Vol. 287(51):42795-42803, 2012; Ott et al., J Biol Inorg Chem, Vol. 20(2):265-275, 2015). It is a highly effective counterpart to one of the most prominent biotransformation enzymes, CYP450, and is involved in activation of amidoxime prodrugs as well as inactivation of other drugs containing N-hydroxylated functional groups (Neve et al., PLoS One, Vol. 10(9):e0138487, 2015; Ott et al., 2015, supra). Recently, predicted loss-of-function variants in the MARC1 gene have been reported to be associated with decreased blood levels of cholesterol and liver enzymes, reduced liver fat, and protection from cirrhosis. See Emdin et al., bioRxiv 594523; //doi.org/10.1101/594523, 2019; and Emdin et al., PLoS Genet, Vol. 16(4): e1008629, 2020. Specifically, the A165T missense variant in the mARC1 coding region was associated with protection from all-cause cirrhosis, lower levels of hepatic fat on computed tomographic imaging and lower odds of physician-diagnosed fatty liver as well as lower blood levels of alanine transaminase, alkaline phosphatase, total cholesterol, and LDL cholesterol levels in an analysis of 12,361 all-cause cirrhosis cases and 790,095 controls from eight cohorts (Emdin et al., 2020, supra). Additional MARC1 alleles (M187K missense mutation and R200Ter truncation mutation) that associated with lower cholesterol levels, liver enzyme levels and reduced risk of cirrhosis were also identified (Emdin et al., 2020, supra). These data suggest that deficiency of the mARC1 enzyme protects against chronic liver disease and cirrhosis. Accordingly, therapeutics targeting mARC1 function represent a novel approach to reducing cholesterol levels (e.g. non-HDL cholesterol or LDL-cholesterol levels) and liver fibrosis, and treating or preventing liver diseases, particularly NAFLD and NASH.


SUMMARY OF THE INVENTION

The present invention is based, in part, on the design and generation of RNAi constructs that target the MARC1 gene and reduce its expression in liver cells. The sequence-specific inhibition of MARC1 gene expression is useful for treating or preventing conditions associated with elevated lipid levels and liver fat, such as cardiovascular disease and fatty liver disease. Accordingly, in one embodiment, the present invention provides an RNAi construct comprising a sense strand and an antisense strand, wherein the antisense strand comprises a region having a sequence that is substantially complementary to a mARC1 mRNA sequence. For instance, in some embodiments, the antisense strand comprises a sequence that is substantially complementary to the sequence of at least 15 contiguous nucleotides of a region of the human mARC1 mRNA sequence (SEQ ID NO: 1) with no more than 1, 2, or 3 mismatches. In certain embodiments, the antisense strand comprises a region having at least 15 contiguous nucleotides from an antisense sequence listed in Table 1 or Table 2.


In some embodiments, the sense strand of the RNAi constructs described herein comprises a sequence that is sufficiently complementary to the sequence of the antisense strand to form a duplex region of about 15 to about 30 base pairs in length. In these and other embodiments, the sense and antisense strands are each independently about 19 to about 30 nucleotides in length. In some embodiments, the RNAi constructs comprise one or two blunt ends. In other embodiments, the RNAi constructs comprise one or two nucleotide overhangs. Such nucleotide overhangs may comprise 1 to 6 unpaired nucleotides and can be located at the 3′ end of the sense strand, the 3′ end of the antisense strand, or the 3′ end of both the sense and antisense strand. In certain embodiments, the RNAi constructs comprise an overhang of two unpaired nucleotides at the 3′ end of the sense strand and the 3′ end of the antisense strand. In other embodiments, the RNAi constructs comprise an overhang of two unpaired nucleotides at the 3′ end of the antisense strand and a blunt end at the 3′ end of the sense strand/5′ end of the antisense strand.


The RNAi constructs of the invention may comprise one or more modified nucleotides, including nucleotides having modifications to the ribose ring, nucleobase, or phosphodiester backbone. In some embodiments, the RNAi constructs comprise one or more 2′-modified nucleotides. Such 2′-modified nucleotides can include 2′-fluoro modified nucleotides, 2′-O-methyl modified nucleotides, 2′-O-methoxyethyl modified nucleotides, 2′-O-alkyl modified nucleotides, 2′-O-allyl modified nucleotides, bicyclic nucleic acids (BNA), deoxyribonucleotides, or combinations thereof. In one particular embodiment, the RNAi constructs comprise one or more 2′-fluoro modified nucleotides, 2′-O-methyl modified nucleotides, or combinations thereof. In some embodiments, all of the nucleotides in the sense and antisense strand of the RNAi construct are modified nucleotides. Abasic nucleotides may be incorporated into the RNAi constructs of the invention, for example, as the terminal nucleotide at the 3′ end, the 5′ end, or both the 3′ end and the 5′ end of the sense strand. In such embodiments, the abasic nucleotide may be inverted, e.g. linked to the adjacent nucleotide through a 3′-3′ internucleotide linkage or a 5′-5′ internucleotide linkage.


In some embodiments, the RNAi constructs comprise at least one backbone modification, such as a modified internucleotide or internucleoside linkage. In certain embodiments, the RNAi constructs described herein comprise at least one phosphorothioate internucleotide linkage. In particular embodiments, the phosphorothioate internucleotide linkages may be positioned at the 3′ or 5′ ends of the sense and/or antisense strands. For instance, in some embodiments, the antisense strand comprises two consecutive phosphorothioate internucleotide linkages between the terminal nucleotides at both the 3′ and 5′ ends. In some such embodiments, the sense strand comprises one or two phosphorothioate internucleotide linkages between the terminal nucleotides at its 3′ end.


In certain embodiments, the antisense strand and/or the sense strand of the RNAi constructs of the invention may comprise or consist of a sequence from the antisense and sense sequences listed in Table 1 or Table 2. In certain such embodiments, the RNAi construct may be any one of the duplex compounds listed in any one of Tables 1 to 24. In some embodiments, the RNAi construct is D-1044, D-1061, D-1062, D-1067, D-1083, D-1090, D-1092, D-1093, D-1095, D-1138, D-1139, D-1143, D-1170, D-1177, D-1180, D-1191, D-1245, D-2000, D-2002, D-2003, D-2004, D-2011, D-2026, D-2028, D-2032, D-2033, D-2034, D-2035, D-2036, D-2042, D-2044, D-2045, D-2046, D-2050, D-2078, D-2079, D-2081, D-2182, D-2196, D-2238, D-2241, D-2243, D-2246, D-2255, D-2356, D-2258, D-2301, D-2316, D-2317, D-2329, D-2332, D-2341, D-2344, D-2357, D-2399, or D-2510. In certain embodiments, the RNAi construct is D-2079, D-2081, D-2196, D-2238, D-2241, D-2255, D-2258, D-2317, D-2332, D-2357, or D-2399.


In some embodiments, the RNAi constructs of the invention may target a particular region of the human mARC1 mRNA transcript (e.g. the human mARC1 mRNA transcript sequence set forth in SEQ ID NO: 1). For instance, in certain embodiments, the RNAi constructs comprise a sense strand and an antisense strand, wherein the antisense strand comprises a region having a sequence that is substantially complementary to the sequence of at least 15 contiguous nucleotides of nucleotides 1205 to 1250 of SEQ ID NO: 1. In other embodiments, the antisense strand comprises a region having a sequence that is substantially complementary to the sequence of at least 15 contiguous nucleotides of nucleotides 1209 to 1239 of SEQ ID NO: 1. In yet other embodiments, the antisense strand comprises a region having a sequence that is substantially complementary to the sequence of at least 15 contiguous nucleotides of nucleotides 1345 to 1375 of SEQ ID NO: 1. In still other embodiments, the antisense strand comprises a region having a sequence that is substantially complementary to the sequence of at least 15 contiguous nucleotides of nucleotides 2039 to 2078 of SEQ ID NO: 1. In certain other embodiments, the antisense strand comprises a region having a sequence that is substantially complementary to the sequence of at least 15 contiguous nucleotides of nucleotides 2048 to 2074 of SEQ ID NO: 1. In any of the above embodiments, the sequence of the antisense strand may be substantially complementary to the sequence of at least 15 contiguous nucleotides of the specific regions of the human mARC1 transcript (SEQ ID NO: 1) with no more than 1, 2, or 3 mismatches between the sequence of the antisense strand and the sequence of the specific regions of the human mARC1 transcript. In some such embodiments in which a mismatch occurs between the sequence of the antisense strand and the sequence of the target mARC1 mRNA sequence, the mismatch may be located between the target mARC1 mRNA sequence and the nucleotide at position 6 and/or position 8 from the 5′ end of the antisense strand. In other embodiments, the sequence of the antisense strand may be fully complementary to the sequence of at least 15 contiguous nucleotides of the specific regions of the human mARC1 transcript (SEQ ID NO: 1).


The RNAi constructs of the invention may further comprise a ligand to facilitate delivery or uptake of the RNAi constructs to specific tissues or cells, such as liver cells. In certain embodiments, the ligand targets delivery of the RNAi constructs to hepatocytes. In these and other embodiments, the ligand may comprise galactose, galactosamine, or N-acetyl-galactosamine (GalNAc). In certain embodiments, the ligand comprises a multivalent galactose or multivalent GalNAc moiety, such as a trivalent or tetravalent galactose or GalNAc moiety. The ligand may be covalently attached to the 5′ or 3′ end of the sense strand of the RNAi construct, optionally through a linker. In some embodiments, the RNAi constructs comprise a ligand and linker having a structure according to any one of Formulas I to IX described herein. In certain embodiments, the RNAi constructs comprise a ligand and linker having a structure according to Formula VII. In other embodiments, the RNAi constructs comprise a ligand and linker having a structure according to Formula IV.


The present invention also provides pharmaceutical compositions comprising any of the RNAi constructs described herein and a pharmaceutically acceptable carrier, excipient, or diluent. Such pharmaceutical compositions are particularly useful for reducing expression of the MARC1 gene in the cells (e.g. liver cells) of a patient in need thereof. Patients who may be administered a pharmaceutical composition of the invention can include patients diagnosed with or at risk of cardiovascular disease, fatty liver disease, liver fibrosis, or cirrhosis and patients with elevated blood levels of cholesterol (e.g. total cholesterol, non-HDL cholesterol, or LDL-cholesterol). Accordingly, the present invention includes methods of treating, preventing, or reducing the risk of developing fatty liver disease (e.g. NAFLD, NASH, alcoholic fatty liver disease, or alcoholic steatohepatitis), liver fibrosis, or cardiovascular disease in a patient in need thereof comprising administering an RNAi construct or pharmaceutical composition described herein. In certain embodiments, the present invention provides methods for reducing blood levels (serum or plasma) of cholesterol (e.g. total cholesterol, non-HDL cholesterol, or LDL-cholesterol) in a patient in need thereof comprising administering an RNAi construct or pharmaceutical composition described herein.


The use of mARC1-targeting RNAi constructs in any of the methods described herein or for preparation of medicaments for administration according to the methods described herein is specifically contemplated. For instance, the present invention includes a mARC1-targeting RNAi construct for use in a method for treating, preventing, or reducing the risk of developing fatty liver disease (e.g. NAFLD, NASH, alcoholic fatty liver disease, or alcoholic steatohepatitis), liver fibrosis, or cardiovascular disease in a patient in need thereof. The present invention also includes a mARC1-targeting RNAi construct for use in a method for reducing blood levels (serum or plasma) of cholesterol (e.g. total cholesterol, non-HDL cholesterol, or LDL-cholesterol) in a patient in need thereof.


The present invention also encompasses the use of a mARC1-targeting RNAi construct in the preparation of a medicament for treating, preventing, or reducing the risk of developing fatty liver disease (e.g. NAFLD, NASH, alcoholic fatty liver disease, or alcoholic steatohepatitis), liver fibrosis, or cardiovascular disease in a patient in need thereof. In certain embodiments, the present invention provides the use of a mARC1-targeting RNAi construct in the preparation of a medicament for reducing blood levels (serum or plasma) of cholesterol (e.g. total cholesterol, non-HDL cholesterol, or LDL-cholesterol) in a patient in need thereof.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows the nucleotide sequence of a transcript of the human MARC1 gene (Ensembl transcript no. ENST00000366910.9; SEQ ID NO: 1). The transcript sequence is depicted as the complementary DNA (cDNA) sequence with thymine bases replacing uracil bases.



FIGS. 2A and 2B are bar graphs showing liver expression of mARC1 mRNA (FIG. 2A) and mARC2 mRNA (FIG. 2B) in ob/ob mice receiving subcutaneous injections of buffer, mARC1 siRNA (duplex no. D-1000), or a control siRNA (duplex no. D-1002) once every two weeks for six weeks. mRNA levels were assessed by qPCR at six weeks and are expressed relative to mRNA levels in animals receiving buffer only injections.



FIGS. 3A-3H are graphs depicting serum levels of total cholesterol (CHOL; FIG. 3A), LDL cholesterol (LDL; FIG. 3B), HDL cholesterol (HDL; FIG. 3C), triglycerides (TG; FIG. 3D), alanine aminotransferase (ALT; FIG. 3E), aspartate aminotransferase (AST; FIG. 3F), C-reactive protein (CRP; FIG. 3G), and tissue inhibitor of metalloproteinases-1 (TIMP-1; FIG. 3H) in ob/ob mice receiving subcutaneous injections of buffer, mARC1 siRNA (duplex no. D-1000), or a control siRNA (duplex no. D-1002) once every two weeks for six weeks. Serum levels of the different analytes were measured using a clinical analyzer at the six-week time point. Mean values±standard error of the mean (SEM) are shown. *=p<0.05;**=p<0.01 vs. buffer control group.



FIGS. 4A and 4B are graphs showing liver levels of triglycerides (liver TG; FIG. 4A) or total cholesterol (liver TC; FIG. 4B) at six weeks in ob/ob mice receiving subcutaneous injections of buffer, mARC1 siRNA (duplex no. D-1000), or a control siRNA (duplex no. D-1002) once every two weeks for six weeks. Mean values±SEM are shown. ***=p<0.001 vs. buffer control group.



FIGS. 5A and 5B are bar graphs showing liver expression of mARC1 mRNA (FIG. 5A) and mARC2 mRNA (FIG. 5B) in c57BL/6 mice on a standard chow diet (chow control) or a 0.2% cholesterol diet (TD190883). Mice on the 0.2% cholesterol diet received subcutaneous injections of buffer (TD190883 control), mARC1 siRNA (duplex no. D-1000), or a control siRNA (duplex no. D-1002) once every two weeks for 24 weeks. mRNA levels were assessed by qPCR at 24 weeks and are expressed relative to mRNA levels in the chow control animals.



FIGS. 6A-6F are graphs depicting serum levels of aspartate aminotransferase (AST; FIG. 6A), alanine aminotransferase (ALT; FIG. 6B), total cholesterol (FIG. 6C), LDL cholesterol (LDL-c; FIG. 6D), HDL cholesterol (HDL-c; FIG. 6E), and triglycerides (FIG. 6F) in c57BL/6 mice on a standard chow diet (chow control) or a 0.2% cholesterol diet (TD190883). Mice on the 0.2% cholesterol diet received subcutaneous injections of buffer (TD190883 control), mARC1 siRNA (duplex no. D-1000), or a control siRNA (duplex no. D-1002) once every two weeks for 24 weeks. Serum levels of the different analytes were measured using a clinical analyzer at the indicated time post dosing. Mean values±standard error of the mean (SEM) are shown. *=p<0.05;**=p<0.01, ***=p<0.001 vs. TD190883 control group.



FIGS. 7A-7D are graphs showing body weight (FIG. 7A), liver weight (FIG. 7B), liver levels of triglycerides (FIG. 7C) and liver levels of total cholesterol (FIG. 7D) at 24 weeks in c57BL/6 mice on a standard chow diet (chow control) or a 0.2% cholesterol diet (TD190883). Mice on the 0.2% cholesterol diet received subcutaneous injections of buffer (TD190883 control), mARC1 siRNA (duplex no. D-1000), or a control siRNA (duplex no. D-1002) once every two weeks for 24 weeks. Mean values±SEM are shown.



FIGS. 8A-8F are antisense strand and sense strand serum concentration-time profiles in cynomolgus macaque monkeys following a single 3 mg/kg s.c. dose of GalNAc-conjugated mARC1 siRNA molecules D-2241 (FIGS. 8A and 8B), D-2081 (FIGS. 8C and 8D), and D-2258 (FIGS. 8E and 8F). FIGS. 8A, 8C, and 8E depict the concentration-time profiles from 0.083 to 24 hours post dose, whereas FIGS. 8B, 8D, and 8F depict the concentration-time profiles from 0.083 to 1056 hours post dose.





DETAILED DESCRIPTION

The present invention is directed to compositions and methods for regulating the expression of the MARC1 gene in a cell or mammal. In some embodiments, compositions of the invention comprise RNAi constructs that target a mRNA transcribed from the MARC1 gene, particularly the human MARC1 gene, and reduce expression of the mARC1 protein in a cell or mammal. Such RNAi constructs are useful for reducing serum lipid levels (e.g., total cholesterol and LDL-cholesterol levels), treating or preventing various forms of cardiovascular disease and fatty liver disease, such as NAFLD and NASH, and reducing liver fibrosis and the risk of progression to cirrhosis.


As used herein, the term “RNAi construct” refers to an agent comprising an RNA molecule that is capable of downregulating expression of a target gene (e.g. MARC1 gene) via an RNA interference mechanism when introduced into a cell. RNA interference is the process by which a nucleic acid molecule induces the cleavage and degradation of a target RNA molecule (e.g. messenger RNA or mRNA molecule) in a sequence-specific manner, e.g. through an RNA-induced silencing complex (RISC) pathway. In some embodiments, the RNAi construct comprises a double-stranded RNA molecule comprising two antiparallel strands of contiguous nucleotides that are sufficiently complementary to each other to hybridize to form a duplex region. “Hybridize” or “hybridization” refers to the pairing of complementary polynucleotides, typically via hydrogen bonding (e.g. Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen bonding) between complementary bases in the two polynucleotides. The strand comprising a region having a sequence that is substantially complementary to a target sequence (e.g. target mRNA) is referred to as the “antisense strand” or “guide strand.” The “sense strand” or “passenger strand” refers to the strand that includes a region that is substantially complementary to a region of the antisense strand. In some embodiments, the sense strand may comprise a region that has a sequence that is substantially identical to the target sequence.


A double-stranded RNA molecule may include chemical modifications to ribonucleotides, including modifications to the ribose sugar, base, or backbone components of the ribonucleotides, such as those described herein or known in the art. Any such modifications, as used in a double-stranded RNA molecule (e.g. siRNA, shRNA, or the like), are encompassed by the term “double-stranded RNA” for the purposes of this disclosure.


As used herein, a first sequence is “complementary” to a second sequence if a polynucleotide comprising the first sequence can hybridize to a polynucleotide comprising the second sequence to form a duplex region under certain conditions, such as physiological conditions. Other such conditions can include moderate or stringent hybridization conditions, which are known to those of skill in the art. A first sequence is considered to be fully complementary (100% complementary) to a second sequence if a polynucleotide comprising the first sequence base pairs with a polynucleotide comprising the second sequence over the entire length of one or both nucleotide sequences without any mismatches. A sequence is “substantially complementary” to a target sequence if the sequence is at least about 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% complementary to a target sequence. Percent complementarity can be calculated by dividing the number of bases in a first sequence that are complementary to bases at corresponding positions in a second or target sequence by the total length of the first sequence. A sequence may also be said to be substantially complementary to another sequence if there are no more than 5, 4, 3, or 2 mismatches over a 30 base pair duplex region when the two sequences are hybridized. Generally, if any nucleotide overhangs, as defined herein, are present, the sequence of such overhangs is not considered in determining the degree of complementarity between two sequences. By way of example, a sense strand of 21 nucleotides in length and an antisense strand of 21 nucleotides in length that hybridize to form a 19 base pair duplex region with a 2-nucleotide overhang at the 3′ end of each strand would be considered to be fully complementary as the term is used herein.


In some embodiments, a region of the antisense strand comprises a sequence that is substantially or fully complementary to a region of the target RNA sequence (e.g. mARC1 mRNA sequence). In such embodiments, the sense strand may comprise a sequence that is fully complementary to the sequence of the antisense strand. In other such embodiments, the sense strand may comprise a sequence that is substantially complementary to the sequence of the antisense strand, e.g. having 1, 2, 3, 4, or 5 mismatches in the duplex region formed by the sense and antisense strands. In certain embodiments, it is preferred that any mismatches occur within the terminal regions (e.g. within 6, 5, 4, 3, or 2 nucleotides of the 5′ and/or 3′ ends of the strands). In one embodiment, any mismatches in the duplex region formed from the sense and antisense strands occur within 6, 5, 4, 3, or 2 nucleotides of the 5′ end of the antisense strand.


In certain embodiments, the sense strand and antisense strand of the double-stranded RNA may be two separate molecules that hybridize to form a duplex region but are otherwise unconnected. Such double-stranded RNA molecules formed from two separate strands are referred to as “small interfering RNAs” or “short interfering RNAs” (siRNAs). Thus, in some embodiments, the RNAi constructs of the invention comprise an siRNA.


In other embodiments, the sense strand and the antisense strand that hybridize to form a duplex region may be part of a single RNA molecule, i.e. the sense and antisense strands are part of a self-complementary region of a single RNA molecule. In such cases, a single RNA molecule comprises a duplex region (also referred to as a stem region) and a loop region. The 3′ end of the sense strand is connected to the 5′ end of the antisense strand by a contiguous sequence of unpaired nucleotides, which will form the loop region. The loop region is typically of a sufficient length to allow the RNA molecule to fold back on itself such that the antisense strand can base pair with the sense strand to form the duplex or stem region. The loop region can comprise from about 3 to about 25, from about 5 to about 15, or from about 8 to about 12 unpaired nucleotides. Such RNA molecules with at least partially self-complementary regions are referred to as “short hairpin RNAs” (shRNAs). In certain embodiments, the RNAi constructs of the invention comprise a shRNA. The length of a single, at least partially self-complementary RNA molecule can be from about 40 nucleotides to about 100 nucleotides, from about 45 nucleotides to about 85 nucleotides, or from about 50 nucleotides to about 60 nucleotides and comprise a duplex region and loop region each having the lengths recited herein.


In some embodiments, the RNAi constructs of the invention comprise a sense strand and an antisense strand, wherein the antisense strand comprises a region having a sequence that is substantially or fully complementary to a mARC1 messenger RNA (mRNA) sequence. As used herein, a “mARC1 mRNA sequence” refers to any messenger RNA sequence, including allelic variants and splice variants, encoding a mARC1 protein, including mARC1 protein variants or isoforms from any species (e.g. non-human primate, human). The MARC1 gene (also known as MTARC1 or MOSC1) encodes the mitochondrial amidoxime reducing component 1 enzyme (also known as MOCO sulphurase C-terminal domain containing 1 enzyme). In humans, the MARC1 gene is found on chromosome 1 at locus 1q41.


A mARC1 mRNA sequence also includes the transcript sequence expressed as its complementary DNA (cDNA) sequence. A cDNA sequence refers to the sequence of an mRNA transcript expressed as DNA bases (e.g. guanine, adenine, thymine, and cytosine) rather than RNA bases (e.g. guanine, adenine, uracil, and cytosine). Thus, the antisense strand of the RNAi constructs of the invention may comprise a region having a sequence that is substantially or fully complementary to a target mARC1 mRNA sequence or mARC1 cDNA sequence. A mARC1 mRNA or cDNA sequence can include, but is not limited to, any mARC1 mRNA or cDNA sequences in the Ensembl Genome or National Center for Biotechnology Information (NCBI) databases, such as human sequences: Ensembl transcript no. ENST00000366910.9 (FIG. 1, SEQ ID NO: 1) and NCBI Reference sequence NM_022746.4; cynomolgus monkey sequences: NCBI Reference sequences XR_001490722.1, XR_001490722.1, XR_001490723.1, XR_001490726.1, XR_273285.2, XM_005540901.2, XR_273286.2, XM_005540898.2, and XM_005540899.2; rhesus monkey sequences: NCBI Reference sequences XM_015115809.2, XM_015115815.2, XM_001102192.4, and XM_001102284.3; chimpanzee sequences: NCBI Reference sequences XM_009441519.3, XM_001172926.4, and XM_009441521.3; rat sequences: NCBI Reference sequence XM_017598938.1; and mouse sequences: NCBI Reference sequence XM_006497192.4. In certain embodiments, the mARC1 mRNA sequence is the human transcript set forth in FIG. 1 (SEQ ID NO: 1).


A region of the antisense strand can be substantially complementary or fully complementary to at least 15 consecutive nucleotides of the mARC1 mRNA sequence. In certain embodiments, the region of the antisense strand comprises a sequence that is substantially complementary to the sequence of at least 15, at least 16, at least 17, at least 18, or at least 19 contiguous nucleotides of a region of the mARC1 mRNA sequence (e.g. a human mARC1 mRNA sequence (SEQ ID NO: 1)) with no more than 1, 2, or 3 mismatches. In related embodiments, the antisense strand comprises a region having a sequence that is substantially complementary to the sequence of at least 15, at least 16, at least 17, at least 18, or at least 19 contiguous nucleotides of a region of the mARC1 mRNA sequence with no more than 1 mismatch. In embodiments in which the sequence of the antisense strand is not fully complementary to the target mARC1 mRNA sequence and contains a mismatch, the mismatch may occur between the target mARC1 mRNA sequence and the nucleotide at position 6 and/or position 8 from the 5′ end of the antisense strand. In some embodiments, the target region of the mARC1 mRNA sequence to which the antisense strand comprises a region of complementarity can range from about 15 to about 30 consecutive nucleotides, from about 16 to about 28 consecutive nucleotides, from about 18 to about 26 consecutive nucleotides, from about 17 to about 24 consecutive nucleotides, from about 19 to about 30 consecutive nucleotides, from about 19 to about 25 consecutive nucleotides, from about 19 to about 23 consecutive nucleotides, or from about 19 to about 21 consecutive nucleotides. In certain embodiments, the region of the antisense strand comprising a sequence that is substantially or fully complementary to a mARC1 mRNA sequence may comprise at least 15 contiguous nucleotides from an antisense sequence listed in Table 1 or Table 2. In other embodiments, the sequence of the antisense strand comprises at least 16, at least 17, at least 18, or at least 19 contiguous nucleotides from an antisense sequence listed in Table 1 or Table 2.


The sense strand of the RNAi construct typically comprises a sequence that is sufficiently complementary to the sequence of the antisense strand such that the two strands hybridize under physiological conditions to form a duplex region. A “duplex region” refers to the region in two complementary or substantially complementary polynucleotides that form base pairs with one another, either by Watson-Crick base pairing or other hydrogen bonding interaction, to create a duplex between the two polynucleotides. The duplex region of the RNAi construct should be of sufficient length to allow the RNAi construct to enter the RNA interference pathway, e.g. by engaging the Dicer enzyme and/or the RISC complex. For instance, in some embodiments, the duplex region is about 15 to about 30 base pairs in length. Other lengths for the duplex region within this range are also suitable, such as about 15 to about 28 base pairs, about 15 to about 26 base pairs, about 15 to about 24 base pairs, about 15 to about 22 base pairs, about 17 to about 28 base pairs, about 17 to about 26 base pairs, about 17 to about 24 base pairs, about 17 to about 23 base pairs, about 17 to about 21 base pairs, about 19 to about 25 base pairs, about 19 to about 23 base pairs, or about 19 to about 21 base pairs. In certain embodiments, the duplex region is about 17 to about 24 base pairs in length. In other embodiments, the duplex region is about 19 to about 21 base pairs in length. In one embodiment, the duplex region is about 19 base pairs in length. In another embodiment, the duplex region is about 21 base pairs in length.


For embodiments in which the sense strand and antisense strand are two separate molecules (e.g. RNAi construct comprises an siRNA), the sense strand and antisense strand need not be the same length as the length of the duplex region. For instance, one or both strands may be longer than the duplex region and have one or more unpaired nucleotides or mismatches flanking the duplex region. Thus, in some embodiments, the RNAi construct comprises at least one nucleotide overhang. As used herein, a “nucleotide overhang” refers to the unpaired nucleotide or nucleotides that extend beyond the duplex region at the terminal ends of the strands. Nucleotide overhangs are typically created when the 3′ end of one strand extends beyond the 5′ end of the other strand or when the 5′ end of one strand extends beyond the 3′ end of the other strand. The length of a nucleotide overhang is generally between 1 and 6 nucleotides, 1 and 5 nucleotides, 1 and 4 nucleotides, 1 and 3 nucleotides, 2 and 6 nucleotides, 2 and 5 nucleotides, or 2 and 4 nucleotides. In some embodiments, the nucleotide overhang comprises 1, 2, 3, 4, 5, or 6 nucleotides. In one particular embodiment, the nucleotide overhang comprises 1 to 4 nucleotides. In certain embodiments, the nucleotide overhang comprises 2 nucleotides. In certain other embodiments, the nucleotide overhang comprises a single nucleotide.


The nucleotides in the overhang can be ribonucleotides or modified nucleotides as described herein. In some embodiments, the nucleotides in the overhang are 2′-modified nucleotides (e.g. 2′-fluoro modified nucleotides, 2′-O-methyl modified nucleotides), deoxyribonucleotides, abasic nucleotides, inverted nucleotides (e.g. inverted abasic nucleotides, inverted deoxyribonucleotides), or combinations thereof. For instance, in one embodiment, the nucleotides in the overhang are deoxyribonucleotides, e.g. deoxythymidine. In another embodiment, the nucleotides in the overhang are 2′-O-methyl modified nucleotides, 2′-fluoro modified nucleotides, 2′-methoxyethyl modified nucleotides, or combinations thereof. In other embodiments, the overhang comprises a 5′-uridine-uridine-3′ (5′-UU-3′) dinucleotide. In such embodiments, the UU dinucleotide may comprise ribonucleotides or modified nucleotides, e.g. 2′-modified nucleotides. In other embodiments, the overhang comprises a 5′-deoxythymidine-deoxythymidine-3′ (5′-dTdT-3′) dinucleotide. When a nucleotide overhang is present in the antisense strand, the nucleotides in the overhang can be complementary to the target gene sequence, form a mismatch with the target gene sequence, or comprise some other sequence (e.g. polypyrimidine or polypurine sequence, such as UU, TT, AA, GG, etc.).


The nucleotide overhang can be at the 5′ end or 3′ end of one or both strands. For example, in one embodiment, the RNAi construct comprises a nucleotide overhang at the 5′ end and the 3′ end of the antisense strand. In another embodiment, the RNAi construct comprises a nucleotide overhang at the 5′ end and the 3′ end of the sense strand. In some embodiments, the RNAi construct comprises a nucleotide overhang at the 5′ end of the sense strand and the 5′ end of the antisense strand. In other embodiments, the RNAi construct comprises a nucleotide overhang at the 3′ end of the sense strand and the 3′ end of the antisense strand.


The RNAi constructs may comprise a single nucleotide overhang at one end of the double-stranded RNA molecule and a blunt end at the other. A “blunt end” means that the sense strand and antisense strand are fully base-paired at the end of the molecule and there are no unpaired nucleotides that extend beyond the duplex region. In some embodiments, the RNAi construct comprises a nucleotide overhang at the 3′ end of the sense strand and a blunt end at the 5′ end of the sense strand and 3′ end of the antisense strand. In other embodiments, the RNAi construct comprises a nucleotide overhang at the 3′ end of the antisense strand and a blunt end at the 5′ end of the antisense strand and the 3′ end of the sense strand. In certain embodiments, the RNAi construct comprises a blunt end at both ends of the double-stranded RNA molecule. In such embodiments, the sense strand and antisense strand have the same length and the duplex region is the same length as the sense and antisense strands (i.e. the molecule is double-stranded over its entire length).


The sense strand and antisense strand in the RNAi constructs of the invention can each independently be about 15 to about 30 nucleotides in length, about 19 to about 30 nucleotides in length, about 18 to about 28 nucleotides in length, about 19 to about 27 nucleotides in length, about 19 to about 25 nucleotides in length, about 19 to about 23 nucleotides in length, about 19 to about 21 nucleotides in length, about 21 to about 25 nucleotides in length, or about 21 to about 23 nucleotides in length. In certain embodiments, the sense strand and antisense strand are each independently about 18, about 19, about 20, about 21, about 22, about 23, about 24, or about 25 nucleotides in length. In some embodiments, the sense strand and antisense strand have the same length but form a duplex region that is shorter than the strands such that the RNAi construct has two nucleotide overhangs. For instance, in one embodiment, the RNAi construct comprises (i) a sense strand and an antisense strand that are each 21 nucleotides in length, (ii) a duplex region that is 19 base pairs in length, and (iii) nucleotide overhangs of 2 unpaired nucleotides at both the 3′ end of the sense strand and the 3′ end of the antisense strand. In another embodiment, the RNAi construct comprises (i) a sense strand and an antisense strand that are each 23 nucleotides in length, (ii) a duplex region that is 21 base pairs in length, and (iii) nucleotide overhangs of 2 unpaired nucleotides at both the 3′ end of the sense strand and the 3′ end of the antisense strand. In other embodiments, the sense strand and antisense strand have the same length and form a duplex region over their entire length such that there are no nucleotide overhangs on either end of the double-stranded molecule. In one such embodiment, the RNAi construct is blunt ended (e.g. has two blunt ends) and comprises (i) a sense strand and an antisense strand, each of which is 21 nucleotides in length, and (ii) a duplex region that is 21 base pairs in length. In another such embodiment, the RNAi construct is blunt ended (e.g. has two blunt ends) and comprises (i) a sense strand and an antisense strand, each of which is 23 nucleotides in length, and (ii) a duplex region that is 23 base pairs in length. In still another such embodiment, the RNAi construct is blunt ended (e.g. has two blunt ends) and comprises (i) a sense strand and an antisense strand, each of which is 19 nucleotides in length, and (ii) a duplex region that is 19 base pairs in length.


In other embodiments, the sense strand or the antisense strand is longer than the other strand and the two strands form a duplex region having a length equal to that of the shorter strand such that the RNAi construct comprises at least one nucleotide overhang. For example, in one embodiment, the RNAi construct comprises (i) a sense strand that is 19 nucleotides in length, (ii) an antisense strand that is 21 nucleotides in length, (iii) a duplex region of 19 base pairs in length, and (iv) a nucleotide overhang of 2 unpaired nucleotides at the 3′ end of the antisense strand. In another embodiment, the RNAi construct comprises (i) a sense strand that is 21 nucleotides in length, (ii) an antisense strand that is 23 nucleotides in length, (iii) a duplex region of 21 base pairs in length, and (iv) a nucleotide overhang of 2 unpaired nucleotides at the 3′ end of the antisense strand.


The antisense strand of the RNAi constructs of the invention can comprise or consist of the sequence of any one of the antisense sequences listed in Table 1 or Table 2, the sequence of nucleotides 1-19 of any of these antisense sequences, or the sequence of nucleotides 2-19 of any of these antisense sequences. Thus, in some embodiments, the antisense strand comprises or consists of a sequence selected from SEQ ID NOs: 671-1339, 2072-2803, 2906-3061, or 3321-3655. In other embodiments, the antisense strand comprises or consists of a sequence of nucleotides 1-19 of any one of SEQ ID NOs: 671-1339, 2072-2803, 2906-3061, or 3321-3655. In still other embodiments, the antisense strand comprises or consists of a sequence of nucleotides 2-19 of any one of SEQ ID NOs: 671-1339, 2072-2803, 2906-3061, or 3321-3655. In certain embodiments, the antisense strand comprises or consists of a sequence selected from SEQ ID NO: 715; SEQ ID NO: 725; SEQ ID NO: 732; SEQ ID NO: 733; SEQ ID NO: 737; SEQ ID NO: 738; SEQ ID NO: 739; SEQ ID NO: 745; SEQ ID NO: 754; SEQ ID NO: 757; SEQ ID NO: 758; SEQ ID NO: 761; SEQ ID NO: 762; SEQ ID NO: 763; SEQ ID NO: 764; SEQ ID NO: 766; SEQ ID NO: 767; SEQ ID NO: 768; SEQ ID NO: 770; SEQ ID NO: 782; SEQ ID NO: 784; SEQ ID NO: 801; SEQ ID NO: 809; SEQ ID NO: 810; SEQ ID NO: 811; SEQ ID NO: 814; SEQ ID NO: 818; SEQ ID NO: 821; SEQ ID NO: 837; SEQ ID NO: 841; SEQ ID NO: 842; SEQ ID NO: 845; SEQ ID NO: 847; SEQ ID NO: 848; SEQ ID NO: 850; SEQ ID NO: 851; SEQ ID NO: 855; SEQ ID NO: 856; SEQ ID NO: 860; SEQ ID NO: 861; SEQ ID NO: 862; SEQ ID NO: 865; SEQ ID NO: 875; SEQ ID NO: 884; SEQ ID NO: 886; SEQ ID NO: 891; SEQ ID NO: 899; SEQ ID NO: 901; SEQ ID NO: 907; SEQ ID NO: 914; SEQ ID NO: 916; SEQ ID NO: 920; SEQ ID NO: 927; SEQ ID NO: 937; SEQ ID NO: 1056; SEQ ID NO: 1057; SEQ ID NO: 1058; SEQ ID NO: 1059; SEQ ID NO: 1078; SEQ ID NO: 2917; SEQ ID NO: 2919; SEQ ID NO: 2926; SEQ ID NO: 2946; SEQ ID NO: 2949; SEQ ID NO: 2951; SEQ ID NO: 2953; and SEQ ID NO: 2956. In some embodiments, the antisense strand comprises or consists of a sequence selected from SEQ ID NO: 715; SEQ ID NO: 732; SEQ ID NO: 733; SEQ ID NO: 737; SEQ ID NO: 738; SEQ ID NO: 739; SEQ ID NO: 745; SEQ ID NO: 754; SEQ ID NO: 757; SEQ ID NO: 761; SEQ ID NO: 762; SEQ ID NO: 763; SEQ ID NO: 764; SEQ ID NO: 766; SEQ ID NO: 767; SEQ ID NO: 784; SEQ ID NO: 801; SEQ ID NO: 809; SEQ ID NO: 810; SEQ ID NO: 811; SEQ ID NO: 814; SEQ ID NO: 841; SEQ ID NO: 842; SEQ ID NO: 845; SEQ ID NO: 848; SEQ ID NO: 851; SEQ ID NO: 856; SEQ ID NO: 860; SEQ ID NO: 862; SEQ ID NO: 914; SEQ ID NO: 916; SEQ ID NO: 927; SEQ ID NO: 937; SEQ ID NO: 1056; SEQ ID NO: 1057; SEQ ID NO: 1058; SEQ ID NO: 1059; SEQ ID NO: 1078; SEQ ID NO: 2917; SEQ ID NO: 2919; SEQ ID NO: 2926; SEQ ID NO: 2946; SEQ ID NO: 2949; SEQ ID NO: 2951; SEQ ID NO: 2953; and SEQ ID NO: 2956. In other embodiments, the antisense strand comprises or consists of a sequence selected from SEQ ID NO: 715; SEQ ID NO: 732; SEQ ID NO: 733; SEQ ID NO: 738; SEQ ID NO: 754; SEQ ID NO: 761; SEQ ID NO: 763; SEQ ID NO: 764; SEQ ID NO: 766; SEQ ID NO: 809; SEQ ID NO: 810; SEQ ID NO: 814; SEQ ID NO: 841; SEQ ID NO: 848; SEQ ID NO: 851; SEQ ID NO: 862; SEQ ID NO: 916; SEQ ID NO: 1057; SEQ ID NO: 1078; SEQ ID NO: 2919; SEQ ID NO: 2926; SEQ ID NO: 2946; SEQ ID NO: 2949; SEQ ID NO: 2953; and SEQ ID NO: 2956.


In these and other embodiments, the sense strand of the RNAi constructs of the invention can comprise or consist of the sequence of any one of the sense sequences listed in Table 1 or Table 2, the sequence of nucleotides 1-19 of any of these sense sequences, or the sequence of nucleotides 2-19 of any of these sense sequences. Thus, in some embodiments, the sense strand comprises or consists of a sequence selected from SEQ ID NOs: 2-670, 1340-2071, 2804-2905, or 3062-3320. In other embodiments, the sense strand comprises or consists of a sequence of nucleotides 1-19 of any one of SEQ ID NOs: 2-670, 1340-2071, 2804-2905, or 3062-3320. In still other embodiments, the sense strand comprises or consists of a sequence of nucleotides 2-19 of any one of SEQ ID NOs: 2-670, 1340-2071, 2804-2905, or 3062-3320. In certain embodiments, the sense strand comprises or consists of a sequence selected from SEQ ID NO: 46; SEQ ID NO: 56; SEQ ID NO: 63; SEQ ID NO: 64; SEQ ID NO: 68; SEQ ID NO: 69; SEQ ID NO: 70; SEQ ID NO: 76; SEQ ID NO: 85; SEQ ID NO: 88; SEQ ID NO: 89; SEQ ID NO: 92; SEQ ID NO: 93; SEQ ID NO: 94; SEQ ID NO: 95; SEQ ID NO: 97; SEQ ID NO: 98; SEQ ID NO: 99; SEQ ID NO: 101; SEQ ID NO: 113; SEQ ID NO: 115; SEQ ID NO: 132; SEQ ID NO: 140; SEQ ID NO: 141; SEQ ID NO: 142; SEQ ID NO: 145; SEQ ID NO: 149; SEQ ID NO: 152; SEQ ID NO: 168; SEQ ID NO: 172; SEQ ID NO: 173; SEQ ID NO: 176; SEQ ID NO: 178; SEQ ID NO: 179; SEQ ID NO: 181; SEQ ID NO: 182; SEQ ID NO: 186; SEQ ID NO: 187; SEQ ID NO: 191; SEQ ID NO: 192; SEQ ID NO: 193; SEQ ID NO: 196; SEQ ID NO: 206; SEQ ID NO: 215; SEQ ID NO: 217; SEQ ID NO: 222; SEQ ID NO: 230; SEQ ID NO: 232; SEQ ID NO: 238; SEQ ID NO: 245; SEQ ID NO: 247; SEQ ID NO: 251; SEQ ID NO: 258; SEQ ID NO: 268; SEQ ID NO: 387; SEQ ID NO: 388; SEQ ID NO: 389; SEQ ID NO: 390; SEQ ID NO: 391; SEQ ID NO: 392; SEQ ID NO: 409; SEQ ID NO: 2808; and SEQ ID NO: 2820. In certain other embodiments, the sense strand comprises or consists of a sequence selected from SEQ ID NO: 46; SEQ ID NO: 63; SEQ ID NO: 64; SEQ ID NO: 68; SEQ ID NO: 69; SEQ ID NO: 70; SEQ ID NO: 76; SEQ ID NO: 85; SEQ ID NO: 88; SEQ ID NO: 92; SEQ ID NO: 93; SEQ ID NO: 94; SEQ ID NO: 95; SEQ ID NO: 97; SEQ ID NO: 98; SEQ ID NO: 115; SEQ ID NO: 132; SEQ ID NO: 140; SEQ ID NO: 141; SEQ ID NO: 142; SEQ ID NO: 145; SEQ ID NO: 172; SEQ ID NO: 173; SEQ ID NO: 176; SEQ ID NO: 179; SEQ ID NO: 182; SEQ ID NO: 187; SEQ ID NO: 191; SEQ ID NO: 193; SEQ ID NO: 245; SEQ ID NO: 247; SEQ ID NO: 258; SEQ ID NO: 268; SEQ ID NO: 387; SEQ ID NO: 388; SEQ ID NO: 389; SEQ ID NO: 390; SEQ ID NO: 391; SEQ ID NO: 392; SEQ ID NO: 409; SEQ ID NO: 2808; and SEQ ID NO: 2820. In yet other embodiments, the sense strand comprises or consists of a sequence selected from SEQ ID NO: 46; SEQ ID NO: 63; SEQ ID NO: 64; SEQ ID NO: 69; SEQ ID NO: 85; SEQ ID NO: 92; SEQ ID NO: 94; SEQ ID NO: 95; SEQ ID NO: 97; SEQ ID NO: 140; SEQ ID NO: 141; SEQ ID NO: 145; SEQ ID NO: 172; SEQ ID NO: 179; SEQ ID NO: 182; SEQ ID NO: 193; SEQ ID NO: 247; SEQ ID NO: 388; SEQ ID NO: 390; SEQ ID NO: 391; SEQ ID NO: 409; SEQ ID NO: 2808; and SEQ ID NO: 2820.


In certain embodiments of the invention, the RNAi constructs comprise (i) a sense strand comprising or consisting of a sequence selected from 2-670, 1340-2071, 2804-2905, or 3062-3320 and (ii) an antisense strand comprising or consisting of a sequence selected from SEQ ID NOs: 671-1339, 2072-2803, 2906-3061, or 3321-3655. In some embodiments, the RNAi constructs comprise (i) a sense strand comprising or consisting of a sequence selected from SEQ ID NO: 46; SEQ ID NO: 56; SEQ ID NO: 63; SEQ ID NO: 64; SEQ ID NO: 68; SEQ ID NO: 69; SEQ ID NO: 70; SEQ ID NO: 76; SEQ ID NO: 85; SEQ ID NO: 88; SEQ ID NO: 89; SEQ ID NO: 92; SEQ ID NO: 93; SEQ ID NO: 94; SEQ ID NO: 95; SEQ ID NO: 97; SEQ ID NO: 98; SEQ ID NO: 99; SEQ ID NO: 101; SEQ ID NO: 113; SEQ ID NO: 115; SEQ ID NO: 132; SEQ ID NO: 140; SEQ ID NO: 141; SEQ ID NO: 142; SEQ ID NO: 145; SEQ ID NO: 149; SEQ ID NO: 152; SEQ ID NO: 168; SEQ ID NO: 172; SEQ ID NO: 173; SEQ ID NO: 176; SEQ ID NO: 178; SEQ ID NO: 179; SEQ ID NO: 181; SEQ ID NO: 182; SEQ ID NO: 186; SEQ ID NO: 187; SEQ ID NO: 191; SEQ ID NO: 192; SEQ ID NO: 193; SEQ ID NO: 196; SEQ ID NO: 206; SEQ ID NO: 215; SEQ ID NO: 217; SEQ ID NO: 222; SEQ ID NO: 230; SEQ ID NO: 232; SEQ ID NO: 238; SEQ ID NO: 245; SEQ ID NO: 247; SEQ ID NO: 251; SEQ ID NO: 258; SEQ ID NO: 268; SEQ ID NO: 387; SEQ ID NO: 388; SEQ ID NO: 389; SEQ ID NO: 390; SEQ ID NO: 391; SEQ ID NO: 392; SEQ ID NO: 409; SEQ ID NO: 2808; and SEQ ID NO: 2820 and (ii) an antisense strand comprising or consisting of a sequence selected from SEQ ID NO: 715; SEQ ID NO: 725; SEQ ID NO: 732; SEQ ID NO: 733; SEQ ID NO: 737; SEQ ID NO: 738; SEQ ID NO: 739; SEQ ID NO: 745; SEQ ID NO: 754; SEQ ID NO: 757; SEQ ID NO: 758; SEQ ID NO: 761; SEQ ID NO: 762; SEQ ID NO: 763; SEQ ID NO: 764; SEQ ID NO: 766; SEQ ID NO: 767; SEQ ID NO: 768; SEQ ID NO: 770; SEQ ID NO: 782; SEQ ID NO: 784; SEQ ID NO: 801; SEQ ID NO: 809; SEQ ID NO: 810; SEQ ID NO: 811; SEQ ID NO: 814; SEQ ID NO: 818; SEQ ID NO: 821; SEQ ID NO: 837; SEQ ID NO: 841; SEQ ID NO: 842; SEQ ID NO: 845; SEQ ID NO: 847; SEQ ID NO: 848; SEQ ID NO: 850; SEQ ID NO: 851; SEQ ID NO: 855; SEQ ID NO: 856; SEQ ID NO: 860; SEQ ID NO: 861; SEQ ID NO: 862; SEQ ID NO: 865; SEQ ID NO: 875; SEQ ID NO: 884; SEQ ID NO: 886; SEQ ID NO: 891; SEQ ID NO: 899; SEQ ID NO: 901; SEQ ID NO: 907; SEQ ID NO: 914; SEQ ID NO: 916; SEQ ID NO: 920; SEQ ID NO: 927; SEQ ID NO: 937; SEQ ID NO: 1056; SEQ ID NO: 1057; SEQ ID NO: 1058; SEQ ID NO: 1059; SEQ ID NO: 1078; SEQ ID NO: 2917; SEQ ID NO: 2919; SEQ ID NO: 2926; SEQ ID NO: 2946; SEQ ID NO: 2949; SEQ ID NO: 2951; SEQ ID NO: 2953; and SEQ ID NO: 2956. In other embodiments, the RNAi constructs comprise (i) a sense strand comprising or consisting of a sequence selected from SEQ ID NO: 46; SEQ ID NO: 63; SEQ ID NO: 64; SEQ ID NO: 68; SEQ ID NO: 69; SEQ ID NO: 70; SEQ ID NO: 76; SEQ ID NO: 85; SEQ ID NO: 88; SEQ ID NO: 92; SEQ ID NO: 93; SEQ ID NO: 94; SEQ ID NO: 95; SEQ ID NO: 97; SEQ ID NO: 98; SEQ ID NO: 115; SEQ ID NO: 132; SEQ ID NO: 140; SEQ ID NO: 141; SEQ ID NO: 142; SEQ ID NO: 145; SEQ ID NO: 172; SEQ ID NO: 173; SEQ ID NO: 176; SEQ ID NO: 179; SEQ ID NO: 182; SEQ ID NO: 187; SEQ ID NO: 191; SEQ ID NO: 193; SEQ ID NO: 245; SEQ ID NO: 247; SEQ ID NO: 258; SEQ ID NO: 268; SEQ ID NO: 387; SEQ ID NO: 388; SEQ ID NO: 389; SEQ ID NO: 390; SEQ ID NO: 391; SEQ ID NO: 392; SEQ ID NO: 409; SEQ ID NO: 2808; and SEQ ID NO: 2820 and (ii) an antisense strand comprising or consisting of a sequence selected from SEQ ID NO: 715; SEQ ID NO: 732; SEQ ID NO: 733; SEQ ID NO: 737; SEQ ID NO: 738; SEQ ID NO: 739; SEQ ID NO: 745; SEQ ID NO: 754; SEQ ID NO: 757; SEQ ID NO: 761; SEQ ID NO: 762; SEQ ID NO: 763; SEQ ID NO: 764; SEQ ID NO: 766; SEQ ID NO: 767; SEQ ID NO: 784; SEQ ID NO: 801; SEQ ID NO: 809; SEQ ID NO: 810; SEQ ID NO: 811; SEQ ID NO: 814; SEQ ID NO: 841; SEQ ID NO: 842; SEQ ID NO: 845; SEQ ID NO: 848; SEQ ID NO: 851; SEQ ID NO: 856; SEQ ID NO: 860; SEQ ID NO: 862; SEQ ID NO: 914; SEQ ID NO: 916; SEQ ID NO: 927; SEQ ID NO: 937; SEQ ID NO: 1056; SEQ ID NO: 1057; SEQ ID NO: 1058; SEQ ID NO: 1059; SEQ ID NO: 1078; SEQ ID NO: 2917; SEQ ID NO: 2919; SEQ ID NO: 2926; SEQ ID NO: 2946; SEQ ID NO: 2949; SEQ ID NO: 2951; SEQ ID NO: 2953; and SEQ ID NO: 2956. In still other embodiments, the RNAi constructs comprise (i) a sense strand comprising or consisting of a sequence selected from SEQ ID NO: 46; SEQ ID NO: 63; SEQ ID NO: 64; SEQ ID NO: 69; SEQ ID NO: 85; SEQ ID NO: 92; SEQ ID NO: 94; SEQ ID NO: 95; SEQ ID NO: 97; SEQ ID NO: 140; SEQ ID NO: 141; SEQ ID NO: 145; SEQ ID NO: 172; SEQ ID NO: 179; SEQ ID NO: 182; SEQ ID NO: 193; SEQ ID NO: 247; SEQ ID NO: 388; SEQ ID NO: 390; SEQ ID NO: 391; SEQ ID NO: 409; SEQ ID NO: 2808; and SEQ ID NO: 2820 and (ii) an antisense strand comprising or consisting of a sequence selected from SEQ ID NO: 715; SEQ ID NO: 732; SEQ ID NO: 733; SEQ ID NO: 738; SEQ ID NO: 754; SEQ ID NO: 761; SEQ ID NO: 763; SEQ ID NO: 764; SEQ ID NO: 766; SEQ ID NO: 809; SEQ ID NO: 810; SEQ ID NO: 814; SEQ ID NO: 841; SEQ ID NO: 848; SEQ ID NO: 851; SEQ ID NO: 862; SEQ ID NO: 916; SEQ ID NO: 1057; SEQ ID NO: 1078; SEQ ID NO: 2919; SEQ ID NO: 2926; SEQ ID NO: 2946; SEQ ID NO: 2949; SEQ ID NO: 2953; and SEQ ID NO: 2956.


In certain embodiments, the RNAi constructs of the invention comprise: (i) a sense strand comprising or consisting of the sequence of SEQ ID NO: 46 and an antisense strand comprising or consisting of the sequence of SEQ ID NO: 715; (ii) a sense strand comprising or consisting of the sequence of SEQ ID NO: 63 and an antisense strand comprising or consisting of the sequence of SEQ ID NO: 732; (iii) a sense strand comprising or consisting of the sequence of SEQ ID NO: 64 and an antisense strand comprising or consisting of the sequence of SEQ ID NO: 733; (iv) a sense strand comprising or consisting of the sequence of SEQ ID NO: 69 and an antisense strand comprising or consisting of the sequence of SEQ ID NO: 738; (v) a sense strand comprising or consisting of the sequence of SEQ ID NO: 85 and an antisense strand comprising or consisting of the sequence of SEQ ID NO: 754; (vi) a sense strand comprising or consisting of the sequence of SEQ ID NO: 92 and an antisense strand comprising or consisting of the sequence of SEQ ID NO: 761; (vii) a sense strand comprising or consisting of the sequence of SEQ ID NO: 94 and an antisense strand comprising or consisting of the sequence of SEQ ID NO: 763; (viii) a sense strand comprising or consisting of the sequence of SEQ ID NO: 95 and an antisense strand comprising or consisting of the sequence of SEQ ID NO: 764; (ix) a sense strand comprising or consisting of the sequence of SEQ ID NO: 97 and an antisense strand comprising or consisting of the sequence of SEQ ID NO: 766; (x) a sense strand comprising or consisting of the sequence of SEQ ID NO: 140 and an antisense strand comprising or consisting of the sequence of SEQ ID NO: 809; (xi) a sense strand comprising or consisting of the sequence of SEQ ID NO: 141 and an antisense strand comprising or consisting of the sequence of SEQ ID NO: 810; (xii) a sense strand comprising or consisting of the sequence of SEQ ID NO: 145 and an antisense strand comprising or consisting of the sequence of SEQ ID NO: 814; (xiii) a sense strand comprising or consisting of the sequence of SEQ ID NO: 172 and an antisense strand comprising or consisting of the sequence of SEQ ID NO: 841; (xiv) a sense strand comprising or consisting of the sequence of SEQ ID NO: 179 and an antisense strand comprising or consisting of the sequence of SEQ ID NO: 848; (xv) a sense strand comprising or consisting of the sequence of SEQ ID NO: 182 and an antisense strand comprising or consisting of the sequence of SEQ ID NO: 851; (xvi) a sense strand comprising or consisting of the sequence of SEQ ID NO: 193 and an antisense strand comprising or consisting of the sequence of SEQ ID NO: 862; or (xvii) a sense strand comprising or consisting of the sequence of SEQ ID NO: 247 and an antisense strand comprising or consisting of the sequence of SEQ ID NO: 916.


In certain other embodiments, the RNAi constructs of the invention comprise: (i) a sense strand comprising or consisting of the sequence of SEQ ID NO: 409 and an antisense strand comprising or consisting of the sequence of SEQ ID NO: 1078; (ii) a sense strand comprising or consisting of the sequence of SEQ ID NO: 388 and an antisense strand comprising or consisting of the sequence of SEQ ID NO: 1057; (iii) a sense strand comprising or consisting of the sequence of SEQ ID NO: 2808 and an antisense strand comprising or consisting of the sequence of SEQ ID NO: 2926; (iv) a sense strand comprising or consisting of the sequence of SEQ ID NO: 2820 and an antisense strand comprising or consisting of the sequence of SEQ ID NO: 2946; (v) a sense strand comprising or consisting of the sequence of SEQ ID NO: 391 and an antisense strand comprising or consisting of the sequence of SEQ ID NO: 2949; (vi) a sense strand comprising or consisting of the sequence of SEQ ID NO: 390 and an antisense strand comprising or consisting of the sequence of SEQ ID NO: 2956; (vii) a sense strand comprising or consisting of the sequence of SEQ ID NO: 179 and an antisense strand comprising or consisting of the sequence of SEQ ID NO: 2919; (viii) a sense strand comprising or consisting of the sequence of SEQ ID NO: 388 and an antisense strand comprising or consisting of the sequence of SEQ ID NO: 2953; or (ix) a sense strand comprising or consisting of the sequence of SEQ ID NO: 388 and an antisense strand comprising or consisting of the sequence of SEQ ID NO: 1057.


In some embodiments, the RNAi constructs of the invention comprise: (i) a sense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 2009 and an antisense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 2741; (ii) a sense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 2011 and an antisense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 2743; (iii) a sense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 2012 and an antisense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 2744; (iv) a sense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 2013 and an antisense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 2745; (v) a sense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 2020 and an antisense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 2752; (vi) a sense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 2035 and an antisense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 2767; (vii) a sense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 2037 and an antisense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 2769; (viii) a sense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 2041 and an antisense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 2773; (ix) a sense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 2042 and an antisense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 2774; (x) a sense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 2043 and an antisense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 2775; (xi) a sense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 2044 and an antisense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 2776; (xii) a sense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 2045 and an antisense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 2777; (xiii) a sense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 2051 and an antisense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 2783; (xiv) a sense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 2053 and an antisense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 2785; (xv) a sense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 2054 and an antisense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 2786; (xvi) a sense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 2055 and an antisense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 2787; or (xvii) a sense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 2059 and an antisense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 2791.


In other embodiments, the RNAi constructs of the invention comprise: (i) a sense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 3078 and an antisense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 3337; (ii) a sense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 3080 and an antisense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 3339; (iii) a sense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 3163 and an antisense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 3441; (iv) a sense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 3183 and an antisense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 3469; (v) a sense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 3076 and an antisense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 3472; (vi) a sense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 3077 and an antisense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 3484; (vii) a sense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 2051 and an antisense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 3545; (viii) a sense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 3080 and an antisense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 3481; (ix) a sense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 3188 and an antisense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 3339; (x) a sense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 3080 and an antisense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 3476; or (xi) a sense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 3223 and an antisense strand comprising or consisting of the sequence of modified nucleotides according to SEQ ID NO: 3517.


The RNAi construct of the invention can be any of the duplex compounds listed in Tables 1 to 24 (including the unmodified nucleotide sequences and/or modified nucleotide sequences of the compounds). In some embodiments, the RNAi construct is any of the duplex compounds listed in Table 1. In other embodiments, the RNAi construct is any of the duplex compounds listed in Table 2 (including the unmodified nucleotide sequences and/or modified nucleotide sequences of the compounds). In certain embodiments, the RNAi construct is D-1044, D-1061, D-1062, D-1067, D-1083, D-1090, D-1092, D-1093, D-1095, D-1138, D-1139, D-1143, D-1170, D-1177, D-1180, D-1191, D-1245, D-2000, D-2002, D-2003, D-2004, D-2011, D-2026, D-2028, D-2032, D-2033, D-2034, D-2035, D-2036, D-2042, D-2044, D-2045, D-2046, D-2050, D-2078, D-2079, D-2081, D-2182, D-2196, D-2238, D-2241, D-2243, D-2246, D-2255, D-2258, D-2301, D-2316, D-2317, D-2329, D-2332, D-2341, D-2344, D-2356, D-2357, D-2399, or D-2510. In certain other embodiments, the RNAi construct is D-2079, D-2081, D-2196, D-2238, D-2241, D-2255, D-2258, D-2317, D-2332, D-2357, or D-2399.


In certain embodiments, the RNAi constructs of the invention may target a particular region of the human mARC1 transcript sequence. As described in Example 4 and summarized in Table 23, it was found that certain RNAi constructs with antisense strands designed to have a sequence complementary to certain regions of the human mARC1 transcript (SEQ ID NO: 1) exhibited superior in vivo knockdown activity of human mARC1 mRNA as compared to RNAi constructs with antisense strands complementary to other regions of the transcript. Thus, in some embodiments of the invention, RNAi constructs that are particularly suitable for inhibiting expression of a human MARC1 gene in a cell comprise a sense strand and an antisense strand that hybridize to form a duplex region of about 15 to about 30 base pairs in length, wherein the antisense strand comprises a region having a sequence that is substantially complementary to the sequence of at least 15 contiguous nucleotides of nucleotides 1205 to 1250 of SEQ ID NO: 1. In one embodiment, the antisense strand comprises a region having a sequence that is substantially complementary to the sequence of at least 15 contiguous nucleotides of nucleotides 1209 to 1239 of SEQ ID NO: 1. In another embodiment, the antisense strand comprises a region having a sequence that is substantially complementary to the sequence of at least 15 contiguous nucleotides of nucleotides 1211 to 1236 of SEQ ID NO: 1. In some such embodiments, the antisense strand has a sequence that is substantially complementary with no more than 1, 2, or 3 mismatches to the sequence of at least 15 contiguous nucleotides of nucleotides 1205 to 1250, nucleotides 1209 to 1239, or nucleotides 1211 to 1236 of SEQ ID NO: 1. In other embodiments, the antisense strand has a sequence that is fully complementary to the sequence of at least 15 contiguous nucleotides of nucleotides 1205 to 1250, nucleotides 1209 to 1239, or nucleotides 1211 to 1236 of SEQ ID NO: 1. RNAi constructs targeting nucleotides 1205 to 1250 of the human mARC1 transcript include, but are not limited to, D-2063, D-2066, D-2076, D-2077, D-2078, D-2080, D-2081, D-2108, D-2113, D-2142, D-2240, D-2241, D-2243, D-2245, D-2246, D-2248, D-2250, D-2251, D-2253, D-2255, D-2256, D-2258, D-2259, D-2261, D-2264, D-2265, D-2268, D-2269, D-2270, D-2271, D-2301, D-2309, D-2311, D-2312, D-2314, D-2316, D-2317, D-2319, D-2321, D-2322, D-2324, D-2326, D-2327, D-2329, D-2331, D-2332, D-2334, D-2336, D-2337, D-2339, D-2341, D-2342, D-2344, D-2346, D-2347, D-2349, D-2351, D-2352, D-2354, D-2356, D-2357, D-2376, D-2380, D-2393, D-2395, D-2396, D-2431, D-2436, D-2437, D-2440, D-2441, D-2444, D-2445, D-2447, D-2453, D-2518, D-2519, D-2520, D-2521, D-2522, D-2523, D-2524, D-2525, D-2526, D-2527, D-2528, D-2529, D-2530, D-2531, D-2532, D-2533, D-2534, and D-2535. In some embodiments, the RNAi construct targeting nucleotides 1205 to 1250 of the human mARC1 transcript is D-2063, D-2066, D-2076, D-2077, D-2078, D-2080, D-2081, D-2108, D-2113, D-2142, or D-2301. In certain embodiments, RNAi constructs targeting nucleotides 1205 to 1250, particularly nucleotides 1211 to 1236, of SEQ ID NO: 1 comprise an antisense strand comprising the sequence of 5′-CAUCUAAUAUUCCAG-3′ (SEQ ID NO: 3656).


In other embodiments, the RNAi constructs of the invention comprise a sense strand and an antisense strand that hybridize to form a duplex region of about 15 to about 30 base pairs in length, wherein the antisense strand comprises a region having a sequence that is substantially complementary to the sequence of at least 15 contiguous nucleotides of nucleotides 1345 to 1375 of SEQ ID NO: 1. In one embodiment, the antisense strand comprises a sequence that is substantially complementary with no more than 1, 2, or 3 mismatches to the sequence of at least 15 contiguous nucleotides of nucleotides 1345 to 1375 of SEQ ID NO: 1. In another embodiment, the antisense strand comprises a sequence that is fully complementary to the sequence of at least 15 contiguous nucleotides of nucleotides 1345 to 1375 of SEQ ID NO: 1. Exemplary RNAi constructs targeting nucleotides 1345 to 1375 of the human mARC1 transcript include, but are not limited to, D-2042, D-2043, D-2047, D-2052, D-2158, D-2162, D-2169, D-2182, D-2183, D-2184, D-2185, D-2186, D-2187, D-2189, D-2211, D-2213, D-2304, D-2305, D-2306, D-2307, D-2308, D-2384, D-2384, D-2385, D-2386, D-2387, D-2388, D-2389, D-2390, D-2391, D-2392, D-2399, D-2400, D-2401, D-2402, D-2403, D-2488, D-2494, D-2500, D-2506, D-2512, D-2538, D-2539, D-2540, and D-2541. In some embodiments, the RNAi construct targeting nucleotides 1345 to 1375 of the human mARC1 transcript is D-2042, D-2043, D-2047, D-2052, D-2304, D-2305, D-2306, D-2307, or D-2308. In certain embodiments, RNAi constructs targeting nucleotides 1345 to 1375, particularly nucleotides 1350 to 1375, of SEQ ID NO: 1 comprise an antisense strand comprising the sequence of 5′-UGGGACAUUGAAGCA-3′ (SEQ ID NO: 3657).


In still other embodiments, RNAi constructs of the invention comprise a sense strand and an antisense strand that hybridize to form a duplex region of about 15 to about 30 base pairs in length, wherein the antisense strand comprises a region having a sequence that is substantially complementary to the sequence of at least 15 contiguous nucleotides of nucleotides 2039 to 2078 of SEQ ID NO: 1. In one embodiment, the antisense strand comprises a region having a sequence that is substantially complementary to the sequence of at least 15 contiguous nucleotides of nucleotides 2048 to 2074 of SEQ ID NO: 1. In some such embodiments, the antisense strand has a sequence that is substantially complementary with no more than 1, 2, or 3 mismatches to the sequence of at least 15 contiguous nucleotides of nucleotides 2039 to 2078 or nucleotides 2048 to 2074 of SEQ ID NO: 1. In other embodiments, the antisense strand has a sequence that is fully complementary to the sequence of at least 15 contiguous nucleotides of nucleotides 2039 to 2078 or nucleotides 2048 to 2074 of SEQ ID NO: 1. RNAi constructs targeting nucleotides 2039 to 2078 of the human mARC1 transcript include, but are not limited to, D-2045, D-2065, D-2079, D-2082, D-2105, D-2106, D-2137, D-2143, D-2166, D-2173, D-2193, D-2242, D-2247, D-2252, D-2257, D-2260, D-2262, D-2266, D-2272, D-2273, D-2302, D-2303, D-2310, D-2313, D-2315, D-2318, D-2320, D-2323, D-2325, D-2328, D-2330, D-2333, D-2335, D-2338, D-2340, D-2343, D-2345, D-2348, D-2350, D-2353, D-2355, D-2358, D-2394, D-2397, D-2454, D-2455, D-2456, D-2457, D-2458, D-2459, D-2460, D-2463, D-2465, D-2465, D-2468, D-2470, D-2472, D-2473, D-2477, D-2487, D-2493, D-2499, D-2505, D-2511, D-2552, D-2553, D-2554, D-2555, D-2556, and D-2557. In certain embodiments, the RNAi construct targeting nucleotides 2039 to 2078 of the human mARC1 transcript is D-2045, D-2065, D-2079, D-2082, D-2105, D-2106, D-2137, D-2143, D-2302, or D-2303. In certain other embodiments, RNAi constructs targeting nucleotides 2039 to 2078, particularly nucleotides 2048 to 2074, of SEQ ID NO: 1 comprise an antisense strand comprising the sequence of 5′-AUCAGAUCUUAGAGU-3′ (SEQ ID NO: 3658).


The RNAi constructs of the invention may comprise one or more modified nucleotides. A “modified nucleotide” refers to a nucleotide that has one or more chemical modifications to the nucleoside, nucleobase, pentose ring, or phosphate group. As used herein, modified nucleotides do not encompass ribonucleotides containing adenosine monophosphate, guanosine monophosphate, uridine monophosphate, and cytidine monophosphate. However, the RNAi constructs may comprise combinations of modified nucleotides and ribonucleotides. Incorporation of modified nucleotides into one or both strands of double-stranded RNA molecules can improve the in vivo stability of the RNA molecules, e.g., by reducing the molecules' susceptibility to nucleases and other degradation processes. The potency of RNAi constructs for reducing expression of the target gene can also be enhanced by incorporation of modified nucleotides.


In certain embodiments, the modified nucleotides have a modification of the ribose sugar. These sugar modifications can include modifications at the 2′ and/or 5′ position of the pentose ring as well as bicyclic sugar modifications. A 2′-modified nucleotide refers to a nucleotide having a pentose ring with a substituent at the 2′ position other than OH. Such 2′-modifications include, but are not limited to, 2′-H (e.g. deoxyribonucleotides), 2′-O-alkyl (e.g. —O—C1-C10 or —O—C1-C10 substituted alkyl), 2′-O-allyl (—O—CH2CH═CH2), 2′-C-allyl, 2′-deoxy-2′-fluoro (also referred to as 2′-F or 2′-fluoro), 2′-O-methyl (—OCH3), 2′-O-methoxyethyl (—O—(CH2)2OCH3), 2′-OCF3, 2′-O(CH2)2SCH3, 2′-O-aminoalkyl, 2′-amino (e.g. —NH2), 2′-O-ethylamine, and 2′-azido. Modifications at the 5′ position of the pentose ring include, but are not limited to, 5′-methyl (R or S configuration); 5′-vinyl, and 5′-methoxy.


A “bicyclic sugar modification” refers to a modification of the pentose ring where a bridge connects two atoms of the ring to form a second ring resulting in a bicyclic sugar structure. In some embodiments the bicyclic sugar modification comprises a bridge between the 4′ and 2′ carbons of the pentose ring. Nucleotides comprising a sugar moiety with a bicyclic sugar modification are referred to herein as bicyclic nucleic acids or BNAs. Exemplary bicyclic sugar modifications include, but are not limited to, α-L-Methyleneoxy (4′-CH2—O-2′) bicyclic nucleic acid (BNA); β-D-Methyleneoxy (4′-CH2—O-2′) BNA (also referred to as a locked nucleic acid or LNA); Ethyleneoxy (4′-(CH2)2—O-2′) BNA; Aminooxy (4′-CH2—O—N(R)-2′, wherein R is H, C1-C12 alkyl, or a protecting group) BNA; Oxyamino (4′-CH2—N(R)—O-2′, wherein R is H, C1-C12 alkyl, or a protecting group) BNA; Methyl(methyleneoxy) (4′-CH(CH3)—O-2′) BNA (also referred to as constrained ethyl or cEt); methylene-thio (4′-CH2—S-2′) BNA; methylene-amino (4′-CH2-N(R)-2′, wherein R is H, C1-C12 alkyl, or a protecting group) BNA; methyl carbocyclic (4′-CH2—CH(CH3)-2′) BNA; propylene carbocyclic (4′-(CH2)3-2′) BNA; and Methoxy(ethyleneoxy) (4′-CH(CH2OMe)-O-2′) BNA (also referred to as constrained MOE or cMOE). These and other sugar-modified nucleotides that can be incorporated into the RNAi constructs of the invention are described in U.S. Pat. No. 9,181,551, U.S. Patent Publication No. 2016/0122761, and Deleavey and Damha, Chemistry and Biology, Vol. 19: 937-954, 2012, all of which are hereby incorporated by reference in their entireties.


In some embodiments, the RNAi constructs comprise one or more 2′-fluoro modified nucleotides, 2′-O-methyl modified nucleotides, 2′-O-methoxyethyl modified nucleotides, 2′-O-alkyl modified nucleotides, 2′-O-allyl modified nucleotides, bicyclic nucleic acids (BNAs), deoxyribonucleotides, or combinations thereof. In certain embodiments, the RNAi constructs comprise one or more 2′-fluoro modified nucleotides, 2′-O-methyl modified nucleotides, 2′-O-methoxyethyl modified nucleotides, or combinations thereof. In one particular embodiment, the RNAi constructs comprise one or more 2′-fluoro modified nucleotides, 2′-O-methyl modified nucleotides or combinations thereof.


Both the sense and antisense strands of the RNAi constructs can comprise one or multiple modified nucleotides. For instance, in some embodiments, the sense strand comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more modified nucleotides. In certain embodiments, all nucleotides in the sense strand are modified nucleotides. In some embodiments, the antisense strand comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more modified nucleotides. In other embodiments, all nucleotides in the antisense strand are modified nucleotides. In certain other embodiments, all nucleotides in the sense strand and all nucleotides in the antisense strand are modified nucleotides. In these and other embodiments, the modified nucleotides can be 2′-fluoro modified nucleotides, 2′-O-methyl modified nucleotides, or combinations thereof.


In certain embodiments, the modified nucleotides incorporated into one or both of the strands of the RNAi constructs of the invention have a modification of the nucleobase (also referred to herein as “base”). A “modified nucleobase” or “modified base” refers to a base other than the naturally occurring purine bases adenine (A) and guanine (G) and pyrimidine bases thymine (T), cytosine (C), and uracil (U). Modified nucleobases can be synthetic or naturally occurring modifications and include, but are not limited to, universal bases, 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine (X), hypoxanthine (I), 2-aminoadenine, 6-methyladenine, 6-methylguanine, and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and guanines, 5-halo, particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-deazaadenine and 3-deazaguanine and 3-deazaadenine.


In some embodiments, the modified base is a universal base. A “universal base” refers to a base analog that indiscriminately forms base pairs with all of the natural bases in RNA and DNA without altering the double helical structure of the resulting duplex region. Universal bases are known to those of skill in the art and include, but are not limited to, inosine, C-phenyl, C-naphthyl and other aromatic derivatives, azole carboxamides, and nitroazole derivatives, such as 3-nitropyrrole, 4-nitroindole, 5-nitroindole, and 6-nitroindole.


Other suitable modified bases that can be incorporated into the RNAi constructs of the invention include those described in Herdewijn, Antisense Nucleic Acid Drug Dev., Vol. 10: 297-310, 2000 and Peacock et al., J. Org. Chem., Vol. 76: 7295-7300, 2011, both of which are hereby incorporated by reference in their entireties. The skilled person is well aware that guanine, cytosine, adenine, thymine, and uracil may be replaced by other nucleobases, such as the modified nucleobases described above, without substantially altering the base pairing properties of a polynucleotide comprising a nucleotide bearing such replacement nucleobase.


In some embodiments, the sense and antisense strands of the RNAi constructs may comprise one or more abasic nucleotides. An “abasic nucleotide” or “abasic nucleoside” is a nucleotide or nucleoside that lacks a nucleobase at the 1′ position of the ribose sugar. In certain embodiments, the abasic nucleotides are incorporated into the terminal ends of the sense and/or antisense strands of the RNAi constructs. In one embodiment, the sense strand comprises an abasic nucleotide as the terminal nucleotide at its 3′ end, its 5′ end, or both its 3′ and 5′ ends. In another embodiment, the antisense strand comprises an abasic nucleotide as the terminal nucleotide at its 3′ end, its 5′ end, or both its 3′ and 5′ ends. In such embodiments in which the abasic nucleotide is a terminal nucleotide, it may be an inverted nucleotide—that is, linked to the adjacent nucleotide through a 3′-3′ internucleotide linkage (when on the 3′ end of a strand) or through a 5′-5′ internucleotide linkage (when on the 5′ end of a strand) rather than the natural 3′-5′ internucleotide linkage. Abasic nucleotides may also comprise a sugar modification, such as any of the sugar modifications described above. In certain embodiments, abasic nucleotides comprise a 2′-modification, such as a 2′-fluoro modification, 2′-O-methyl modification, or a 2′-H (deoxy) modification. In one embodiment, the abasic nucleotide comprises a 2′-O-methyl modification. In another embodiment, the abasic nucleotide comprises a 2′-H modification (i.e. a deoxy abasic nucleotide).


In certain embodiments, the RNAi constructs of the invention may comprise modified nucleotides incorporated into the sense and anti sense strands according to a particular pattern, such as the patterns described in WIPO Publication No. WO 2020/123410, which is hereby incorporated by reference in its entirety. RNAi constructs having such chemical modification patterns have been shown to have improved gene silencing activity in vivo. In one embodiment, the RNAi construct of the invention comprises a sense strand and an antisense strand that comprise sequences that are sufficiently complementary to each other to form a duplex region of at least 15 base pairs, wherein:

    • nucleotides at positions 2, 7, and 14 in the antisense strand (counting from the 5′ end) are 2′-fluoro modified nucleotides;
    • nucleotides in the sense strand at positions paired with positions 8 to 11 and 13 in the antisense strand (counting from the 5′ end) are 2′-fluoro modified nucleotides; and
    • neither the sense strand nor the antisense strand each have more than 7 total 2′-fluoro modified nucleotides.


In other embodiments, the RNAi construct of the invention comprises a sense strand and an antisense strand that comprise sequences that are sufficiently complementary to each other to form a duplex region of at least 19 base pairs, wherein:

    • nucleotides at positions 2, 7, and 14 in the antisense strand (counting from the 5′ end) are 2′-fluoro modified nucleotides, nucleotides at positions 4, 6, 10, and 12 (counting from the 5′ end) are optionally 2′-fluoro modified nucleotides, and all other nucleotides in the antisense strand are modified nucleotides other than 2′-fluoro modified nucleotides; and
    • nucleotides in the sense strand at positions paired with positions 8 to 11 and 13 in the antisense strand (counting from the 5′ end) are 2′-fluoro modified nucleotides, nucleotides in the sense strand at positions paired with positions 3 and 5 in the antisense strand (counting from the 5′ end) are optionally 2′-fluoro modified nucleotides; and all other nucleotides in the sense strand are modified nucleotides other than 2′-fluoro modified nucleotides.


In such embodiments, the modified nucleotides other than 2′-fluoro modified nucleotides can be selected from 2′-O-methyl modified nucleotides, 2′-O-methoxyethyl modified nucleotides, 2′-O-alkyl modified nucleotides, 2′-O-allyl modified nucleotides, BNAs, and deoxyribonucleotides. In these and other embodiments, the terminal nucleotide at the 3′ end, the 5′ end, or both the 3′ end and the 5′ end of the sense strand can be an abasic nucleotide or a deoxyribonucleotide. In such embodiments, the abasic nucleotide or deoxyribonucleotide may be inverted—i.e. linked to the adjacent nucleotide through a 3′-3′ internucleotide linkage (when on the 3′ end of a strand) or through a 5′-5′ internucleotide linkage (when on the 5′ end of a strand) rather than the natural 3′-5′ internucleotide linkage.


In any of the above-described embodiments, nucleotides at positions 2, 7, 12, and 14 in the antisense strand (counting from the 5′ end) are 2′-fluoro modified nucleotides. In other embodiments, nucleotides at positions 2, 4, 7, 12, and 14 in the antisense strand (counting from the 5′ end) are 2′-fluoro modified nucleotides. In yet other embodiments, nucleotides at positions 2, 4, 6, 7, 12, and 14 in the antisense strand (counting from the 5′ end) are 2′-fluoro modified nucleotides. In still other embodiments, nucleotides at positions 2, 4, 6, 7, 10, 12, and 14 in the antisense strand (counting from the 5′ end) are 2′-fluoro modified nucleotides. In alternative embodiments, nucleotides at positions 2, 7, 10, 12, and 14 in the antisense strand (counting from the 5′ end) are 2′-fluoro modified nucleotides. In certain other embodiments, nucleotides at positions 2, 4, 7, 10, 12, and 14 in the antisense strand (counting from the 5′ end) are 2′-fluoro modified nucleotides.


In any of the above-described embodiments, nucleotides in the sense strand at positions paired with positions 3, 8 to 11, and 13 in the antisense strand (counting from the 5′ end) are 2′-fluoro modified nucleotides. In some embodiments, nucleotides in the sense strand at positions paired with positions 5, 8 to 11, and 13 in the antisense strand (counting from the 5′ end) are 2′-fluoro modified nucleotides. In other embodiments, nucleotides in the sense strand at positions paired with positions 3, 5, 8 to 11, and 13 in the antisense strand (counting from the 5′ end) are 2′-fluoro modified nucleotides.


In some embodiments, the RNAi construct of the invention comprises a structure represented by Formula (A):





5′-(NA)xNLNLNLNLNLNLNFNLNFNFNFNFNLNLNMNLNMNLNT(n)y-3′





3′-(NB)zNLNLNLNLNLNFNLNMNLNMNLNLNFNMNLNMNLNFNL-5′   (A)


In Formula (A), the top strand listed in the 5′ to 3′ direction is the sense strand and the bottom strand listed in the 3′ to 5′ direction is the antisense strand; each NF represents a 2′-fluoro modified nucleotide; each NM independently represents a modified nucleotide selected from a 2′-fluoro modified nucleotide, a 2′-O-methyl modified nucleotide, a 2′-O-methoxyethyl modified nucleotide, a 2′-O-alkyl modified nucleotide, a 2′-O-allyl modified nucleotide, a BNA, and a deoxyribonucleotide; each NL independently represents a modified nucleotide selected from a 2′-O-methyl modified nucleotide, a 2′-O-methoxyethyl modified nucleotide, a 2′-O-alkyl modified nucleotide, a 2′-O-allyl modified nucleotide, a BNA, and a deoxyribonucleotide; and NT represents a modified nucleotide selected from an abasic nucleotide, an inverted abasic nucleotide, an inverted deoxyribonucleotide, a 2′-O-methyl modified nucleotide, a 2′-O-methoxyethyl modified nucleotide, a 2′-O-alkyl modified nucleotide, a 2′-O-allyl modified nucleotide, a BNA, and a deoxyribonucleotide. X can be an integer from 0 to 4, provided that when x is 1, 2, 3, or 4, one or more of the NA nucleotides is a modified nucleotide independently selected from an abasic nucleotide, an inverted abasic nucleotide, an inverted deoxyribonucleotide, a 2′-O-methyl modified nucleotide, a 2′-O-methoxyethyl modified nucleotide, a 2′-O-alkyl modified nucleotide, a 2′-O-allyl modified nucleotide, a BNA, and a deoxyribonucleotide. One or more of the NA nucleotides can be complementary to nucleotides in the antisense strand. Y can be an integer from 0 to 4, provided that when y is 1, 2, 3, or 4, one or more n nucleotides are modified or unmodified overhang nucleotides that do not base pair with nucleotides in the antisense strand. Z can be an integer from 0 to 4, provided that when z is 1, 2, 3, or 4, one or more of the NB nucleotides is a modified nucleotide independently selected from a 2′-O-methyl modified nucleotide, a 2′-O-methoxyethyl modified nucleotide, a 2′-O-alkyl modified nucleotide, a 2′-O-allyl modified nucleotide, a BNA, and a deoxyribonucleotide. One or more of the NB nucleotides can be complementary to NA nucleotides when present in the sense strand or can be overhang nucleotides that do not base pair with nucleotides in the sense strand.


In some embodiments in which the RNAi construct comprises a structure represented by Formula (A), there is a nucleotide overhang at the 3′ end of the sense strand—i.e. y is 1, 2, 3, or 4. In one such embodiment, y is 2. In embodiments in which there is an overhang of 2 nucleotides at the 3′ end of the sense strand (i.e. y is 2), x is 0 and z is 2 or x is 1 and z is 2. In other embodiments in which the RNAi construct comprises a structure represented by Formula (A), the RNAi construct comprises a blunt end at the 3′ end of the sense strand and the 5′ end of the antisense strand (i.e. y is 0). In such embodiments where there is no nucleotide overhang at the 3′ end of the sense strand (i.e. y is 0): (i) x is 2 and z is 4, (ii) x is 3 and z is 4, (iii) x is 0 and z is 2, (iv) x is 1 and z is 2, or (v) x is 2 and z is 2. In any of the embodiments in which x is greater than 0, the NA nucleotide that is the terminal nucleotide at the 5′ end of the sense strand can be an inverted nucleotide, such as an inverted abasic nucleotide or an inverted deoxyribonucleotide.


In certain embodiments in which the RNAi construct comprises a structure represented by Formula (A), the NM at positions 4 and 12 in the antisense strand counting from the 5′ end are each a 2′-fluoro modified nucleotide. In other embodiments, the NM at positions 4, 6, and 12 in the antisense strand counting from the 5′ end are each a 2′-fluoro modified nucleotide. In yet other embodiments, the NM at positions 4, 6, 10, and 12 in the antisense strand counting from the 5′ end are each a 2′-fluoro modified nucleotide. In alternative embodiments in which the RNAi construct comprises a structure represented by Formula (A), the NM at positions 10 and 12 in the antisense strand counting from the 5′ end are each a 2′-fluoro modified nucleotide. In related embodiments, the NM at positions 4, 10, and 12 in the antisense strand counting from the 5′ end are each a 2′-fluoro modified nucleotide. In other alternative embodiments in which the RNAi construct comprises a structure represented by Formula (A), the NM at positions 4, 6, and 10 in the antisense strand counting from the 5′ end are each a 2′-O-methyl modified nucleotide, and the NM at position 12 in the antisense strand counting from the 5′ end is a 2′-fluoro modified nucleotide. In some embodiments in which the RNAi construct comprises a structure represented by Formula (A), each NM in the sense strand is a 2′-O-methyl modified nucleotide. In other embodiments, each NM in the sense strand is a 2′-fluoro modified nucleotide. In still other embodiments in which the RNAi construct comprises a structure represented by Formula (A), each NM in both the sense and antisense strands is a 2′-O-methyl modified nucleotide.


In any of the above-described embodiments in which the RNAi construct comprises a structure represented by Formula (A), each NL in both the sense and antisense strands can be a 2′-O-methyl modified nucleotide. In these embodiments and any of the embodiments described above, NT in Formula (A) can be an inverted abasic nucleotide, an inverted deoxyribonucleotide, or a 2′-O-methyl modified nucleotide.


In other embodiments of the invention, the RNAi construct of the invention comprises a structure represented by Formula (B):





5′-(NA)xNLNLNLNLNMNLNFNFNFNFNLNLNLNLNLNLNLNLNT(n)y-3′





3′-(NB)zNLNLNLNMNLNFNLNMNLNLNMNMNMNMNLNMNLNFNL-5′   (B)


In Formula (B), the top strand listed in the 5′ to 3′ direction is the sense strand and the bottom strand listed in the 3′ to 5′ direction is the antisense strand; each NF represents a 2′-fluoro modified nucleotide; each NM independently represents a modified nucleotide selected from a 2′-fluoro modified nucleotide, a 2′-O-methyl modified nucleotide, a 2′-O-methoxyethyl modified nucleotide, a 2′-O-alkyl modified nucleotide, a 2′-O-allyl modified nucleotide, a BNA, and a deoxyribonucleotide; each NL independently represents a modified nucleotide selected from a 2′-O-methyl modified nucleotide, a 2′-O-methoxyethyl modified nucleotide, a 2′-O-alkyl modified nucleotide, a 2′-O-allyl modified nucleotide, a BNA, and a deoxyribonucleotide; and NT represents a modified nucleotide selected from an abasic nucleotide, an inverted abasic nucleotide, an inverted deoxyribonucleotide, a 2′-O-methyl modified nucleotide, a 2′-O-methoxyethyl modified nucleotide, a 2′-O-alkyl modified nucleotide, a 2′-O-allyl modified nucleotide, a BNA, and a deoxyribonucleotide. X can be an integer from 0 to 4, provided that when x is 1, 2, 3, or 4, one or more of the NA nucleotides is a modified nucleotide independently selected from an abasic nucleotide, an inverted abasic nucleotide, an inverted deoxyribonucleotide, a 2′-O-methyl modified nucleotide, a 2′-O-methoxyethyl modified nucleotide, a 2′-O-alkyl modified nucleotide, a 2′-O-allyl modified nucleotide, a BNA, and a deoxyribonucleotide. One or more of the NA nucleotides can be complementary to nucleotides in the antisense strand. Y can be an integer from 0 to 4, provided that when y is 1, 2, 3, or 4, one or more n nucleotides are modified or unmodified overhang nucleotides that do not base pair with nucleotides in the antisense strand. Z can be an integer from 0 to 4, provided that when z is 1, 2, 3, or 4, one or more of the NB nucleotides is a modified nucleotide independently selected from a 2′-O-methyl modified nucleotide, a 2′-O-methoxyethyl modified nucleotide, a 2′-O-alkyl modified nucleotide, a 2′-O-allyl modified nucleotide, a BNA, and a deoxyribonucleotide. One or more of the NB nucleotides can be complementary to NA nucleotides when present in the sense strand or can be overhang nucleotides that do not base pair with nucleotides in the sense strand.


In some embodiments in which the RNAi construct comprises a structure represented by Formula (B), there is a nucleotide overhang at the 3′ end of the sense strand—i.e. y is 1, 2, 3, or 4. In one such embodiment, y is 2. In embodiments in which there is an overhang of 2 nucleotides at the 3′ end of the sense strand (i.e. y is 2), x is 0 and z is 2 or x is 1 and z is 2. In other embodiments in which the RNAi construct comprises a structure represented by Formula (B), the RNAi construct comprises a blunt end at the 3′ end of the sense strand and the 5′ end of the antisense strand (i.e. y is 0). In such embodiments where there is no nucleotide overhang at the 3′ end of the sense strand (i.e. y is 0): (i) x is 2 and z is 4, (ii) x is 3 and z is 4, (iii) x is 0 and z is 2, (iv) x is 1 and z is 2, or (v) x is 2 and z is 2. In any of the embodiments in which x is greater than 0, the NA nucleotide that is the terminal nucleotide at the 5′ end of the sense strand can be an inverted nucleotide, such as an inverted abasic nucleotide or an inverted deoxyribonucleotide.


In certain embodiments in which the RNAi construct comprises a structure represented by Formula (B), the NM at positions 4, 6, 8, 9, and 16 in the antisense strand counting from the 5′ end are each a 2′-fluoro modified nucleotide and the NM at positions 7 and 12 in the antisense strand counting from the 5′ end are each a 2′-O-methyl modified nucleotide. In other embodiments, the NM at positions 4 and 6 in the antisense strand counting from the 5′ end are each a 2′-fluoro modified nucleotide and the NM at positions 7 to 9 in the antisense strand counting from the 5′ end are each a 2′-O-methyl modified nucleotide. In still other embodiments, the NM at positions 4, 6, 8, 9, and 16 in the antisense strand counting from the 5′ end are each a 2′-O-methyl modified nucleotide and the NM at positions 7 and 12 in the antisense strand counting from the 5′ end are each a 2′-fluoro modified nucleotide. In alternative embodiments in which the RNAi construct comprises a structure represented by Formula (B), the NM at positions 4, 6, 8, 9, and 12 in the antisense strand counting from the 5′ end are each a 2′-O-methyl modified nucleotide and the NM at positions 7 and 16 in the antisense strand counting from the 5′ end are each a 2′-fluoro modified nucleotide. In certain other embodiments in which the RNAi construct comprises a structure represented by Formula (B), the NM at positions 7, 8, 9, and 12 in the antisense strand counting from the 5′ end are each a 2′-O-methyl modified nucleotide and the NM at positions 4, 6, and 16 in the antisense strand counting from the 5′ end are each a 2′-fluoro modified nucleotide. In these and other embodiments in which the RNAi construct comprises a structure represented by Formula (B), the NM in the sense strand is a 2′-fluoro modified nucleotide. In alternative embodiments, the NM in the sense strand is a 2′-O-methyl modified nucleotide.


In any of the above-described embodiments in which the RNAi construct comprises a structure represented by Formula (B), each NL in both the sense and antisense strands can be a 2′-O-methyl modified nucleotide. In these embodiments and any of the embodiments described above, NT in Formula (B) can be an inverted abasic nucleotide, an inverted deoxyribonucleotide, or a 2′-O-methyl modified nucleotide.


The RNAi constructs of the invention may also comprise one or more modified internucleotide linkages. As used herein, the term “modified internucleotide linkage” refers to an internucleotide linkage other than the natural 3′ to 5′ phosphodiester linkage. In some embodiments, the modified internucleotide linkage is a phosphorous-containing internucleotide linkage, such as a phosphotriester, aminoalkylphosphotriester, an alkylphosphonate (e.g. methylphosphonate, 3′-alkylene phosphonate), a phosphinate, a phosphoramidate (e.g. 3′-amino phosphoramidate and aminoalkylphosphoramidate), a phosphorothioate, a chiral phosphorothioate, a phosphorodithioate, a thionophosphoramidate, a thionoalkylphosphonate, a thionoalkylphosphotriester, and a boranophosphate. In one embodiment, a modified internucleotide linkage is a 2′ to 5′ phosphodiester linkage. In other embodiments, the modified internucleotide linkage is a non-phosphorous-containing internucleotide linkage and thus can be referred to as a modified internucleoside linkage. Such non-phosphorous-containing linkages include, but are not limited to, morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane linkages (—O—Si(H)2—O—); sulfide, sulfoxide and sulfone linkages; formacetyl and thioformacetyl linkages; alkene containing backbones; sulfamate backbones; methylenemethylimino (—CH2—N(CH3)—O—CH2—) and methylenehydrazino linkages; sulfonate and sulfonamide linkages; amide linkages; and others having mixed N, O, S and CH2 component parts. In one embodiment, the modified internucleoside linkage is a peptide-based linkage (e.g. aminoethylglycine) to create a peptide nucleic acid or PNA, such as those described in U.S. Pat. Nos. 5,539,082; 5,714,331; and 5,719,262. Other suitable modified internucleotide and internucleoside linkages that may be employed in the RNAi constructs of the invention are described in U.S. Pat. Nos. 6,693,187, 9,181,551, U.S. Patent Publication No. 2016/0122761, and Deleavey and Damha, Chemistry and Biology, Vol. 19: 937-954, 2012, all of which are hereby incorporated by reference in their entireties.


In certain embodiments, the RNAi constructs of the invention comprise one or more phosphorothioate internucleotide linkages. The phosphorothioate internucleotide linkages may be present in the sense strand, antisense strand, or both strands of the RNAi constructs. For instance, in some embodiments, the sense strand comprises 1, 2, 3, 4, 5, 6, 7, 8, or more phosphorothioate internucleotide linkages. In other embodiments, the antisense strand comprises 1, 2, 3, 4, 5, 6, 7, 8, or more phosphorothioate internucleotide linkages. In still other embodiments, both strands comprise 1, 2, 3, 4, 5, 6, 7, 8, or more phosphorothioate internucleotide linkages. The RNAi constructs can comprise one or more phosphorothioate internucleotide linkages at the 3′-end, the 5′-end, or both the 3′- and 5′-ends of the sense strand, the antisense strand, or both strands. For instance, in certain embodiments, the RNAi construct comprises about 1 to about 6 or more (e.g., about 1, 2, 3, 4, 5, 6 or more) consecutive phosphorothioate internucleotide linkages at the 3′-end of the sense strand, the antisense strand, or both strands. In other embodiments, the RNAi construct comprises about 1 to about 6 or more (e.g., about 1, 2, 3, 4, 5, 6 or more) consecutive phosphorothioate internucleotide linkages at the 5′-end of the sense strand, the antisense strand, or both strands. In one particular embodiment, the antisense strand comprises at least 1 but no more than 6 phosphorothioate internucleotide linkages and the sense strand comprises at least 1 but no more than 4 phosphorothioate internucleotide linkages. In another particular embodiment, the antisense strand comprises at least 1 but no more than 4 phosphorothioate internucleotide linkages and the sense strand comprises at least 1 but no more than 2 phosphorothioate internucleotide linkages.


In some embodiments, the RNAi construct comprises a single phosphorothioate internucleotide linkage between the terminal nucleotides at the 3′ end of the sense strand. In other embodiments, the RNAi construct comprises two consecutive phosphorothioate internucleotide linkages between the terminal nucleotides at the 3′ end of the sense strand. In one embodiment, the RNAi construct comprises a single phosphorothioate internucleotide linkage between the terminal nucleotides at the 3′ end of the sense strand and a single phosphorothioate internucleotide linkage between the terminal nucleotides at the 3′ end of the antisense strand. In another embodiment, the RNAi construct comprises two consecutive phosphorothioate internucleotide linkages between the terminal nucleotides at the 3′ end of the antisense strand (i.e. a phosphorothioate internucleotide linkage at the first and second internucleotide linkages at the 3′ end of the antisense strand). In another embodiment, the RNAi construct comprises two consecutive phosphorothioate internucleotide linkages between the terminal nucleotides at both the 3′ and 5′ ends of the antisense strand. In yet another embodiment, the RNAi construct comprises two consecutive phosphorothioate internucleotide linkages between the terminal nucleotides at both the 3′ and 5′ ends of the antisense strand and two consecutive phosphorothioate internucleotide linkages at the 5′ end of the sense strand. In still another embodiment, the RNAi construct comprises two consecutive phosphorothioate internucleotide linkages between the terminal nucleotides at both the 3′ and 5′ ends of the antisense strand and two consecutive phosphorothioate internucleotide linkages between the terminal nucleotides at the 3′ end of the sense strand. In another embodiment, the RNAi construct comprises two consecutive phosphorothioate internucleotide linkages between the terminal nucleotides at both the 3′ and 5′ ends of the antisense strand and two consecutive phosphorothioate internucleotide linkages between the terminal nucleotides at both the 3′ and 5′ ends of the sense strand (i.e. a phosphorothioate internucleotide linkage at the first and second internucleotide linkages at both the 5′ and 3′ ends of the antisense strand and a phosphorothioate internucleotide linkage at the first and second internucleotide linkages at both the 5′ and 3′ ends of the sense strand). In yet another embodiment, the RNAi construct comprises two consecutive phosphorothioate internucleotide linkages between the terminal nucleotides at both the 3′ and 5′ ends of the antisense strand and a single phosphorothioate internucleotide linkage between the terminal nucleotides at the 3′ end of the sense strand. In any of the embodiments in which one or both strands comprise one or more phosphorothioate internucleotide linkages, the remaining internucleotide linkages within the strands can be the natural 3′ to 5′ phosphodiester linkages. For instance, in some embodiments, each internucleotide linkage of the sense and antisense strands is selected from phosphodiester and phosphorothioate, wherein at least one internucleotide linkage is a phosphorothioate.


In embodiments in which the RNAi construct comprises a nucleotide overhang, two or more of the unpaired nucleotides in the overhang can be connected by a phosphorothioate internucleotide linkage. In certain embodiments, all the unpaired nucleotides in a nucleotide overhang at the 3′ end of the antisense strand and/or the sense strand are connected by phosphorothioate internucleotide linkages. In other embodiments, all the unpaired nucleotides in a nucleotide overhang at the 5′ end of the antisense strand and/or the sense strand are connected by phosphorothioate internucleotide linkages. In still other embodiments, all the unpaired nucleotides in any nucleotide overhang are connected by phosphorothioate internucleotide linkages.


Incorporation of a phosphorothioate internucleotide linkage introduces an additional chiral center at the phosphorous atom in the oligonucleotide and therefore creates a diastereomer pair (Rp and Sp) at each phosphorothioate internucleotide linkage. Diastereomers or diastereoisomers are different configurations of a compound that have the same molecular formula and sequence of bonded atoms but differ in the three-dimensional orientations of their atoms in space. Unlike enantiomers, diastereomers are not mirror-images of each other. Each chiral phosphate atom can be in the “R” configuration (Rp) or the “S” configuration (Sp). In certain embodiments, the RNAi constructs of the invention may comprise one or more phosphorothioate internucleotide linkages where the chiral phosphates are selected to be primarily in either the Rp or Sp configuration. For instance, in some embodiments in which the RNAi constructs have one or more phosphorothioate internucleotide linkages, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, or at least about 95% of the chiral phosphates are in the Sp configuration. In other embodiments in which the RNAi constructs have one or more phosphorothioate internucleotide linkages, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, or at least about 95% of the chiral phosphates are in the Rp configuration. All the chiral phosphates in the RNAi construct can be either in the Sp configuration or the Rp configuration (i.e. the RNAi construct is stereopure). In one particular embodiment, all the chiral phosphates in the RNAi construct are in the Sp configuration. In another particular embodiment, all the chiral phosphates in the RNAi construct are in the Rp configuration.


In certain embodiments, the chiral phosphates in the RNAi construct may have different configurations at different positions in the sense strand or antisense strand. In one such embodiment in which the RNAi construct comprises one or two phosphorothioate internucleotide linkages at the 5′ end of the antisense strand, the chiral phosphates at the 5′ end of the antisense strand may be in the Rp configuration. In another such embodiment in which the RNAi construct comprises one or two phosphorothioate internucleotide linkages at the 3′ end of the antisense strand, the chiral phosphates at the 3′ end of the antisense strand may be in the Sp configuration. In certain embodiments, the RNAi construct comprises two consecutive phosphorothioate internucleotide linkages between the terminal nucleotides at both the 3′ and 5′ ends of the antisense strand and two consecutive phosphorothioate internucleotide linkages between the terminal nucleotides at the 3′ end of the sense strand, wherein the chiral phosphates at the 5′ end of the antisense strand are in the Rp configuration, the chiral phosphates at the 3′ end of the antisense strand are in the Sp configuration, and the chiral phosphates at the 3′ end of the sense strand can be either in the Rp or Sp configuration. In certain other embodiments, the RNAi construct comprises two consecutive phosphorothioate internucleotide linkages between the terminal nucleotides at both the 3′ and 5′ ends of the antisense strand and a single phosphorothioate internucleotide linkage between the terminal nucleotides at the 3′ end of the sense strand, wherein the chiral phosphates at the 5′ end of the antisense strand are in the Rp configuration, the chiral phosphates at the 3′ end of the antisense strand are in the Sp configuration, and the chiral phosphate at the 3′ end of the sense strand can be either in the Rp or Sp configuration. Methods of controlling the stereochemistry of phosphorothioate linkages during oligonucleotide synthesis are known to those skilled in the art and can include methods described in Nawrot and Rebowska, Curr Protoc Nucleic Acid Chem. 2009, Chapter 4: doi:10.1002/0471142700.nc0434s362009; Jahns et al., Nat. Commun, Vol. 6: 6317, 2015; Knouse et al., Science, Vol. 361: 1234-1238, 2018; and Sakamuri et al., Chembiochem, Vol. 21(9): 1304-1308, 2020.


In some embodiments of the RNAi constructs of the invention, the 5′ end of the sense strand, antisense strand, or both the antisense and sense strands comprises a phosphate moiety. As used herein, the term “phosphate moiety” refers to a terminal phosphate group that includes unmodified phosphates (—O—P═O)(OH)OH) as well as modified phosphates. Modified phosphates include phosphates in which one or more of the O and OH groups are replaced with H, O, S, N(R) or alkyl (e.g. C1 to C12) where R is H, an amino protecting group or unsubstituted or substituted alkyl (e.g. C1 to C12). Exemplary phosphate moieties include, but are not limited to, 5′-monophosphate; 5′-diphosphate; 5′-triphosphate; 5′-guanosine cap (7-methylated or non-methylated); 5′-adenosine cap or any other modified or unmodified nucleotide cap structure; 5′-monothiophosphate (phosphorothioate); 5′-monodithiophosphate (phosphorodithioate); 5′-alpha-thiotriphosphate; 5′-gamma-thiotriphosphate, 5′-phosphoramidates; 5′-vinylphosphates; 5′-alkylphosphonates (e.g., alkyl=methyl, ethyl, isopropyl, propyl, etc.); and 5′-alkyletherphosphonates (e.g., alkylether=methoxymethyl, ethoxymethyl, etc.).


The modified nucleotides that can be incorporated into the RNAi constructs of the invention may have more than one chemical modification described herein. For instance, the modified nucleotide may have a modification to the ribose sugar as well as a modification to the nucleobase. By way of example, a modified nucleotide may comprise a 2′ sugar modification (e.g. 2′-fluoro or 2′-O-methyl) and comprise a modified base (e.g. 5-methyl cytosine or pseudouracil). In other embodiments, the modified nucleotide may comprise a sugar modification in combination with a modification to the 5′ phosphate that would create a modified internucleotide or internucleoside linkage when the modified nucleotide was incorporated into a polynucleotide. For instance, in some embodiments, the modified nucleotide may comprise a sugar modification, such as a 2′-fluoro modification, a 2′-O-methyl modification, or a bicyclic sugar modification, as well as a 5′ phosphorothioate group. Accordingly, in some embodiments, one or both strands of the RNAi constructs of the invention comprise a combination of 2′ modified nucleotides or BNAs and phosphorothioate internucleotide linkages. In certain embodiments, both the sense and antisense strands of the RNAi constructs of the invention comprise a combination of 2′-fluoro modified nucleotides, 2′-O-methyl modified nucleotides, and phosphorothioate internucleotide linkages. Exemplary RNAi constructs comprising modified nucleotides and internucleotide linkages are shown in Table 2.


The RNAi constructs of the invention can readily be made using techniques known in the art, for example, using conventional nucleic acid solid phase synthesis. The polynucleotides of the RNAi constructs can be assembled on a suitable nucleic acid synthesizer utilizing standard nucleotide or nucleoside precursors (e.g. phosphoramidites). Automated nucleic acid synthesizers are sold commercially by several vendors, including DNA/RNA synthesizers from Applied Biosystems (Foster City, Calif.), MerMade synthesizers from BioAutomation (Irving, Tex.), and OligoPilot synthesizers from GE Healthcare Life Sciences (Pittsburgh, Pa.). An exemplary method for synthesizing the RNAi constructs of the invention is described in Example 2.


A 2′ silyl protecting group can be used in conjunction with acid labile dimethoxytrityl (DMT) at the 5′ position of ribonucleosides to synthesize oligonucleotides via phosphoramidite chemistry. Final deprotection conditions are known not to significantly degrade RNA products. All syntheses can be conducted in any automated or manual synthesizer on large, medium, or small scale. The syntheses may also be carried out in multiple well plates, columns, or glass slides.


The 2′-O-silyl group can be removed via exposure to fluoride ions, which can include any source of fluoride ion, e.g., those salts containing fluoride ion paired with inorganic counterions e.g., cesium fluoride and potassium fluoride or those salts containing fluoride ion paired with an organic counterion, e.g., a tetraalkylammonium fluoride. A crown ether catalyst can be utilized in combination with the inorganic fluoride in the deprotection reaction. Exemplary fluoride ion sources are tetrabutylammonium fluoride or aminohydrofluorides (e.g., combining aqueous HF with triethylamine in a dipolar aprotic solvent, e.g., dimethylformamide).


The choice of protecting groups for use on the phosphite triesters and phosphotriesters can alter the stability of the triesters towards fluoride. Methyl protection of the phosphotriester or phosphite triester can stabilize the linkage against fluoride ions and improve process yields.


Since ribonucleosides have a reactive 2′ hydroxyl substituent, it can be desirable to protect the reactive 2′ position in RNA with a protecting group that is orthogonal to a 5′-O-dimethoxytrityl protecting group, e.g., one stable to treatment with acid. Silyl protecting groups meet this criterion and can be readily removed in a final fluoride deprotection step that can result in minimal RNA degradation.


Tetrazole catalysts can be used in the standard phosphoramidite coupling reaction. Exemplary catalysts include, e.g., tetrazole, S-ethyl-tetrazole, benzylthiotetrazole, p-nitrophenyltetrazole.


As can be appreciated by the skilled artisan, further methods of synthesizing the RNAi constructs described herein will be evident to those of ordinary skill in the art. Additionally, the various synthetic steps may be performed in an alternate sequence or order to give the desired compounds. Other synthetic chemistry transformations, protecting groups (e.g., for hydroxyl, amino, etc. present on the bases) and protecting group methodologies (protection and deprotection) useful in synthesizing the RNAi constructs described herein are known in the art and include, for example, those such as described in R. Larock, Comprehensive Organic Transformations, VCH Publishers (1989); T. W. Greene and P. G. M. Wuts, Protective Groups in Organic Synthesis, 2d. Ed., John Wiley and Sons (1991); L. Fieser and M. Fieser, Fieser and Fieser's Reagents for Organic Synthesis, John Wiley and Sons (1994); and L. Paquette, ed., Encyclopedia of Reagents for Organic Synthesis, John Wiley and Sons (1995), and subsequent editions thereof. Custom synthesis of RNAi constructs is also available from several commercial vendors, including Dharmacon, Inc. (Lafayette, Colo.), AxoLabs GmbH (Kulmbach, Germany), and Ambion, Inc. (Foster City, Calif.).


The RNAi constructs of the invention may comprise a ligand. As used herein, a “ligand” refers to any compound or molecule that is capable of interacting with another compound or molecule, directly or indirectly. The interaction of a ligand with another compound or molecule may elicit a biological response (e.g. initiate a signal transduction cascade, induce receptor-mediated endocytosis) or may just be a physical association. The ligand can modify one or more properties of the double-stranded RNA molecule to which is attached, such as the pharmacodynamic, pharmacokinetic, binding, absorption, cellular distribution, cellular uptake, charge and/or clearance properties of the RNA molecule.


The ligand may comprise a serum protein (e.g., human serum albumin, low-density lipoprotein, globulin), a cholesterol moiety, a vitamin (biotin, vitamin E, vitamin B 12), a folate moiety, a steroid, a bile acid (e.g. cholic acid), a fatty acid (e.g., palmitic acid, myristic acid), a carbohydrate (e.g., a dextran, pullulan, chitin, chitosan, inulin, cyclodextrin or hyaluronic acid), a glycoside, a phospholipid, or antibody or binding fragment thereof (e.g. antibody or binding fragment that targets the RNAi construct to a specific cell type, such as liver). Other examples of ligands include dyes, intercalating agents (e.g. acridines), cross-linkers (e.g. psoralene, mitomycin C), porphyrins (TPPC4, texaphyrin, Sapphyrin), polycyclic aromatic hydrocarbons (e.g., phenazine, dihydrophenazine), artificial endonucleases (e.g. EDTA), lipophilic molecules, e.g, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1,3-Bis-O(hexadecyl)glycerol, geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, O3-(oleoyl)lithocholic acid, O3-(oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine), peptides (e.g., antennapedia peptide, Tat peptide, RGD peptides), alkylating agents, polymers, such as polyethylene glycol (PEG)(e.g., PEG-40K), polyamino acids, and polyamines (e.g. spermine, spermidine).


In certain embodiments, the ligands have endosomolytic properties. The endosomolytic ligands promote the lysis of the endosome and/or transport of the RNAi construct of the invention, or its components, from the endosome to the cytoplasm of the cell. The endosomolytic ligand may be a polycationic peptide or peptidomimetic, which shows pH-dependent membrane activity and fusogenicity. In one embodiment, the endosomolytic ligand assumes its active conformation at endosomal pH. The “active” conformation is that conformation in which the endosomolytic ligand promotes lysis of the endosome and/or transport of the RNAi construct of the invention, or its components, from the endosome to the cytoplasm of the cell. Exemplary endosomolytic ligands include the GALA peptide (Subbarao et al., Biochemistry, Vol. 26: 2964-2972, 1987), the EALA peptide (Vogel et al., J. Am. Chem. Soc., Vol. 118: 1581-1586, 1996), and their derivatives (Turk et al., Biochem. Biophys. Acta, Vol. 1559: 56-68, 2002). In one embodiment, the endosomolytic component may contain a chemical group (e.g., an amino acid) which will undergo a change in charge or protonation in response to a change in pH. The endosomolytic component may be linear or branched.


In some embodiments, the ligand comprises a lipid or other hydrophobic molecule. In one embodiment, the ligand comprises a cholesterol moiety or other steroid. Cholesterol-conjugated oligonucleotides have been reported to be more active than their unconjugated counterparts (Manoharan, Antisense Nucleic Acid Drug Development, Vol. 12: 103-228, 2002). Ligands comprising cholesterol moieties and other lipids for conjugation to nucleic acid molecules have also been described in U.S. Pat. Nos. 7,851,615; 7,745,608; and 7,833,992, all of which are hereby incorporated by reference in their entireties. In another embodiment, the ligand comprises a folate moiety. Polynucleotides conjugated to folate moieties can be taken up by cells via a receptor-mediated endocytosis pathway. Such folate-polynucleotide conjugates are described in U.S. Pat. No. 8,188,247, which is hereby incorporated by reference in its entirety.


In certain embodiments, it is desirable to specifically deliver the RNAi constructs of the invention to liver cells to reduce expression of mARC1 protein specifically in the liver. Accordingly, in certain embodiments, the ligand targets delivery of the RNAi construct specifically to liver cells (e.g. hepatocytes) using various approaches as described in more detail below. In certain embodiments, the RNAi constructs are targeted to liver cells with a ligand that binds to the surface-expressed asialoglycoprotein receptor (ASGR) or component thereof (e.g. ASGR1, ASGR2).


In some embodiments, RNAi constructs can be specifically targeted to the liver by employing ligands that bind to or interact with proteins expressed on the surface of liver cells. For example, in certain embodiments, the ligands may comprise antigen binding proteins (e.g. antibodies or binding fragments thereof (e.g. Fab, scFv)) that specifically bind to a receptor expressed on hepatocytes, such as the asialoglycoprotein receptor and the LDL receptor. In one particular embodiment, the ligand comprises an antibody or binding fragment thereof that specifically binds to ASGR1 and/or ASGR2. In another embodiment, the ligand comprises a Fab fragment of an antibody that specifically binds to ASGR1 and/or ASGR2. A “Fab fragment” is comprised of one immunoglobulin light chain (i.e. light chain variable region (VL) and constant region (CL)) and the CH1 region and variable region (VH) of one immunoglobulin heavy chain. In another embodiment, the ligand comprises a single-chain variable antibody fragment (scFv fragment) of an antibody that specifically binds to ASGR1 and/or ASGR2. An “scFv fragment” comprises the VH and VL regions of an antibody, wherein these regions are present in a single polypeptide chain, and optionally comprising a peptide linker between the VH and VL regions that enables the Fv to form the desired structure for antigen binding. Exemplary antibodies and binding fragments thereof that specifically bind to ASGR1 that can be used as ligands for targeting the RNAi constructs of the invention to the liver are described in WIPO Publication No. WO 2017/058944, which is hereby incorporated by reference in its entirety. Other antibodies or binding fragments thereof that specifically bind to ASGR1, LDL receptor, or other liver surface-expressed proteins suitable for use as ligands in the RNAi constructs of the invention are commercially available.


In certain embodiments, the ligand comprises a carbohydrate. A “carbohydrate” refers to a compound made up of one or more monosaccharide units having at least 6 carbon atoms (which can be linear, branched or cyclic) with an oxygen, nitrogen or sulfur atom bonded to each carbon atom. Carbohydrates include, but are not limited to, the sugars (e.g., monosaccharides, disaccharides, trisaccharides, tetrasaccharides, and oligosaccharides containing from about 4, 5, 6, 7, 8, or 9 monosaccharide units), and polysaccharides, such as starches, glycogen, cellulose and polysaccharide gums. In some embodiments, the carbohydrate incorporated into the ligand is a monosaccharide selected from a pentose, hexose, or heptose and di- and tri-saccharides including such monosaccharide units. In other embodiments, the carbohydrate incorporated into the ligand is an amino sugar, such as galactosamine, glucosamine, N-acetylgalactosamine, and N-acetylglucosamine.


In some embodiments, the ligand comprises a hexose or hexosamine. The hexose may be selected from glucose, galactose, mannose, fucose, or fructose. The hexosamine may be selected from fructosamine, galactosamine, glucosamine, or mannosamine. In certain embodiments, the ligand comprises glucose, galactose, galactosamine, or glucosamine. In one embodiment, the ligand comprises glucose, glucosamine, or N-acetylglucosamine. In another embodiment, the ligand comprises galactose, galactosamine, or N-acetyl-galactosamine. In particular embodiments, the ligand comprises N-acetyl-galactosamine. Ligands comprising glucose, galactose, and N-acetyl-galactosamine (GalNAc) are particularly effective in targeting compounds to liver cells because such ligands bind to the ASGR expressed on the surface of hepatocytes. See, e.g., D'Souza and Devarajan, J. Control Release, Vol. 203: 126-139, 2015. Examples of GalNAc- or galactose-containing ligands that can be incorporated into the RNAi constructs of the invention are described in U.S. Pat. Nos. 7,491,805; 8,106,022; and 8,877,917; U.S. Patent Publication No. 20030130186; and WIPO Publication No. WO 2013166155, all of which are hereby incorporated by reference in their entireties.


In certain embodiments, the ligand comprises a multivalent carbohydrate moiety. As used herein, a “multivalent carbohydrate moiety” refers to a moiety comprising two or more carbohydrate units capable of independently binding or interacting with other molecules. For example, a multivalent carbohydrate moiety comprises two or more binding domains comprised of carbohydrates that can bind to two or more different molecules or two or more different sites on the same molecule. The valency of the carbohydrate moiety denotes the number of individual binding domains within the carbohydrate moiety. For instance, the terms “monovalent,” “bivalent,” “trivalent,” and “tetravalent” with reference to the carbohydrate moiety refer to carbohydrate moieties with one, two, three, and four binding domains, respectively. The multivalent carbohydrate moiety may comprise a multivalent lactose moiety, a multivalent galactose moiety, a multivalent glucose moiety, a multivalent N-acetyl-galactosamine moiety, a multivalent N-acetyl-glucosamine moiety, a multivalent mannose moiety, or a multivalent fucose moiety. In some embodiments, the ligand comprises a multivalent galactose moiety. In other embodiments, the ligand comprises a multivalent N-acetyl-galactosamine moiety. In these and other embodiments, the multivalent carbohydrate moiety can be bivalent, trivalent, or tetravalent. In such embodiments, the multivalent carbohydrate moiety can be bi-antennary or tri-antennary. In one particular embodiment, the multivalent N-acetyl-galactosamine moiety is trivalent or tetravalent. In another particular embodiment, the multivalent galactose moiety is trivalent or tetravalent. Exemplary trivalent and tetravalent GalNAc-containing ligands for incorporation into the RNAi constructs of the invention are described in detail below.


The ligand can be attached or conjugated to the RNA molecule of the RNAi construct directly or indirectly. For instance, in some embodiments, the ligand is covalently attached directly to the sense or antisense strand of the RNAi construct. In other embodiments, the ligand is covalently attached via a linker to the sense or antisense strand of the RNAi construct. The ligand can be attached to nucleobases, sugar moieties, or internucleotide linkages of polynucleotides (e.g. sense strand or antisense strand) of the RNAi constructs of the invention. Conjugation or attachment to purine nucleobases or derivatives thereof can occur at any position including, endocyclic and exocyclic atoms. In certain embodiments, the 2-, 6-, 7-, or 8-positions of a purine nucleobase are attached to a ligand. Conjugation or attachment to pyrimidine nucleobases or derivatives thereof can also occur at any position. In some embodiments, the 2-, 5-, and 6-positions of a pyrimidine nucleobase can be attached to a ligand. Conjugation or attachment to sugar moieties of nucleotides can occur at any carbon atom. Exemplary carbon atoms of a sugar moiety that can be attached to a ligand include the 2′, 3′, and 5′ carbon atoms. The 1′ position can also be attached to a ligand, such as in an abasic nucleotide. Internucleotide linkages can also support ligand attachments. For phosphorus-containing linkages (e.g., phosphodiester, phosphorothioate, phosphorodithiotate, phosphoroamidate, and the like), the ligand can be attached directly to the phosphorus atom or to an O, N, or S atom bound to the phosphorus atom. For amine- or amide-containing internucleoside linkages (e.g., PNA), the ligand can be attached to the nitrogen atom of the amine or amide or to an adjacent carbon atom.


In some embodiments, the ligand may be attached to the 3′ or 5′ end of either the sense or antisense strand. In certain embodiments, the ligand is covalently attached to the 5′ end of the sense strand. In such embodiments, the ligand is attached to the 5′-terminal nucleotide of the sense strand. In these and other embodiments, the ligand is attached at the 5′-position of the 5′-terminal nucleotide of the sense strand. In embodiments in which an inverted abasic nucleotide is the 5′-terminal nucleotide of the sense strand and linked to the adjacent nucleotide via a 5′-5′ internucleotide linkage, the ligand can be attached at the 3′-position of the inverted abasic nucleotide. In other embodiments, the ligand is covalently attached to the 3′ end of the sense strand. For example, in some embodiments, the ligand is attached to the 3′-terminal nucleotide of the sense strand. In certain such embodiments, the ligand is attached at the 3′-position of the 3′-terminal nucleotide of the sense strand. In embodiments in which an inverted abasic nucleotide is the 3′-terminal nucleotide of the sense strand and linked to the adjacent nucleotide via a 3′-3′ internucleotide linkage, the ligand can be attached at the 5′-position of the inverted abasic nucleotide. In alternative embodiments, the ligand is attached near the 3′ end of the sense strand, but before one or more terminal nucleotides (i.e. before 1, 2, 3, or 4 terminal nucleotides). In some embodiments, the ligand is attached at the 2′-position of the sugar of the 3′-terminal nucleotide of the sense strand. In other embodiments, the ligand is attached at the 2′-position of the sugar of the 5′-terminal nucleotide of the sense strand.


In certain embodiments, the ligand is attached to the sense or antisense strand via a linker. A “linker” is an atom or group of atoms that covalently joins a ligand to a polynucleotide component of the RNAi construct. The linker may be from about 1 to about 30 atoms in length, from about 2 to about 28 atoms in length, from about 3 to about 26 atoms in length, from about 4 to about 24 atoms in length, from about 6 to about 20 atoms in length, from about 7 to about 20 atoms in length, from about 8 to about 20 atoms in length, from about 8 to about 18 atoms in length, from about 10 to about 18 atoms in length, and from about 12 to about 18 atoms in length. In some embodiments, the linker may comprise a bifunctional linking moiety, which generally comprises an alkyl moiety with two functional groups. One of the functional groups is selected to bind to the compound of interest (e.g. sense or antisense strand of the RNAi construct) and the other is selected to bind essentially any selected group, such as a ligand as described herein. In certain embodiments, the linker comprises a chain structure or an oligomer of repeating units, such as ethylene glycol or amino acid units. Examples of functional groups that are typically employed in a bifunctional linking moiety include, but are not limited to, electrophiles for reacting with nucleophilic groups and nucleophiles for reacting with electrophilic groups. In some embodiments, bifunctional linking moieties include amino, hydroxyl, carboxylic acid, thiol, unsaturations (e.g., double or triple bonds), and the like.


Linkers that may be used to attach a ligand to the sense or antisense strand in the RNAi constructs of the invention include, but are not limited to, pyrrolidine, 8-amino-3,6-dioxaoctanoic acid, succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate, 6-aminohexanoic acid, substituted C1-C10 alkyl, substituted or unsubstituted C2-C10 alkenyl or substituted or unsubstituted C2-C10 alkynyl. Suitable substituent groups for such linkers include, but are not limited to, hydroxyl, amino, alkoxy, carboxy, benzyl, phenyl, nitro, thiol, thioalkoxy, halogen, alkyl, aryl, alkenyl and alkynyl.


In certain embodiments, the linkers are cleavable. A cleavable linker is one which is sufficiently stable outside the cell, but which upon entry into a target cell is cleaved to release the two parts the linker is holding together. In some embodiments, the cleavable linker is cleaved at least 10 times, 20 times, 30 times, 40 times, 50 times, 60 times, 70 times, 80 times, 90 times, or more, or at least 100 times faster in the target cell or under a first reference condition (which can, e.g., be selected to mimic or represent intracellular conditions) than in the blood of a subject, or under a second reference condition (which can, e.g., be selected to mimic or represent conditions found in the blood or serum).


Cleavable linkers are susceptible to cleavage agents, e.g., pH, redox potential or the presence of degradative molecules. Generally, cleavage agents are more prevalent or found at higher levels or activities inside cells than in serum or blood. Examples of such degradative agents include: redox agents which are selected for particular substrates or which have no substrate specificity, including, e.g., oxidative or reductive enzymes or reductive agents such as mercaptans, present in cells, that can degrade a redox cleavable linker by reduction; esterases; endosomes or agents that can create an acidic environment, e.g., those that result in a pH of five or lower; enzymes that can hydrolyze or degrade an acid cleavable linker by acting as a general acid, peptidases (which can be substrate specific), and phosphatases.


A cleavable linker may comprise a moiety that is susceptible to pH. The pH of human serum is 7.4, while the average intracellular pH is slightly lower, ranging from about 7.1-7.3. Endosomes have a more acidic pH, in the range of 5.5-6.0, and lysosomes have an even more acidic pH at around 5.0. Some linkers will have a cleavable group that is cleaved at a preferred pH, thereby releasing the RNA molecule from the ligand inside the cell, or into the desired compartment of the cell.


A linker can include a cleavable group that is cleavable by a particular enzyme. The type of cleavable group incorporated into a linker can depend on the cell to be targeted. For example, liver-targeting ligands can be linked to RNA molecules through a linker that includes an ester group. Liver cells are rich in esterases, and therefore the linker will be cleaved more efficiently in liver cells than in cell types that are not esterase-rich. Other types of cells rich in esterases include cells of the lung, renal cortex, and testis. Linkers that contain peptide bonds can be used when targeting cells rich in peptidases, such as liver cells and synoviocytes.


In general, the suitability of a candidate cleavable linker can be evaluated by testing the ability of a degradative agent (or condition) to cleave the candidate linker. It will also be desirable to also test the candidate cleavable linker for the ability to resist cleavage in the blood or when in contact with other non-target tissue. Thus, one can determine the relative susceptibility to cleavage between a first and a second condition, where the first is selected to be indicative of cleavage in a target cell and the second is selected to be indicative of cleavage in other tissues or biological fluids, e.g., blood or serum. The evaluations can be carried out in cell free systems, in cells, in cell culture, in organ or tissue culture, or in whole animals. It may be useful to make initial evaluations in cell-free or culture conditions and to confirm by further evaluations in whole animals. In some embodiments, useful candidate linkers are cleaved at least 2, 4, 10, 20, 50, 70, or 100 times faster in the cell (or under in vitro conditions selected to mimic intracellular conditions) as compared to blood or serum (or under in vitro conditions selected to mimic extracellular conditions).


In other embodiments, redox cleavable linkers are utilized. Redox cleavable linkers are cleaved upon reduction or oxidation. An example of a reductively cleavable group is a disulfide linking group (—S—S—). To determine if a candidate cleavable linker is a suitable “reductively cleavable linker,” or for example is suitable for use with a particular RNAi construct and particular ligand, one can use one or more methods described herein. For example, a candidate linker can be evaluated by incubation with dithiothreitol (DTT), or other reducing agent known in the art, which mimics the rate of cleavage that would be observed in a cell, e.g., a target cell. The candidate linkers can also be evaluated under conditions which are selected to mimic blood or serum conditions. In a specific embodiment, candidate linkers are cleaved by at most 10% in the blood. In other embodiments, useful candidate linkers are degraded at least 2, 4, 10, 20, 50, 70, or 100 times faster in the cell (or under in vitro conditions selected to mimic intracellular conditions) as compared to blood (or under in vitro conditions selected to mimic extracellular conditions).


In yet other embodiments, phosphate-based cleavable linkers, which are cleaved by agents that degrade or hydrolyze the phosphate group, are employed to covalently attach a ligand to the sense or antisense strand of the RNAi construct. An example of an agent that hydrolyzes phosphate groups in cells are enzymes, such as phosphatases in cells. Examples of phosphate-based cleavable groups are —O—P(O)(ORk)-O—, —O—P(S)(ORk)-O—, —O—P(S)(SRk)-O—, —S—P(O) (ORk)-O—, —O—P(O)(ORk)-S—, —S—P(O)(ORk)-S—, —O—P(S)(ORk)-S—, —S—P(S)(ORk)-O—, —O—P(O)(Rk)-O—, —O—P(S)(Rk)-O—, —S—P(O)(Rk)-O—, —S—P(S)(Rk)-O—, —S—P(O)(Rk)-S—, and —O—P(S)(Rk)-S—, where Rk can be hydrogen or C1-C10 alkyl. Specific embodiments include —O—P(O)(OH)—O—, —O—P(S)(OH)—O—, —O—P(S)(SH)—O—, —S—P(O)(OH)—O—, —O—P(O)(OH)—S—, —S—P(O)(OH)—S—, —O—P(S)(OH)—S—, —S—P(S)(OH)—O—, —O—P(O)(H)—O—, —O—P(S)(H)—O—, —S—P(O)(H)—O—, —S—P(S)(H)—O—, —S—P(O)(H)—S—, and —O—P(S)(H)—S—. Another specific embodiment is —O—P(O)(OH)—O—. These candidate linkers can be evaluated using methods analogous to those described above.


In other embodiments, the linkers may comprise acid cleavable groups, which are groups that are cleaved under acidic conditions. In some embodiments, acid cleavable groups are cleaved in an acidic environment with a pH of about 6.5 or lower (e.g., about 6.0, 5.5, 5.0, or lower), or by agents, such as enzymes that can act as a general acid. In a cell, specific low pH organelles, such as endosomes and lysosomes, can provide a cleaving environment for acid cleavable groups. Examples of acid cleavable linking groups include, but are not limited to, hydrazones, esters, and esters of amino acids. Acid cleavable groups can have the general formula —C═NN—, C(O)O, or —OC(O). A specific embodiment is when the carbon attached to the oxygen of the ester (the alkoxy group) is an aryl group, substituted alkyl group, or tertiary alkyl group such as dimethyl, pentyl or t-butyl. These candidates can be evaluated using methods analogous to those described above.


In other embodiments, the linkers may comprise ester-based cleavable groups, which are cleaved by enzymes, such as esterases and amidases in cells. Examples of ester-based cleavable groups include, but are not limited to, esters of alkylene, alkenylene and alkynylene groups. Ester cleavable groups have the general formula —C(O)O—, or —OC(O)—. These candidate linkers can be evaluated using methods analogous to those described above.


In further embodiments, the linkers may comprise peptide-based cleavable groups, which are cleaved by enzymes, such as peptidases and proteases in cells. Peptide-based cleavable groups are peptide bonds formed between amino acids to yield oligopeptides (e.g., dipeptides, tripeptides etc.) and polypeptides. Peptide-based cleavable groups include the amide group (—C(O)NH—). The amide group can be formed between any alkylene, alkenylene or alkynylene. A peptide bond is a special type of amide bond formed between amino acids to yield peptides and proteins. The peptide-based cleavage group is generally limited to the peptide bond (i.e., the amide bond) formed between amino acids yielding peptides and proteins. Peptide-based cleavable linking groups have the general formula —NHCHRAC(O)NHCHBC(O)—, where RA and RB are the side chains of the two adjacent amino acids. These candidates can be evaluated using methods analogous to those described above.


Other types of linkers suitable for attaching ligands to the sense or antisense strands in the RNAi constructs of the invention are known in the art and can include the linkers described in U.S. Pat. Nos. 7,723,509; 8,017,762; 8,828,956; 8,877,917; and 9,181,551, all of which are hereby incorporated by reference in their entireties.


In certain embodiments, the ligand covalently attached to the sense or antisense strand of the RNAi constructs of the invention comprises a GalNAc moiety, e.g, a multivalent GalNAc moiety. In some embodiments, the multivalent GalNAc moiety is a trivalent GalNAc moiety and is attached to the 3′ end of the sense strand. In other embodiments, the multivalent GalNAc moiety is a trivalent GalNAc moiety and is attached to the 5′ end of the sense strand. In yet other embodiments, the multivalent GalNAc moiety is a tetravalent GalNAc moiety and is attached to the 3′ end of the sense strand. In still other embodiments, the multivalent GalNAc moiety is a tetravalent GalNAc moiety and is attached to the 5′ end of the sense strand.


In certain embodiments, the RNAi constructs of the invention comprise a ligand having the following structure ([Structure 1]):




embedded image


In preferred embodiments, the ligand having this structure is covalently attached to the 5′ end of the sense strand (e.g. to the 5′ terminal nucleotide of the sense strand) via a linker, such as the linkers described herein. In one embodiment, the linker is an aminohexyl linker.


Exemplary trivalent and tetravalent GalNAc moieties and linkers that can be attached to the double-stranded RNA molecules in the RNAi constructs of the invention are provided in the structural formulas I-IX below. “Ac” in the formulas listed herein represents an acetyl group.


In one embodiment, the RNAi construct comprises a ligand and linker having the following structure of Formula I, wherein each n is independently 1 to 3, k is 1 to 3, m is 1 or 2, j is 1 or 2, and the ligand is attached to the 3′ end of the sense strand of the double-stranded RNA molecule (represented by the solid wavy line):




embedded image


In another embodiment, the RNAi construct comprises a ligand and linker having the following structure of Formula II, wherein each n is independently 1 to 3, k is 1 to 3, m is 1 or 2, j is 1 or 2, and the ligand is attached to the 3′ end of the sense strand of the double-stranded RNA molecule (represented by the solid wavy line):




embedded image


In yet another embodiment, the RNAi construct comprises a ligand and linker having the following structure of Formula III, wherein the ligand is attached to the 3′ end of the sense strand of the double-stranded RNA molecule (represented by the solid wavy line):




embedded image


In still another embodiment, the RNAi construct comprises a ligand and linker having the following structure of Formula IV, wherein the ligand is attached to the 3′ end of the sense strand of the double-stranded RNA molecule (represented by the solid wavy line):




embedded image


In certain embodiments, the RNAi construct comprises a ligand and linker having the following structure of Formula V, wherein each n is independently 1 to 3, k is 1 to 3, and the ligand is attached to the 5′ end of the sense strand of the double-stranded RNA molecule (represented by the solid wavy line):




embedded image


In other embodiments, the RNAi construct comprises a ligand and linker having the following structure of Formula VI, wherein each n is independently 1 to 3, k is 1 to 3, and the ligand is attached to the 5′ end of the sense strand of the double-stranded RNA molecule (represented by the solid wavy line):




embedded image


In one particular embodiment, the RNAi construct comprises a ligand and linker having the following structure of Formula VII, wherein X=O or S and wherein the ligand is attached to the 5′ end of the sense strand of the double-stranded RNA molecule (represented by the squiggly line):




embedded image


In some embodiments, the RNAi construct comprises a ligand and linker having the following structure of Formula VIII, wherein each n is independently 1 to 3 and the ligand is attached to the 5′ end of the sense strand of the double-stranded RNA molecule (represented by the solid wavy line):




embedded image


In certain embodiments, the RNAi construct comprises a ligand and linker having the following structure of Formula IX, wherein the ligand is attached to the 5′ end of the sense strand of the double-stranded RNA molecule (represented by the solid wavy line):




embedded image


A phosphorothioate bond can be substituted for the phosphodiester bond shown in any one of Formulas I-IX to covalently attach the ligand and linker to the nucleic acid strand.


The present invention also includes pharmaceutical compositions and formulations comprising the RNAi constructs described herein and pharmaceutically acceptable carriers, excipients, or diluents. Such compositions and formulations are useful for reducing expression of the MARC1 gene in a patient in need thereof. Where clinical applications are contemplated, pharmaceutical compositions and formulations will be prepared in a form appropriate for the intended application. Generally, this will entail preparing compositions that are essentially free of pyrogens, as well as other impurities that could be harmful to humans or animals.


The phrases “pharmaceutically acceptable” or “pharmacologically acceptable” refer to molecular entities and compositions that do not produce adverse, allergic, or other untoward reactions when administered to an animal or a human. As used herein, “pharmaceutically acceptable carrier, excipient, or diluent” includes solvents, buffers, solutions, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like acceptable for use in formulating pharmaceuticals, such as pharmaceuticals suitable for administration to humans. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the RNAi constructs of the present invention, its use in therapeutic compositions is contemplated. Supplementary active ingredients also can be incorporated into the compositions, provided they do not inactivate the RNAi constructs of the compositions.


Compositions and methods for the formulation of pharmaceutical compositions depend on a number of criteria, including, but not limited to, route of administration, type and extent of disease or disorder to be treated, or dose to be administered. In some embodiments, the pharmaceutical compositions are formulated based on the intended route of delivery. For instance, in certain embodiments, the pharmaceutical compositions are formulated for parenteral delivery. Parenteral forms of delivery include intravenous, intraarterial, subcutaneous, intrathecal, intraperitoneal or intramuscular injection or infusion. In one embodiment, the pharmaceutical composition is formulated for intravenous delivery. In such an embodiment, the pharmaceutical composition may include a lipid-based delivery vehicle. In another embodiment, the pharmaceutical composition is formulated for subcutaneous delivery. In such an embodiment, the pharmaceutical composition may include a targeting ligand (e.g. GalNAc-containing or antibody-containing ligands described herein).


In some embodiments, the pharmaceutical compositions comprise an effective amount of an RNAi construct described herein. An “effective amount” is an amount sufficient to produce a beneficial or desired clinical result. In some embodiments, an effective amount is an amount sufficient to reduce MARC1 gene expression in a particular tissue or cell-type (e.g. liver or hepatocytes) of a patient. An effective amount of an RNAi construct of the invention may be from about 0.01 mg/kg body weight to about 100 mg/kg body weight, and may be administered daily, weekly, monthly, or at longer intervals. The precise determination of what would be considered an effective amount and frequency of administration may be based on several factors, including a patient's size, age, and general condition, type of disorder to be treated (e.g. fatty liver disease, liver fibrosis, or cardiovascular disease), particular RNAi construct employed, and route of administration.


Administration of the pharmaceutical compositions of the present invention may be via any common route so long as the target tissue is available via that route. Such routes include, but are not limited to, parenteral (e.g., subcutaneous, intramuscular, intraperitoneal or intravenous), oral, nasal, buccal, intradermal, transdermal, and sublingual routes, or by direct injection into liver tissue or delivery through the hepatic portal vein. In some embodiments, the pharmaceutical composition is administered parenterally. For instance, in certain embodiments, the pharmaceutical composition is administered intravenously. In other embodiments, the pharmaceutical composition is administered subcutaneously.


Colloidal dispersion systems, such as macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems, including oil-in-water emulsions, micelles, mixed micelles, and liposomes, may be used as delivery vehicles for the RNAi constructs of the invention. Commercially available fat emulsions that are suitable for delivering the nucleic acids of the invention include Intralipid® (Baxter International Inc.), Liposyn® (Abbott Pharmaceuticals), Liposyn®II (Hospira), Liposyn®III (Hospira), Nutrilipid (B. Braun Medical Inc.), and other similar lipid emulsions. An exemplary colloidal system for use as a delivery vehicle in vivo is a liposome (i.e., an artificial membrane vesicle). The RNAi constructs of the invention may be encapsulated within liposomes or may form complexes thereto, in particular to cationic liposomes. Alternatively, RNAi constructs of the invention may be complexed to lipids, in particular to cationic lipids. Suitable lipids and liposomes include neutral (e.g., dioleoylphosphatidyl ethanolamine (DOPE), dimyristoylphosphatidyl choline (DMPC), and dipalmitoyl phosphatidylcholine (DPPC)), distearolyphosphatidyl choline), negative (e.g., dimyristoylphosphatidyl glycerol (DMPG)), and cationic (e.g., dioleoyltetramethylaminopropyl (DOTAP) and dioleoylphosphatidyl ethanolamine (DOTMA)). The preparation and use of such colloidal dispersion systems are well known in the art. Exemplary formulations are also disclosed in U.S. Pat. Nos. 5,981,505; 6,217,900; 6,383,512; 5,783,565; 7,202,227; 6,379,965; 6,127,170; 5,837,533; 6,747,014; and WIPO Publication No. WO 03/093449.


In some embodiments, the RNAi constructs of the invention are fully encapsulated in a lipid formulation, e.g., to form a SNALP or other nucleic acid-lipid particle. As used herein, the term “SNALP” refers to a stable nucleic acid-lipid particle. SNALPs typically contain a cationic lipid, a non-cationic lipid, and a lipid that prevents aggregation of the particle (e.g., a PEG-lipid conjugate). SNALPs are exceptionally useful for systemic applications, as they exhibit extended circulation lifetimes following intravenous injection and accumulate at distal sites (e.g., sites physically separated from the administration site). The nucleic acid-lipid particles typically have a mean diameter of about 50 nm to about 150 nm, about 60 nm to about 130 nm, about 70 nm to about 110 nm, or about 70 nm to about 90 nm, and are substantially nontoxic. In addition, the nucleic acids when present in the nucleic acid-lipid particles are resistant in aqueous solution to degradation with a nuclease. Nucleic acid-lipid particles and their method of preparation are disclosed in, e.g., U.S. Pat. Nos. 5,976,567; 5,981,501; 6,534,484; 6,586,410; 6,815,432; and WIPO Publication No. WO 96/40964.


The pharmaceutical compositions suitable for injectable use include, for example, sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. Generally, these preparations are sterile and fluid to the extent that easy injectability exists. Preparations should be stable under the conditions of manufacture and storage and should be preserved against the contaminating action of microorganisms, such as bacteria and fungi. Appropriate solvents or dispersion media may contain, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils. The proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.


Sterile injectable solutions may be prepared by incorporating the active compounds in an appropriate amount into a solvent along with any other ingredients (for example as enumerated above) as desired, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the desired other ingredients, e.g., as enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation include vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient(s) plus any additional desired ingredient from a previously sterile-filtered solution thereof.


The compositions of the present invention generally may be formulated in a neutral or salt form. Pharmaceutically acceptable salts include, for example, acid addition salts (formed with free amino groups) derived from inorganic acids (e.g., hydrochloric or phosphoric acids), or from organic acids (e.g., acetic, oxalic, tartaric, mandelic, and the like). Salts formed with the free carboxyl groups can also be derived from inorganic bases (e.g., sodium, potassium, ammonium, calcium, or ferric hydroxides) or from organic bases (e.g., isopropylamine, trimethylamine, histidine, procaine and the like). Pharmaceutically acceptable salts are described in detail in Berge et al., J. Pharmaceutical Sciences, Vol. 66: 1-19, 1977.


For parenteral administration in an aqueous solution, for example, the solution generally is suitably buffered and the liquid diluent first rendered isotonic for example with sufficient saline or glucose. Such aqueous solutions may be used, for example, for intravenous, intramuscular, subcutaneous and intraperitoneal administration. Preferably, sterile aqueous media are employed as is known to those of skill in the art, particularly in light of the present disclosure. By way of illustration, a single dose may be dissolved in 1 ml of isotonic NaCl solution and either added to 1000 ml of hypodermoclysis fluid or injected at the proposed site of infusion, (see for example, “Remington's Pharmaceutical Sciences” 15th Edition, pages 1035-1038 and 1570-1580). For human administration, preparations should meet sterility, pyrogenicity, general safety and purity standards as required by FDA standards. In certain embodiments, a pharmaceutical composition of the invention comprises or consists of a sterile saline solution and an RNAi construct described herein. In other embodiments, a pharmaceutical composition of the invention comprises or consists of an RNAi construct described herein and sterile water (e.g. water for injection, WFI). In still other embodiments, a pharmaceutical composition of the invention comprises or consists of an RNAi construct described herein and phosphate-buffered saline (PBS).


In some embodiments, the pharmaceutical compositions of the invention are packaged with or stored within a device for administration. Devices for injectable formulations include, but are not limited to, injection ports, pre-filled syringes, autoinjectors, injection pumps, on-body injectors, and injection pens. Devices for aerosolized or powder formulations include, but are not limited to, inhalers, insufflators, aspirators, and the like. Thus, the present invention includes administration devices comprising a pharmaceutical composition of the invention for treating or preventing one or more of the diseases or disorders described herein.


The present invention provides a method for reducing or inhibiting expression of the MARC1 gene, and thus the production of mARC1 protein, in a cell (e.g. liver cell) by contacting the cell with any one of the RNAi constructs described herein. The cell may be in vitro or in vivo. mARC1 expression can be assessed by measuring the amount or level of mARC1 mRNA, mARC1 protein, or another biomarker linked to mARC1 expression, such as serum levels of cholesterol, LDL-cholesterol, or liver enzymes, such as alanine aminotransferase (ALT). The reduction of mARC1 expression in cells or animals treated with an RNAi construct of the invention can be determined relative to the mARC1 expression in cells or animals not treated with the RNAi construct or treated with a control RNAi construct. For instance, in some embodiments, reduction of mARC1 expression is assessed by (a) measuring the amount or level of mARC1 mRNA in liver cells treated with an RNAi construct of the invention, (b) measuring the amount or level of mARC1 mRNA in liver cells treated with a control RNAi construct (e.g. RNAi construct directed to an RNA molecule not expressed in liver cells or a RNAi construct having a nonsense or scrambled sequence) or no construct, and (c) comparing the measured mARC1 mRNA levels from treated cells in (a) to the measured mARC1 mRNA levels from control cells in (b). The mARC1 mRNA levels in the treated cells and controls cells can be normalized to RNA levels for a control gene (e.g. 18S ribosomal RNA or housekeeping gene) prior to comparison. mARC1 mRNA levels can be measured by a variety of methods, including Northern blot analysis, nuclease protection assays, fluorescence in situ hybridization (FISH), reverse-transcriptase (RT)-PCR, real-time RT-PCR, quantitative PCR, droplet digital PCR, and the like.


In other embodiments, reduction of mARC1 expression is assessed by (a) measuring the amount or level of mARC1 protein in liver cells treated with an RNAi construct of the invention, (b) measuring the amount or level of mARC1 protein in liver cells treated with a control RNAi construct (e.g. RNAi construct directed to an RNA molecule not expressed in liver cells or a RNAi construct having a nonsense or scrambled sequence) or no construct, and (c) comparing the measured mARC1 protein levels from treated cells in (a) to the measured mARC1 protein levels from control cells in (b). Methods of measuring mARC1 protein levels are known to those of skill in the art, and include Western Blots, immunoassays (e.g. ELISA), and flow cytometry. Any method capable of measuring mARC1 mRNA or mARC1 protein can be used to assess the efficacy of the RNAi constructs of the invention.


In some embodiments, the methods to assess mARC1 expression levels are performed in vitro in cells that natively express mARC1 (e.g. liver cells) or cells that have been engineered to express mARC1. In certain embodiments, the methods are performed in vitro in liver cells. Suitable liver cells include, but are not limited to, primary hepatocytes (e.g. human or non-human primate hepatocytes), HepAD38 cells, HuH-6 cells, HuH-7 cells, HuH-5-2 cells, BNLCL2 cells, Hep3B cells, or HepG2 cells. In one embodiment, the liver cells are HuH-7 cells. In another embodiment, the liver cells are human primary hepatocytes. In yet another embodiment, the liver cells are Hep3B cells.


In other embodiments, the methods to assess mARC1 expression levels are performed in vivo. The RNAi constructs and any control RNAi constructs can be administered to an animal and mARC1 mRNA or mARC1 protein levels assessed in liver tissue harvested from the animal following treatment. Alternatively or additionally, a biomarker or functional phenotype associated with mARC1 expression can be assessed in the treated animals. For instance, MARC1 loss of function variants have been associated with reduced serum total cholesterol, LDL-cholesterol, and liver enzyme levels (see Emdin et al., PLoS Genet, Vol. 16(4): e1008629, 2020). Thus, serum or plasma levels of cholesterol, LDL-cholesterol, or liver enzymes (e.g. ALT) can be measured in animals treated with RNAi constructs of the invention to assess the functional efficacy of reducing mARC1 expression. Exemplary methods for measuring serum or plasma cholesterol or enzyme levels are described in Examples 1, 4, and 5.


In certain embodiments, expression of mARC1 mRNA or protein is reduced in liver cells by at least 40%, at least 45%, or at least 50% by an RNAi construct of the invention. In some embodiments, expression of mARC1 mRNA or protein is reduced in liver cells by at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, or at least 85% by an RNAi construct of the invention. In other embodiments, the expression of mARC1 mRNA or protein is reduced in liver cells by about 90% or more, e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more by an RNAi construct of the invention. The percent reduction of mARC1 expression can be measured by any of the methods described herein as well as others known in the art.


The present invention provides methods for reducing or inhibiting expression of the MARC1 gene, and thus the production of mARC1 protein, in a patient in need thereof as well as methods of treating or preventing conditions, diseases, or disorders associated with mARC1 expression or activity. A “condition, disease, or disorder associated with mARC1 expression” refers to conditions, diseases, or disorders in which mARC1 expression levels are altered or where elevated expression levels of mARC1 are associated with an increased risk of developing the condition, disease or disorder. A condition, disease, or disorder associated with mARC1 expression can also include conditions, diseases, or disorders resulting from aberrant changes in lipoprotein metabolism, such as changes resulting in abnormal or elevated levels of cholesterol, lipids, triglycerides, etc. or impaired clearance of these molecules. Recent genetic studies have reported an association between loss-of-function variants in the MARC1 gene and decreased blood levels of cholesterol and liver enzymes, reduced liver fat, and protection from cirrhosis (Spracklen et al., Hum Mol Genet., Vol. 26(9):1770-178, 2017; Emdin et al., bioRxiv 594523; //doi.org/10.1101/594523, 2019; and Emdin et al., PLoS Genet, Vol. 16(4): e1008629, 2020)). See Emdin et al., bioRxiv 594523; //doi.org/10.1101/594523, 2019; and Emdin et al., PLoS Genet, Vol. 16(4): e1008629, 2020). Thus, in certain embodiments, the RNAi constructs of the invention are particularly useful for treating or preventing fatty liver disease (e.g. NAFLD and NASH) and cardiovascular disease (e.g. coronary artery disease and myocardial infarction) as well as reducing liver fibrosis and serum cholesterol levels.


Conditions, diseases, and disorders associated with mARC1 expression that can be treated or prevented according to the methods of the invention include, but are not limited to, fatty liver disease, such as alcoholic fatty liver disease, alcoholic steatohepatitis, NAFLD and NASH; chronic liver disease; cirrhosis; cardiovascular disease, such as myocardial infarction, heart failure, stroke (ischemic and hemorrhagic), atherosclerosis, coronary artery disease, peripheral vascular disease (e.g. peripheral artery disease), cerebrovascular disease, vulnerable plaque, and aortic valve stenosis; familial hypercholesterolemia; venous thrombosis; hypercholesterolemia; hyperlipidemia; and dyslipidemia (manifesting, e.g., as elevated total cholesterol, elevated low-density lipoprotein (LDL), elevated very low-density lipoprotein (VLDL), elevated triglycerides, and/or low levels of high-density lipoprotein (HDL)).


In certain embodiments, the present invention provides a method for reducing the expression of mARC1 protein in a patient in need thereof comprising administering to the patient any of the RNAi constructs described herein. The term “patient,” as used herein, refers to a mammal, including humans, and can be used interchangeably with the term “subject.” Preferably, the expression level of mARC1 in hepatocytes in the patient is reduced following administration of the RNAi construct as compared to the mARC1 expression level in a patient not receiving the RNAi construct or as compared to the mARC1 expression level in the patient prior to administration of the RNAi construct. In some embodiments, following administration of an RNAi construct of the invention, expression of mARC1 is reduced in the patient by at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, or at least 90%, e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%. The percent reduction of mARC1 expression can be measured by any of the methods described herein as well as others known in the art. In certain embodiments, the percent reduction of mARC1 expression is determined by assessing levels of a serum or plasma biomarker, such as total cholesterol, LDL-cholesterol, or liver enzyme (e.g. ALT) levels, in the patient according to methods described herein.


In some embodiments, a patient in need of reduction of mARC1 expression is a patient who is at risk of having a myocardial infarction. A patient who is at risk of having a myocardial infarction may be a patient who has a history of myocardial infarction (e.g. has had a previous myocardial infarction). A patient at risk of having a myocardial infarction may also be a patient who has a familial history of myocardial infarction or who has one or more risk factors of myocardial infarction. Such risk factors include, but are not limited to, hypertension, elevated levels of non-HDL cholesterol, elevated levels of triglycerides, diabetes, obesity, or history of autoimmune diseases (e.g. rheumatoid arthritis, lupus). In one embodiment, a patient who is at risk of having a myocardial infarction is a patient who has or is diagnosed with coronary artery disease. The risk of myocardial infarction in these and other patients can be reduced by administering to the patients any of the RNAi constructs described herein. Accordingly, the present invention provides a method for reducing the risk of myocardial infarction in a patient in need thereof comprising administering to the patient an RNAi construct described herein. In some embodiments, the present invention includes use of any of the RNAi constructs described herein in the preparation of a medicament for reducing the risk of myocardial infarction in a patient in need thereof. In other embodiments, the present invention provides a mARC1-targeting RNAi construct for use in a method for reducing the risk of myocardial infarction in a patient in need thereof.


In certain embodiments, a patient in need of reduction of mARC1 expression is a patient who is diagnosed with or at risk of cardiovascular disease. Thus, the present invention includes a method for treating or preventing cardiovascular disease in a patient in need thereof by administering any of the RNAi constructs of the invention. In some embodiments, the present invention includes use of any of the RNAi constructs described herein in the preparation of a medicament for treating or preventing cardiovascular disease in a patient in need thereof. In other embodiments, the present invention provides a mARC1-targeting RNAi construct for use in a method for treating or preventing cardiovascular disease in a patient in need thereof. Cardiovascular disease includes, but is not limited to, myocardial infarction, heart failure, stroke (ischemic and hemorrhagic), atherosclerosis, coronary artery disease, peripheral vascular disease (e.g. peripheral artery disease), cerebrovascular disease, vulnerable plaque, and aortic valve stenosis. In some embodiments, the cardiovascular disease to be treated or prevented according to the methods of the invention is coronary artery disease. In other embodiments, the cardiovascular disease to be treated or prevented according to the methods of the invention is myocardial infarction. In yet other embodiments, the cardiovascular disease to be treated or prevented according to the methods of the invention is stroke. In still other embodiments, the cardiovascular disease to be treated or prevented according to the methods of the invention is peripheral artery disease. In certain embodiments, administration of the RNAi constructs described herein reduces the risk of non-fatal myocardial infarctions, fatal and non-fatal strokes, certain types of heart surgery (e.g. angioplasty, bypass), hospitalization for heart failure, chest pain in patients with heart disease, and/or cardiovascular events in patients with established heart disease (e.g. prior myocardial infarction, prior heart surgery, and/or chest pain with evidence of blocked arteries). In some embodiments, administration of the RNAi constructs described herein according to the methods of the invention can be used to reduce the risk of recurrent cardiovascular events.


In some embodiments, a patient to be treated according to the methods of the invention is a patient who has a vulnerable plaque (also referred to as unstable plaque). Vulnerable plaques are a build-up of macrophages and lipids containing predominantly cholesterol that lie underneath the endothelial lining of the arterial wall. These vulnerable plaques can rupture resulting in the formation of a blood clot, which can potentially block blood flow through the artery and cause a myocardial infarction or stroke. Vulnerable plaques can be identified by methods known in the art, including, but not limited to, intravascular ultrasound and computed tomography (see Sahara et al., European Heart Journal, Vol. 25: 2026-2033, 2004; Budhoff, J. Am. Coll. Cardiol., Vol. 48: 319-321, 2006; Hausleiter et al., J. Am. Coll. Cardiol., Vol. 48: 312-318, 2006).


In other embodiments, a patient in need of reduction of mARC1 expression is a patient who has elevated blood levels of cholesterol (e.g. total cholesterol, non-HDL cholesterol, or LDL cholesterol). Accordingly, in some embodiments, the present invention provides a method for reducing blood levels (e.g. serum or plasma) of cholesterol in a patient in need thereof comprising administering to the patient any of the RNAi constructs described herein. In some embodiments, the present invention includes use of any of the RNAi constructs described herein in the preparation of a medicament for reducing blood levels (e.g. serum or plasma) of cholesterol in a patient in need thereof. In other embodiments, the present invention provides a mARC1-targeting RNAi construct for use in a method for reducing blood levels (e.g. serum or plasma) of cholesterol in a patient in need thereof. In certain embodiments, the cholesterol reduced according to the methods of the invention is LDL cholesterol. In other embodiments, the cholesterol reduced according to the methods of the invention is non-HDL cholesterol. Non-HDL cholesterol is a measure of all cholesterol-containing proatherogenic lipoproteins, including LDL cholesterol, very low-density lipoprotein, intermediate-density lipoprotein, lipoprotein(a), chylomicron, and chylomicron remnants. Non-HDL cholesterol has been reported to be a good predictor of cardiovascular risk (Rana et al., Curr. Atheroscler. Rep., Vol. 14:130-134, 2012). Non-HDL cholesterol levels can be calculated by subtracting HDL cholesterol levels from total cholesterol levels.


In some embodiments, a patient to be treated according to the methods of the invention is a patient who has elevated levels of non-HDL cholesterol (e.g. elevated serum or plasma levels of non-HDL cholesterol). Ideally, levels of non-HDL cholesterol should be about 30 mg/dL above the target for LDL cholesterol levels for any given patient. In particular embodiments, a patient is administered an RNAi construct of the invention if the patient has a non-HDL cholesterol level of about 130 mg/dL or greater. In one embodiment, a patient is administered an RNAi construct of the invention if the patient has a non-HDL cholesterol level of about 160 mg/dL or greater. In another embodiment, a patient is administered an RNAi construct of the invention if the patient has a non-HDL cholesterol level of about 190 mg/dL or greater. In still another embodiment, a patient is administered an RNAi construct of the invention if the patient has a non-HDL cholesterol level of about 220 mg/dL or greater. In certain embodiments, a patient is administered an RNAi construct of the invention if the patient is at a high or very high risk of cardiovascular disease according to the 2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk (Goff et al., ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol, Vol. 63:2935-2959, 2014) and has a non-HDL cholesterol level of about 100 mg/dL or greater.


In certain embodiments of the methods of the invention, a patient is administered an RNAi construct described herein if they are at a moderate risk or higher for cardiovascular disease according to the 2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk (referred to herein as the “2013 Guidelines”). In certain embodiments, an RNAi construct of the invention is administered to a patient if the patient's LDL cholesterol level is greater than about 160 mg/dL. In other embodiments, an RNAi construct of the invention is administered to a patient if the patient's LDL cholesterol level is greater than about 130 mg/dL and the patient has a moderate risk of cardiovascular disease according to the 2013 Guidelines. In still other embodiments, an RNAi construct of the invention is administered to a patient if the patient's LDL cholesterol level is greater than 100 mg/dL and the patient has a high or very high risk of cardiovascular disease according to the 2013 Guidelines.


In other embodiments, a patient in need of reduction of mARC1 expression is a patient who is diagnosed with or at risk of fatty liver disease. Thus, the present invention includes a method for treating, preventing, or reducing the risk of developing fatty liver disease in a patient in need thereof comprising administering to the patient any of the RNAi constructs of the invention. In some embodiments, the present invention includes use of any of the RNAi constructs described herein in the preparation of a medicament for treating, preventing, or reducing the risk of developing fatty liver disease in a patient in need thereof. In other embodiments, the present invention provides a mARC1-targeting RNAi construct for use in a method for treating, preventing, or reducing the risk of developing fatty liver disease in a patient in need thereof. Fatty liver disease is a condition in which fat accumulates in the liver. There are two primary types of fatty liver disease: a first type that is associated with heavy alcohol use (alcoholic steatohepatitis) and a second type that is not related to use of alcohol (nonalcoholic fatty liver disease (NAFLD)). NAFLD is typically characterized by the presence of fat accumulation in the liver but little or no inflammation or liver cell damage. NAFLD can progress to nonalcoholic steatohepatitis (NASH), which is characterized by liver inflammation and cell damage, both of which in turn can lead to liver fibrosis and eventually cirrhosis or hepatic cancer. In certain embodiments, the fatty liver disease to be treated, prevented, or reduce the risk of developing according to the methods of the invention is NAFLD. In other embodiments, the fatty liver disease to be treated, prevented, or reduce the risk of developing according to the methods of the invention is NASH. In still other embodiments, the fatty liver disease to be treated, prevented, or reduce the risk of developing according to the methods of the invention is alcoholic steatohepatitis. In some embodiments, a patient in need of treatment or prevention for fatty liver disease according to the methods of the invention or is at risk of developing fatty liver disease has been diagnosed with type 2 diabetes, a metabolic disorder, or is obese (e.g. body mass index of ≥30.0). In other embodiments, a patient in need of treatment or prevention for fatty liver disease according to the methods of the invention or is at risk of developing fatty liver disease has elevated levels of non-HDL cholesterol or triglycerides. Depending on the particular patient and other risk factors that patient may have, elevated levels of non-HDL cholesterol may be about 130 mg/dL or greater, about 160 mg/dL or greater, about 190 mg/dL or greater, or about 220 mg/dL or greater. Elevated triglyceride levels may be about 150 mg/dL or greater, about 175 mg/dL or greater, about 200 mg/dL or greater, or about 250 mg/dL or greater.


In certain embodiments, a patient in need of reduction of mARC1 expression is a patient who is diagnosed with or at risk of developing hepatic fibrosis or cirrhosis. Accordingly, the present invention encompasses a method for treating, preventing, or reducing liver fibrosis in a patient in need thereof comprising administering to the patient any of the RNAi constructs of the invention. In some embodiments, the present invention includes use of any of the RNAi constructs described herein in the preparation of a medicament for treating, preventing, or reducing liver fibrosis in a patient in need thereof. In other embodiments, the present invention provides a mARC1-targeting RNAi construct for use in a method for treating, preventing, or reducing liver fibrosis in a patient in need thereof. In some embodiments, a patient at risk for developing hepatic fibrosis or cirrhosis is diagnosed with NAFLD. In other embodiments, a patient at risk for developing hepatic fibrosis or cirrhosis is diagnosed with NASH. In yet other embodiments, a patient at risk for developing hepatic fibrosis or cirrhosis is diagnosed with alcoholic steatohepatitis. In still other embodiments, a patient at risk for developing hepatic fibrosis or cirrhosis is diagnosed with hepatitis. In certain embodiments, administration of an RNAi construct of the invention prevents or delays the development of cirrhosis in the patient.


The following examples, including the experiments conducted and the results achieved, are provided for illustrative purposes only and are not to be construed as limiting the scope of the appended claims.


EXAMPLES
Example 1. Inhibition of mARC1 Expression in Ob/Ob Animals Regulates Lipid Levels

Genetic studies have reported an association between the A165T missense mutation in the MARC1 gene and reduced serum low-density lipoprotein (LDL)-cholesterol and total cholesterol levels (Spracklen et al., Hum Mol Genet., Vol. 26(9):1770-178, 2017; Emdin et al., bioRxiv 594523; //doi.org/10.1101/594523, 2019; and Emdin et al., PLoS Genet, Vol. 16(4): e1008629, 2020)). This mutation as well as other loss of function variants of the MARC1 gene have also been recently associated with lower levels of hepatic fat, reduced liver enzyme levels, and reduced risk of cirrhosis (Emdin et al., 2019 and Emdin et al, 2020). To evaluate whether inhibition of mARC1 expression could reduce serum cholesterol levels as observed in human carriers of the MARC1 A165T variant allele, aged obese mice (ob/ob) were administered an siRNA molecule targeting the mouse Marc1 gene or a control siRNA molecule. Ob/ob mice are obese and have elevated lipid levels, and therefore these mice are often used as a model of type II diabetes and other metabolic disorders.


18-20-week-old male ob/ob animals (The Jackson Laboratory) were fed standard chow (Harlan, 2020× Teklad global soy protein-free extruded rodent diet). Mice received, by subcutaneous injection, buffer (phosphate-buffered saline) alone (n=8), mARC1-targeted siRNA (duplex no. D-1000; n=8), or a control siRNA (duplex no. D-1002; n=8) at 3 mg/kg body weight in 0.2 ml buffer once every two weeks for six weeks. The siRNA molecules were synthesized and conjugated to a trivalent GalNAc moiety (structure shown in Formula VII) as described in Example 2 below. The structure of each of the siRNA molecules is provided in Tables 1 and 2 below. Animals were fasted and harvested on week 6 for further analysis. Liver total RNA from harvested animals was processed for qPCR analysis and serum parameters were measured by clinical analyzer (AU400 Chemistry Analyzer, Olympus). mRNA levels were first normalized to 18S ribosomal RNA levels in each liver sample, and then compared to the expression levels in the buffer alone group. Data were presented as relative fold over expression in the buffer alone group. Liver tissues were homogenized and extracted by isopropanol for total cholesterol and total triglyceride measurement (ThermoFisher, Infinity cholesterol and Infinity triglyceride reagents). All animal housing conditions and research protocols were approved by the Amgen Institutional Animal Care and Use Committee (IACUC). Mice were housed in a specified-pathogen free, AAALAC, Intl-accredited facility in ventilated microisolators. Procedures and housing rooms were positively pressured and regulated on a 12:12 dark:light cycle. All animals received reverse-osmosis purified water ad libitum via an automatic watering system.


Animals treated with the mARC1-targeted siRNA exhibited approximately an 80% reduction of mARC1 expression in the liver as compared to animals receiving buffer only injections (FIG. 2A). The reduction in mARC1 expression by the siRNA molecule was specific as liver expression of mARC2 mRNA was not affected (FIG. 2B). Treatment with the mARC1-targeted siRNA reduced serum high-density lipoprotein (HDL), LDL, and total cholesterol levels as well as serum levels of alanine aminotransferase (ALT) and C-reactive protein (CRP) (FIGS. 3A-3H). Triglyceride levels in the liver were also reduced in ob/ob animals receiving the mARC1-targeted siRNA (FIGS. 4A and 4B). Liver expression of fibrosis genes in animals receiving the mARC1-targeted siRNA were not significantly altered as compared to buffer-injected animals in this animal model (data not shown).


The results of this series of experiments show that specific inhibition of mARC1 expression in the liver with a mARC1-targeted siRNA molecule reduces serum cholesterol, LDL-cholesterol, ALT levels, and liver triglycerides, demonstrating a causal effect of mARC1 in lipid regulation in hepatocytes. The observed reductions in serum cholesterol, LDL-cholesterol, and ALT levels in the ob/ob animals treated with the mARC1-targeted siRNA are consistent with the reduced levels of these analytes observed in human carriers of the of the MARC1 A165T variant allele. Thus, inhibition of mARC1 expression with siRNA molecules, such as those described herein, may be useful to reduce cholesterol and triglyceride levels in patients with hypercholesterolemia or hyperlipidemic disorders and may be therapeutic for other liver disorders, such as nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, alcoholic fatty liver disease, alcoholic steatohepatitis, liver fibrosis, and cirrhosis.


Example 2. Design and Synthesis of mARC1 siRNA Molecules

Candidate sequences for the design of therapeutic siRNA molecules targeting the human MARC1 gene were identified using a bioinformatics analysis of the human MARC1 transcript, the sequence of which is provided herein as SEQ ID NO: 1 (Ensembl transcript no. ENST00000366910.9; see FIG. 1). Sequences were analyzed using an in-house siRNA design algorithm and selected if certain criteria were met. The bioinformatics analysis was conducted in two phases. In the first phase, sequences were evaluated for various features, including cross-reactivity with MARC1 transcripts from cynomolgus monkeys (Macaca fascicularis; NCBI Reference Sequence Nos.: XR_001490722.1, XR_001490722.1, XR_001490723.1, XR_001490726.1, XR_273285.2, XM_005540901.2, XR_273286.2, XM_005540898.2, and XM_005540899.2), sequence identity to other human, cynomolgus monkey, and rodent gene sequences, and for overlap with known human single nucleotide polymorphisms. In the second phase, selection criteria were adjusted to include sequences with specificity for only the human MARC1 transcript and to evaluate sequences for seed region matches to human microRNA (miRNA) sequences to predict off-target effects. Based on the results of the bioinformatics analysis, 665 sequences were selected for initial synthesis and in vitro testing.


RNAi constructs were synthesized using solid phase phosphoramidite chemistry. Synthesis was performed on a MerMade12 or MerMade192X (Bioautomation) instrument. Various chemical modifications, including 2′-fluoro modified nucleotides, 2′-O-methyl modified nucleotides, inverted abasic nucleotides, and phosphorothioate internucleotide linkages, were incorporated into the molecules. The RNAi constructs were generally formatted to be duplexes of 19-21 base pairs when annealed with either no overhangs (double bluntmer) or one or two overhangs of 2 nucleotides at the 3′ end of the antisense strand and/or the sense strand. For in vivo studies, the sense strands of the RNAi constructs were conjugated to a trivalent N-acetyl-galactosamine (GalNAc) moiety as described further below.


Materials

Acetonitrile (DNA Synthesis Grade, AX0152-2505, EMD)


Capping Reagent A (80:10:10 (v/v/v) tetrahydrofuran/lutidine/acetic anhydride, BI0221/4000, EMD)


Capping Reagent B (16% 1-methylimidazole/tetrahydrofuran, BI0345/4000, EMD)


Activator Solution (0.25 M 5-(ethylthio)-1H-tetrazole (ETT) in acetonitrile, BI0152/0960, EMD)


Detritylation Reagent (3% dichloroacetic acid in dichloromethane, BI0830/4000, EMD)


Oxidation Reagent (0.02 M iodine in 70:20:10 (v/v/v) tetrahydrofuran/pyridine/water, BI0420/4000, EMD)


Diethylamine solution (20% DEA in acetonitrile, NC0017-0505, EMD)


Thiolation Reagent (0.05 M 5-N-[(dimethylamino)methylene]amino-3H-1,2,4-dithiazole-3-thione (BIOSULII/160K) in pyridine)


5′-Aminohexyl linker phosphoramidite and 2′-methoxy and 2′-fluoro phosphoramidites of adenosine, guanosine, and cytosine (Thermo Fisher Scientific), 0.10 M in acetonitrile over Molecular Trap Packs (0.5 g per 30 mL, Bioautomation)


2′-methoxy-uridine phosphoramidite (Thermo Fisher Scientific), 0.10 M in 90:10 (v/v) acetonitrile/DMF over Molecular Trap Packs (0.5 g per 30 mL, Bioautomation)


2′-deoxy-reverse absaic phosphoramidite (ChemGenes), 0.10 M in acetonitrile over Molecular Trap Packs (0.5 g per 30 mL, Bioautomation)


CPG Support (Hi-Load Universal Support, 500A (BH5-3500-G1), 79.6 μmol/g, 0.126 g (10 μmol)) or 1 μmol Universal Synthesis Column, 500A, Pipette Style Body (MM5-3500-1, Bioautomation)


Ammonium hydroxide (concentrated, J. T. Baker)


Synthesis

Reagent solutions, phosphoramidite solutions, and solvents were attached to the MerMade12 or MerMade192X instrument. Solid support was added to each column (4 mL SPE tube with top and bottom frit for 10 μmol), and the columns were affixed to the instrument. The columns were washed twice with acetonitrile. The phosphoramidite and reagent solution lines were purged. The synthesis was initiated using the Poseidon software. The synthesis was accomplished by repetition of the deprotection/coupling/oxidation/capping synthesis cycle. Specifically, to the solid support was added detritylation reagent to remove the 5′-dimethoxytrityl (DMT) protecting group. The solid support was washed with acetonitrile. To the support was added phosphoramidite and activator solution followed by incubation to couple the incoming nucleotide to the free 5′-hydroxyl group. The support was washed with acetonitrile. To the support was added oxidation or thiolation reagent to convert the phosphite triester to the phosphate triester or phosphorothioate. To the support was added capping reagents A and B to terminate any unreacted oligonucleotide chains. The support was washed with acetonitrile. After the final reaction cycle, the resin was washed with diethylamine solution to remove the 2-cyanoethyl protecting groups. The support was washed with acetonitrile and dried under vacuum.


GalNAc Conjugation

Sense strands for conjugation to a trivalent GalNAc moiety (structure shown in Formula VII below) were prepared with a 5′-aminohexyl linker. After automated synthesis, the column was removed from the instrument and transferred to a vacuum manifold in a hood. The 5′-monomethoxytrityl (MMT) protecting group was removed from the solid support by successive treatments with 2 mL aliquots of 1% trifluoroacetic acid (TFA) in dichloromethane (DCM) with vacuum filtration. When the orange/yellow color was no longer observable in the eluent, the resin was washed with dichloromethane. The resin was washed with 5 mL of 10% diisopropylethylamine in N,N-dimethylformamide (DMF). In a separate vial a solution of GalNAc3-Lys2-Ahx (67 mg, 40 μmol) in DMF (0.5 mL), the structure and synthesis of which is described below, was prepared with 1,1,3,3-tetramethyluronium tetrafluoroborate (TATU, 12.83 mg, 40 μmol) and diisopropylethylamine (DIEA, 13.9 μL, 80 μmol). The activated coupling solution was added to the resin, and the column was capped and incubated at room temperature overnight. The resin was washed with DMF, DCM, and dried under vacuum.


Cleavage

The synthesis columns were removed from the synthesizer or vacuum manifold and transferred to a cleavage apparatus. To the solid support was added 4×1 mL (for 10 μmol) or 4×250 μL (for 1 μmol) of concentrated ammonium hydroxide. The eluent was collected by gravity or light vacuum filtration into a 24- or 96-well deep well plate, respectively. The plate was sealed, bolted into a cleavage chuck (Bioautomation), and the mixture was heated at 55° C. for 4 h. The plate was moved to the freezer and cooled for 20 minutes before opening the cleavage chuck in the hood.


Analysis and Purification

A portion of the cleavage solution was analyzed and purified by anion exchange chromatography. The pooled fractions were desalted by size exclusion chromatography and analyzed by ion pair-reversed phase high-performance liquid chromatograph-mass spectrometry (HPLC-MS). The pooled fractions were lyophilized to obtain a white amorphous powder.


Analytical Anion Exchange Chromatography (AEX):

Column: Thermo DNAPac PA200RS (4.6×50 mm, 4 μm)


Instrument: Agilent 1100 HPLC


Buffer A: 20 mM sodium phosphate, 10% acetonitrile, pH 8.5


Buffer B: 20 mM sodium phosphate, 10% acetonitrile, pH 8.5, 1 M sodium bromide


Flow rate: 1 mL/min at 40° C.


Gradient: 20-65% B in 6.2 min


Preparative Anion Exchange Chromatography (AEX):

Column: Tosoh TSK Gel SuperQ-SPW, 21×150 mm, 13 μm


Instrument: Agilent 1200 HPLC


Buffer A: 20 mM sodium phosphate, 10% acetonitrile, pH 8.5


Buffer B: 20 mM sodium phosphate, 10% acetonitrile, pH 8.5, 1 M sodium bromide


Flow rate: 8 mL/min


Injection volume: 5 mL


Gradient: 35-55% B over 40 min for sense strands and 50-100% B over 40 min for antisense strands


Preparative Size Exclusion Chromatography (SEC):

Column: 3×GE Hi-Prep 26/10 in series


Instrument: GE AKTA Pure


Buffer: 20% ethanol in water


Flow Rate: 10 mL/min


Injection volume: 45 mL using sample loading pump


Ion Pair-Reversed Phase (IP-RP) HPLC:

Column: Water Xbridge BEH OST C18, 2.5 μm, 2.1×50 mm


Instrument: Agilent 1100 HPLC


Buffer A: 15.7 mM DIEA, 50 mM hexafluoroisopropanol (HFIP) in water


Buffer B: 15.7 mM DIEA, 50 mM HFIP in 50:50 water/acetonitrile


Flow rate: 0.5 mL/min


Gradient: 10-30% B over 6 min


Annealing

A small amount of the sense strand and the antisense strand were weighed into individual vials. To the vials was added phosphate buffered saline (PBS, Gibco) to an approximate concentration of 2 mM based on the dry weight. The actual sample concentration was measured on the NanoDrop One (ssDNA, extinction coefficient=33 μg/OD260). The two strands were then mixed in an equimolar ratio, and the sample was heated for 5 minutes in a 90° C. incubator and allowed to cool slowly to room temperature. The sample was analyzed by AEX. The duplex was registered and submitted for in vitro and in vivo testing as described in more detail in Examples 3 and 4 below.


Preparation of GalNAc3-Lys2-Ahx



embedded image


wherein X=O or S. The squiggly line represents the point of attachment to the 5′ terminal nucleotide of the sense strand of the RNAi construct. The GalNAc moiety was attached to the 5′ carbon of the 5′ terminal nucleotide of the sense strand except where an inverted abasic (invAb) deoxynucleotide was the 5′ terminal nucleotide and linked to the adjacent nucleotide via a 5′-5′ internucleotide linkage, in which case the GalNAc moiety was attached to the 3′ carbon of the inverted abasic deoxynucleotide.


To a 50 mL falcon tube was added Fmoc-Ahx-OH (1.13 g, 3.19 mmol) in DCM (30 mL) followed by DIEA (2.23 mL, 12.78 mmol). The solution was added to 2-Cl Trityl chloride resin (3.03 g, 4.79 mmol) in a 50 mL centrifuge tube and loaded onto a shaker for 2 h. The solvent was drained and the resin was washed with 17:2:1 DCM/MeOH/DIEA (30 ml×2), DCM (30 mL×4) and dried. The loading was determined to be 0.76 mmol/g with UV spectrophotometric detection at 290 nm.


3 g of the loaded 2-Cl Trityl resin was suspended in 20% 4-methylpiperidine in DMF (20 mL), and after 30 min the solvent was drained. The process was repeated one more time, and the resin was washed with DMF (30 mL×3) and DCM (30 mL×3).


To a solution of Fmoc-Lys(ivDde)-OH (3.45 g, 6 mmol) in DMF (20 mL) was added TATU (1.94 g, 6 mmol) followed by DIEA (1.83 mL, 10.5 mmol). The solution was then added to the above deprotected resin, and the suspension was set on a shaker overnight. The solvent was drained and the resin was washed with DMF (30 mL×3) and DCM (30 mL×3).


The resin was treated with 20% 4-methylpiperidine in DMF (15 mL) and after 10 min the solvent was drained. The process was repeated one more time and the resin was washed with DMF (15 mL×4) and DCM (15 mL×4).


To a solution of Fmoc-Lys(Fmoc)-OH (3.54 g, 6 mmol) in DMF (20 mL) was added TATU (1.94 g, 6 mmol) followed by DIEA (1.83 mL, 10.5 mmol). The solution was then added to the above deprotected resin and the suspension was set on a shaker overnight. The solvent was drained and the resin was washed with DMF (30 mL×3) and DCM (30 mL×3).


The resin was treated with 5% hydrazine in DMF (20 mL) and after 5 min, the solvent was drained. The process was repeated four more times and the resin was washed with DMF (30 mL×4) and DCM (30 mL×4).


To a solution of 5-(((2R,3R,4R,5R,6R)-3-acetamido-4,5-diacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)pentanoic acid (4.47 g, 10 mmol) in DMF (40 mL) was added TATU (3.22 g, 10 mmol), and the solution was stirred for 5 min. DIEA (2.96 mL, 17 mmol) was added to the solution, and the mixture was then added to the resin above. The suspension was kept at room temperature overnight and the solvent was drained. The resin was washed with DMF (3×30 mL) and DCM (3×30 mL).


The resin was treated with 1% TFA in DCM (30 mL with 3% triisopropylsilane) and after 5 min, the solvent was drained. The process was repeated three more times, and the combined filtrate was concentrated in vacuo. The residue was triturated with diethyl ether (50 mL) and the suspension was filtered and dried to give the crude product. The crude product was purified with reverse phase chromatography and eluted with 0-20% of MeCN in water. The fractions were combined and lyophilized to give the product as a white solid.


Table 1 below lists the unmodified sense and antisense sequences for molecules prioritized from the bioinformatics analysis. The range of nucleotides targeted by siRNA molecules in each sequence family within the human MARC1 transcript (SEQ ID NO: 1) is also shown in Table 1. Duplex nos. D-1000 to D-1003 were designed to target the Marc1 mouse transcript and do not cross-react with the human MARC1 transcript. Table 2 provides the sequences of the sense and antisense strands with chemical modifications. Based on activity in in vitro cell-based assays and in vivo mouse studies as described in Examples 3 and 4, respectively, sequences targeting specific regions of the human MARC1 transcript were selected for structure-activity relationship (SAR) studies. The nucleotide sequences are listed according to the following notations: a, u, g, and c=corresponding 2′-O-methyl ribonucleotide; Af, Uf, Gf, and Cf=corresponding 2′-deoxy-2′-fluoro (“2′-fluoro”) ribonucleotide; and invAb=inverted abasic deoxynucleotide (i.e. abasic deoxynucleotide linked to adjacent nucleotide via a substituent at its 3′ position (a 3′-3′ linkage) when on the 3′ end of a strand or linked to adjacent nucleotide via a substituent at its 5′ position (a 5′-5′ internucleotide linkage) when on the 5′ end of a strand. Insertion of an “s” in the sequence indicates that the two adjacent nucleotides are connected by a phosphorothiodiester group (e.g. a phosphorothioate internucleotide linkage). Unless indicated otherwise, all other nucleotides are connected by 3′-5′ phosphodiester groups. [GalNAc3] represents the GalNAc moiety shown in Formula VII, which was covalently attached to the 5′ terminal nucleotide at the 5′ end of the sense strand via a phophodiester bond or a phoshorothioate bond when an “s” follows the [GalNAc3] notation. When an invAb nucleotide was the 5′ terminal nucleotide at the 5′ end of the sense strand, it was linked to the adjacent nucleotide via a 5′-5′ linkage and the GalNAc moiety was covalently attached to the 3′ carbon of the invAb nucleotide. Otherwise, the GalNAc moiety was covalently attached to the 5′ carbon of the 5′ terminal nucleotide of the sense strand.









TABLE 1







Unmodified mARC1 siRNA sequences













Target site







within human







MARC1

SEQ

SEQ


Duplex
transcript

ID

ID


No.
(SEQ ID NO: 1)
Sense Sequence (5′-3′)
NO:
Antisense Sequence (5′-3′)
NO:















D-1000

GAGCAAGCACUAUAUGGAAU
2
UUCCAUAUAGUGCUUGCUCGG
671





D-1001

AGAAGUUCUCGGCAAAUGAU
3
UCAUUUGCCGAGAACUUCUGG
672





D-1002

GAGCAAGCUGAAUUUGGAAU
4
UUCCAAAUUCAGCUUGCUCGG
673





D-1003

AGAAGUUCAGCGCUAAUGAU
5
UCAUUAGCGCUGAACUUCUGG
674





D-1004
  40-60
GAAGGACGCACUGCUCUGAU
6
AAUCAGAGCAGUGCGUCCUUCUU
675





D-1005
  42-62
AGGACGCACUGCUCUGAUUG
7
ACAAUCAGAGCAGUGCGUCCUUU
676





D-1006
  43-63
GGACGCACUGCUCUGAUUGG
8
ACCAAUCAGAGCAGUGCGUCCUU
677





D-1007
  45-65
ACGCACUGCUCUGAUUGGCC
9
AGGCCAAUCAGAGCAGUGCGUUU
678





D-1008
  50-70
CUGCUCUGAUUGGCCCGGAA
10
AUUCCGGGCCAAUCAGAGCAGUU
679





D-1009
  51-71
UGCUCUGAUUGGCCCGGAAG
11
ACUUCCGGGCCAAUCAGAGCAUU
680





D-1010
  52-72
GCUCUGAUUGGCCCGGAAGG
12
ACCUUCCGGGCCAAUCAGAGCUU
681





D-1011
  99-119
CGGGGCCAAAGGCCGCACCU
13
AAGGUGCGGCCUUUGGCCCCGUU
682





D-1012
 100-120
GGGGCCAAAGGCCGCACCUU
14
AAAGGUGCGGCCUUUGGCCCCUU
683





D-1013
 103-123
GCCAAAGGCCGCACCUUCCC
15
AGGGAAGGUGCGGCCUUUGGCUU
684





D-1014
 104-124
CCAAAGGCCGCACCUUCCCC
16
AGGGGAAGGUGCGGCCUUUGGUU
685





D-1015
 163-183
CGCCACCUCGCGGAGAAGCC
17
UGGCUUCUCCGCGAGGUGGCGUU
686





D-1016
 164-184
GCCACCUCGCGGAGAAGCCA
18
AUGGCUUCUCCGCGAGGUGGCUU
687





D-1017
 165-185
CCACCUCGCGGAGAAGCCAG
19
ACUGGCUUCUCCGCGAGGUGGUU
688





D-1018
 167-187
ACCUCGCGGAGAAGCCAGCC
20
UGGCUGGCUUCUCCGCGAGGUUU
689





D-1019
 473-493
UGAUCAACCAGGAGGGAAAC
21
UGUUUCCCUCCUGGUUGAUCAUU
690





D-1020
 475-495
AUCAACCAGGAGGGAAACAU
22
AAUGUUUCCCUCCUGGUUGAUUU
691





D-1021
 476-496
UCAACCAGGAGGGAAACAUG
23
ACAUGUUUCCCUCCUGGUUGAUU
692





D-1022
 477-497
CAACCAGGAGGGAAACAUGG
24
ACCAUGUUUCCCUCCUGGUUGUU
693





D-1023
 478-498
AACCAGGAGGGAAACAUGGU
25
AACCAUGUUUCCCUCCUGGUUUU
694





D-1024
 479-499
ACCAGGAGGGAAACAUGGUU
26
UAACCAUGUUUCCCUCCUGGUUU
695





D-1025
 501-521
UGCUCGCCAGGAACCUCGCC
27
AGGCGAGGUUCCUGGCGAGCAUU
696





D-1026
 503-523
CUCGCCAGGAACCUCGCCUG
28
ACAGGCGAGGUUCCUGGCGAGUU
697





D-1027
 510-530
GGAACCUCGCCUGGUCCUGA
29
AUCAGGACCAGGCGAGGUUCCUU
698





D-1028
 512-532
AACCUCGCCUGGUCCUGAUU
30
AAAUCAGGACCAGGCGAGGUUUU
699





D-1029
 513-533
ACCUCGCCUGGUCCUGAUUU
31
AAAAUCAGGACCAGGCGAGGUUU
700





D-1030
 514-534
CCUCGCCUGGUCCUGAUUUC
32
AGAAAUCAGGACCAGGCGAGGUU
701





D-1031
 515-535
CUCGCCUGGUCCUGAUUUCC
33
AGGAAAUCAGGACCAGGCGAGUU
702





D-1032
 519-539
CCUGGUCCUGAUUUCCCUGA
34
AUCAGGGAAAUCAGGACCAGGUU
703





D-1033
 558-578
GACUCUCAGUGCAGCCUACA
35
AUGUAGGCUGCACUGAGAGUCUU
704





D-1034
 560-580
CUCUCAGUGCAGCCUACACA
36
UUGUGUAGGCUGCACUGAGAGUU
705





D-1035
 561-581
UCUCAGUGCAGCCUACACAA
37
UUUGUGUAGGCUGCACUGAGAUU
706





D-1036
 562-582
CUCAGUGCAGCCUACACAAA
38
AUUUGUGUAGGCUGCACUGAGUU
707





D-1037
 563-583
UCAGUGCAGCCUACACAAAG
39
ACUUUGUGUAGGCUGCACUGAUU
708





D-1038
 596-616
CUAUCAAAACGCCCACCACA
40
UUGUGGUGGGCGUUUUGAUAGUU
709





D-1039
 597-617
UAUCAAAACGCCCACCACAA
41
UUUGUGGUGGGCGUUUUGAUAUU
710





D-1040
 598-618
AUCAAAACGCCCACCACAAA
42
AUUUGUGGUGGGCGUUUUGAUUU
711





D-1041
 599-619
UCAAAACGCCCACCACAAAU
43
AAUUUGUGGUGGGCGUUUUGAUU
712





D-1042
 602-622
AAACGCCCACCACAAAUGCA
44
AUGCAUUUGUGGUGGGCGUUUUU
713





D-1043
 603-623
AACGCCCACCACAAAUGCAG
45
ACUGCAUUUGUGGUGGGCGUUUU
714





D-1044;
 684-704
CCAGUGGAUAACCAGCUUCC
46
AGGAAGCUGGUUAUCCACUGGUU
715


D-2004;







D-2165;







D-2172










D-1045
 685-705
CAGUGGAUAACCAGCUUCCU
47
AAGGAAGCUGGUUAUCCACUGUU
716





D-1046
 687-707
GUGGAUAACCAGCUUCCUGA
48
UUCAGGAAGCUGGUUAUCCACUU
717





D-1047
 690-710
GAUAACCAGCUUCCUGAAGU
49
AACUUCAGGAAGCUGGUUAUCUU
718





D-1048
 764-784
AUCAAAUAGCAGACUUGUUC
50
AGAACAAGUCUGCUAUUUGAUUU
719





D-1049
 766-786
CAAAUAGCAGACUUGUUCCG
51
UCGGAACAAGUCUGCUAUUUGUU
720





D-1050
 767-787
AAAUAGCAGACUUGUUCCGA
52
AUCGGAACAAGUCUGCUAUUUUU
721





D-1051
 951-971
UGAGCUUCUUAUUGGUGACG
53
ACGUCACCAAUAAGAAGCUCAUU
722





D-1052
 953-973
AGCUUCUUAUUGGUGACGUG
54
ACACGUCACCAAUAAGAAGCUUU
723





D-1053
 954-974
GCUUCUUAUUGGUGACGUGG
55
UCCACGUCACCAAUAAGAAGCUU
724





D-1054;
 956-976
UUCUUAUUGGUGACGUGGAA
56
AUUCCACGUCACCAAUAAGAAUU
725


D-2029










D-1055
 962-982
UUGGUGACGUGGAACUGAAA
57
UUUUCAGUUCCACGUCACCAAUU
726





D-1056
 963-983
UGGUGACGUGGAACUGAAAA
58
AUUUUCAGUUCCACGUCACCAUU
727





D-1057
 964-984
GGUGACGUGGAACUGAAAAG
59
ACUUUUCAGUUCCACGUCACCUU
728





D-1058
 965-985
GUGACGUGGAACUGAAAAGG
60
ACCUUUUCAGUUCCACGUCACUU
729





D-1059
 991-1011
GCUUGUUCCAGAUGCAUUUU
61
UAAAAUGCAUCUGGAACAAGCUU
730





D-1060
 995-1015
GUUCCAGAUGCAUUUUAACC
62
UGGUUAAAAUGCAUCUGGAACUU
731








D-1061;
 996-1016
UUCCAGAUGCAUUUUAACCA
63
AUGGUUAAAAUGCAUCUGGAAUU
732


D-2002;







D-2228










D-1062;
1003-1023
UGCAUUUUAACCACAGUGGA
64
AUCCACUGUGGUUAAAAUGCAUU
733


D-2003










D-1063
1004-1024
GCAUUUUAACCACAGUGGAC
65
AGUCCACUGUGGUUAAAAUGCUU
734





D-1064
1033-1053
GGUGUCAUGAGCAGGAAGGA
66
UUCCUUCCUGCUCAUGACACCUU
735





D-1065
1051-1071
GAACCGCUGGAAACACUGAA
67
AUUCAGUGUUUCCAGCGGUUCUU
736





D-1066;
1056-1076
GCUGGAAACACUGAAGAGUU
68
UAACUCUUCAGUGUUUCCAGCUU
737


D-2005










D-1067;
1059-1079
GGAAACACUGAAGAGUUAUC
69
AGAUAACUCUUCAGUGUUUCCUU
738


D-2035










D-1068;
1060-1080
GAAACACUGAAGAGUUAUCG
70
ACGAUAACUCUUCAGUGUUUCUU
739


D-2006










D-1069
1061-1081
AAACACUGAAGAGUUAUCGC
71
AGCGAUAACUCUUCAGUGUUUUU
740





D-1070;
1062-1082
AACACUGAAGAGUUAUCGCC
72
UGGCGAUAACUCUUCAGUGUUUU
741


D-2007










D-1071
1063-1083
ACACUGAAGAGUUAUCGCCA
73
AUGGCGAUAACUCUUCAGUGUUU
742





D-1072
1064-1084
CACUGAAGAGUUAUCGCCAG
74
ACUGGCGAUAACUCUUCAGUGUU
743





D-1073
1065-1085
ACUGAAGAGUUAUCGCCAGU
75
AACUGGCGAUAACUCUUCAGUUU
744





D-1074;
1066-1086
CUGAAGAGUUAUCGCCAGUG
76
ACACUGGCGAUAACUCUUCAGUU
745


D-2025










D-1075
1067-1087
UGAAGAGUUAUCGCCAGUGU
77
AACACUGGCGAUAACUCUUCAUU
746





D-1076
1068-1088
GAAGAGUUAUCGCCAGUGUG
78
UCACACUGGCGAUAACUCUUCUU
747





D-1077
1071-1091
GAGUUAUCGCCAGUGUGACC
79
AGGUCACACUGGCGAUAACUCUU
748





D-1078
1072-1092
AGUUAUCGCCAGUGUGACCC
80
AGGGUCACACUGGCGAUAACUUU
749





D-1079
1073-1093
GUUAUCGCCAGUGUGACCCU
81
AAGGGUCACACUGGCGAUAACUU
750





D-1080
1074-1094
UUAUCGCCAGUGUGACCCUU
82
AAAGGGUCACACUGGCGAUAAUU
751





D-1081
1078-1098
CGCCAGUGUGACCCUUCAGA
83
UUCUGAAGGGUCACACUGGCGUU
752





D-1082
1079-1099
GCCAGUGUGACCCUUCAGAA
84
AUUCUGAAGGGUCACACUGGCUU
753





D-1083;
1081-1101
CAGUGUGACCCUUCAGAACG
85
UCGUUCUGAAGGGUCACACUGUU
754


D-2050










D-1084
1082-1102
AGUGUGACCCUUCAGAACGA
86
UUCGUUCUGAAGGGUCACACUUU
755





D-1085
1083-1103
GUGUGACCCUUCAGAACGAA
87
UUUCGUUCUGAAGGGUCACACUU
756





D-1086;
1084-1104
UGUGACCCUUCAGAACGAAA
88
AUUUCGUUCUGAAGGGUCACAUU
757


D-2049










D-1087;
1085-1105
GUGACCCUUCAGAACGAAAG
89
ACUUUCGUUCUGAAGGGUCACUU
758


D-2027










D-1088
1086-1106
UGACCCUUCAGAACGAAAGU
90
AACUUUCGUUCUGAAGGGUCAUU
759





D-1089
1087-1107
GACCCUUCAGAACGAAAGUU
91
UAACUUUCGUUCUGAAGGGUCUU
760





D-1090;
1088-1108
ACCCUUCAGAACGAAAGUUA
92
AUAACUUUCGUUCUGAAGGGUUU
761


D-2026










D-1091;
1089-1109
CCCUUCAGAACGAAAGUUAU
93
UAUAACUUUCGUUCUGAAGGGUU
762


D-2031










D-1092;
1090-1110
CCUUCAGAACGAAAGUUAUA
94
AUAUAACUUUCGUUCUGAAGGUU
763


D-2032;







D-2229










D-1093;
1091-1111
CUUCAGAACGAAAGUUAUAU
95
AAUAUAACUUUCGUUCUGAAGUU
764


D-2033;







D-2230










D-1094
1092-1112
UUCAGAACGAAAGUUAUAUG
96
ACAUAUAACUUUCGUUCUGAAUU
765





D-1095;
1093-1113
UCAGAACGAAAGUUAUAUGG
97
UCCAUAUAACUUUCGUUCUGAUU
766


D-2028;







D-2227










D-1096;
1094-1114
CAGAACGAAAGUUAUAUGGA
98
UUCCAUAUAACUUUCGUUCUGUU
767


D-2001;







D-2163;







D-2170










D-1097;
1103-1123
AGUUAUAUGGAAAAUCACCA
99
AUGGUGAUUUUCCAUAUAACUUU
768


D-2030










D-1098
1105-1125
UUAUAUGGAAAAUCACCACU
100
AAGUGGUGAUUUUCCAUAUAAUU
769





D-1099;
 768-788
AAUAGCAGACUUGUUCCGAC
101
AGUCGGAACAAGUCUGCUAUUUU
770


D-2057;







D-2489;







D-2501;







D-2507










D-1100
 769-789
AUAGCAGACUUGUUCCGACC
102
AGGUCGGAACAAGUCUGCUAUUU
771





D-1101
 770-790
UAGCAGACUUGUUCCGACCC
103
UGGGUCGGAACAAGUCUGCUAUU
772





D-1102
 771-791
AGCAGACUUGUUCCGACCCA
104
UUGGGUCGGAACAAGUCUGCUUU
773





D-1103
 772-792
GCAGACUUGUUCCGACCCAA
105
AUUGGGUCGGAACAAGUCUGCUU
774





D-1104
 773-793
CAGACUUGUUCCGACCCAAG
106
ACUUGGGUCGGAACAAGUCUGUU
775





D-1105
 774-794
AGACUUGUUCCGACCCAAGG
107
UCCUUGGGUCGGAACAAGUCUUU
776





D-1106
 775-795
GACUUGUUCCGACCCAAGGA
108
AUCCUUGGGUCGGAACAAGUCUU
777





D-1107
 776-796
ACUUGUUCCGACCCAAGGAC
109
AGUCCUUGGGUCGGAACAAGUUU
778





D-1108
 777-797
CUUGUUCCGACCCAAGGACC
110
UGGUCCUUGGGUCGGAACAAGUU
779





D-1109
 781-801
UUCCGACCCAAGGACCAGAU
111
AAUCUGGUCCUUGGGUCGGAAUU
780





D-1110
 790-810
AAGGACCAGAUUGCUUACUC
112
UGAGUAAGCAAUCUGGUCCUUUU
781





D-1111;
 793-813
GACCAGAUUGCUUACUCAGA
113
AUCUGAGUAAGCAAUCUGGUCUU
782


D-2039










D-1112
 795-815
CCAGAUUGCUUACUCAGACA
114
AUGUCUGAGUAAGCAAUCUGGUU
783





D-1113;
 796-816
CAGAUUGCUUACUCAGACAC
115
AGUGUCUGAGUAAGCAAUCUGUU
784


D-2024;







D-2167;







D-2174










D-1114
 797-817
AGAUUGCUUACUCAGACACC
116
UGGUGUCUGAGUAAGCAAUCUUU
785





D-1115
 798-818
GAUUGCUUACUCAGACACCA
117
AUGGUGUCUGAGUAAGCAAUCUU
786





D-1116
 799-819
AUUGCUUACUCAGACACCAG
118
ACUGGUGUCUGAGUAAGCAAUUU
787





D-1117
 802-822
GCUUACUCAGACACCAGCCC
119
UGGGCUGGUGUCUGAGUAAGCUU
788





D-1118
 804-824
UUACUCAGACACCAGCCCAU
120
AAUGGGCUGGUGUCUGAGUAAUU
789





D-1119
 851-871
CGGAUCUCAACUCCAGGCUA
121
AUAGCCUGGAGUUGAGAUCCGUU
790





D-1120
 852-872
GGAUCUCAACUCCAGGCUAG
122
UCUAGCCUGGAGUUGAGAUCCUU
791





D-1121
 853-873
GAUCUCAACUCCAGGCUAGA
123
AUCUAGCCUGGAGUUGAGAUCUU
792





D-1122
 854-874
AUCUCAACUCCAGGCUAGAG
124
UCUCUAGCCUGGAGUUGAGAUUU
793





D-1123
 859-879
AACUCCAGGCUAGAGAAGAA
125
UUUCUUCUCUAGCCUGGAGUUUU
794





D-1124
 872-892
AGAAGAAAGUUAAAGCAACC
126
UGGUUGCUUUAACUUUCUUCUUU
795





D-1125
 873-893
GAAGAAAGUUAAAGCAACCA
127
UUGGUUGCUUUAACUUUCUUCUU
796





D-1126
 874-894
AAGAAAGUUAAAGCAACCAA
128
AUUGGUUGCUUUAACUUUCUUUU
797





D-1127
 875-895
AGAAAGUUAAAGCAACCAAC
129
AGUUGGUUGCUUUAACUUUCUUU
798





D-1128
 876-896
GAAAGUUAAAGCAACCAACU
130
AAGUUGGUUGCUUUAACUUUCUU
799





D-1129
 877-897
AAAGUUAAAGCAACCAACUU
131
AAAGUUGGUUGCUUUAACUUUUU
800





D-1130;
 878-898
AAGUUAAAGCAACCAACUUC
132
UGAAGUUGGUUGCUUUAACUUUU
801


D-2037










D-1131
 879-899
AGUUAAAGCAACCAACUUCA
133
AUGAAGUUGGUUGCUUUAACUUU
802





D-1132
 880-900
GUUAAAGCAACCAACUUCAG
134
ACUGAAGUUGGUUGCUUUAACUU
803





D-1133
 883-903
AAAGCAACCAACUUCAGGCC
135
AGGCCUGAAGUUGGUUGCUUUUU
804





D-1134
 885-905
AGCAACCAACUUCAGGCCCA
136
UUGGGCCUGAAGUUGGUUGCUUU
805





D-1135
 887-907
CAACCAACUUCAGGCCCAAU
137
UAUUGGGCCUGAAGUUGGUUGUU
806





D-1136
 888-908
AACCAACUUCAGGCCCAAUA
138
AUAUUGGGCCUGAAGUUGGUUUU
807





D-1137
 890-910
CCAACUUCAGGCCCAAUAUU
139
AAAUAUUGGGCCUGAAGUUGGUU
808





D-1138;
 891-911
CAACUUCAGGCCCAAUAUUG
140
ACAAUAUUGGGCCUGAAGUUGUU
809


D-2034;







D-2231










D-1139;
 893-913
ACUUCAGGCCCAAUAUUGUA
141
UUACAAUAUUGGGCCUGAAGUUU
810


D-2036;







D-2232










D-1140;
 894-914
CUUCAGGCCCAAUAUUGUAA
142
AUUACAAUAUUGGGCCUGAAGUU
811


D-2038;







D-2161;







D-2168










D-1141
 895-915
UUCAGGCCCAAUAUUGUAAU
143
AAUUACAAUAUUGGGCCUGAAUU
812





D-1142
 896-916
UCAGGCCCAAUAUUGUAAUU
144
AAAUUACAAUAUUGGGCCUGAUU
813





D-1143;
 898-918
AGGCCCAAUAUUGUAAUUUC
145
UGAAAUUACAAUAUUGGGCCUUU
814


D-2000










D-1144
 899-919
GGCCCAAUAUUGUAAUUUCA
146
AUGAAAUUACAAUAUUGGGCCUU
815





D-1145
 949-969
GAUGAGCUUCUUAUUGGUGA
147
AUCACCAAUAAGAAGCUCAUCUU
816





D-1146
 950-970
AUGAGCUUCUUAUUGGUGAC
148
AGUCACCAAUAAGAAGCUCAUUU
817





D-1147;
1107-1127
AUAUGGAAAAUCACCACUCU
149
AAGAGUGGUGAUUUUCCAUAUUU
818


D-2041










D-1148
1108-1128
UAUGGAAAAUCACCACUCUU
150
AAAGAGUGGUGAUUUUCCAUAUU
819





D-1149
1109-1129
AUGGAAAAUCACCACUCUUU
151
AAAAGAGUGGUGAUUUUCCAUUU
820





D-1150;
1110-1130
UGGAAAAUCACCACUCUUUG
152
ACAAAGAGUGGUGAUUUUCCAUU
821


D-2060;







D-2207;







D-2215










D-1151
1144-1164
CUGGAAAACCCAGGGACCAU
153
AAUGGUCCCUGGGUUUUCCAGUU
822





D-1152
1146-1166
GGAAAACCCAGGGACCAUCA
154
UUGAUGGUCCCUGGGUUUUCCUU
823





D-1153
1147-1167
GAAAACCCAGGGACCAUCAA
155
UUUGAUGGUCCCUGGGUUUUCUU
824





D-1154
1152-1172
CCCAGGGACCAUCAAAGUGG
156
ACCACUUUGAUGGUCCCUGGGUU
825





D-1155
1153-1173
CCAGGGACCAUCAAAGUGGG
157
UCCCACUUUGAUGGUCCCUGGUU
826





D-1156
1156-1176
GGGACCAUCAAAGUGGGAGA
158
AUCUCCCACUUUGAUGGUCCCUU
827





D-1157
1170-1190
GGGAGACCCUGUGUACCUGC
159
AGCAGGUACACAGGGUCUCCCUU
828





D-1158
1182-1202
GUACCUGCUGGGCCAGUAAU
160
AAUUACUGGCCCAGCAGGUACUU
829





D-1159
1187-1207
UGCUGGGCCAGUAAUGGGAA
161
AUUCCCAUUACUGGCCCAGCAUU
830





D-1160
1239-1259
AAAUGUUCUCAAAAAUGACA
162
UUGUCAUUUUUGAGAACAUUUUU
831





D-1161
1240-1260
AAUGUUCUCAAAAAUGACAA
163
AUUGUCAUUUUUGAGAACAUUUU
832





D-1162
1250-1270
AAAAUGACAACACUUGAAGC
164
UGCUUCAAGUGUUGUCAUUUUUU
833





D-1163;
1251-1271
AAAUGACAACACUUGAAGCA
165
AUGCUUCAAGUGUUGUCAUUUUU
834


D-2009










D-1164
1252-1272
AAUGACAACACUUGAAGCAU
166
AAUGCUUCAAGUGUUGUCAUUUU
835





D-1165
1254-1274
UGACAACACUUGAAGCAUGG
167
ACCAUGCUUCAAGUGUUGUCAUU
836





D-1166;
1255-1275
GACAACACUUGAAGCAUGGU
168
AACCAUGCUUCAAGUGUUGUCUU
837


D-2058;







D-2210;







D-2218










D-1167
1256-1276
ACAACACUUGAAGCAUGGUG
169
ACACCAUGCUUCAAGUGUUGUUU
838





D-1168;
1260-1280
CACUUGAAGCAUGGUGUUUC
170
UGAAACACCAUGCUUCAAGUGUU
839


D-2010










D-1169
1262-1282
CUUGAAGCAUGGUGUUUCAG
171
UCUGAAACACCAUGCUUCAAGUU
840





D-1170;
1343-1363
CUGGUGUCUCAAUGCUUCAA
172
AUUGAAGCAUUGAGACACCAGUU
841


D-2046










D-1171;
1344-1364
UGGUGUCUCAAUGCUUCAAU
173
AAUUGAAGCAUUGAGACACCAUU
842


D-2013










D-1172;
1345-1365
GGUGUCUCAAUGCUUCAAUG
174
ACAUUGAAGCAUUGAGACACCUU
843


D-2304










D-1173;
1346-1366
GUGUCUCAAUGCUUCAAUGU
175
AACAUUGAAGCAUUGAGACACUU
844


D-2305;







D-2494;







D-2506;







D-2512










D-1174;
1347-1367
UGUCUCAAUGCUUCAAUGUC
176
AGACAUUGAAGCAUUGAGACAUU
845


D-2047










D-1175;
1349-1369
UCUCAAUGCUUCAAUGUCCC
177
UGGGACAUUGAAGCAUUGAGAUU
846


D-2306










D-1176;
1350-1370
CUCAAUGCUUCAAUGUCCCA
178
AUGGGACAUUGAAGCAUUGAGUU
847


D-2052;







D-2203;







D-2211










D-1177;
1352-1372
CAAUGCUUCAAUGUCCCAGU
179
AACUGGGACAUUGAAGCAUUGUU
848


D-2042;







D-2162;







D-2169;







D-2183;







D-2184;







D-2185;







D-2186;







D-2187;







D-2291;







D-2292;







D-2293;







D-2294;







D-2295;







D-2296;







D-2297;







D-2298;







D-2299;







D-2388










D-1178;
1354-1374
AUGCUUCAAUGUCCCAGUGC
180
UGCACUGGGACAUUGAAGCAUUU
849


D-2308










D-1179;
1355-1375
UGCUUCAAUGUCCCAGUGCA
181
UUGCACUGGGACAUUGAAGCAUU
850


D-2043;







D-2205;







D-2213










D-1180;
1429-1449
AAUGACAAGACAGGAUUCUG
182
UCAGAAUCCUGUCUUGUCAUUUU
851


D-2044










D-1181
1430-1450
AUGACAAGACAGGAUUCUGA
183
UUCAGAAUCCUGUCUUGUCAUUU
852





D-1182;
1432-1452
GACAAGACAGGAUUCUGAAA
184
UUUUCAGAAUCCUGUCUUGUCUU
853


D-2014










D-1183
1435-1455
AAGACAGGAUUCUGAAAACU
185
AAGUUUUCAGAAUCCUGUCUUUU
854





D-1184;
1438-1458
ACAGGAUUCUGAAAACUCCC
186
AGGGAGUUUUCAGAAUCCUGUUU
855


D-2053;







D-2209;







D-2217










D-1185;
1456-1476
CCCGUUUAACUGAUUAUGGA
187
UUCCAUAAUCAGUUAAACGGGUU
856


D-2008










D-1186
1460-1480
UUUAACUGAUUAUGGAAUAG
188
ACUAUUCCAUAAUCAGUUAAAUU
857





D-1187
1461-1481
UUAACUGAUUAUGGAAUAGU
189
AACUAUUCCAUAAUCAGUUAAUU
858





D-1188
1463-1483
AACUGAUUAUGGAAUAGUUC
190
AGAACUAUUCCAUAAUCAGUUUU
859





D-1189;
1464-1484
ACUGAUUAUGGAAUAGUUCU
191
AAGAACUAUUCCAUAAUCAGUUU
860


D-2040










D-1190;
1465-1485
CUGAUUAUGGAAUAGUUCUU
192
AAAGAACUAUUCCAUAAUCAGUU
861


D-2062










D-1191;
1467-1487
GAUUAUGGAAUAGUUCUUUC
193
AGAAAGAACUAUUCCAUAAUCUU
862


D-2011










D-1192;
1468-1488
AUUAUGGAAUAGUUCUUUCU
194
AAGAAAGAACUAUUCCAUAAUUU
863


D-2012










D-1193
1522-1542
UUGCAUCCUGUCACUACCAC
195
AGUGGUAGUGACAGGAUGCAAUU
864





D-1194;
1650-1670
CACCCCAAAUAUGGCUGGAA
196
AUUCCAGCCAUAUUUGGGGUGUU
865


D-2051










D-1195
1652-1672
CCCCAAAUAUGGCUGGAAUG
197
ACAUUCCAGCCAUAUUUGGGGUU
866





D-1196
1688-1708
CUCAAGCCCCGGGCUAGCUU
198
AAAGCUAGCCCGGGGCUUGAGUU
867





D-1197
1689-1709
UCAAGCCCCGGGCUAGCUUU
199
AAAAGCUAGCCCGGGGCUUGAUU
868





D-1198
1691-1711
AAGCCCCGGGCUAGCUUUUG
200
UCAAAAGCUAGCCCGGGGCUUUU
869





D-1199
1692-1712
AGCCCCGGGCUAGCUUUUGA
201
UUCAAAAGCUAGCCCGGGGCUUU
870





D-1200
1693-1713
GCCCCGGGCUAGCUUUUGAA
202
UUUCAAAAGCUAGCCCGGGGCUU
871





D-1201
1695-1715
CCCGGGCUAGCUUUUGAAAU
203
AAUUUCAAAAGCUAGCCCGGGUU
872





D-1202
1699-1719
GGCUAGCUUUUGAAAUGGCA
204
AUGCCAUUUCAAAAGCUAGCCUU
873





D-1203
1718-1738
AUAAAGACUGAGGUGACCUU
205
AAAGGUCACCUCAGUCUUUAUUU
874





D-1204;
1747-1767
CUGCAGAUAUUAAUUUUCCA
206
AUGGAAAAUUAAUAUCUGCAGUU
875


D-2055










D-1205
1752-1772
GAUAUUAAUUUUCCAUAGAU
207
AAUCUAUGGAAAAUUAAUAUCUU
876





D-1206
1753-1773
AUAUUAAUUUUCCAUAGAUC
208
AGAUCUAUGGAAAAUUAAUAUUU
877





D-1207
1757-1777
UAAUUUUCCAUAGAUCUGGA
209
AUCCAGAUCUAUGGAAAAUUAUU
878





D-1208
1758-1778
AAUUUUCCAUAGAUCUGGAU
210
AAUCCAGAUCUAUGGAAAAUUUU
879





D-1209
1759-1779
AUUUUCCAUAGAUCUGGAUC
211
AGAUCCAGAUCUAUGGAAAAUUU
880





D-1210
1761-1781
UUUCCAUAGAUCUGGAUCUG
212
ACAGAUCCAGAUCUAUGGAAAUU
881





D-1211
1788-1808
UGCUUCUCAGACAGCAUUGG
213
UCCAAUGCUGUCUGAGAAGCAUU
882





D-1212
1789-1809
GCUUCUCAGACAGCAUUGGA
214
AUCCAAUGCUGUCUGAGAAGCUU
883





D-1213;
1794-1814
UCAGACAGCAUUGGAUUUCC
215
AGGAAAUCCAAUGCUGUCUGAUU
884


D-2059;







D-2206;







D-2214










D-1214
1795-1815
CAGACAGCAUUGGAUUUCCU
216
UAGGAAAUCCAAUGCUGUCUGUU
885





D-1215;
1796-1816
AGACAGCAUUGGAUUUCCUA
217
UUAGGAAAUCCAAUGCUGUCUUU
886


D-2061;







D-2208;







D-2216;







D-2267










D-1216
1810-1830
UUCCUAAAGGUGCUCAGGAG
218
ACUCCUGAGCACCUUUAGGAAUU
887





D-1217
1849-1869
AGGACCCCUGGAUCCUUGCC
219
UGGCAAGGAUCCAGGGGUCCUUU
888





D-1218
1854-1874
CCCUGGAUCCUUGCCAUUCC
220
AGGAAUGGCAAGGAUCCAGGGUU
889





D-1219
1856-1876
CUGGAUCCUUGCCAUUCCCC
221
AGGGGAAUGGCAAGGAUCCAGUU
890





D-1220;
1858-1878
GGAUCCUUGCCAUUCCCCUC
222
UGAGGGGAAUGGCAAGGAUCCUU
891


D-2054










D-1221
1859-1879
GAUCCUUGCCAUUCCCCUCA
223
AUGAGGGGAAUGGCAAGGAUCUU
892





D-1222
1862-1882
CCUUGCCAUUCCCCUCAGCU
224
UAGCUGAGGGGAAUGGCAAGGUU
893





D-1223
1863-1883
CUUGCCAUUCCCCUCAGCUA
225
UUAGCUGAGGGGAAUGGCAAGUU
894





D-1224
1866-1886
GCCAUUCCCCUCAGCUAAUG
226
UCAUUAGCUGAGGGGAAUGGCUU
895





D-1225
1868-1888
CAUUCCCCUCAGCUAAUGAC
227
AGUCAUUAGCUGAGGGGAAUGUU
896





D-1226
1886-1906
ACGGAGUGCUCCUUCUCCAG
228
ACUGGAGAAGGAGCACUCCGUUU
897





D-1227
1976-1996
GAAAACCUUUAAAGGGGGAA
229
UUUCCCCCUUUAAAGGUUUUCUU
898





D-1228;
2004-2024
CAUAUGUCAGUUGUUUAAAA
230
AUUUUAAACAACUGACAUAUGUU
899


D-2015










D-1229
2010-2030
UCAGUUGUUUAAAACCCAAU
231
UAUUGGGUUUUAAACAACUGAUU
900





D-1230;
2012-2032
AGUUGUUUAAAACCCAAUAU
232
AAUAUUGGGUUUUAAACAACUUU
901


D-2016










D-1231
  41-61
AAGGACGCACUGCUCUGAUU
233
AAAUCAGAGCAGUGCGUCCUUUU
902





D-1232
1690-1710
CAAGCCCCGGGCUAGCUUUU
234
AAAAAGCUAGCCCGGGGCUUGUU
903





D-1233
1694-1714
CCCCGGGCUAGCUUUUGAAA
235
AUUUCAAAAGCUAGCCCGGGGUU
904





D-1234
1723-1743
GACUGAGGUGACCUUCAGGA
236
UUCCUGAAGGUCACCUCAGUCUU
905





D-1235
1754-1774
UAUUAAUUUUCCAUAGAUCU
237
AAGAUCUAUGGAAAAUUAAUAUU
906





D-1236;
1760-1780
UUUUCCAUAGAUCUGGAUCU
238
AAGAUCCAGAUCUAUGGAAAAUU
907


D-2048










D-1237
1791-1811
UUCUCAGACAGCAUUGGAUU
239
AAAUCCAAUGCUGUCUGAGAAUU
908





D-1238
1809-1829
UUUCCUAAAGGUGCUCAGGA
240
AUCCUGAGCACCUUUAGGAAAUU
909





D-1239
1855-1875
CCUGGAUCCUUGCCAUUCCC
241
AGGGAAUGGCAAGGAUCCAGGUU
910





D-1240
1861-1881
UCCUUGCCAUUCCCCUCAGC
242
AGCUGAGGGGAAUGGCAAGGAUU
911





D-1241
1867-1887
CCAUUCCCCUCAGCUAAUGA
243
AUCAUUAGCUGAGGGGAAUGGUU
912





D-1242
1977-1997
AAAACCUUUAAAGGGGGAAA
244
UUUUCCCCCUUUAAAGGUUUUUU
913





D-1243;
2014-2034
UUGUUUAAAACCCAAUAUCU
245
UAGAUAUUGGGUUUUAAACAAUU
914


D-2017;







D-2204;







D-2212










D-1244
2055-2075
CUCUAAGAUCUGAUGAAGUA
246
AUACUUCAUCAGAUCUUAGAGUU
915





D-1245;
2057-2077
CUAAGAUCUGAUGAAGUAUA
247
AUAUACUUCAUCAGAUCUUAGUU
916


D-2045;







D-2166;







D-2173










D-1246;
2058-2078
UAAGAUCUGAUGAAGUAUAU
248
AAUAUACUUCAUCAGAUCUUAUU
917


D-2303










D-1247;
2059-2079
AAGAUCUGAUGAAGUAUAUU
249
AAAUAUACUUCAUCAGAUCUUUU
918


D-2056










D-1248;
2066-2086
GAUGAAGUAUAUUUUUUAUU
250
AAAUAAAAAAUAUACUUCAUCUU
919


D-2018










D-1249;
2079-2099
UUUUAUUGCCAUUUUGUCCU
251
AAGGACAAAAUGGCAAUAAAAUU
920


D-2019










D-1250
2080-2100
UUUAUUGCCAUUUUGUCCUU
252
AAAGGACAAAAUGGCAAUAAAUU
921





D-1251
2081-2101
UUAUUGCCAUUUUGUCCUUU
253
AAAAGGACAAAAUGGCAAUAAUU
922





D-1252;
2083-2103
AUUGCCAUUUUGUCCUUUGA
254
AUCAAAGGACAAAAUGGCAAUUU
923


D-2020










D-1253;
2105-2125
AUAUUGGGAAGUUGACUAAA
255
AUUUAGUCAACUUCCCAAUAUUU
924


D-2021










D-1254
2109-2129
UGGGAAGUUGACUAAACUUG
256
UCAAGUUUAGUCAACUUCCCAUU
925





D-1255
2110-2130
GGGAAGUUGACUAAACUUGA
257
UUCAAGUUUAGUCAACUUCCCUU
926





D-1256;
2111-2131
GGAAGUUGACUAAACUUGAA
258
UUUCAAGUUUAGUCAACUUCCUU
927


D-2022;







D-2164;







D-2171










D-1257;
2144-2164
ACUGUGAAUAAAUGGAAGCU
259
UAGCUUCCAUUUAUUCACAGUUU
928


D-2023










D-1258
2148-2168
UGAAUAAAUGGAAGCUACUU
260
AAAGUAGCUUCCAUUUAUUCAUU
929





D-1259
2152-2172
UAAAUGGAAGCUACUUUGAC
261
AGUCAAAGUAGCUUCCAUUUAUU
930





D-1260
2153-2173
AAAUGGAAGCUACUUUGACU
262
UAGUCAAAGUAGCUUCCAUUUUU
931





D-1261
2159-2179
AAGCUACUUUGACUAGUUUC
263
UGAAACUAGUCAAAGUAGCUUUU
932





D-1262
2160-2180
AGCUACUUUGACUAGUUUCA
264
AUGAAACUAGUCAAAGUAGCUUU
933





D-1263
1888-1908
GGAGUGCUCCUUCUCCAGUU
265
AAACUGGAGAAGGAGCACUCCUU
934





D-1264
1979-1999
AACCUUUAAAGGGGGAAAAG
266
ACUUUUCCCCCUUUAAAGGUUUU
935





D-1265
1980-2000
ACCUUUAAAGGGGGAAAAGG
267
UCCUUUUCCCCCUUUAAAGGUUU
936





D-1266;
2082-2102
UAUUGCCAUUUUGUCCUUUG
268
UCAAAGGACAAAAUGGCAAUAUU
937


D-2145;







D-2492;







D-2504;







D-2510










D-1267
2112-2132
GAAGUUGACUAAACUUGAAA
269
UAUUCAAGUUUAGUCAACUUCUU
938





D-1268
2113-2133
AAGUUGACUAAACUUGAAAA
270
UAUUUCAAGUUUAGUCAACUUUU
939





D-1269
2161-2181
GCUACUUUGACUAGUUUCAG
271
UCUGAAACUAGUCAAAGUAGCUU
940





D-1270
 557-577
UGACUCUCAGUGCAGCCUAC
272
UGUAGGCUGCACUGAGAGUCAUU
941





D-1271
 604-624
ACGCCCACCACAAAUGCAGU
273
AACUGCAUUUGUGGUGGGCGUUU
942





D-1272
 683-703
CCCAGUGGAUAACCAGCUUC
274
AGAAGCUGGUUAUCCACUGGGUU
943





D-1273
 763-783
CAUCAAAUAGCAGACUUGUU
275
AAACAAGUCUGCUAUUUGAUGUU
944





D-1274
 765-785
UCAAAUAGCAGACUUGUUCC
276
AGGAACAAGUCUGCUAUUUGAUU
945





D-1275
 864-884
CAGGCUAGAGAAGAAAGUUA
277
UUAACUUUCUUCUCUAGCCUGUU
946





D-1276;
 865-885
AGGCUAGAGAAGAAAGUUAA
278
UUUAACUUUCUUCUCUAGCCUUU
947


D-2064










D-1277
 889-909
ACCAACUUCAGGCCCAAUAU
279
AAUAUUGGGCCUGAAGUUGGUUU
948





D-1278
 952-972
GAGCUUCUUAUUGGUGACGU
280
AACGUCACCAAUAAGAAGCUCUU
949





D-1279
 955-975
CUUCUUAUUGGUGACGUGGA
281
UUCCACGUCACCAAUAAGAAGUU
950





D-1280
 957-977
UCUUAUUGGUGACGUGGAAC
282
AGUUCCACGUCACCAAUAAGAUU
951





D-1281
 961-981
AUUGGUGACGUGGAACUGAA
283
UUUCAGUUCCACGUCACCAAUUU
952





D-1282;
 992-1012
CUUGUUCCAGAUGCAUUUUA
284
UUAAAAUGCAUCUGGAACAAGUU
953


D-2144










D-1283
 994-1014
UGUUCCAGAUGCAUUUUAAC
285
AGUUAAAAUGCAUCUGGAACAUU
954





D-1284;
1057-1077
CUGGAAACACUGAAGAGUUA
286
AUAACUCUUCAGUGUUUCCAGUU
955


D-2074










D-1285;
1058-1078
UGGAAACACUGAAGAGUUAU
287
AAUAACUCUUCAGUGUUUCCAUU
956


D-2125










D-1286;
1069-1089
AAGAGUUAUCGCCAGUGUGA
288
AUCACACUGGCGAUAACUCUUUU
957


D-2138










D-1287
1070-1090
AGAGUUAUCGCCAGUGUGAC
289
AGUCACACUGGCGAUAACUCUUU
958





D-1288;
1104-1124
GUUAUAUGGAAAAUCACCAC
290
AGUGGUGAUUUUCCAUAUAACUU
959


D-2140










D-1289
1141-1161
GUGCUGGAAAACCCAGGGAC
291
AGUCCCUGGGUUUUCCAGCACUU
960





D-1290
1142-1162
UGCUGGAAAACCCAGGGACC
292
UGGUCCCUGGGUUUUCCAGCAUU
961





D-1291
1143-1163
GCUGGAAAACCCAGGGACCA
293
AUGGUCCCUGGGUUUUCCAGCUU
962





D-1292
1148-1168
AAAACCCAGGGACCAUCAAA
294
AUUUGAUGGUCCCUGGGUUUUUU
963





D-1293
1149-1169
AAACCCAGGGACCAUCAAAG
295
ACUUUGAUGGUCCCUGGGUUUUU
964





D-1294
1150-1170
AACCCAGGGACCAUCAAAGU
296
AACUUUGAUGGUCCCUGGGUUUU
965





D-1295
1151-1171
ACCCAGGGACCAUCAAAGUG
297
ACACUUUGAUGGUCCCUGGGUUU
966





D-1296
1168-1188
GUGGGAGACCCUGUGUACCU
298
AAGGUACACAGGGUCUCCCACUU
967





D-1297
1188-1208
GCUGGGCCAGUAAUGGGAAC
299
AGUUCCCAUUACUGGCCCAGCUU
968





D-1298;
1248-1268
CAAAAAUGACAACACUUGAA
300
AUUCAAGUGUUGUCAUUUUUGUU
969


D-2067










D-1299;
1253-1273
AUGACAACACUUGAAGCAUG
301
ACAUGCUUCAAGUGUUGUCAUUU
970


D-2119;







D-2491;







D-2503;







D-2509










D-1300
1261-1281
ACUUGAAGCAUGGUGUUUCA
302
AUGAAACACCAUGCUUCAAGUUU
971





D-1301
1306-1326
AAAUUUGUGAUUUUCACAUU
303
AAAUGUGAAAAUCACAAAUUUUU
972





D-1302;
1353-1373
AAUGCUUCAAUGUCCCAGUG
304
ACACUGGGACAUUGAAGCAUUUU
973


D-2307










D-1303
1428-1448
AAAUGACAAGACAGGAUUCU
305
AAGAAUCCUGUCUUGUCAUUUUU
974





D-1304;
1469-1489
UUAUGGAAUAGUUCUUUCUC
306
AGAGAAAGAACUAUUCCAUAAUU
975


D-2149










D-1305
1470-1490
UAUGGAAUAGUUCUUUCUCC
307
AGGAGAAAGAACUAUUCCAUAUU
976





D-1306
1474-1494
GAAUAGUUCUUUCUCCUGCU
308
AAGCAGGAGAAAGAACUAUUCUU
977





D-1307
1475-1495
AAUAGUUCUUUCUCCUGCUU
309
AAAGCAGGAGAAAGAACUAUUUU
978





D-1308
1523-1543
UGCAUCCUGUCACUACCACU
310
AAGUGGUAGUGACAGGAUGCAUU
979





D-1309
1524-1544
GCAUCCUGUCACUACCACUC
311
AGAGUGGUAGUGACAGGAUGCUU
980





D-1310;
1696-1716
CCGGGCUAGCUUUUGAAAUG
312
ACAUUUCAAAAGCUAGCCCGGUU
981


D-2139










D-1311;
1697-1717
CGGGCUAGCUUUUGAAAUGG
313
ACCAUUUCAAAAGCUAGCCCGUU
982


D-2073










D-1312
1721-1741
AAGACUGAGGUGACCUUCAG
314
ACUGAAGGUCACCUCAGUCUUUU
983





D-1313
1728-1748
AGGUGACCUUCAGGAAGCAC
315
AGUGCUUCCUGAAGGUCACCUUU
984





D-1314
1764-1784
CCAUAGAUCUGGAUCUGGCC
316
AGGCCAGAUCCAGAUCUAUGGUU
985





D-1315;
1805-1825
UGGAUUUCCUAAAGGUGCUC
317
UGAGCACCUUUAGGAAAUCCAUU
986


D-2130










D-1316
1807-1827
GAUUUCCUAAAGGUGCUCAG
318
ACUGAGCACCUUUAGGAAAUCUU
987





D-1317
1811-1831
UCCUAAAGGUGCUCAGGAGG
319
UCCUCCUGAGCACCUUUAGGAUU
988





D-1318
1846-1866
UGGAGGACCCCUGGAUCCUU
320
AAAGGAUCCAGGGGUCCUCCAUU
989





D-1319
1847-1867
GGAGGACCCCUGGAUCCUUG
321
ACAAGGAUCCAGGGGUCCUCCUU
990





D-1320
1848-1868
GAGGACCCCUGGAUCCUUGC
322
AGCAAGGAUCCAGGGGUCCUCUU
991





D-1321
1887-1907
CGGAGUGCUCCUUCUCCAGU
323
AACUGGAGAAGGAGCACUCCGUU
992





D-1322
  39-59
AGAAGGACGCACUGCUCUGA
324
AUCAGAGCAGUGCGUCCUUCUUU
993





D-1323
  53-73
CUCUGAUUGGCCCGGAAGGG
325
ACCCUUCCGGGCCAAUCAGAGUU
994





D-1324
  54-74
UCUGAUUGGCCCGGAAGGGU
326
AACCCUUCCGGGCCAAUCAGAUU
995





D-1325
  55-75
CUGAUUGGCCCGGAAGGGUU
327
AAACCCUUCCGGGCCAAUCAGUU
996





D-1326
 102-122
GGCCAAAGGCCGCACCUUCC
328
AGGAAGGUGCGGCCUUUGGCCUU
997





D-1327
 168-188
CCUCGCGGAGAAGCCAGCCA
329
AUGGCUGGCUUCUCCGCGAGGUU
998





D-1328
 174-194
GGAGAAGCCAGCCAUGGGCG
330
ACGCCCAUGGCUGGCUUCUCCUU
999





D-1329
 175-195
GAGAAGCCAGCCAUGGGCGC
331
AGCGCCCAUGGCUGGCUUCUCUU
1000





D-1330
 474-494
GAUCAACCAGGAGGGAAACA
332
AUGUUUCCCUCCUGGUUGAUCUU
1001





D-1331
 499-519
ACUGCUCGCCAGGAACCUCG
333
ACGAGGUUCCUGGCGAGCAGUUU
1002





D-1332
 504-524
UCGCCAGGAACCUCGCCUGG
334
ACCAGGCGAGGUUCCUGGCGAUU
1003





D-1333
 506-526
GCCAGGAACCUCGCCUGGUC
335
AGACCAGGCGAGGUUCCUGGCUU
1004





D-1334
 511-531
GAACCUCGCCUGGUCCUGAU
336
AAUCAGGACCAGGCGAGGUUCUU
1005





D-1335
 545-565
AUGGUGACACCCUGACUCUC
337
UGAGAGUCAGGGUGUCACCAUUU
1006





D-1336
 546-566
UGGUGACACCCUGACUCUCA
338
AUGAGAGUCAGGGUGUCACCAUU
1007





D-1337
 550-570
GACACCCUGACUCUCAGUGC
339
UGCACUGAGAGUCAGGGUGUCUU
1008





D-1338;
 553-573
ACCCUGACUCUCAGUGCAGC
340
AGCUGCACUGAGAGUCAGGGUUU
1009


D-2085










D-1339
 680-700
CCGCCCAGUGGAUAACCAGC
341
AGCUGGUUAUCCACUGGGCGGUU
1010





D-1340
 720-740
CCGCCUGGUGCACUUCGAGC
342
AGCUCGAAGUGCACCAGGCGGUU
1011





D-1341
 721-741
CGCCUGGUGCACUUCGAGCC
343
AGGCUCGAAGUGCACCAGGCGUU
1012





D-1342
 722-742
GCCUGGUGCACUUCGAGCCU
344
AAGGCUCGAAGUGCACCAGGCUU
1013





D-1343
 723-743
CCUGGUGCACUUCGAGCCUC
345
UGAGGCUCGAAGUGCACCAGGUU
1014





D-1344
 724-744
CUGGUGCACUUCGAGCCUCA
346
AUGAGGCUCGAAGUGCACCAGUU
1015





D-1345
 725-745
UGGUGCACUUCGAGCCUCAC
347
UGUGAGGCUCGAAGUGCACCAUU
1016





D-1346
 726-746
GGUGCACUUCGAGCCUCACA
348
AUGUGAGGCUCGAAGUGCACCUU
1017





D-1347
 727-747
GUGCACUUCGAGCCUCACAU
349
AAUGUGAGGCUCGAAGUGCACUU
1018





D-1348
 728-748
UGCACUUCGAGCCUCACAUG
350
ACAUGUGAGGCUCGAAGUGCAUU
1019





D-1349
 729-749
GCACUUCGAGCCUCACAUGC
351
AGCAUGUGAGGCUCGAAGUGCUU
1020





D-1350
 730-750
CACUUCGAGCCUCACAUGCG
352
UCGCAUGUGAGGCUCGAAGUGUU
1021





D-1351
 731-751
ACUUCGAGCCUCACAUGCGA
353
AUCGCAUGUGAGGCUCGAAGUUU
1022





D-1352
 732-752
CUUCGAGCCUCACAUGCGAC
354
AGUCGCAUGUGAGGCUCGAAGUU
1023





D-1353
 733-753
UUCGAGCCUCACAUGCGACC
355
AGGUCGCAUGUGAGGCUCGAAUU
1024





D-1354
 734-754
UCGAGCCUCACAUGCGACCG
356
UCGGUCGCAUGUGAGGCUCGAUU
1025





D-1355
 735-755
CGAGCCUCACAUGCGACCGA
357
AUCGGUCGCAUGUGAGGCUCGUU
1026





D-1356
 738-758
GCCUCACAUGCGACCGAGAC
358
AGUCUCGGUCGCAUGUGAGGCUU
1027





D-1357
 825-845
CUUGAUCCUUUCUGAGGCGU
359
AACGCCUCAGAAAGGAUCAAGUU
1028





D-1358
 847-867
CUGGCGGAUCUCAACUCCAG
360
ACUGGAGUUGAGAUCCGCCAGUU
1029





D-1359
 848-868
UGGCGGAUCUCAACUCCAGG
361
ACCUGGAGUUGAGAUCCGCCAUU
1030





D-1360
 923-943
GCGAUGUCUAUGCAGAGGAU
362
AAUCCUCUGCAUAGACAUCGCUU
1031





D-1361
 925-945
GAUGUCUAUGCAGAGGAUUC
363
AGAAUCCUCUGCAUAGACAUCUU
1032





D-1362
 927-947
UGUCUAUGCAGAGGAUUCUU
364
AAAGAAUCCUCUGCAUAGACAUU
1033





D-1363;
 928-948
GUCUAUGCAGAGGAUUCUUG
365
ACAAGAAUCCUCUGCAUAGACUU
1034


D-2084










D-1364
 929-949
UCUAUGCAGAGGAUUCUUGG
366
ACCAAGAAUCCUCUGCAUAGAUU
1035





D-1365
 930-950
CUAUGCAGAGGAUUCUUGGG
367
UCCCAAGAAUCCUCUGCAUAGUU
1036





D-1366
 984-1004
GGUGAUGGCUUGUUCCAGAU
368
AAUCUGGAACAAGCCAUCACCUU
1037





D-1367;
 985-1005
GUGAUGGCUUGUUCCAGAUG
369
ACAUCUGGAACAAGCCAUCACUU
1038


D-2083;







D-2244;







D-2249










D-1368
 989-1009
UGGCUUGUUCCAGAUGCAUU
370
AAAUGCAUCUGGAACAAGCCAUU
1039





D-1369
1005-1025
CAUUUUAACCACAGUGGACC
371
AGGUCCACUGUGGUUAAAAUGUU
1040





D-1370
1007-1027
UUUUAACCACAGUGGACCCA
372
AUGGGUCCACUGUGGUUAAAAUU
1041





D-1371
1008-1028
UUUAACCACAGUGGACCCAG
373
UCUGGGUCCACUGUGGUUAAAUU
1042





D-1372
1118-1138
CACCACUCUUUGGGCAGUAU
374
AAUACUGCCCAAAGAGUGGUGUU
1043





D-1373
1119-1139
ACCACUCUUUGGGCAGUAUU
375
AAAUACUGCCCAAAGAGUGGUUU
1044





D-1374
1125-1145
CUUUGGGCAGUAUUUUGUGC
376
AGCACAAAAUACUGCCCAAAGUU
1045





D-1375;
1126-1146
UUUGGGCAGUAUUUUGUGCU
377
AAGCACAAAAUACUGCCCAAAUU
1046


D-2071










D-1376
1127-1147
UUGGGCAGUAUUUUGUGCUG
378
ACAGCACAAAAUACUGCCCAAUU
1047





D-1377
1128-1148
UGGGCAGUAUUUUGUGCUGG
379
UCCAGCACAAAAUACUGCCCAUU
1048





D-1378
1130-1150
GGCAGUAUUUUGUGCUGGAA
380
UUUCCAGCACAAAAUACUGCCUU
1049





D-1379
1135-1155
UAUUUUGUGCUGGAAAACCC
381
UGGGUUUUCCAGCACAAAAUAUU
1050





D-1380
1136-1156
AUUUUGUGCUGGAAAACCCA
382
AUGGGUUUUCCAGCACAAAAUUU
1051





D-1381;
1206-1226
ACCGUAUGUCCUGGAAUAUU
383
UAAUAUUCCAGGACAUACGGUUU
1052


D-2154










D-1382;
1207-1227
CCGUAUGUCCUGGAAUAUUA
384
AUAAUAUUCCAGGACAUACGGUU
1053


D-2066










D-1383;
1209-1229
GUAUGUCCUGGAAUAUUAGA
385
AUCUAAUAUUCCAGGACAUACUU
1054


D-2063










D-1384;
1210-1230
UAUGUCCUGGAAUAUUAGAU
386
AAUCUAAUAUUCCAGGACAUAUU
1055


D-2142










D-1385;
1211-1231
AUGUCCUGGAAUAUUAGAUG
387
ACAUCUAAUAUUCCAGGACAUUU
1056


D-2301;







D-2441;







D-2445










D-1386;
1212-1232
UGUCCUGGAAUAUUAGAUGC
388
AGCAUCUAAUAUUCCAGGACAUU
1057


D-2081;







D-2245;







D-2250;







D-2312;







D-2317;







D-2322;







D-2327;







D-2332;







D-2337;







D-2342;







D-2347;







D-2352;







D-2357;







D-2396










D-1387;
1213-1233
GUCCUGGAAUAUUAGAUGCC
389
AGGCAUCUAAUAUUCCAGGACUU
1058


D-2080;







D-2246;







D-2251;







D-2264;







D-2276;







D-2277;







D-2278;







D-2279;







D-2280;







D-2281;







D-2282;







D-2283;







D-2284;







D-2285;







D-2286;







D-2287;







D-2288;







D-2289;







D-2311;







D-2316;







D-2321;







D-2326;







D-2331;







D-2336;







D-2341;







D-2346;







D-2351;







D-2356;







D-2395










D-1388;
1214-1234
UCCUGGAAUAUUAGAUGCCU
390
AAGGCAUCUAAUAUUCCAGGAUU
1059


D-2078;







D-2248;







D-2253;







D-2265;







D-2309;







D-2314;







D-2319;







D-2324;







D-2329;







D-2334;







D-2339;







D-2344;







D-2349;







D-2354;







D-2393










D-1389;
1215-1235
CCUGGAAUAUUAGAUGCCUU
391
AAAGGCAUCUAAUAUUCCAGGUU
1060


D-2077










D-1390;
1216-1236
CUGGAAUAUUAGAUGCCUUU
392
AAAAGGCAUCUAAUAUUCCAGUU
1061


D-2076










D-1391;
1269-1289
CAUGGUGUUUCAGAACUGAG
393
UCUCAGUUCUGAAACACCAUGUU
1062


D-2150










D-1392
1270-1290
AUGGUGUUUCAGAACUGAGA
394
AUCUCAGUUCUGAAACACCAUUU
1063





D-1393
1271-1291
UGGUGUUUCAGAACUGAGAC
395
AGUCUCAGUUCUGAAACACCAUU
1064





D-1394
1272-1292
GGUGUUUCAGAACUGAGACC
396
AGGUCUCAGUUCUGAAACACCUU
1065





D-1395;
1935-1955
GAGGAGAAGAAAAGUGAUUC
397
UGAAUCACUUUUCUUCUCCUCUU
1066


D-2131










D-1396;
1939-1959
AGAAGAAAAGUGAUUCAGUG
398
UCACUGAAUCACUUUUCUUCUUU
1067


D-2070;







D-2471










D-1397;
1940-1960
GAAGAAAAGUGAUUCAGUGA
399
AUCACUGAAUCACUUUUCUUCUU
1068


D-2151










D-1398
1943-1963
GAAAAGUGAUUCAGUGAUUU
400
AAAAUCACUGAAUCACUUUUCUU
1069





D-1399;
1945-1965
AAAGUGAUUCAGUGAUUUCA
401
AUGAAAUCACUGAAUCACUUUUU
1070


D-2141










D-1400;
1970-1990
ACUACUGAAAACCUUUAAAG
402
ACUUUAAAGGUUUUCAGUAGUUU
1071


D-2069










D-1401;
1972-1992
UACUGAAAACCUUUAAAGGG
403
ACCCUUUAAAGGUUUUCAGUAUU
1072


D-2068










D-1402;
2048-2068
UGUAUAACUCUAAGAUCUGA
404
AUCAGAUCUUAGAGUUAUACAUU
1073


D-2065










D-1403;
2050-2070
UAUAACUCUAAGAUCUGAUG
405
UCAUCAGAUCUUAGAGUUAUAUU
1074


D-2302;







D-2493;







D-2505;







D-2511










D-1404;
2051-2071
AUAACUCUAAGAUCUGAUGA
406
UUCAUCAGAUCUUAGAGUUAUUU
1075


D-2143










D-1405;
2052-2072
UAACUCUAAGAUCUGAUGAA
407
AUUCAUCAGAUCUUAGAGUUAUU
1076


D-2082;







D-2313;







D-2318;







D-2323;







D-2328;







D-2333;







D-2338;







D-2343;







D-2348;







D-2353;







D-2358;







D-2397;







D-2470










D-1406;
2053-2073
AACUCUAAGAUCUGAUGAAG
408
ACUUCAUCAGAUCUUAGAGUUUU
1077


D-2137










D-1407;
2054-2074
ACUCUAAGAUCUGAUGAAGU
409
UACUUCAUCAGAUCUUAGAGUUU
1078


D-2079;







D-2247;







D-2252;







D-2266;







D-2310;







D-2315;







D-2320;







D-2325;







D-2330;







D-2335;







D-2340;







D-2345;







D-2350;







D-2355;







D-2394










D-1408
  57-77
GAUUGGCCCGGAAGGGUUCA
410
AUGAACCCUUCCGGGCCAAUCUU
1079





D-1409
  89-109
CCUUUGGGCUCGGGGCCAAA
411
AUUUGGCCCCGAGCCCAAAGGUU
1080





D-1410
  92-112
UUGGGCUCGGGGCCAAAGGC
412
AGCCUUUGGCCCCGAGCCCAAUU
1081





D-1411
 112-132
CGCACCUUCCCCCAGCGGCC
413
AGGCCGCUGGGGGAAGGUGCGUU
1082





D-1412
 159-179
CCGCCGCCACCUCGCGGAGA
414
UUCUCCGCGAGGUGGCGGCGGUU
1083





D-1413
 205-225
UCCGCGCUGGCGCGCUUUGU
415
AACAAAGCGCGCCAGCGCGGAUU
1084





D-1414
 206-226
CCGCGCUGGCGCGCUUUGUC
416
AGACAAAGCGCGCCAGCGCGGUU
1085





D-1415
 207-227
CGCGCUGGCGCGCUUUGUCC
417
AGGACAAAGCGCGCCAGCGCGUU
1086





D-1416;
 215-235
CGCGCUUUGUCCUCCUCGCG
418
ACGCGAGGAGGACAAAGCGCGUU
1087


D-2091










D-1417
 216-236
GCGCUUUGUCCUCCUCGCGC
419
UGCGCGAGGAGGACAAAGCGCUU
1088





D-1418
 217-237
CGCUUUGUCCUCCUCGCGCA
420
UUGCGCGAGGAGGACAAAGCGUU
1089





D-1419
 218-238
GCUUUGUCCUCCUCGCGCAA
421
AUUGCGCGAGGAGGACAAAGCUU
1090





D-1420;
 219-239
CUUUGUCCUCCUCGCGCAAU
422
AAUUGCGCGAGGAGGACAAAGUU
1091


D-2093










D-1421;
 220-240
UUUGUCCUCCUCGCGCAAUC
423
AGAUUGCGCGAGGAGGACAAAUU
1092


D-2095










D-1422
 222-242
UGUCCUCCUCGCGCAAUCCC
424
AGGGAUUGCGCGAGGAGGACAUU
1093





D-1423
 223-243
GUCCUCCUCGCGCAAUCCCG
425
ACGGGAUUGCGCGAGGAGGACUU
1094





D-1424
 224-244
UCCUCCUCGCGCAAUCCCGG
426
ACCGGGAUUGCGCGAGGAGGAUU
1095





D-1425
 225-245
CCUCCUCGCGCAAUCCCGGC
427
AGCCGGGAUUGCGCGAGGAGGUU
1096





D-1426
 229-249
CUCGCGCAAUCCCGGCCCGG
428
ACCGGGCCGGGAUUGCGCGAGUU
1097





D-1427
 232-252
GCGCAAUCCCGGCCCGGGUG
429
ACACCCGGGCCGGGAUUGCGCUU
1098





D-1428
 233-253
CGCAAUCCCGGCCCGGGUGG
430
ACCACCCGGGCCGGGAUUGCGUU
1099





D-1429
 234-254
GCAAUCCCGGCCCGGGUGGC
431
AGCCACCCGGGCCGGGAUUGCUU
1100





D-1430
 242-262
GGCCCGGGUGGCUCGGGGUU
432
AAACCCCGAGCCACCCGGGCCUU
1101





D-1431
 243-263
GCCCGGGUGGCUCGGGGUUG
433
ACAACCCCGAGCCACCCGGGCUU
1102





D-1432
 244-264
CCCGGGUGGCUCGGGGUUGC
434
AGCAACCCCGAGCCACCCGGGUU
1103





D-1433
 254-274
UCGGGGUUGCCGCGCUGGGC
435
AGCCCAGCGCGGCAACCCCGAUU
1104





D-1434
 258-278
GGUUGCCGCGCUGGGCCUGA
436
AUCAGGCCCAGCGCGGCAACCUU
1105





D-1435
 262-282
GCCGCGCUGGGCCUGACCGC
437
AGCGGUCAGGCCCAGCGCGGCUU
1106





D-1436
 265-285
GCGCUGGGCCUGACCGCGGU
438
AACCGCGGUCAGGCCCAGCGCUU
1107





D-1437
 269-289
UGGGCCUGACCGCGGUGGCG
439
ACGCCACCGCGGUCAGGCCCAUU
1108





D-1438
 270-290
GGGCCUGACCGCGGUGGCGC
440
AGCGCCACCGCGGUCAGGCCCUU
1109





D-1439;
 484-504
GAGGGAAACAUGGUUACUGC
441
AGCAGUAACCAUGUUUCCCUCUU
1110


D-2122










D-1440
 487-507
GGAAACAUGGUUACUGCUCG
442
ACGAGCAGUAACCAUGUUUCCUU
1111





D-1441;
 488-508
GAAACAUGGUUACUGCUCGC
443
AGCGAGCAGUAACCAUGUUUCUU
1112


D-2092










D-1442
 489-509
AAACAUGGUUACUGCUCGCC
444
UGGCGAGCAGUAACCAUGUUUUU
1113





D-1443
 490-510
AACAUGGUUACUGCUCGCCA
445
AUGGCGAGCAGUAACCAUGUUUU
1114





D-1444
 491-511
ACAUGGUUACUGCUCGCCAG
446
ACUGGCGAGCAGUAACCAUGUUU
1115





D-1445
 496-516
GUUACUGCUCGCCAGGAACC
447
AGGUUCCUGGCGAGCAGUAACUU
1116





D-1446
 531-551
UUCCCUGACCUGCGAUGGUG
448
UCACCAUCGCAGGUCAGGGAAUU
1117





D-1447
 538-558
ACCUGCGAUGGUGACACCCU
449
AAGGGUGUCACCAUCGCAGGUUU
1118





D-1448
 566-586
GUGCAGCCUACACAAAGGAC
450
AGUCCUUUGUGUAGGCUGCACUU
1119





D-1449
 567-587
UGCAGCCUACACAAAGGACC
451
AGGUCCUUUGUGUAGGCUGCAUU
1120





D-1450
 569-589
CAGCCUACACAAAGGACCUA
452
AUAGGUCCUUUGUGUAGGCUGUU
1121





D-1451;
 570-590
AGCCUACACAAAGGACCUAC
453
AGUAGGUCCUUUGUGUAGGCUUU
1122


D-2086










D-1452
 571-591
GCCUACACAAAGGACCUACU
454
UAGUAGGUCCUUUGUGUAGGCUU
1123





D-1453
 572-592
CCUACACAAAGGACCUACUA
455
AUAGUAGGUCCUUUGUGUAGGUU
1124





D-1454
 573-593
CUACACAAAGGACCUACUAC
456
AGUAGUAGGUCCUUUGUGUAGUU
1125





D-1455;
 576-596
CACAAAGGACCUACUACUGC
457
AGCAGUAGUAGGUCCUUUGUGUU
1126


D-2110










D-1456
 581-601
AGGACCUACUACUGCCUAUC
458
UGAUAGGCAGUAGUAGGUCCUUU
1127





D-1457
 582-602
GGACCUACUACUGCCUAUCA
459
UUGAUAGGCAGUAGUAGGUCCUU
1128





D-1458;
 584-604
ACCUACUACUGCCUAUCAAA
460
UUUUGAUAGGCAGUAGUAGGUUU
1129


D-2134










D-1459;
 587-607
UACUACUGCCUAUCAAAACG
461
ACGUUUUGAUAGGCAGUAGUAUU
1130


D-2135










D-1460;
 589-609
CUACUGCCUAUCAAAACGCC
462
AGGCGUUUUGAUAGGCAGUAGUU
1131


D-2098










D-1461
 594-614
GCCUAUCAAAACGCCCACCA
463
AUGGUGGGCGUUUUGAUAGGCUU
1132





D-1462
 610-630
ACCACAAAUGCAGUGCACAA
464
AUUGUGCACUGCAUUUGUGGUUU
1133





D-1463
 612-632
CACAAAUGCAGUGCACAAGU
465
AACUUGUGCACUGCAUUUGUGUU
1134





D-1464
 614-634
CAAAUGCAGUGCACAAGUGC
466
UGCACUUGUGCACUGCAUUUGUU
1135





D-1465
 617-637
AUGCAGUGCACAAGUGCAGA
467
AUCUGCACUUGUGCACUGCAUUU
1136





D-1466
 621-641
AGUGCACAAGUGCAGAGUGC
468
UGCACUCUGCACUUGUGCACUUU
1137





D-1467
 626-646
ACAAGUGCAGAGUGCACGGC
469
AGCCGUGCACUCUGCACUUGUUU
1138





D-1468
 627-647
CAAGUGCAGAGUGCACGGCC
470
AGGCCGUGCACUCUGCACUUGUU
1139





D-1469
 631-651
UGCAGAGUGCACGGCCUGGA
471
AUCCAGGCCGUGCACUCUGCAUU
1140





D-1470
 634-654
AGAGUGCACGGCCUGGAGAU
472
UAUCUCCAGGCCGUGCACUCUUU
1141





D-1471
 635-655
GAGUGCACGGCCUGGAGAUA
473
AUAUCUCCAGGCCGUGCACUCUU
1142





D-1472
 647-667
UGGAGAUAGAGGGCAGGGAC
474
AGUCCCUGCCCUCUAUCUCCAUU
1143





D-1473
 701-721
UCCUGAAGUCACAGCCCUAC
475
AGUAGGGCUGUGACUUCAGGAUU
1144





D-1474
 703-723
CUGAAGUCACAGCCCUACCG
476
ACGGUAGGGCUGUGACUUCAGUU
1145





D-1475
 705-725
GAAGUCACAGCCCUACCGCC
477
AGGCGGUAGGGCUGUGACUUCUU
1146





D-1476
 739-759
CCUCACAUGCGACCGAGACG
478
ACGUCUCGGUCGCAUGUGAGGUU
1147





D-1477
 740-760
CUCACAUGCGACCGAGACGU
479
AACGUCUCGGUCGCAUGUGAGUU
1148





D-1478
 741-761
UCACAUGCGACCGAGACGUC
480
AGACGUCUCGGUCGCAUGUGAUU
1149





D-1479
 742-762
CACAUGCGACCGAGACGUCC
481
AGGACGUCUCGGUCGCAUGUGUU
1150





D-1480
 743-763
ACAUGCGACCGAGACGUCCU
482
AAGGACGUCUCGGUCGCAUGUUU
1151





D-1481
 746-766
UGCGACCGAGACGUCCUCAU
483
AAUGAGGACGUCUCGGUCGCAUU
1152





D-1482
 747-767
GCGACCGAGACGUCCUCAUC
484
UGAUGAGGACGUCUCGGUCGCUU
1153





D-1483
 751-771
CCGAGACGUCCUCAUCAAAU
485
UAUUUGAUGAGGACGUCUCGGUU
1154





D-1484
 752-772
CGAGACGUCCUCAUCAAAUA
486
AUAUUUGAUGAGGACGUCUCGUU
1155





D-1485
 754-774
AGACGUCCUCAUCAAAUAGC
487
UGCUAUUUGAUGAGGACGUCUUU
1156





D-1486
 759-779
UCCUCAUCAAAUAGCAGACU
488
AAGUCUGCUAUUUGAUGAGGAUU
1157





D-1487;
 761-781
CUCAUCAAAUAGCAGACUUG
489
ACAAGUCUGCUAUUUGAUGAGUU
1158


D-2099










D-1488
 809-829
CAGACACCAGCCCAUUCUUG
490
UCAAGAAUGGGCUGGUGUCUGUU
1159





D-1489;
 810-830
AGACACCAGCCCAUUCUUGA
491
AUCAAGAAUGGGCUGGUGUCUUU
1160


D-2100










D-1490
 811-831
GACACCAGCCCAUUCUUGAU
492
AAUCAAGAAUGGGCUGGUGUCUU
1161





D-1491;
 816-836
CAGCCCAUUCUUGAUCCUUU
493
AAAAGGAUCAAGAAUGGGCUGUU
1162


D-2101










D-1492;
 820-840
CCAUUCUUGAUCCUUUCUGA
494
AUCAGAAAGGAUCAAGAAUGGUU
1163


D-2112










D-1493;
 934-954
GCAGAGGAUUCUUGGGAUGA
495
AUCAUCCCAAGAAUCCUCUGCUU
1164


D-2102










D-1494
 941-961
AUUCUUGGGAUGAGCUUCUU
496
UAAGAAGCUCAUCCCAAGAAUUU
1165





D-1495
 944-964
CUUGGGAUGAGCUUCUUAUU
497
AAAUAAGAAGCUCAUCCCAAGUU
1166





D-1496
 947-967
GGGAUGAGCUUCUUAUUGGU
498
AACCAAUAAGAAGCUCAUCCCUU
1167





D-1497
 948-968
GGAUGAGCUUCUUAUUGGUG
499
UCACCAAUAAGAAGCUCAUCCUU
1168





D-1498
 970-990
GUGGAACUGAAAAGGGUGAU
500
AAUCACCCUUUUCAGUUCCACUU
1169





D-1499
 971-991
UGGAACUGAAAAGGGUGAUG
501
ACAUCACCCUUUUCAGUUCCAUU
1170





D-1500
 973-993
GAACUGAAAAGGGUGAUGGC
502
AGCCAUCACCCUUUUCAGUUCUU
1171





D-1501
 976-996
CUGAAAAGGGUGAUGGCUUG
503
ACAAGCCAUCACCCUUUUCAGUU
1172





D-1502
 977-997
UGAAAAGGGUGAUGGCUUGU
504
AACAAGCCAUCACCCUUUUCAUU
1173





D-1503;
 978-998
GAAAAGGGUGAUGGCUUGUU
505
AAACAAGCCAUCACCCUUUUCUU
1174


D-2096










D-1504;
 979-999
AAAAGGGUGAUGGCUUGUUC
506
AGAACAAGCCAUCACCCUUUUUU
1175


D-2097










D-1505
1018-1038
GUGGACCCAGACACCGGUGU
507
AACACCGGUGUCUGGGUCCACUU
1176





D-1506
1019-1039
UGGACCCAGACACCGGUGUC
508
UGACACCGGUGUCUGGGUCCAUU
1177





D-1507
1020-1040
GGACCCAGACACCGGUGUCA
509
AUGACACCGGUGUCUGGGUCCUU
1178





D-1508
1022-1042
ACCCAGACACCGGUGUCAUG
510
UCAUGACACCGGUGUCUGGGUUU
1179





D-1509
1024-1044
CCAGACACCGGUGUCAUGAG
511
ACUCAUGACACCGGUGUCUGGUU
1180





D-1510
1029-1049
CACCGGUGUCAUGAGCAGGA
512
UUCCUGCUCAUGACACCGGUGUU
1181





D-1511
1036-1056
GUCAUGAGCAGGAAGGAACC
513
AGGUUCCUUCCUGCUCAUGACUU
1182





D-1512
1039-1059
AUGAGCAGGAAGGAACCGCU
514
AAGCGGUUCCUUCCUGCUCAUUU
1183





D-1513
1045-1065
AGGAAGGAACCGCUGGAAAC
515
UGUUUCCAGCGGUUCCUUCCUUU
1184





D-1514
1046-1066
GGAAGGAACCGCUGGAAACA
516
AUGUUUCCAGCGGUUCCUUCCUU
1185





D-1515;
1047-1067
GAAGGAACCGCUGGAAACAC
517
AGUGUUUCCAGCGGUUCCUUCUU
1186


D-2088










D-1516
1189-1209
CUGGGCCAGUAAUGGGAACC
518
AGGUUCCCAUUACUGGCCCAGUU
1187





D-1517
1191-1211
GGGCCAGUAAUGGGAACCGU
519
UACGGUUCCCAUUACUGGCCCUU
1188





D-1518
1192-1212
GGCCAGUAAUGGGAACCGUA
520
AUACGGUUCCCAUUACUGGCCUU
1189





D-1519
1193-1213
GCCAGUAAUGGGAACCGUAU
521
AAUACGGUUCCCAUUACUGGCUU
1190





D-1520
1194-1214
CCAGUAAUGGGAACCGUAUG
522
ACAUACGGUUCCCAUUACUGGUU
1191





D-1521
1195-1215
CAGUAAUGGGAACCGUAUGU
523
AACAUACGGUUCCCAUUACUGUU
1192





D-1522
1196-1216
AGUAAUGGGAACCGUAUGUC
524
AGACAUACGGUUCCCAUUACUUU
1193





D-1523
1201-1221
UGGGAACCGUAUGUCCUGGA
525
UUCCAGGACAUACGGUUCCCAUU
1194





D-1524
1203-1223
GGAACCGUAUGUCCUGGAAU
526
UAUUCCAGGACAUACGGUUCCUU
1195





D-1525;
1219-1239
GAAUAUUAGAUGCCUUUUAA
527
UUUAAAAGGCAUCUAAUAUUCUU
1196


D-2113;







D-2376;







D-2380










D-1526;
1227-1247
GAUGCCUUUUAAAAAUGUUC
528
AGAACAUUUUUAAAAGGCAUCUU
1197


D-2108;







D-2440;







D-2444










D-1527
1275-1295
GUUUCAGAACUGAGACCUCU
529
UAGAGGUCUCAGUUCUGAAACUU
1198





D-1528
1278-1298
UCAGAACUGAGACCUCUACA
530
AUGUAGAGGUCUCAGUUCUGAUU
1199





D-1529
1283-1303
ACUGAGACCUCUACAUUUUC
531
AGAAAAUGUAGAGGUCUCAGUUU
1200





D-1530
1284-1304
CUGAGACCUCUACAUUUUCU
532
AAGAAAAUGUAGAGGUCUCAGUU
1201





D-1531
1285-1305
UGAGACCUCUACAUUUUCUU
533
AAAGAAAAUGUAGAGGUCUCAUU
1202





D-1532;
1313-1333
UGAUUUUCACAUUUUUCGUC
534
AGACGAAAAAUGUGAAAAUCAUU
1203


D-2146










D-1533;
1314-1334
GAUUUUCACAUUUUUCGUCU
535
AAGACGAAAAAUGUGAAAAUCUU
1204


D-2111;







D-2374;







D-2375;







D-2379;







D-2383










D-1534
1315-1335
AUUUUCACAUUUUUCGUCUU
536
AAAGACGAAAAAUGUGAAAAUUU
1205





D-1535
1317-1337
UUUCACAUUUUUCGUCUUUU
537
AAAAAGACGAAAAAUGUGAAAUU
1206





D-1536
1318-1338
UUCACAUUUUUCGUCUUUUG
538
ACAAAAGACGAAAAAUGUGAAUU
1207





D-1537
1319-1339
UCACAUUUUUCGUCUUUUGG
539
UCCAAAAGACGAAAAAUGUGAUU
1208





D-1538
1321-1341
ACAUUUUUCGUCUUUUGGAC
540
AGUCCAAAAGACGAAAAAUGUUU
1209





D-1539
1325-1345
UUUUCGUCUUUUGGACUUCU
541
AAGAAGUCCAAAAGACGAAAAUU
1210





D-1540
1326-1346
UUUCGUCUUUUGGACUUCUG
542
ACAGAAGUCCAAAAGACGAAAUU
1211





D-1541
1327-1347
UUCGUCUUUUGGACUUCUGG
543
ACCAGAAGUCCAAAAGACGAAUU
1212





D-1542
1328-1348
UCGUCUUUUGGACUUCUGGU
544
AACCAGAAGUCCAAAAGACGAUU
1213





D-1543
1332-1352
CUUUUGGACUUCUGGUGUCU
545
AAGACACCAGAAGUCCAAAAGUU
1214





D-1544
1335-1355
UUGGACUUCUGGUGUCUCAA
546
AUUGAGACACCAGAAGUCCAAUU
1215





D-1545
1337-1357
GGACUUCUGGUGUCUCAAUG
547
ACAUUGAGACACCAGAAGUCCUU
1216





D-1546
1338-1358
GACUUCUGGUGUCUCAAUGC
548
AGCAUUGAGACACCAGAAGUCUU
1217





D-1547
1341-1361
UUCUGGUGUCUCAAUGCUUC
549
UGAAGCAUUGAGACACCAGAAUU
1218





D-1548
1356-1376
GCUUCAAUGUCCCAGUGCAA
550
UUUGCACUGGGACAUUGAAGCUU
1219





D-1549;
1362-1382
AUGUCCCAGUGCAAAAAGUA
551
UUACUUUUUGCACUGGGACAUUU
1220


D-2075










D-1550
1363-1383
UGUCCCAGUGCAAAAAGUAA
552
UUUACUUUUUGCACUGGGACAUU
1221





D-1551;
1364-1384
GUCCCAGUGCAAAAAGUAAA
553
AUUUACUUUUUGCACUGGGACUU
1222


D-2152










D-1552;
1365-1385
UCCCAGUGCAAAAAGUAAAG
554
UCUUUACUUUUUGCACUGGGAUU
1223


D-2157










D-1553
1369-1389
AGUGCAAAAAGUAAAGAAAU
555
UAUUUCUUUACUUUUUGCACUUU
1224





D-1554
1382-1402
AAGAAAUAUAGUCUCAAUAA
556
AUUAUUGAGACUAUAUUUCUUUU
1225





D-1555;
1385-1405
AAAUAUAGUCUCAAUAACUU
557
UAAGUUAUUGAGACUAUAUUUUU
1226


D-2136;







D-2438;







D-2442










D-1556;
1387-1407
AUAUAGUCUCAAUAACUUAG
558
ACUAAGUUAUUGAGACUAUAUUU
1227


D-2156










D-1557
1388-1408
UAUAGUCUCAAUAACUUAGU
559
UACUAAGUUAUUGAGACUAUAUU
1228





D-1558
1389-1409
AUAGUCUCAAUAACUUAGUA
560
AUACUAAGUUAUUGAGACUAUUU
1229





D-1559
1390-1410
UAGUCUCAAUAACUUAGUAG
561
ACUACUAAGUUAUUGAGACUAUU
1230





D-1560
1391-1411
AGUCUCAAUAACUUAGUAGG
562
UCCUACUAAGUUAUUGAGACUUU
1231





D-1561
1395-1415
UCAAUAACUUAGUAGGACUU
563
AAAGUCCUACUAAGUUAUUGAUU
1232





D-1562
1396-1416
CAAUAACUUAGUAGGACUUC
564
UGAAGUCCUACUAAGUUAUUGUU
1233





D-1563
1398-1418
AUAACUUAGUAGGACUUCAG
565
ACUGAAGUCCUACUAAGUUAUUU
1234





D-1564
1400-1420
AACUUAGUAGGACUUCAGUA
566
UUACUGAAGUCCUACUAAGUUUU
1235





D-1565
1401-1421
ACUUAGUAGGACUUCAGUAA
567
AUUACUGAAGUCCUACUAAGUUU
1236





D-1566
1403-1423
UUAGUAGGACUUCAGUAAGU
568
AACUUACUGAAGUCCUACUAAUU
1237





D-1567
1404-1424
UAGUAGGACUUCAGUAAGUC
569
UGACUUACUGAAGUCCUACUAUU
1238





D-1568
1405-1425
AGUAGGACUUCAGUAAGUCA
570
AUGACUUACUGAAGUCCUACUUU
1239





D-1569
1407-1427
UAGGACUUCAGUAAGUCACU
571
AAGUGACUUACUGAAGUCCUAUU
1240





D-1570
1427-1447
UAAAUGACAAGACAGGAUUC
572
AGAAUCCUGUCUUGUCAUUUAUU
1241





D-1571
1441-1461
GGAUUCUGAAAACUCCCCGU
573
AACGGGGAGUUUUCAGAAUCCUU
1242





D-1572
1442-1462
GAUUCUGAAAACUCCCCGUU
574
AAACGGGGAGUUUUCAGAAUCUU
1243





D-1573
1444-1464
UUCUGAAAACUCCCCGUUUA
575
UUAAACGGGGAGUUUUCAGAAUU
1244





D-1574
1445-1465
UCUGAAAACUCCCCGUUUAA
576
AUUAAACGGGGAGUUUUCAGAUU
1245





D-1575
1446-1466
CUGAAAACUCCCCGUUUAAC
577
AGUUAAACGGGGAGUUUUCAGUU
1246





D-1576;
1447-1467
UGAAAACUCCCCGUUUAACU
578
AAGUUAAACGGGGAGUUUUCAUU
1247


D-2107










D-1577
1449-1469
AAAACUCCCCGUUUAACUGA
579
AUCAGUUAAACGGGGAGUUUUUU
1248





D-1578
1452-1472
ACUCCCCGUUUAACUGAUUA
580
AUAAUCAGUUAAACGGGGAGUUU
1249





D-1579
1453-1473
CUCCCCGUUUAACUGAUUAU
581
AAUAAUCAGUUAAACGGGGAGUU
1250





D-1580;
1454-1474
UCCCCGUUUAACUGAUUAUG
582
ACAUAAUCAGUUAAACGGGGAUU
1251


D-2155










D-1581;
1455-1475
CCCCGUUUAACUGAUUAUGG
583
UCCAUAAUCAGUUAAACGGGGUU
1252


D-2116;







D-2490;







D-2502;







D-2508










D-1582
1484-1504
UUCUCCUGCUUCUCCGUUUA
584
AUAAACGGAGAAGCAGGAGAAUU
1253





D-1583
1485-1505
UCUCCUGCUUCUCCGUUUAU
585
AAUAAACGGAGAAGCAGGAGAUU
1254





D-1584;
1486-1506
CUCCUGCUUCUCCGUUUAUC
586
AGAUAAACGGAGAAGCAGGAGUU
1255


D-2120










D-1585
1488-1508
CCUGCUUCUCCGUUUAUCUA
587
AUAGAUAAACGGAGAAGCAGGUU
1256





D-1586
1491-1511
GCUUCUCCGUUUAUCUACCA
588
UUGGUAGAUAAACGGAGAAGCUU
1257





D-1587
1492-1512
CUUCUCCGUUUAUCUACCAA
589
AUUGGUAGAUAAACGGAGAAGUU
1258





D-1588
1493-1513
UUCUCCGUUUAUCUACCAAG
590
UCUUGGUAGAUAAACGGAGAAUU
1259





D-1589
1494-1514
UCUCCGUUUAUCUACCAAGA
591
AUCUUGGUAGAUAAACGGAGAUU
1260





D-1590
1495-1515
CUCCGUUUAUCUACCAAGAG
592
ACUCUUGGUAGAUAAACGGAGUU
1261





D-1591
1496-1516
UCCGUUUAUCUACCAAGAGC
593
AGCUCUUGGUAGAUAAACGGAUU
1262





D-1592
1498-1518
CGUUUAUCUACCAAGAGCGC
594
UGCGCUCUUGGUAGAUAAACGUU
1263





D-1593
1501-1521
UUAUCUACCAAGAGCGCAGA
595
AUCUGCGCUCUUGGUAGAUAAUU
1264





D-1594
1503-1523
AUCUACCAAGAGCGCAGACU
596
AAGUCUGCGCUCUUGGUAGAUUU
1265





D-1595;
1506-1526
UACCAAGAGCGCAGACUUGC
597
UGCAAGUCUGCGCUCUUGGUAUU
1266


D-2072;







D-2439;







D-2443










D-1596;
1507-1527
ACCAAGAGCGCAGACUUGCA
598
AUGCAAGUCUGCGCUCUUGGUUU
1267


D-2087










D-1597;
1509-1529
CAAGAGCGCAGACUUGCAUC
599
AGAUGCAAGUCUGCGCUCUUGUU
1268


D-2147










D-1598
1510-1530
AAGAGCGCAGACUUGCAUCC
600
AGGAUGCAAGUCUGCGCUCUUUU
1269





D-1599
1512-1532
GAGCGCAGACUUGCAUCCUG
601
ACAGGAUGCAAGUCUGCGCUCUU
1270





D-1600
1514-1534
GCGCAGACUUGCAUCCUGUC
602
UGACAGGAUGCAAGUCUGCGCUU
1271





D-1601
1515-1535
CGCAGACUUGCAUCCUGUCA
603
AUGACAGGAUGCAAGUCUGCGUU
1272





D-1602;
1517-1537
CAGACUUGCAUCCUGUCACU
604
UAGUGACAGGAUGCAAGUCUGUU
1273


D-2121










D-1603
1521-1541
CUUGCAUCCUGUCACUACCA
605
AUGGUAGUGACAGGAUGCAAGUU
1274





D-1604
1525-1545
CAUCCUGUCACUACCACUCG
606
ACGAGUGGUAGUGACAGGAUGUU
1275





D-1605
1527-1547
UCCUGUCACUACCACUCGUU
607
UAACGAGUGGUAGUGACAGGAUU
1276





D-1606;
1528-1548
CCUGUCACUACCACUCGUUA
608
AUAACGAGUGGUAGUGACAGGUU
1277


D-2090










D-1607
1529-1549
CUGUCACUACCACUCGUUAG
609
UCUAACGAGUGGUAGUGACAGUU
1278





D-1608
1530-1550
UGUCACUACCACUCGUUAGA
610
AUCUAACGAGUGGUAGUGACAUU
1279





D-1609
1534-1554
ACUACCACUCGUUAGAGAAA
611
AUUUCUCUAACGAGUGGUAGUUU
1280





D-1610
1572-1592
AAGAGUGGGUGGGCUGGAAG
612
UCUUCCAGCCCACCCACUCUUUU
1281





D-1611;
1596-1616
UCCUAGAAUGUGUUAUUGCC
613
AGGCAAUAACACAUUCUAGGAUU
1282


D-2124










D-1612
1597-1617
CCUAGAAUGUGUUAUUGCCC
614
AGGGCAAUAACACAUUCUAGGUU
1283





D-1613
1602-1622
AAUGUGUUAUUGCCCCUGUU
615
AAACAGGGGCAAUAACACAUUUU
1284





D-1614
1605-1625
GUGUUAUUGCCCCUGUUCAU
616
AAUGAACAGGGGCAAUAACACUU
1285





D-1615
1608-1628
UUAUUGCCCCUGUUCAUGAG
617
ACUCAUGAACAGGGGCAAUAAUU
1286





D-1616
1610-1630
AUUGCCCCUGUUCAUGAGGU
618
UACCUCAUGAACAGGGGCAAUUU
1287





D-1617
1634-1654
AAUGAAAAUUAAAUUGCACC
619
AGGUGCAAUUUAAUUUUCAUUUU
1288





D-1618
1635-1655
AUGAAAAUUAAAUUGCACCC
620
AGGGUGCAAUUUAAUUUUCAUUU
1289





D-1619
1639-1659
AAAUUAAAUUGCACCCCAAA
621
AUUUGGGGUGCAAUUUAAUUUUU
1290





D-1620
1641-1661
AUUAAAUUGCACCCCAAAUA
622
AUAUUUGGGGUGCAAUUUAAUUU
1291





D-1621
1642-1662
UUAAAUUGCACCCCAAAUAU
623
AAUAUUUGGGGUGCAAUUUAAUU
1292





D-1622
1645-1665
AAUUGCACCCCAAAUAUGGC
624
AGCCAUAUUUGGGGUGCAAUUUU
1293





D-1623
1646-1666
AUUGCACCCCAAAUAUGGCU
625
AAGCCAUAUUUGGGGUGCAAUUU
1294





D-1624
1658-1678
AUAUGGCUGGAAUGCCACUU
626
AAAGUGGCAUUCCAGCCAUAUUU
1295





D-1625
1665-1685
UGGAAUGCCACUUCCCUUUU
627
AAAAAGGGAAGUGGCAUUCCAUU
1296





D-1626;
1676-1696
UUCCCUUUUCUUCUCAAGCC
628
AGGCUUGAGAAGAAAAGGGAAUU
1297


D-2089










D-1627
1684-1704
UCUUCUCAAGCCCCGGGCUA
629
AUAGCCCGGGGCUUGAGAAGAUU
1298





D-1628
1687-1707
UCUCAAGCCCCGGGCUAGCU
630
AAGCUAGCCCGGGGCUUGAGAUU
1299





D-1629
1704-1724
GCUUUUGAAAUGGCAUAAAG
631
UCUUUAUGCCAUUUCAAAAGCUU
1300





D-1630
1707-1727
UUUGAAAUGGCAUAAAGACU
632
AAGUCUUUAUGCCAUUUCAAAUU
1301





D-1631
1712-1732
AAUGGCAUAAAGACUGAGGU
633
AACCUCAGUCUUUAUGCCAUUUU
1302





D-1632;
1714-1734
UGGCAUAAAGACUGAGGUGA
634
AUCACCUCAGUCUUUAUGCCAUU
1303


D-2123










D-1633;
1716-1736
GCAUAAAGACUGAGGUGACC
635
AGGUCACCUCAGUCUUUAUGCUU
1304


D-2094










D-1634
1741-1761
GAAGCACUGCAGAUAUUAAU
636
AAUUAAUAUCUGCAGUGCUUCUU
1305





D-1635;
1813-1833
CUAAAGGUGCUCAGGAGGAU
637
AAUCCUCCUGAGCACCUUUAGUU
1306


D-2103










D-1636
1817-1837
AGGUGCUCAGGAGGAUGGUU
638
AAACCAUCCUCCUGAGCACCUUU
1307





D-1637
1819-1839
GUGCUCAGGAGGAUGGUUGU
639
AACAACCAUCCUCCUGAGCACUU
1308





D-1638
1827-1847
GAGGAUGGUUGUGUAGUCAU
640
AAUGACUACACAACCAUCCUCUU
1309





D-1639
1828-1848
AGGAUGGUUGUGUAGUCAUG
641
ACAUGACUACACAACCAUCCUUU
1310





D-1640
1829-1849
GGAUGGUUGUGUAGUCAUGG
642
UCCAUGACUACACAACCAUCCUU
1311





D-1641
1835-1855
UUGUGUAGUCAUGGAGGACC
643
AGGUCCUCCAUGACUACACAAUU
1312





D-1642
1843-1863
UCAUGGAGGACCCCUGGAUC
644
AGAUCCAGGGGUCCUCCAUGAUU
1313





D-1643
1869-1889
AUUCCCCUCAGCUAAUGACG
645
ACGUCAUUAGCUGAGGGGAAUUU
1314





D-1644
1870-1890
UUCCCCUCAGCUAAUGACGG
646
UCCGUCAUUAGCUGAGGGGAAUU
1315





D-1645
1871-1891
UCCCCUCAGCUAAUGACGGA
647
AUCCGUCAUUAGCUGAGGGGAUU
1316





D-1646
1876-1896
UCAGCUAAUGACGGAGUGCU
648
AAGCACUCCGUCAUUAGCUGAUU
1317





D-1647
1914-1934
GAAAAAGUUCUGAAUUCUGU
649
AACAGAAUUCAGAACUUUUUCUU
1318





D-1648
1919-1939
AGUUCUGAAUUCUGUGGAGG
650
UCCUCCACAGAAUUCAGAACUUU
1319





D-1649
1955-1975
AGUGAUUUCAGAUAGACUAC
651
AGUAGUCUAUCUGAAAUCACUUU
1320





D-1650
1959-1979
AUUUCAGAUAGACUACUGAA
652
UUUCAGUAGUCUAUCUGAAAUUU
1321





D-1651;
1963-1983
CAGAUAGACUACUGAAAACC
653
AGGUUUUCAGUAGUCUAUCUGUU
1322


D-2148










D-1652
1967-1987
UAGACUACUGAAAACCUUUA
654
UUAAAGGUUUUCAGUAGUCUAUU
1323





D-1653
1968-1988
AGACUACUGAAAACCUUUAA
655
UUUAAAGGUUUUCAGUAGUCUUU
1324





D-1654;
1996-2016
AAGGAAAGCAUAUGUCAGUU
656
AAACUGACAUAUGCUUUCCUUUU
1325


D-2114










D-1655;
1997-2017
AGGAAAGCAUAUGUCAGUUG
657
ACAACUGACAUAUGCUUUCCUUU
1326


D-2115;







D-2377;







D-2381










D-1656;
1998-2018
GGAAAGCAUAUGUCAGUUGU
658
AACAACUGACAUAUGCUUUCCUU
1327


D-2117










D-1657;
2000-2020
AAAGCAUAUGUCAGUUGUUU
659
UAAACAACUGACAUAUGCUUUUU
1328


D-2104










D-1658
2001-2021
AAGCAUAUGUCAGUUGUUUA
660
UUAAACAACUGACAUAUGCUUUU
1329





D-1659
2002-2022
AGCAUAUGUCAGUUGUUUAA
661
UUUAAACAACUGACAUAUGCUUU
1330





D-1660
2019-2039
UAAAACCCAAUAUCUAUUUU
662
AAAAAUAGAUAUUGGGUUUUAUU
1331





D-1661
2022-2042
AACCCAAUAUCUAUUUUUUA
663
UUAAAAAAUAGAUAUUGGGUUUU
1332





D-1662;
2039-2059
UUAACUGAUUGUAUAACUCU
664
UAGAGUUAUACAAUCAGUUAAUU
1333


D-2105










D-1663;
2040-2060
UAACUGAUUGUAUAACUCUA
665
UUAGAGUUAUACAAUCAGUUAUU
1334


D-2106










D-1664;
2042-2062
ACUGAUUGUAUAACUCUAAG
666
UCUUAGAGUUAUACAAUCAGUUU
1335


D-2153










D-1665
2043-2063
CUGAUUGUAUAACUCUAAGA
667
AUCUUAGAGUUAUACAAUCAGUU
1336





D-1666
2045-2065
GAUUGUAUAACUCUAAGAUC
668
AGAUCUUAGAGUUAUACAAUCUU
1337





D-1667;
2086-2106
GCCAUUUUGUCCUUUGAUUA
669
AUAAUCAAAGGACAAAAUGGCUU
1338


D-2118;







D-2378;







D-2382










D-1668
2093-2113
UGUCCUUUGAUUAUAUUGGG
670
UCCCAAUAUAAUCAAAGGACAUU
1339





D-2179
 682-704
CCAGUGGAUAACCAGCUUCC
46
AGGAAGCUGGUUAUCCACUGGUG
2914





D-2192
 684-704
CCAGUGGAUAACCAGCUUCC
46
AGGAAGCUGGUUAUCCACUGG
2922





D-2177
1092-1114
CAGAACGAAAGUUAUAUGGA
98
UUCCAUAUAACUUUCGUUCUGUG
2912





D-2190
1094-1114
CAGAACGAAAGUUAUAUGGA
98
UUCCAUAUAACUUUCGUUCUG
2920





D-2462
1092-1114
CAGAACGAAAGUUAUAUGGA
98
UUCCAUAUAACUUUCGUUCUGAA
2992





D-2483
 768-788
AAUAGCAGACUUGUUCCGAC
101
AGUCGGAACAAGUCUGCUAUU
3003





D-2181
 794-816
CAGAUUGCUUACUCAGACAC
115
AGUGUCUGAGUAAGCAAUCUGUG
2916





D-2194
 796-816
CAGAUUGCUUACUCAGACAC
115
AGUGUCUGAGUAAGCAAUCUG
2924





D-2175
 892-914
CUUCAGGCCCAAUAUUGUAA
142
AUUACAAUAUUGGGCCUGAAGUG
2910





D-2188
 894-914
CUUCAGGCCCAAUAUUGUAA
142
AUUACAAUAUUGGGCCUGAAG
2918





D-2223
1110-1130
UGGAAAAUCACCACUCUUUG
152
ACAAAGAGUGGUGAUUUUCCA
2937





D-2464
1108-1130
UGGAAAAUCACCACUCUUUG
152
ACAAAGAGUGGUGAUUUUCCAUA
2994





D-2226
1255-1275
GACAACACUUGAAGCAUGGU
168
AACCAUGCUUCAAGUGUUGUC
2940





D-2488
1346-1366
GUGUCUCAAUGCUUCAAUGU
175
AACAUUGAAGCAUUGAGACAC
3008





D-2219
1350-1370
CUCAAUGCUUCAAUGUCCCA
178
AUGGGACAUUGAAGCAUUGAG
2933





D-2176
1350-1372
CAAUGCUUCAAUGUCCCAGU
179
AACUGGGACAUUGAAGCAUUGUG
2911





D-2182;
1350-1372
CAAUGCUUCAAUGUCCCAGU
179
AACUGGGACAUUGAAGCAUUGAG
2917


D-2389;







D-2391;







D-2401;







D-2402;







D-2403










D-2189;
1352-1372
CAAUGCUUCAAUGUCCCAGU
179
AACUGGGACAUUGAAGCAUUG
2919


D-2384;







D-2385;







D-2399










D-2221
1355-1375
UGCUUCAAUGUCCCAGUGCA
181
UUGCACUGGGACAUUGAAGCA
2935





D-2225
1438-1458
ACAGGAUUCUGAAAACUCCC
186
AGGGAGUUUUCAGAAUCCUGU
2939





D-2222
1794-1814
UCAGACAGCAUUGGAUUUCC
215
AGGAAAUCCAAUGCUGUCUGA
2936





D-2224
1796-1816
AGACAGCAUUGGAUUUCCUA
217
UUAGGAAAUCCAAUGCUGUCU
2938





D-2220
2014-2034
UUGUUUAAAACCCAAUAUCU
245
UAGAUAUUGGGUUUUAAACAA
2934





D-2461
2012-2034
UUGUUUAAAACCCAAUAUCU
245
UAGAUAUUGGGUUUUAAACAACU
2991





D-2180
2055-2077
CUAAGAUCUGAUGAAGUAUA
247
AUAUACUUCAUCAGAUCUUAGUG
2915





D-2193
2057-2077
CUAAGAUCUGAUGAAGUAUA
247
AUAUACUUCAUCAGAUCUUAG
2923





D-2463
2055-2077
CUAAGAUCUGAUGAAGUAUA
247
AUAUACUUCAUCAGAUCUUAGAG
2993





D-2472
2057-2077
AAGAUCUGAUGAAGUAUAUU
249
AUAUACUUCAUCAGAUCUUAG
2923





D-2178
2109-2131
GGAAGUUGACUAAACUUGAA
258
UUUCAAGUUUAGUCAACUUCCUG
2913





D-2191
2111-2131
GGAAGUUGACUAAACUUGAA
258
UUUCAAGUUUAGUCAACUUCC
2921





D-2486
2082-2102
UAUUGCCAUUUUGUCCUUUG
268
UCAAAGGACAAAAUGGCAAUA
3006





D-2109
2113-2133
AAGUUGACUAAACUUGAAAA
270
UUUUUCAAGUUUAGUCAACUUUU
2906





D-2485
1253-1273
AUGACAACACUUGAAGCAUG
301
ACAUGCUUCAAGUGUUGUCAU
3005





D-2254
 985-1005
GUGAUGGCUUGUUCCAGAUG
369
ACAUCUGGAACAAGCCAUCAC
2952





D-2437
1211-1231
AUGUCCUGGAAUAUUAGAUG
387
ACAUCUAAUAUUCCAGGACAU
2982





D-2255
1212-1232
UGUCCUGGAAUAUUAGAUGC
388
AGCAUCUAAUAUUCCAGGACA
2953





D-2256
1213-1233
GUCCUGGAAUAUUAGAUGCC
389
AGGCAUCUAAUAUUCCAGGAC
2954





D-2258
1214-1234
UCCUGGAAUAUUAGAUGCCU
390
AAGGCAUCUAAUAUUCCAGGA
2956





D-2241;
1215-1233
CCUGGAAUAUUAGAUGCCUU
391
AGGCAUCUAAUAUUCCAGGUU
2949


D-2482










D-2243
1216-1234
CUGGAAUAUUAGAUGCCUUU
392
AAGGCAUCUAAUAUUCCAGUU
2951





D-2466
1939-1959
AGAAGAAAAGUGAUUCAGUG
398
UCACUGAAUCACUUUUCUUCU
2996





D-2469
1937-1959
AGAAGAAAAGUGAUUCAGUG
398
UCACUGAAUCACUUUUCUUCUCC
2999





D-2487
2050-2070
UAUAACUCUAAGAUCUGAUG
405
UCAUCAGAUCUUAGAGUUAUA
3007





D-2465
2052-2072
UAACUCUAAGAUCUGAUGAA
407
AUUCAUCAGAUCUUAGAGUUA
2995





D-2468
2050-2072
UAACUCUAAGAUCUGAUGAA
407
AUUCAUCAGAUCUUAGAGUUAUA
2998





D-2257
2054-2074
ACUCUAAGAUCUGAUGAAGU
409
UACUUCAUCAGAUCUUAGAGU
2955





D-2431
1219-1239
GAAUAUUAGAUGCCUUUUAA
527
UUUAAAAGGCAUCUAAUAUUC
2976





D-2436
1227-1247
GAUGCCUUUUAAAAAUGUUC
528
AGAACAUUUUUAAAAGGCAUC
2981





D-2430
1314-1334
GAUUUUCACAUUUUUCGUCU
535
AAGACGAAAAAUGUGAAAAUC
2975





D-2467
1312-1334
GAUUUUCACAUUUUUCGUCU
535
AAGACGAAAAAUGUGAAAAUCAC
2997





D-2434
1385-1405
AAAUAUAGUCUCAAUAACUU
557
UAAGUUAUUGAGACUAUAUUU
2979





D-2484
1455-1475
CCCCGUUUAACUGAUUAUGG
583
UCCAUAAUCAGUUAAACGGGG
3004





D-2435
1506-1526
UACCAAGAGCGCAGACUUGC
597
UGCAAGUCUGCGCUCUUGGUA
2980





D-2480
1504-1526
UACCAAGAGCGCAGACUUGC
597
UGCAAGUCUGCGCUCUUGGUAGA
3002





D-2432
1997-2017
AGGAAAGCAUAUGUCAGUUG
657
ACAACUGACAUAUGCUUUCCU
2977





D-2433
2086-2106
GCCAUUUUGUCCUUUGAUUA
669
AUAAUCAAAGGACAAAAUGGC
2978





D-2158;
1354-1372
AUGCUUCAAUGUCCCAGUUU
2804
AACUGGGACAUUGAAGCAUUU
2907


D-2387;







D-2390;







D-2400










D-2386;
1352-1372
AUGCUUCAAUGUCCCAGUUU
2804
AACUGGGACAUUGAAGCAUUG
2919


D-2392










D-2159
1096-1114
GAACGAAAGUUAUAUGGAAU
2805
UUCCAUAUAACUUUCGUUCUU
2908





D-2479
1094-1114
GAACGAAAGUUAUAUGGAAU
2805
UUCCAUAUAACUUUCGUUCUG
2920





D-2160
 798-816
GAUUGCUUACUCAGACACUU
2806
AGUGUCUGAGUAAGCAAUCUU
2909





D-2195
1352-1370
CAAUGCUUCAAUGUCCCAUU
2807
AUGGGACAUUGAAGCAUUGUU
2925





D-2196
2016-2034
GUUUAAAACCCAAUAUCUAU
2808
UAGAUAUUGGGUUUUAAACUU
2926





D-2197
1357-1375
CUUCAAUGUCCCAGUGCAAU
2809
UUGCACUGGGACAUUGAAGUU
2927





D-2198
1796-1814
AGACAGCAUUGGAUUUCCUU
2810
AGGAAAUCCAAUGCUGUCUUU
2928





D-2199
1112-1130
GAAAAUCACCACUCUUUGUU
2811
ACAAAGAGUGGUGAUUUUCUU
2929





D-2475
1110-1130
GAAAAUCACCACUCUUUGUU
2811
ACAAAGAGUGGUGAUUUUCCA
2937





D-2200
1798-1816
ACAGCAUUGGAUUUCCUAAU
2812
UUAGGAAAUCCAAUGCUGUUU
2930





D-2201
1440-1458
AGGAUUCUGAAAACUCCCUU
2813
AGGGAGUUUUCAGAAUCCUUU
2931





D-2202
1257-1275
CAACACUUGAAGCAUGGUUU
2814
AACCAUGCUUCAAGUGUUGUU
2932





D-2233
2014-2034
CUGUUUAAAACCCAAUAUCU
2815
UAGAUAUUGGGUUUUAAACAGUU
2941





D-2234
1355-1375
CGCUUCAAUGUCCCAGUGCA
2816
UUGCACUGGGACAUUGAAGCGUU
2942





D-2235
1794-1814
CCAGACAGCAUUGGAUUUCC
2817
AGGAAAUCCAAUGCUGUCUGGUU
2943





D-2236
1110-1130
CGGAAAAUCACCACUCUUUG
2818
ACAAAGAGUGGUGAUUUUCCGUU
2944





D-2237
1796-1816
GGACAGCAUUGGAUUUCCUA
2819
UUAGGAAAUCCAAUGCUGUCCUU
2945





D-2238
1438-1458
GCAGGAUUCUGAAAACUCCC
2820
AGGGAGUUUUCAGAAUCCUGCUU
2946





D-2239
 987-1005
GAUGGCUUGUUCCAGAUGUU
2821
ACAUCUGGAACAAGCCAUCUU
2947





D-2240
1214-1232
UCCUGGAAUAUUAGAUGCUU
2822
AGCAUCUAAUAUUCCAGGAUU
2948





D-2242
2056-2074
UCUAAGAUCUGAUGAAGUAU
2823
UACUUCAUCAGAUCUUAGAUU
2950





D-2259
1214-1234
CCCUGGAAUAUUAGAUGCCU
2824
AAGGCAUCUAAUAUUCCAGGGUU
2957





D-2260;
2054-2074
GCUCUAAGAUCUGAUGAAGU
2825
UACUUCAUCAGAUCUUAGAGCUU
2958


D-2454;







D-2455;







D-2456










D-2261
1212-1232
CGUCCUGGAAUAUUAGAUGC
2826
AGCAUCUAAUAUUCCAGGACGUU
2959





D-2262
2052-2072
CAACUCUAAGAUCUGAUGAA
2827
AUUCAUCAGAUCUUAGAGUUGUU
2960





D-2263
1939-1959
GGAAGAAAAGUGAUUCAGUG
2828
UCACUGAAUCACUUUUCUUCCUU
2961





D-2268
1213-1233
GUCCAGGAAUAUUAGAUGCC
2829
AGGCAUCUAAUAUUCCUGGACUU
2962





D-2269
1213-1233
GUGCUGGAAUAUUAGAUGCC
2830
AGGCAUCUAAUAUUCCAGCACUU
2963





D-2270
1214-1234
UCCUCGAAUAUUAGAUGCCU
2831
AAGGCAUCUAAUAUUCGAGGAUU
2964





D-2271
1214-1234
UCGUGGAAUAUUAGAUGCCU
2832
AAGGCAUCUAAUAUUCCACGAUU
2965





D-2272
2054-2074
ACACUAAGAUCUGAUGAAGU
2833
UACUUCAUCAGAUCUUAGUGUUU
2966





D-2273
2054-2074
AGUCUAAGAUCUGAUGAAGU
2834
UACUUCAUCAGAUCUUAGACUUU
2967





D-2274
1796-1816
AGUCAGCAUUGGAUUUCCUA
2835
UUAGGAAAUCCAAUGCUGACUUU
2968





D-2275
1796-1816
ACACAGCAUUGGAUUUCCUA
2836
UUAGGAAAUCCAAUGCUGUGUUU
2969





D-2359;
 986-1006
UGAUGGCUUGUUCCAGAUGC
2837
UGCAUCUGGAACAAGCCAUCAUU
2970


D-2364;







D-2369










D-2360;
 987-1007
GAUGGCUUGUUCCAGAUGCA
2838
AUGCAUCUGGAACAAGCCAUCUU
2971


D-2365;







D-2370










D-2361;
1793-1813
CUCAGACAGCAUUGGAUUUC
2839
AGAAAUCCAAUGCUGUCUGAGUU
2972


D-2366;







D-2371










D-2362;
2085-2105
UGCCAUUUUGUCCUUUGAUU
2840
UAAUCAAAGGACAAAAUGGCAUU
2973


D-2367;







D-2372










D-2363
2087-2107
CCAUUUUGUCCUUUGAUUAU
2841
UAUAAUCAAAGGACAAAAUGGUU
2974


D-2368







D-2373










D-2446
1316-1334
UUUUCACAUUUUUCGUCUUU
2842
AAGACGAAAAAUGUGAAAAUU
2983





D-2476
1314-1334
UUUUCACAUUUUUCGUCUUU
2842
AAGACGAAAAAUGUGAAAAUC
2975





D-2473
2054-2072
ACUCUAAGAUCUGAUGAAUU
2843
AUUCAUCAGAUCUUAGAGUUU
3000





D-2477
2052-2072
ACUCUAAGAUCUGAUGAAUU
2843
AUUCAUCAGAUCUUAGAGUUA
2995





D-2474
1941-1959
AAGAAAAGUGAUUCAGUGAU
2844
UCACUGAAUCACUUUUCUUUU
3001





D-2478
1939-1959
AAGAAAAGUGAUUCAGUGAU
2844
UCACUGAAUCACUUUUCUUCU
2996





D-2447
1221-1239
AUAUUAGAUGCCUUUUAAAU
2845
UUUAAAAGGCAUCUAAUAUUU
2984





D-2448
1999-2017
GAAAGCAUAUGUCAGUUGUU
2846
ACAACUGACAUAUGCUUUCUU
2985





D-2449
2088-2106
CAUUUUGUCCUUUGAUUAUU
2847
AUAAUCAAAGGACAAAAUGUU
2986





D-2450
1387-1405
AUAUAGUCUCAAUAACUUAU
2848
UAAGUUAUUGAGACUAUAUUU
2979





D-2451
1508-1526
CCAAGAGCGCAGACUUGCAU
2849
UGCAAGUCUGCGCUCUUGGUU
2987





D-2481
1506-1526
CCAAGAGCGCAGACUUGCAU
2849
UGCAAGUCUGCGCUCUUGGUA
2980





D-2452
1229-1247
UGCCUUUUAAAAAUGUUCUU
2850
AGAACAUUUUUAAAAGGCAUU
2988





D-2453
1213-1231
GUCCUGGAAUAUUAGAUGUU
2851
ACAUCUAAUAUUCCAGGACUU
2989





D-2457
2056-2074
CCUAAGAUCUGAUGAAGUAU
2852
UACUUCAUCAGAUCUUAGGUU
2990





D-2458;
2056-2074
CCUAAGAUCUGAUGAAGUAU
2852
UACUUCAUCAGAUCUUAGGUU
2990


D-2459;







D-2460










D-2495
 768-788
UAGCAGACUUGUUCCGACUU
2853
AGUCGGAACAAGUCUGCUAUU
3003





D-2496
1455-1475
CCGUUUAACUGAUUAUGGAU
2854
UCCAUAAUCAGUUAAACGGUU
3009





D-2497
1253-1273
GACAACACUUGAAGCAUGUU
2855
ACAUGCUUCAAGUGUUGUCUU
3010





D-2498
2082-2102
UUGCCAUUUUGUCCUUUGAU
2856
UCAAAGGACAAAAUGGCAAUU
3011





D-2499
2050-2070
UAACUCUAAGAUCUGAUGAU
2857
UCAUCAGAUCUUAGAGUUAUU
3012





D-2500
1346-1366
GUCUCAAUGCUUCAAUGUUU
2858
AACAUUGAAGCAUUGAGACUU
3013





D-2514
 985-1005
GUGAUGGCUUGUUCCGGAUG
2859
ACAUCCGGAACAAGCCAUCAC
3014





D-2515
 985-1005
GUGAUGGCUUGUUGCAGAUG
2860
ACAUCUGCAACAAGCCAUCAC
3015





D-2516
1092-1114
CAGAACGAAAGUUAUGUGGA
2861
UUCCACAUAACUUUCGUUCUGAA
3016





D-2517
1092-1114
CAGAACGAAAGUUGUAUGGA
2862
UUCCAUACAACUUUCGUUCUGAA
3017





D-2518
1210-1230
UAUGUCCUGGAAUAUAAGAU
2863
AAUCUUAUAUUCCAGGACAUAUU
3018





D-2519
1210-1230
UAUGUCCUGGAAUGUUAGAU
2864
AAUCUAACAUUCCAGGACAUAUU
3019





D-2520
1211-1231
AUGUCCUGGAAUAUUGGAUG
2865
ACAUCCAAUAUUCCAGGACAUUU
3020





D-2521
1211-1231
AUGUCCUGGAAUAAUAGAUG
2866
ACAUCUAUUAUUCCAGGACAUUU
3021





D-2522
1212-1232
UGUCCUGGAAUAUUAAAUGC
2867
AGCAUUUAAUAUUCCAGGACAUU
3022





D-2523
1212-1232
UGUCCUGGAAUAUAAGAUGC
2868
AGCAUCUUAUAUUCCAGGACAUU
3023





D-2524
1215-1233
CCUGGAAUAUUAGGUGCCUU
2869
AGGCACCUAAUAUUCCAGGUU
3024





D-2529
1215-1235
CCUGGAAUAUUAGGUGCCUU
2869
AAAGGCACCUAAUAUUCCAGGUU
3029





D-2525
1215-1233
CCUGGAAUAUUGGAUGCCUU
2870
AGGCAUCCAAUAUUCCAGGUU
3025





D-2526
1214-1234
UCCUGGAAUAUUAGAAGCCU
2871
AAGGCUUCUAAUAUUCCAGGA
3026





D-2527
1214-1234
UCCUGGAAUAUUAAAUGCCU
2872
AAGGCAUUUAAUAUUCCAGGA
3027





D-2528
1215-1235
CCUGGAAUAUUAGAUACCUU
2873
AAAGGUAUCUAAUAUUCCAGGUU
3028





D-2530
1216-1236
CUGGAAUAUUAGAUGGCUUU
2874
AAAAGCCAUCUAAUAUUCCAGUU
3030





D-2531
1216-1236
CUGGAAUAUUAGAAGCCUUU
2875
AAAAGGCUUCUAAUAUUCCAGUU
3031





D-2532
1219-1239
GAAUAUUAGAUGCCUAUUAA
2876
UUUAAUAGGCAUCUAAUAUUCUU
3032





D-2533
1219-1239
GAAUAUUAGAUGCGUUUUAA
2877
UUUAAAACGCAUCUAAUAUUCUU
3033





D-2534
1227-1247
GAUGCCUUUUAAAAAAGUUC
2878
AGAACUUUUUUAAAAGGCAUCUU
3034





D-2535
1227-1247
GAUGCCUUUUAAAGAUGUUC
2879
AGAACAUCUUUAAAAGGCAUCUU
3035





D-2536
1314-1334
GAUUUUCACAUUUUUGGUCU
2880
AAGACCAAAAAUGUGAAAAUCUU
3036





D-2537
1314-1334
GAUUUUCACAUUUAUCGUCU
2881
AAGACGAUAAAUGUGAAAAUCUU
3037





D-2538
1350-1370
CUCAAUGCUUCAAUGACCCA
2882
AUGGGUCAUUGAAGCAUUGAGUU
3038





D-2539
1350-1370
CUCAAUGCUUCAAAGUCCCA
2883
AUGGGACUUUGAAGCAUUGAGUU
3039





D-2540
1352-1372
CAAUGCUUCAAUGUCGCAGU
2884
AACUGCGACAUUGAAGCAUUG
3040





D-2541
1352-1372
CAAUGCUUCAAUGACCCAGU
2885
AACUGGGUCAUUGAAGCAUUG
3041





D-2542
1385-1405
AAAUAUAGUCUCAAUGACUU
2886
UAAGUCAUUGAGACUAUAUUUUU
3042





D-2543
1385-1405
AAAUAUAGUCUCAGUAACUU
2887
UAAGUUACUGAGACUAUAUUUUU
3043





D-2544
1438-1458
GCAGGAUUCUGAAAAGUCCC
2888
AGGGACUUUUCAGAAUCCUGCUU
3044





D-2545
1438-1458
GCAGGAUUCUGAAGACUCCC
2889
AGGGAGUCUUCAGAAUCCUGCUU
3045





D-2546
1506-1526
UACCAAGAGCGCAGAGUUGC
2890
UGCAACUCUGCGCUCUUGGUAUU
3046





D-2547
1506-1526
UACCAAGAGCGCAAACUUGC
2891
UGCAAGUUUGCGCUCUUGGUAUU
3047





D-2548
1997-2017
AGGAAAGCAUAUGUCGGUUG
2892
ACAACCGACAUAUGCUUUCCUUU
3048





D-2549
1997-2017
AGGAAAGCAUAUGACAGUUG
2893
ACAACUGUCAUAUGCUUUCCUUU
3049





D-2550
2016-2034
GUUUAAAACCCAAAAUCUAU
2894
UAGAUUUUGGGUUUUAAACUU
3050





D-2551
2016-2034
GUUUAAAACCCGAUAUCUAU
2895
UAGAUAUCGGGUUUUAAACUU
3051





D-2552
2039-2059
UUAACUGAUUGUAUAGCUCU
2896
UAGAGCUAUACAAUCAGUUAAUU
3052





D-2553
2039-2059
UUAACUGAUUGUAAAACUCU
2897
UAGAGUUUUACAAUCAGUUAAUU
3053





D-2554
2052-2072
UAACUCUAAGAUCUGGUGAA
2898
AUUCACCAGAUCUUAGAGUUA
3054





D-2555
2052-2072
UAACUCUAAGAUCAGAUGAA
2899
AUUCAUCUGAUCUUAGAGUUA
3055





D-2556
2054-2074
ACUCUAAGAUCUGAUAAAGU
2900
UACUUUAUCAGAUCUUAGAGUUU
3056





D-2557
2054-2074
ACUCUAAGAUCUGGUGAAGU
2901
UACUUCACCAGAUCUUAGAGUUU
3057





D-2558
2082-2102
UAUUGCCAUUUUGUCGUUUG
2902
UCAAACGACAAAAUGGCAAUAUU
3058





D-2559
2082-2102
UAUUGCCAUUUUGACCUUUG
2903
UCAAAGGUCAAAAUGGCAAUAUU
3059





D-2560
2086-2106
GCCAUUUUGUCCUUUAAUUA
2904
AUAAUUAAAGGACAAAAUGGCUU
3060





D-2561
2086-2106
GCCAUUUUGUCCUAUGAUUA
2905
AUAAUCAUAGGACAAAAUGGCUU
3061
















TABLE 2







Modified mARC1 siRNA sequences











Duplex

SEQ ID

SEQ ID


No.
Sense Sequence (5′-3′)
NO:
Antisense Sequence (5′-3′)
NO:





D-1000
[GalNAc3]sgagcaaGfcAfCfUfAfuauggaaus{invAb}
1340
usUfsccauAfuaguGfcUfugcucsgsu
2072





D-1001
[GalNAc3]sagaaguUfcUfCfGfGfcaaaugaus{invAb}
1341
usCfsauuuGfccgaGfaAfcuucusgsu
2073





D-1002
[GalNAc3]sgagcaaGfcUfGfAfAfuuuggaaus{invAb}
1342
usUfsccaaAfuucaGfcUfugcucsgsu
2074





D-1003
[GalNAc3]sagaaguUfcAfGfCfGfcuaaugaus{invAb}
1343
usCfsauuaGfcgcuGfaAfcuucusgsu
2075





D-1004
gsasaggaCfgCfAfCfUfgcucugaus{invAb}
1344
asAfsuCfaGfagcagugCfgUfccuucsusu
2076





D-1005
asgsgacgCfaCfUfGfCfucugauugs{invAb}
1345
asCfsaAfuCfagagcagUfgCfguccususu
2077





D-1006
gsgsacgcAfcUfGfCfUfcugauuggs{invAb}
1346
asCfscAfaUfcagagcaGfuGfcguccsusu
2078





D-1007
ascsgcacUfgCfUfCfUfgauuggccs{invAb}
1347
asGfsgCfcAfaucagagCfaGfugcgususu
2079





D-1008
csusgcucUfgAfUfUfGfgcccggaas{invAb}
1348
asUfsuCfcGfggccaauCfaGfagcagsusu
2080





D-1009
usgscucuGfaUfUfGfGfcccggaags{invAb}
1349
asCfsuUfcCfgggccaaUfcAfgagcasusu
2081





D-1010
gscsucugAfuUfGfGfCfccggaaggs{invAb}
1350
asCfscUfuCfcgggccaAfuCfagagcsusu
2082





D-1011
csgsgggcCfaAfAfGfGfccgcaccus{invAb}
1351
asAfsgGfuGfcggccuuUfgGfccccgsusu
2083





D-1012
gsgsggccAfaAfGfGfCfcgcaccuus{invAb}
1352
asAfsaGfgUfgcggccuUfuGfgccccsusu
2084





D-1013
gscscaaaGfgCfCfGfCfaccuucccs{invAb}
1353
asGfsgGfaAfggugcggCfcUfuuggcsusu
2085





D-1014
cscsaaagGfcCfGfCfAfccuuccccs{invAb}
1354
asGfsgGfgAfaggugcgGfcCfuuuggsusu
2086





D-1015
csgsccacCfuCfGfCfGfgagaagccs{invAb}
1355
usGfsgCfuUfcuccgcgAfgGfuggcgsusu
2087





D-1016
gscscaccUfcGfCfGfGfagaagccas{invAb}
1356
asUfsgGfcUfucuccgcGfaGfguggcsusu
2088





D-1017
cscsaccuCfgCfGfGfAfgaagccags{invAb}
1357
asCfsuGfgCfuucuccgCfgAfgguggsusu
2089





D-1018
ascscucgCfgGfAfGfAfagccagccs{invAb}
1358
usGfsgCfuGfgcuucucCfgCfgaggususu
2090





D-1019
usgsaucaAfcCfAfGfGfagggaaacs{invAb}
1359
usGfsuUfuCfccuccugGfuUfgaucasusu
2091





D-1020
asuscaacCfaGfGfAfGfggaaacaus{invAb}
1360
asAfsuGfuUfucccuccUfgGfuugaususu
2092





D-1021
uscsaaccAfgGfAfGfGfgaaacaugs{invAb}
1361
asCfsaUfgUfuucccucCfuGfguugasusu
2093





D-1022
csasaccaGfgAfGfGfGfaaacauggs{invAb}
1362
asCfscAfuGfuuucccuCfcUfgguugsusu
2094





D-1023
asasccagGfaGfGfGfAfaacauggus{invAb}
1363
asAfscCfaUfguuucccUfcCfugguususu
2095





D-1024
ascscaggAfgGfGfAfAfacaugguus{invAb}
1364
usAfsaCfcAfuguuuccCfuCfcuggususu
2096





D-1025
usgscucgCfcAfGfGfAfaccucgccs{invAb}
1365
asGfsgCfgAfgguuccuGfgCfgagcasusu
2097





D-1026
csuscgccAfgGfAfAfCfcucgccugs{invAb}
1366
asCfsaGfgCfgagguucCfuGfgcgagsusu
2098





D-1027
gsgsaaccUfcGfCfCfUfgguccugas{invAb}
1367
asUfscAfgGfaccaggcGfaGfguuccsusu
2099





D-1028
asasccucGfcCfUfGfGfuccugauus{invAb}
1368
asAfsaUfcAfggaccagGfcGfagguususu
2100





D-1029
ascscucgCfcUfGfGfUfccugauuus{invAb}
1369
asAfsaAfuCfaggaccaGfgCfgaggususu
2101





D-1030
cscsucgcCfuGfGfUfCfcugauuucs{invAb}
1370
asGfsaAfaUfcaggaccAfgGfcgaggsusu
2102





D-1031
csuscgccUfgGfUfCfCfugauuuccs{invAb}
1371
asGfsgAfaAfucaggacCfaGfgcgagsusu
2103





D-1032
cscsugguCfcUfGfAfUfuucccugas{invAb}
1372
asUfscAfgGfgaaaucaGfgAfccaggsusu
2104





D-1033
gsascucuCfaGfUfGfCfagccuacas{invAb}
1373
asUfsgUfaGfgcugcacUfgAfgagucsusu
2105





D-1034
csuscucaGfuGfCfAfGfccuacacas{invAb}
1374
usUfsgUfgUfaggcugcAfcUfgagagsusu
2106





D-1035
uscsucagUfgCfAfGfCfcuacacaas{invAb}
1375
usUfsuGfuGfuaggcugCfaCfugagasusu
2107





D-1036
csuscaguGfcAfGfCfCfuacacaaas{invAb}
1376
asUfsuUfgUfguaggcuGfcAfcugagsusu
2108





D-1037
uscsagugCfaGfCfCfUfacacaaags{invAb}
1377
asCfsuUfuGfuguaggcUfgCfacugasusu
2109





D-1038
csusaucaAfaAfCfGfCfccaccacas{invAb}
1378
usUfsgUfgGfugggcguUfuUfgauagsusu
2110





D-1039
usasucaaAfaCfGfCfCfcaccacaas{invAb}
1379
usUfsuGfuGfgugggcgUfuUfugauasusu
2111





D-1040
asuscaaaAfcGfCfCfCfaccacaaas{invAb}
1380
asUfsuUfgUfggugggcGfuUfuugaususu
2112





D-1041
uscsaaaaCfgCfCfCfAfccacaaaus{invAb}
1381
asAfsuUfuGfuggugggCfgUfuuugasusu
2113





D-1042
asasacgcCfcAfCfCfAfcaaaugcas{invAb}
1382
asUfsgCfaUfuugugguGfgGfcguuususu
2114





D-1043
asascgccCfaCfCfAfCfaaaugcags{invAb}
1383
asCfsuGfcAfuuuguggUfgGfgcguususu
2115





D-1044
cscsagugGfaUfAfAfCfcagcuuccs{invAb}
1384
asGfsgAfaGfcugguuaUfcCfacuggsusu
2116





D-1045
csasguggAfuAfAfCfCfagcuuccus{invAb}
1385
asAfsgGfaAfgcugguuAfuCfcacugsusu
2117





D-1046
gsusggauAfaCfCfAfGfcuuccugas{invAb}
1386
usUfscAfgGfaagcuggUfuAfuccacsusu
2118





D-1047
gsasuaacCfaGfCfUfUfccugaagus{invAb}
1387
asAfscUfuCfaggaagcUfgGfuuaucsusu
2119





D-1048
asuscaaaUfaGfCfAfGfacuuguucs{invAb}
1388
asGfsaAfcAfagucugcUfaUfuugaususu
2120





D-1049
csasaauaGfcAfGfAfCfuuguuccgs{invAb}
1389
usCfsgGfaAfcaagucuGfcUfauuugsusu
2121





D-1050
asasauagCfaGfAfCfUfuguuccgas{invAb}
1390
asUfscGfgAfacaagucUfgCfuauuususu
2122





D-1051
usgsagcuUfcUfUfAfUfuggugacgs{invAb}
1391
asCfsgUfcAfccaauaaGfaAfgcucasusu
2123





D-1052
asgscuucUfuAfUfUfGfgugacgugs{invAb}
1392
asCfsaCfgUfcaccaauAfaGfaagcususu
2124





D-1053
gscsuucuUfaUfUfGfGfugacguggs{invAb}
1393
usCfscAfcGfucaccaaUfaAfgaagcsusu
2125





D-1054
ususcuuaUfuGfGfUfGfacguggaas{invAb}
1394
asUfsuCfcAfcgucaccAfaUfaagaasusu
2126





D-1055
ususggugAfcGfUfGfGfaacugaaas{invAb}
1395
usUfsuUfcAfguuccacGfuCfaccaasusu
2127





D-1056
usgsgugaCfgUfGfGfAfacugaaaas{invAb}
1396
asUfsuUfuCfaguuccaCfgUfcaccasusu
2128





D-1057
gsgsugacGfuGfGfAfAfcugaaaags{invAb}
1397
asCfsuUfuUfcaguuccAfcGfucaccsusu
2129





D-1058
gsusgacgUfgGfAfAfCfugaaaaggs{invAb}
1398
asCfscUfuUfucaguucCfaCfgucacsusu
2130





D-1059
gscsuuguUfcCfAfGfAfugcauuuus{invAb}
1399
usAfsaAfaUfgcaucugGfaAfcaagcsusu
2131





D-1060
gsusuccaGfaUfGfCfAfuuuuaaccs{invAb}
1400
usGfsgUfuAfaaaugcaUfcUfggaacsusu
2132





D-1061
ususccagAfuGfCfAfUfuuuaaccas{invAb}
1401
asUfsgGfuUfaaaaugcAfuCfuggaasusu
2133





D-1062
usgscauuUfuAfAfCfCfacaguggas{invAb}
1402
asUfscCfaCfugugguuAfaAfaugcasusu
2134





D-1063
gscsauuuUfaAfCfCfAfcaguggacs{invAb}
1403
asGfsuCfcAfcugugguUfaAfaaugcsusu
2135





D-1064
gsgsugucAfuGfAfGfCfaggaaggas{invAb}
1404
usUfscCfuUfccugcucAfuGfacaccsusu
2136





D-1065
gsasaccgCfuGfGfAfAfacacugaas{invAb}
1405
asUfsuCfaGfuguuuccAfgCfgguucsusu
2137





D-1066
gscsuggaAfaCfAfCfUfgaagaguus{invAb}
1406
usAfsaCfuCfuucagugUfuUfccagcsusu
2138





D-1067
gsgsaaacAfcUfGfAfAfgaguuaucs{invAb}
1407
asGfsaUfaAfcucuucaGfuGfuuuccsusu
2139





D-1068
gsasaacaCfuGfAfAfGfaguuaucgs{invAb}
1408
asCfsgAfuAfacucuucAfgUfguuucsusu
2140





D-1069
asasacacUfgAfAfGfAfguuaucgcs{invAb}
1409
asGfscGfaUfaacucuuCfaGfuguuususu
2141





D-1070
asascacuGfaAfGfAfGfuuaucgccs{invAb}
1410
usGfsgCfgAfuaacucuUfcAfguguususu
2142





D-1071
ascsacugAfaGfAfGfUfuaucgccas{invAb}
1411
asUfsgGfcGfauaacucUfuCfagugususu
2143





D-1072
csascugaAfgAfGfUfUfaucgccags{invAb}
1412
asCfsuGfgCfgauaacuCfuUfcagugsusu
2144





D-1073
ascsugaaGfaGfUfUfAfucgccagus{invAb}
1413
asAfscUfgGfcgauaacUfcUfucagususu
2145





D-1074
csusgaagAfgUfUfAfUfcgccagugs{invAb}
1414
asCfsaCfuGfgcgauaaCfuCfuucagsusu
2146





D-1075
usgsaagaGfuUfAfUfCfgccagugus{invAb}
1415
asAfscAfcUfggcgauaAfcUfcuucasusu
2147





D-1076
gsasagagUfuAfUfCfGfccagugugs{invAb}
1416
usCfsaCfaCfuggcgauAfaCfucuucsusu
2148





D-1077
gsasguuaUfcGfCfCfAfgugugaccs{invAb}
1417
asGfsgUfcAfcacuggcGfaUfaacucsusu
2149





D-1078
asgsuuauCfgCfCfAfGfugugacccs{invAb}
1418
asGfsgGfuCfacacuggCfgAfuaacususu
2150





D-1079
gsusuaucGfcCfAfGfUfgugacccus{invAb}
1419
asAfsgGfgUfcacacugGfcGfauaacsusu
2151





D-1080
ususaucgCfcAfGfUfGfugacccuus{invAb}
1420
asAfsaGfgGfucacacuGfgCfgauaasusu
2152





D-1081
csgsccagUfgUfGfAfCfccuucagas{invAb}
1421
usUfscUfgAfagggucaCfaCfuggcgsusu
2153





D-1082
gscscaguGfuGfAfCfCfcuucagaas{invAb}
1422
asUfsuCfuGfaagggucAfcAfcuggcsusu
2154





D-1083
csasguguGfaCfCfCfUfucagaacgs{invAb}
1423
usCfsgUfuCfugaagggUfcAfcacugsusu
2155





D-1084
asgsugugAfcCfCfUfUfcagaacgas{invAb}
1424
usUfscGfuUfcugaaggGfuCfacacususu
2156





D-1085
gsusgugaCfcCfUfUfCfagaacgaas{invAb}
1425
usUfsuCfgUfucugaagGfgUfcacacsusu
2157





D-1086
usgsugacCfcUfUfCfAfgaacgaaas{invAb}
1426
asUfsuUfcGfuucugaaGfgGfucacasusu
2158





D-1087
gsusgaccCfuUfCfAfGfaacgaaags{invAb}
1427
asCfsuUfuCfguucugaAfgGfgucacsusu
2159





D-1088
usgsacccUfuCfAfGfAfacgaaagus{invAb}
1428
asAfscUfuUfcguucugAfaGfggucasusu
2160





D-1089
gsascccuUfcAfGfAfAfcgaaaguus{invAb}
1429
usAfsaCfuUfucguucuGfaAfgggucsusu
2161





D-1090
ascsccuuCfaGfAfAfCfgaaaguuas{invAb}
1430
asUfsaAfcUfuucguucUfgAfagggususu
2162





D-1091
cscscuucAfgAfAfCfGfaaaguuaus{invAb}
1431
usAfsuAfaCfuuucguuCfuGfaagggsusu
2163





D-1092
cscsuucaGfaAfCfGfAfaaguuauas{invAb}
1432
asUfsaUfaAfcuuucguUfcUfgaaggsusu
2164





D-1093
csusucagAfaCfGfAfAfaguuauaus{invAb}
1433
asAfsuAfuAfacuuucgUfuCfugaagsusu
2165





D-1094
ususcagaAfcGfAfAfAfguuauaugs{invAb}
1434
asCfsaUfaUfaacuuucGfuUfcugaasusu
2166





D-1095
uscsagaaCfgAfAfAfGfuuauauggs{invAb}
1435
usCfscAfuAfuaacuuuCfgUfucugasusu
2167





D-1096
csasgaacGfaAfAfGfUfuauauggas{invAb}
1436
usUfscCfaUfauaacuuUfcGfuucugsusu
2168





D-1097
asgsuuauAfuGfGfAfAfaaucaccas{invAb}
1437
asUfsgGfuGfauuuuccAfuAfuaacususu
2169





D-1098
ususauauGfgAfAfAfAfucaccacus{invAb}
1438
asAfsgUfgGfugauuuuCfcAfuauaasusu
2170





D-1099
asasuagcAfgAfCfUfUfguuccgacs{invAb}
1439
asGfsuCfgGfaacaaguCfuGfcuauususu
2171





D-1100
asusagcaGfaCfUfUfGfuuccgaccs{invAb}
1440
asGfsgUfcGfgaacaagUfcUfgcuaususu
2172





D-1101
usasgcagAfcUfUfGfUfuccgacccs{invAb}
1441
usGfsgGfuCfggaacaaGfuCfugcuasusu
2173





D-1102
asgscagaCfuUfGfUfUfccgacccas{invAb}
1442
usUfsgGfgUfcggaacaAfgUfcugcususu
2174





D-1103
gscsagacUfuGfUfUfCfcgacccaas{invAb}
1443
asUfsuGfgGfucggaacAfaGfucugcsusu
2175





D-1104
csasgacuUfgUfUfCfCfgacccaags{invAb}
1444
asCfsuUfgGfgucggaaCfaAfgucugsusu
2176





D-1105
asgsacuuGfuUfCfCfGfacccaaggs{invAb}
1445
usCfscUfuGfggucggaAfcAfagucususu
2177





D-1106
gsascuugUfuCfCfGfAfcccaaggas{invAb}
1446
asUfscCfuUfgggucggAfaCfaagucsusu
2178





D-1107
ascsuuguUfcCfGfAfCfccaaggacs{invAb}
1447
asGfsuCfcUfugggucgGfaAfcaagususu
2179





D-1108
csusuguuCfcGfAfCfCfcaaggaccs{invAb}
1448
usGfsgUfcCfuugggucGfgAfacaagsusu
2180





D-1109
ususccgaCfcCfAfAfGfgaccagaus{invAb}
1449
asAfsuCfuGfguccuugGfgUfcggaasusu
2181





D-1110
asasggacCfaGfAfUfUfgcuuacucs{invAb}
1450
usGfsaGfuAfagcaaucUfgGfuccuususu
2182





D-1111
gsasccagAfuUfGfCfUfuacucagas{invAb}
1451
asUfscUfgAfguaagcaAfuCfuggucsusu
2183





D-1112
cscsagauUfgCfUfUfAfcucagacas{invAb}
1452
asUfsgUfcUfgaguaagCfaAfucuggsusu
2184





D-1113
csasgauuGfcUfUfAfCfucagacacs{invAb}
1453
asGfsuGfuCfugaguaaGfcAfaucugsusu
2185





D-1114
asgsauugCfuUfAfCfUfcagacaccs{invAb}
1454
usGfsgUfgUfcugaguaAfgCfaaucususu
2186





D-1115
gsasuugcUfuAfCfUfCfagacaccas{invAb}
1455
asUfsgGfuGfucugaguAfaGfcaaucsusu
2187





D-1116
asusugcuUfaCfUfCfAfgacaccags{invAb}
1456
asCfsuGfgUfgucugagUfaAfgcaaususu
2188





D-1117
gscsuuacUfcAfGfAfCfaccagcccs{invAb}
1457
usGfsgGfcUfggugucuGfaGfuaagcsusu
2189





D-1118
ususacucAfgAfCfAfCfcagcccaus{invAb}
1458
asAfsuGfgGfcugguguCfuGfaguaasusu
2190





D-1119
csgsgaucUfcAfAfCfUfccaggcuas{invAb}
1459
asUfsaGfcCfuggaguuGfaGfauccgsusu
2191





D-1120
gsgsaucuCfaAfCfUfCfcaggcuags{invAb}
1460
usCfsuAfgCfcuggaguUfgAfgauccsusu
2192





D-1121
gsasucucAfaCfUfCfCfaggcuagas{invAb}
1461
asUfscUfaGfccuggagUfuGfagaucsusu
2193





D-1122
asuscucaAfcUfCfCfAfggcuagags{invAb}
1462
usCfsuCfuAfgccuggaGfuUfgagaususu
2194





D-1123
asascuccAfgGfCfUfAfgagaagaas{invAb}
1463
usUfsuCfuUfcucuagcCfuGfgaguususu
2195





D-1124
asgsaagaAfaGfUfUfAfaagcaaccs{invAb}
1464
usGfsgUfuGfcuuuaacUfuUfcuucususu
2196





D-1125
gsasagaaAfgUfUfAfAfagcaaccas{invAb}
1465
usUfsgGfuUfgcuuuaaCfuUfucuucsusu
2197





D-1126
asasgaaaGfuUfAfAfAfgcaaccaas{invAb}
1466
asUfsuGfgUfugcuuuaAfcUfuucuususu
2198





D-1127
asgsaaagUfuAfAfAfGfcaaccaacs{invAb}
1467
asGfsuUfgGfuugcuuuAfaCfuuucususu
2199





D-1128
gsasaaguUfaAfAfGfCfaaccaacus{invAb}
1468
asAfsgUfuGfguugcuuUfaAfcuuucsusu
2200





D-1129
asasaguuAfaAfGfCfAfaccaacuus{invAb}
1469
asAfsaGfuUfgguugcuUfuAfacuuususu
2201





D-1130
asasguuaAfaGfCfAfAfccaacuucs{invAb}
1470
usGfsaAfgUfugguugcUfuUfaacuususu
2202





D-1131
asgsuuaaAfgCfAfAfCfcaacuucas{invAb}
1471
asUfsgAfaGfuugguugCfuUfuaacususu
2203





D-1132
gsusuaaaGfcAfAfCfCfaacuucags{invAb}
1472
asCfsuGfaAfguugguuGfcUfuuaacsusu
2204





D-1133
asasagcaAfcCfAfAfCfuucaggccs{invAb}
1473
asGfsgCfcUfgaaguugGfuUfgcuuususu
2205





D-1134
asgscaacCfaAfCfUfUfcaggcccas{invAb}
1474
usUfsgGfgCfcugaaguUfgGfuugcususu
2206





D-1135
csasaccaAfcUfUfCfAfggcccaaus{invAb}
1475
usAfsuUfgGfgccugaaGfuUfgguugsusu
2207





D-1136
asasccaaCfuUfCfAfGfgcccaauas{invAb}
1476
asUfsaUfuGfggccugaAfgUfugguususu
2208





D-1137
cscsaacuUfcAfGfGfCfccaauauus{invAb}
1477
asAfsaUfaUfugggccuGfaAfguuggsusu
2209





D-1138
csasacuuCfaGfGfCfCfcaauauugs{invAb}
1478
asCfsaAfuAfuugggccUfgAfaguugsusu
2210





D-1139
ascsuucaGfgCfCfCfAfauauuguas{invAb}
1479
usUfsaCfaAfuauugggCfcUfgaagususu
2211





D-1140
csusucagGfcCfCfAfAfuauuguaas{invAb}
1480
asUfsuAfcAfauauuggGfcCfugaagsusu
2212





D-1141
ususcaggCfcCfAfAfUfauuguaaus{invAb}
1481
asAfsuUfaCfaauauugGfgCfcugaasusu
2213





D-1142
uscsaggcCfcAfAfUfAfuuguaauus{invAb}
1482
asAfsaUfuAfcaauauuGfgGfccugasusu
2214





D-1143
asgsgcccAfaUfAfUfUfguaauuucs{invAb}
1483
usGfsaAfaUfuacaauaUfuGfggccususu
2215





D-1144
gsgscccaAfuAfUfUfGfuaauuucas{invAb}
1484
asUfsgAfaAfuuacaauAfuUfgggccsusu
2216





D-1145
gsasugagCfuUfCfUfUfauuggugas{invAb}
1485
asUfscAfcCfaauaagaAfgCfucaucsusu
2217





D-1146
asusgagcUfuCfUfUfAfuuggugacs{invAb}
1486
asGfsuCfaCfcaauaagAfaGfcucaususu
2218





D-1147
asusauggAfaAfAfUfCfaccacucus{invAb}
1487
asAfsgAfgUfggugauuUfuCfcauaususu
2219





D-1148
usasuggaAfaAfUfCfAfccacucuus{invAb}
1488
asAfsaGfaGfuggugauUfuUfccauasusu
2220





D-1149
asusggaaAfaUfCfAfCfcacucuuus{invAb}
1489
asAfsaAfgAfguggugaUfuUfuccaususu
2221





D-1150
usgsgaaaAfuCfAfCfCfacucuuugs{invAb}
1490
asCfsaAfaGfaguggugAfuUfuuccasusu
2222





D-1151
csusggaaAfaCfCfCfAfgggaccaus{invAb}
1491
asAfsuGfgUfcccugggUfuUfuccagsusu
2223





D-1152
gsgsaaaaCfcCfAfGfGfgaccaucas{invAb}
1492
usUfsgAfuGfgucccugGfgUfuuuccsusu
2224





D-1153
gsasaaacCfcAfGfGfGfaccaucaas{invAb}
1493
usUfsuGfaUfggucccuGfgGfuuuucsusu
2225





D-1154
cscscaggGfaCfCfAfUfcaaaguggs{invAb}
1494
asCfscAfcUfuugauggUfcCfcugggsusu
2226





D-1155
cscsagggAfcCfAfUfCfaaagugggs{invAb}
1495
usCfscCfaCfuuugaugGfuCfccuggsusu
2227





D-1156
gsgsgaccAfuCfAfAfAfgugggagas{invAb}
1496
asUfscUfcCfcacuuugAfuGfgucccsusu
2228





D-1157
gsgsgagaCfcCfUfGfUfguaccugcs{invAb}
1497
asGfscAfgGfuacacagGfgUfcucccsusu
2229





D-1158
gsusaccuGfcUfGfGfGfccaguaaus{invAb}
1498
asAfsuUfaCfuggcccaGfcAfgguacsusu
2230





D-1159
usgscuggGfcCfAfGfUfaaugggaas{invAb}
1499
asUfsuCfcCfauuacugGfcCfcagcasusu
2231





D-1160
asasauguUfcUfCfAfAfaaaugacas{invAb}
1500
usUfsgUfcAfuuuuugaGfaAfcauuususu
2232





D-1161
asasuguuCfuCfAfAfAfaaugacaas{invAb}
1501
asUfsuGfuCfauuuuugAfgAfacauususu
2233





D-1162
asasaaugAfcAfAfCfAfcuugaagcs{invAb}
1502
usGfscUfuCfaaguguuGfuCfauuuususu
2234





D-1163
asasaugaCfaAfCfAfCfuugaagcas{invAb}
1503
asUfsgCfuUfcaaguguUfgUfcauuususu
2235





D-1164
asasugacAfaCfAfCfUfugaagcaus{invAb}
1504
asAfsuGfcUfucaagugUfuGfucauususu
2236





D-1165
usgsacaaCfaCfUfUfGfaagcauggs{invAb}
1505
asCfscAfuGfcuucaagUfgUfugucasusu
2237





D-1166
gsascaacAfcUfUfGfAfagcauggus{invAb}
1506
asAfscCfaUfgcuucaaGfuGfuugucsusu
2238





D-1167
ascsaacaCfuUfGfAfAfgcauggugs{invAb}
1507
asCfsaCfcAfugcuucaAfgUfguugususu
2239





D-1168
csascuugAfaGfCfAfUfgguguuucs{invAb}
1508
usGfsaAfaCfaccaugcUfuCfaagugsusu
2240





D-1169
csusugaaGfcAfUfGfGfuguuucags{invAb}
1509
usCfsuGfaAfacaccauGfcUfucaagsusu
2241





D-1170
csusggugUfcUfCfAfAfugcuucaas{invAb}
1510
asUfsuGfaAfgcauugaGfaCfaccagsusu
2242





D-1171
usgsguguCfuCfAfAfUfgcuucaaus{invAb}
1511
asAfsuUfgAfagcauugAfgAfcaccasusu
2243





D-1172
gsgsugucUfcAfAfUfGfcuucaaugs{invAb}
1512
asCfsaUfuGfaagcauuGfaGfacaccsusu
2244





D-1173
gsusgucuCfaAfUfGfCfuucaaugus{invAb}
1513
asAfscAfuUfgaagcauUfgAfgacacsusu
2245





D-1174
usgsucucAfaUfGfCfUfucaaugucs{invAb}
1514
asGfsaCfaUfugaagcaUfuGfagacasusu
2246





D-1175
uscsucaaUfgCfUfUfCfaaugucccs{invAb}
1515
usGfsgGfaCfauugaagCfaUfugagasusu
2247





D-1176
csuscaauGfcUfUfCfAfaugucccas{invAb}
1516
asUfsgGfgAfcauugaaGfcAfuugagsusu
2248





D-1177
csasaugcUfuCfAfAfUfgucccagus{invAb}
1517
asAfscUfgGfgacauugAfaGfcauugsusu
2249





D-1178
asusgcuuCfaAfUfGfUfcccagugcs{invAb}
1518
usGfscAfcUfgggacauUfgAfagcaususu
2250





D-1179
usgscuucAfaUfGfUfCfccagugcas{invAb}
1519
usUfsgCfaCfugggacaUfuGfaagcasusu
2251





D-1180
asasugacAfaGfAfCfAfggauucugs{invAb}
1520
usCfsaGfaAfuccugucUfuGfucauususu
2252





D-1181
asusgacaAfgAfCfAfGfgauucugas{invAb}
1521
usUfscAfgAfauccuguCfuUfgucaususu
2253





D-1182
gsascaagAfcAfGfGfAfuucugaaas{invAb}
1522
usUfsuUfcAfgaauccuGfuCfuugucsusu
2254





D-1183
asasgacaGfgAfUfUfCfugaaaacus{invAb}
1523
asAfsgUfuUfucagaauCfcUfgucuususu
2255





D-1184
ascsaggaUfuCfUfGfAfaaacucccs{invAb}
1524
asGfsgGfaGfuuuucagAfaUfccugususu
2256





D-1185
cscscguuUfaAfCfUfGfauuauggas{invAb}
1525
usUfscCfaUfaaucaguUfaAfacgggsusu
2257





D-1186
ususuaacUfgAfUfUfAfuggaauags{invAb}
1526
asCfsuAfuUfccauaauCfaGfuuaaasusu
2258





D-1187
ususaacuGfaUfUfAfUfggaauagus{invAb}
1527
asAfscUfaUfuccauaaUfcAfguuaasusu
2259





D-1188
asascugaUfuAfUfGfGfaauaguucs{invAb}
1528
asGfsaAfcUfauuccauAfaUfcaguususu
2260





D-1189
ascsugauUfaUfGfGfAfauaguucus{invAb}
1529
asAfsgAfaCfuauuccaUfaAfucagususu
2261





D-1190
csusgauuAfuGfGfAfAfuaguucuus{invAb}
1530
asAfsaGfaAfcuauuccAfuAfaucagsusu
2262





D-1191
gsasuuauGfgAfAfUfAfguucuuucs{invAb}
1531
asGfsaAfaGfaacuauuCfcAfuaaucsusu
2263





D-1192
asusuaugGfaAfUfAfGfuucuuucus{invAb}
1532
asAfsgAfaAfgaacuauUfcCfauaaususu
2264





D-1193
ususgcauCfcUfGfUfCfacuaccacs{invAb}
1533
asGfsuGfgUfagugacaGfgAfugcaasusu
2265





D-1194
csasccccAfaAfUfAfUfggcuggaas{invAb}
1534
asUfsuCfcAfgccauauUfuGfgggugsusu
2266





D-1195
cscsccaaAfuAfUfGfGfcuggaaugs{invAb}
1535
asCfsaUfuCfcagccauAfuUfuggggsusu
2267





D-1196
csuscaagCfcCfCfGfGfgcuagcuus{invAb}
1536
asAfsaGfcUfagcccggGfgCfuugagsusu
2268





D-1197
uscsaagcCfcCfGfGfGfcuagcuuus{invAb}
1537
asAfsaAfgCfuagcccgGfgGfcuugasusu
2269





D-1198
asasgcccCfgGfGfCfUfagcuuuugs{invAb}
1538
usCfsaAfaAfgcuagccCfgGfggcuususu
2270





D-1199
asgsccccGfgGfCfUfAfgcuuuugas{invAb}
1539
usUfscAfaAfagcuagcCfcGfgggcususu
2271





D-1200
gscscccgGfgCfUfAfGfcuuuugaas{invAb}
1540
usUfsuCfaAfaagcuagCfcCfggggcsusu
2272





D-1201
cscscgggCfuAfGfCfUfuuugaaaus{invAb}
1541
asAfsuUfuCfaaaagcuAfgCfccgggsusu
2273





D-1202
gsgscuagCfuUfUfUfGfaaauggcas{invAb}
1542
asUfsgCfcAfuuucaaaAfgCfuagccsusu
2274





D-1203
asusaaagAfcUfGfAfGfgugaccuus{invAb}
1543
asAfsaGfgUfcaccucaGfuCfuuuaususu
2275





D-1204
csusgcagAfuAfUfUfAfauuuuccas{invAb}
1544
asUfsgGfaAfaauuaauAfuCfugcagsusu
2276





D-1205
gsasuauuAfaUfUfUfUfccauagaus{invAb}
1545
asAfsuCfuAfuggaaaaUfuAfauaucsusu
2277





D-1206
asusauuaAfuUfUfUfCfcauagaucs{invAb}
1546
asGfsaUfcUfauggaaaAfuUfaauaususu
2278





D-1207
usasauuuUfcCfAfUfAfgaucuggas{invAb}
1547
asUfscCfaGfaucuaugGfaAfaauuasusu
2279





D-1208
asasuuuuCfcAfUfAfGfaucuggaus{invAb}
1548
asAfsuCfcAfgaucuauGfgAfaaauususu
2280





D-1209
asusuuucCfaUfAfGfAfucuggaucs{invAb}
1549
asGfsaUfcCfagaucuaUfgGfaaaaususu
2281





D-1210
ususuccaUfaGfAfUfCfuggaucugs{invAb}
1550
asCfsaGfaUfccagaucUfaUfggaaasusu
2282





D-1211
usgscuucUfcAfGfAfCfagcauuggs{invAb}
1551
usCfscAfaUfgcugucuGfaGfaagcasusu
2283





D-1212
gscsuucuCfaGfAfCfAfgcauuggas{invAb}
1552
asUfscCfaAfugcugucUfgAfgaagcsusu
2284





D-1213
uscsagacAfgCfAfUfUfggauuuccs{invAb}
1553
asGfsgAfaAfuccaaugCfuGfucugasusu
2285





D-1214
csasgacaGfcAfUfUfGfgauuuccus{invAb}
1554
usAfsgGfaAfauccaauGfcUfgucugsusu
2286





D-1215
asgsacagCfaUfUfGfGfauuuccuas{invAb}
1555
usUfsaGfgAfaauccaaUfgCfugucususu
2287





D-1216
ususccuaAfaGfGfUfGfcucaggags{invAb}
1556
asCfsuCfcUfgagcaccUfuUfaggaasusu
2288





D-1217
asgsgaccCfcUfGfGfAfuccuugccs{invAb}
1557
usGfsgCfaAfggauccaGfgGfguccususu
2289





D-1218
cscscuggAfuCfCfUfUfgccauuccs{invAb}
1558
asGfsgAfaUfggcaaggAfuCfcagggsusu
2290





D-1219
csusggauCfcUfUfGfCfcauuccccs{invAb}
1559
asGfsgGfgAfauggcaaGfgAfuccagsusu
2291





D-1220
gsgsauccUfuGfCfCfAfuuccccucs{invAb}
1560
usGfsaGfgGfgaauggcAfaGfgauccsusu
2292





D-1221
gsasuccuUfgCfCfAfUfuccccucas{invAb}
1561
asUfsgAfgGfggaauggCfaAfggaucsusu
2293





D-1222
cscsuugcCfaUfUfCfCfccucagcus{invAb}
1562
usAfsgCfuGfaggggaaUfgGfcaaggsusu
2294





D-1223
csusugccAfuUfCfCfCfcucagcuas{invAb}
1563
usUfsaGfcUfgaggggaAfuGfgcaagsusu
2295





D-1224
gscscauuCfcCfCfUfCfagcuaaugs{invAb}
1564
usCfsaUfuAfgcugaggGfgAfauggcsusu
2296





D-1225
csasuuccCfcUfCfAfGfcuaaugacs{invAb}
1565
asGfsuCfaUfuagcugaGfgGfgaaugsusu
2297





D-1226
ascsggagUfgCfUfCfCfuucuccags{invAb}
1566
asCfsuGfgAfgaaggagCfaCfuccgususu
2298





D-1227
gsasaaacCfuUfUfAfAfagggggaas{invAb}
1567
usUfsuCfcCfccuuuaaAfgGfuuuucsusu
2299





D-1228
csasuaugUfcAfGfUfUfguuuaaaas{invAb}
1568
asUfsuUfuAfaacaacuGfaCfauaugsusu
2300





D-1229
uscsaguuGfuUfUfAfAfaacccaaus{invAb}
1569
usAfsuUfgGfguuuuaaAfcAfacugasusu
2301





D-1230
asgsuuguUfuAfAfAfAfcccaauaus{invAb}
1570
asAfsuAfuUfggguuuuAfaAfcaacususu
2302





D-1231
asasggacGfcAfCfUfGfcucugauus{invAb}
1571
asAfsaUfcAfgagcaguGfcGfuccuususu
2303





D-1232
csasagccCfcGfGfGfCfuagcuuuus{invAb}
1572
asAfsaAfaGfcuagcccGfgGfgcuugsusu
2304





D-1233
cscsccggGfcUfAfGfCfuuuugaaas{invAb}
1573
asUfsuUfcAfaaagcuaGfcCfcggggsusu
2305





D-1234
gsascugaGfgUfGfAfCfcuucaggas{invAb}
1574
usUfscCfuGfaaggucaCfcUfcagucsusu
2306





D-1235
usasuuaaUfuUfUfCfCfauagaucus{invAb}
1575
asAfsgAfuCfuauggaaAfaUfuaauasusu
2307





D-1236
ususuuccAfuAfGfAfUfcuggaucus{invAb}
1576
asAfsgAfuCfcagaucuAfuGfgaaaasusu
2308





D-1237
ususcucaGfaCfAfGfCfauuggauus{invAb}
1577
asAfsaUfcCfaaugcugUfcUfgagaasusu
2309





D-1238
ususuccuAfaAfGfGfUfgcucaggas{invAb}
1578
asUfscCfuGfagcaccuUfuAfggaaasusu
2310





D-1239
cscsuggaUfcCfUfUfGfccauucccs{invAb}
1579
asGfsgGfaAfuggcaagGfaUfccaggsusu
2311





D-1240
uscscuugCfcAfUfUfCfcccucagcs{invAb}
1580
asGfscUfgAfggggaauGfgCfaaggasusu
2312





D-1241
cscsauucCfcCfUfCfAfgcuaaugas{invAb}
1581
asUfscAfuUfagcugagGfgGfaauggsusu
2313





D-1242
asasaaccUfuUfAfAfAfgggggaaas{invAb}
1582
usUfsuUfcCfcccuuuaAfaGfguuuususu
2314





D-1243
ususguuuAfaAfAfCfCfcaauaucus{invAb}
1583
usAfsgAfuAfuuggguuUfuAfaacaasusu
2315





D-1244
csuscuaaGfaUfCfUfGfaugaaguas{invAb}
1584
asUfsaCfuUfcaucagaUfcUfuagagsusu
2316





D-1245
csusaagaUfcUfGfAfUfgaaguauas{invAb}
1585
asUfsaUfaCfuucaucaGfaUfcuuagsusu
2317





D-1246
usasagauCfuGfAfUfGfaaguauaus{invAb}
1586
asAfsuAfuAfcuucaucAfgAfucuuasusu
2318





D-1247
asasgaucUfgAfUfGfAfaguauauus{invAb}
1587
asAfsaUfaUfacuucauCfaGfaucuususu
2319





D-1248
gsasugaaGfuAfUfAfUfuuuuuauus{invAb}
1588
asAfsaUfaAfaaaauauAfcUfucaucsusu
2320





D-1249
ususuuauUfgCfCfAfUfuuuguccus{invAb}
1589
asAfsgGfaCfaaaauggCfaAfuaaaasusu
2321





D-1250
ususuauuGfcCfAfUfUfuuguccuus{invAb}
1590
asAfsaGfgAfcaaaaugGfcAfauaaasusu
2322





D-1251
ususauugCfcAfUfUfUfuguccuuus{invAb}
1591
asAfsaAfgGfacaaaauGfgCfaauaasusu
2323





D-1252
asusugccAfuUfUfUfGfuccuuugas{invAb}
1592
asUfscAfaAfggacaaaAfuGfgcaaususu
2324





D-1253
asusauugGfgAfAfGfUfugacuaaas{invAb}
1593
asUfsuUfaGfucaacuuCfcCfaauaususu
2325





D-1254
usgsggaaGfuUfGfAfCfuaaacuugs{invAb}
1594
usCfsaAfgUfuuagucaAfcUfucccasusu
2326





D-1255
gsgsgaagUfuGfAfCfUfaaacuugas{invAb}
1595
usUfscAfaGfuuuagucAfaCfuucccsusu
2327





D-1256
gsgsaaguUfgAfCfUfAfaacuugaas{invAb}
1596
usUfsuCfaAfguuuaguCfaAfcuuccsusu
2328





D-1257
ascsugugAfaUfAfAfAfuggaagcus{invAb}
1597
usAfsgCfuUfccauuuaUfuCfacagususu
2329





D-1258
usgsaauaAfaUfGfGfAfagcuacuus{invAb}
1598
asAfsaGfuAfgcuuccaUfuUfauucasusu
2330





D-1259
usasaaugGfaAfGfCfUfacuuugacs{invAb}
1599
asGfsuCfaAfaguagcuUfcCfauuuasusu
2331





D-1260
asasauggAfaGfCfUfAfcuuugacus{invAb}
1600
usAfsgUfcAfaaguagcUfuCfcauuususu
2332





D-1261
asasgcuaCfuUfUfGfAfcuaguuucs{invAb}
1601
usGfsaAfaCfuagucaaAfgUfagcuususu
2333





D-1262
asgscuacUfuUfGfAfCfuaguuucas{invAb}
1602
asUfsgAfaAfcuagucaAfaGfuagcususu
2334





D-1263
gsgsagugCfuCfCfUfUfcuccaguus{invAb}
1603
asAfsaCfuGfgagaaggAfgCfacuccsusu
2335





D-1264
asasccuuUfaAfAfGfGfgggaaaags{invAb}
1604
asCfsuUfuUfcccccuuUfaAfagguususu
2336





D-1265
ascscuuuAfaAfGfGfGfggaaaaggs{invAb}
1605
usCfscUfuUfucccccuUfuAfaaggususu
2337





D-1266
usasuugcCfaUfUfUfUfguccuuugs{invAb}
1606
usCfsaAfaGfgacaaaaUfgGfcaauasusu
2338





D-1267
gsasaguuGfaCfUfAfAfacuugaaas{invAb}
1607
usUfsuUfcAfaguuuagUfcAfacuucsusu
2339





D-1268
asasguugAfcUfAfAfAfcuugaaaas{invAb}
1608
usUfsuUfuCfaaguuuaGfuCfaacuususu
2340





D-1269
gscsuacuUfuGfAfCfUfaguuucags{invAb}
1609
usCfsuGfaAfacuagucAfaAfguagcsusu
2341





D-1270
usgsacucUfcAfGfUfGfcagccuacs{invAb}
1610
usGfsuAfgGfcugcacuGfaGfagucasusu
2342





D-1271
ascsgcccAfcCfAfCfAfaaugcagus{invAb}
1611
asAfscUfgCfauuugugGfuGfggcgususu
2343





D-1272
cscscaguGfgAfUfAfAfccagcuucs{invAb}
1612
asGfsaAfgCfugguuauCfcAfcugggsusu
2344





D-1273
csasucaaAfuAfGfCfAfgacuuguus{invAb}
1613
asAfsaCfaAfgucugcuAfuUfugaugsusu
2345





D-1274
uscsaaauAfgCfAfGfAfcuuguuccs{invAb}
1614
asGfsgAfaCfaagucugCfuAfuuugasusu
2346





D-1275
csasggcuAfgAfGfAfAfgaaaguuas{invAb}
1615
usUfsaAfcUfuucuucuCfuAfgccugsusu
2347





D-1276
asgsgcuaGfaGfAfAfGfaaaguuaas{invAb}
1616
usUfsuAfaCfuuucuucUfcUfagccususu
2348





D-1277
ascscaacUfuCfAfGfGfcccaauaus{invAb}
1617
asAfsuAfuUfgggccugAfaGfuuggususu
2349





D-1278
gsasgcuuCfuUfAfUfUfggugacgus{invAb}
1618
asAfscGfuCfaccaauaAfgAfagcucsusu
2350





D-1279
csusucuuAfuUfGfGfUfgacguggas{invAb}
1619
usUfscCfaCfgucaccaAfuAfagaagsusu
2351





D-1280
uscsuuauUfgGfUfGfAfcguggaacs{invAb}
1620
asGfsuUfcCfacgucacCfaAfuaagasusu
2352





D-1281
asusugguGfaCfGfUfGfgaacugaas{invAb}
1621
usUfsuCfaGfuuccacgUfcAfccaaususu
2353





D-1282
csusuguuCfcAfGfAfUfgcauuuuas{invAb}
1622
usUfsaAfaAfugcaucuGfgAfacaagsusu
2354





D-1283
usgsuuccAfgAfUfGfCfauuuuaacs{invAb}
1623
asGfsuUfaAfaaugcauCfuGfgaacasusu
2355





D-1284
csusggaaAfcAfCfUfGfaagaguuas{invAb}
1624
asUfsaAfcUfcuucaguGfuUfuccagsusu
2356





D-1285
usgsgaaaCfaCfUfGfAfagaguuaus{invAb}
1625
asAfsuAfaCfucuucagUfgUfuuccasusu
2357





D-1286
asasgaguUfaUfCfGfCfcagugugas{invAb}
1626
asUfscAfcAfcuggcgaUfaAfcucuususu
2358





D-1287
asgsaguuAfuCfGfCfCfagugugacs{invAb}
1627
asGfsuCfaCfacuggcgAfuAfacucususu
2359





D-1288
gsusuauaUfgGfAfAfAfaucaccacs{invAb}
1628
asGfsuGfgUfgauuuucCfaUfauaacsusu
2360





D-1289
gsusgcugGfaAfAfAfCfccagggacs{invAb}
1629
asGfsuCfcCfuggguuuUfcCfagcacsusu
2361





D-1290
usgscuggAfaAfAfCfCfcagggaccs{invAb}
1630
usGfsgUfcCfcuggguuUfuCfcagcasusu
2362





D-1291
gscsuggaAfaAfCfCfCfagggaccas{invAb}
1631
asUfsgGfuCfccuggguUfuUfccagcsusu
2363





D-1292
asasaaccCfaGfGfGfAfccaucaaas{invAb}
1632
asUfsuUfgAfuggucccUfgGfguuuususu
2364





D-1293
asasacccAfgGfGfAfCfcaucaaags{invAb}
1633
asCfsuUfuGfaugguccCfuGfgguuususu
2365





D-1294
asascccaGfgGfAfCfCfaucaaagus{invAb}
1634
asAfscUfuUfgauggucCfcUfggguususu
2366





D-1295
ascsccagGfgAfCfCfAfucaaagugs{invAb}
1635
asCfsaCfuUfugaugguCfcCfugggususu
2367





D-1296
gsusgggaGfaCfCfCfUfguguaccus{invAb}
1636
asAfsgGfuAfcacagggUfcUfcccacsusu
2368





D-1297
gscsugggCfcAfGfUfAfaugggaacs{invAb}
1637
asGfsuUfcCfcauuacuGfgCfccagcsusu
2369





D-1298
csasaaaaUfgAfCfAfAfcacuugaas{invAb}
1638
asUfsuCfaAfguguuguCfaUfuuuugsusu
2370





D-1299
asusgacaAfcAfCfUfUfgaagcaugs{invAb}
1639
asCfsaUfgCfuucaaguGfuUfgucaususu
2371





D-1300
ascsuugaAfgCfAfUfGfguguuucas{invAb}
1640
asUfsgAfaAfcaccaugCfuUfcaagususu
2372





D-1301
asasauuuGfuGfAfUfUfuucacauus{invAb}
1641
asAfsaUfgUfgaaaaucAfcAfaauuususu
2373





D-1302
asasugcuUfcAfAfUfGfucccagugs{invAb}
1642
asCfsaCfuGfggacauuGfaAfgcauususu
2374





D-1303
asasaugaCfaAfGfAfCfaggauucus{invAb}
1643
asAfsgAfaUfccugucuUfgUfcauuususu
2375





D-1304
ususauggAfaUfAfGfUfucuuucucs{invAb}
1644
asGfsaGfaAfagaacuaUfuCfcauaasusu
2376





D-1305
usasuggaAfuAfGfUfUfcuuucuccs{invAb}
1645
asGfsgAfgAfaagaacuAfuUfccauasusu
2377





D-1306
gsasauagUfuCfUfUfUfcuccugcus{invAb}
1646
asAfsgCfaGfgagaaagAfaCfuauucsusu
2378





D-1307
asasuaguUfcUfUfUfCfuccugcuus{invAb}
1647
asAfsaGfcAfggagaaaGfaAfcuauususu
2379





D-1308
usgscaucCfuGfUfCfAfcuaccacus{invAb}
1648
asAfsgUfgGfuagugacAfgGfaugcasusu
2380





D-1309
gscsauccUfgUfCfAfCfuaccacucs{invAb}
1649
asGfsaGfuGfguagugaCfaGfgaugcsusu
2381





D-1310
cscsgggcUfaGfCfUfUfuugaaaugs{invAb}
1650
asCfsaUfuUfcaaaagcUfaGfcccggsusu
2382





D-1311
csgsggcuAfgCfUfUfUfugaaauggs{invAb}
1651
asCfscAfuUfucaaaagCfuAfgcccgsusu
2383





D-1312
asasgacuGfaGfGfUfGfaccuucags{invAb}
1652
asCfsuGfaAfggucaccUfcAfgucuususu
2384





D-1313
asgsgugaCfcUfUfCfAfggaagcacs{invAb}
1653
asGfsuGfcUfuccugaaGfgUfcaccususu
2385





D-1314
cscsauagAfuCfUfGfGfaucuggccs{invAb}
1654
asGfsgCfcAfgauccagAfuCfuauggsusu
2386





D-1315
usgsgauuUfcCfUfAfAfaggugcucs{invAb}
1655
usGfsaGfcAfccuuuagGfaAfauccasusu
2387





D-1316
gsasuuucCfuAfAfAfGfgugcucags{invAb}
1656
asCfsuGfaGfcaccuuuAfgGfaaaucsusu
2388





D-1317
uscscuaaAfgGfUfGfCfucaggaggs{invAb}
1657
usCfscUfcCfugagcacCfuUfuaggasusu
2389





D-1318
usgsgaggAfcCfCfCfUfggauccuus{invAb}
1658
asAfsaGfgAfuccagggGfuCfcuccasusu
2390





D-1319
gsgsaggaCfcCfCfUfGfgauccuugs{invAb}
1659
asCfsaAfgGfauccaggGfgUfccuccsusu
2391





D-1320
gsasggacCfcCfUfGfGfauccuugcs{invAb}
1660
asGfscAfaGfgauccagGfgGfuccucsusu
2392





D-1321
csgsgaguGfcUfCfCfUfucuccagus{invAb}
1661
asAfscUfgGfagaaggaGfcAfcuccgsusu
2393





D-1322
asgsaaggAfcGfCfAfCfugcucugas{invAb}
1662
asUfscAfgAfgcagugcGfuCfcuucususu
2394





D-1323
csuscugaUfuGfGfCfCfcggaagggs{invAb}
1663
asCfscCfuUfccgggccAfaUfcagagsusu
2395





D-1324
uscsugauUfgGfCfCfCfggaagggus{invAb}
1664
asAfscCfcUfuccgggcCfaAfucagasusu
2396





D-1325
csusgauuGfgCfCfCfGfgaaggguus{invAb}
1665
asAfsaCfcCfuuccgggCfcAfaucagsusu
2397





D-1326
gsgsccaaAfgGfCfCfGfcaccuuccs{invAb}
1666
asGfsgAfaGfgugcggcCfuUfuggccsusu
2398





D-1327
cscsucgcGfgAfGfAfAfgccagccas{invAb}
1667
asUfsgGfcUfggcuucuCfcGfcgaggsusu
2399





D-1328
gsgsagaaGfcCfAfGfCfcaugggcgs{invAb}
1668
asCfsgCfcCfauggcugGfcUfucuccsusu
2400





D-1329
gsasgaagCfcAfGfCfCfaugggcgcs{invAb}
1669
asGfscGfcCfcauggcuGfgCfuucucsusu
2401





D-1330
gsasucaaCfcAfGfGfAfgggaaacas{invAb}
1670
asUfsgUfuUfcccuccuGfgUfugaucsusu
2402





D-1331
ascsugcuCfgCfCfAfGfgaaccucgs{invAb}
1671
asCfsgAfgGfuuccuggCfgAfgcagususu
2403





D-1332
uscsgccaGfgAfAfCfCfucgccuggs{invAb}
1672
asCfscAfgGfcgagguuCfcUfggcgasusu
2404





D-1333
gscscaggAfaCfCfUfCfgccuggucs{invAb}
1673
asGfsaCfcAfggcgaggUfuCfcuggcsusu
2405





D-1334
gsasaccuCfgCfCfUfGfguccugaus{invAb}
1674
asAfsuCfaGfgaccaggCfgAfgguucsusu
2406





D-1335
asusggugAfcAfCfCfCfugacucucs{invAb}
1675
usGfsaGfaGfucaggguGfuCfaccaususu
2407





D-1336
usgsgugaCfaCfCfCfUfgacucucas{invAb}
1676
asUfsgAfgAfgucagggUfgUfcaccasusu
2408





D-1337
gsascaccCfuGfAfCfUfcucagugcs{invAb}
1677
usGfscAfcUfgagagucAfgGfgugucsusu
2409





D-1338
ascsccugAfcUfCfUfCfagugcagcs{invAb}
1678
asGfscUfgCfacugagaGfuCfagggususu
2410





D-1339
cscsgcccAfgUfGfGfAfuaaccagcs{invAb}
1679
asGfscUfgGfuuauccaCfuGfggcggsusu
2411





D-1340
cscsgccuGfgUfGfCfAfcuucgagcs{invAb}
1680
asGfscUfcGfaagugcaCfcAfggcggsusu
2412





D-1341
csgsccugGfuGfCfAfCfuucgagccs{invAb}
1681
asGfsgCfuCfgaagugcAfcCfaggcgsusu
2413





D-1342
gscscuggUfgCfAfCfUfucgagccus{invAb}
1682
asAfsgGfcUfcgaagugCfaCfcaggcsusu
2414





D-1343
cscsugguGfcAfCfUfUfcgagccucs{invAb}
1683
usGfsaGfgCfucgaaguGfcAfccaggsusu
2415





D-1344
csusggugCfaCfUfUfCfgagccucas{invAb}
1684
asUfsgAfgGfcucgaagUfgCfaccagsusu
2416





D-1345
usgsgugcAfcUfUfCfGfagccucacs{invAb}
1685
usGfsuGfaGfgcucgaaGfuGfcaccasusu
2417





D-1346
gsgsugcaCfuUfCfGfAfgccucacas{invAb}
1686
asUfsgUfgAfggcucgaAfgUfgcaccsusu
2418





D-1347
gsusgcacUfuCfGfAfGfccucacaus{invAb}
1687
asAfsuGfuGfaggcucgAfaGfugcacsusu
2419





D-1348
usgscacuUfcGfAfGfCfcucacaugs{invAb}
1688
asCfsaUfgUfgaggcucGfaAfgugcasusu
2420





D-1349
gscsacuuCfgAfGfCfCfucacaugcs{invAb}
1689
asGfscAfuGfugaggcuCfgAfagugcsusu
2421





D-1350
csascuucGfaGfCfCfUfcacaugcgs{invAb}
1690
usCfsgCfaUfgugaggcUfcGfaagugsusu
2422





D-1351
ascsuucgAfgCfCfUfCfacaugcgas{invAb}
1691
asUfscGfcAfugugaggCfuCfgaagususu
2423





D-1352
csusucgaGfcCfUfCfAfcaugcgacs{invAb}
1692
asGfsuCfgCfaugugagGfcUfcgaagsusu
2424





D-1353
ususcgagCfcUfCfAfCfaugcgaccs{invAb}
1693
asGfsgUfcGfcaugugaGfgCfucgaasusu
2425





D-1354
uscsgagcCfuCfAfCfAfugcgaccgs{invAb}
1694
usCfsgGfuCfgcaugugAfgGfcucgasusu
2426





D-1355
csgsagccUfcAfCfAfUfgcgaccgas{invAb}
1695
asUfscGfgUfcgcauguGfaGfgcucgsusu
2427





D-1356
gscscucaCfaUfGfCfGfaccgagacs{invAb}
1696
asGfsuCfuCfggucgcaUfgUfgaggcsusu
2428





D-1357
csusugauCfcUfUfUfCfugaggcgus{invAb}
1697
asAfscGfcCfucagaaaGfgAfucaagsusu
2429





D-1358
csusggcgGfaUfCfUfCfaacuccags{invAb}
1698
asCfsuGfgAfguugagaUfcCfgccagsusu
2430





D-1359
usgsgcggAfuCfUfCfAfacuccaggs{invAb}
1699
asCfscUfgGfaguugagAfuCfcgccasusu
2431





D-1360
gscsgaugUfcUfAfUfGfcagaggaus{invAb}
1700
asAfsuCfcUfcugcauaGfaCfaucgcsusu
2432





D-1361
gsasugucUfaUfGfCfAfgaggauucs{invAb}
1701
asGfsaAfuCfcucugcaUfaGfacaucsusu
2433





D-1362
usgsucuaUfgCfAfGfAfggauucuus{invAb}
1702
asAfsaGfaAfuccucugCfaUfagacasusu
2434





D-1363
gsuscuauGfcAfGfAfGfgauucuugs{invAb}
1703
asCfsaAfgAfauccucuGfcAfuagacsusu
2435





D-1364
uscsuaugCfaGfAfGfGfauucuuggs{invAb}
1704
asCfscAfaGfaauccucUfgCfauagasusu
2436





D-1365
csusaugcAfgAfGfGfAfuucuugggs{invAb}
1705
usCfscCfaAfgaauccuCfuGfcauagsusu
2437





D-1366
gsgsugauGfgCfUfUfGfuuccagaus{invAb}
1706
asAfsuCfuGfgaacaagCfcAfucaccsusu
2438





D-1367
gsusgaugGfcUfUfGfUfuccagaugs{invAb}
1707
asCfsaUfcUfggaacaaGfcCfaucacsusu
2439





D-1368
usgsgcuuGfuUfCfCfAfgaugcauus{invAb}
1708
asAfsaUfgCfaucuggaAfcAfagccasusu
2440





D-1369
csasuuuuAfaCfCfAfCfaguggaccs{invAb}
1709
asGfsgUfcCfacuguggUfuAfaaaugsusu
2441





D-1370
ususuuaaCfcAfCfAfGfuggacccas{invAb}
1710
asUfsgGfgUfccacuguGfgUfuaaaasusu
2442





D-1371
ususuaacCfaCfAfGfUfggacccags{invAb}
1711
usCfsuGfgGfuccacugUfgGfuuaaasusu
2443





D-1372
csasccacUfcUfUfUfGfggcaguaus{invAb}
1712
asAfsuAfcUfgcccaaaGfaGfuggugsusu
2444





D-1373
ascscacuCfuUfUfGfGfgcaguauus{invAb}
1713
asAfsaUfaCfugcccaaAfgAfguggususu
2445





D-1374
csusuuggGfcAfGfUfAfuuuugugcs{invAb}
1714
asGfscAfcAfaaauacuGfcCfcaaagsusu
2446





D-1375
ususugggCfaGfUfAfUfuuugugcus{invAb}
1715
asAfsgCfaCfaaaauacUfgCfccaaasusu
2447





D-1376
ususgggcAfgUfAfUfUfuugugcugs{invAb}
1716
asCfsaGfcAfcaaaauaCfuGfcccaasusu
2448





D-1377
usgsggcaGfuAfUfUfUfugugcuggs{invAb}
1717
usCfscAfgCfacaaaauAfcUfgcccasusu
2449





D-1378
gsgscaguAfuUfUfUfGfugcuggaas{invAb}
1718
usUfsuCfcAfgcacaaaAfuAfcugccsusu
2450





D-1379
usasuuuuGfuGfCfUfGfgaaaacccs{invAb}
1719
usGfsgGfuUfuuccagcAfcAfaaauasusu
2451





D-1380
asusuuugUfgCfUfGfGfaaaacccas{invAb}
1720
asUfsgGfgUfuuuccagCfaCfaaaaususu
2452





D-1381
ascscguaUfgUfCfCfUfggaauauus{invAb}
1721
usAfsaUfaUfuccaggaCfaUfacggususu
2453





D-1382
cscsguauGfuCfCfUfGfgaauauuas{invAb}
1722
asUfsaAfuAfuuccaggAfcAfuacggsusu
2454





D-1383
gsusauguCfcUfGfGfAfauauuagas{invAb}
1723
asUfscUfaAfuauuccaGfgAfcauacsusu
2455





D-1384
usasugucCfuGfGfAfAfuauuagaus{invAb}
1724
asAfsuCfuAfauauuccAfgGfacauasusu
2456





D-1385
asusguccUfgGfAfAfUfauuagaugs{invAb}
1725
asCfsaUfcUfaauauucCfaGfgacaususu
2457





D-1386
usgsuccuGfgAfAfUfAfuuagaugcs{invAb}
1726
asGfscAfuCfuaauauuCfcAfggacasusu
2458





D-1387
gsusccugGfaAfUfAfUfuagaugccs{invAb}
1727
asGfsgCfaUfcuaauauUfcCfaggacsusu
2459





D-1388
uscscuggAfaUfAfUfUfagaugccus{invAb}
1728
asAfsgGfcAfucuaauaUfuCfcaggasusu
2460





D-1389
cscsuggaAfuAfUfUfAfgaugccuus{invAb}
1729
asAfsaGfgCfaucuaauAfuUfccaggsusu
2461





D-1390
csusggaaUfaUfUfAfGfaugccuuus{invAb}
1730
asAfsaAfgGfcaucuaaUfaUfuccagsusu
2462





D-1391
csasugguGfuUfUfCfAfgaacugags{invAb}
1731
usCfsuCfaGfuucugaaAfcAfccaugsusu
2463





D-1392
asusggugUfuUfCfAfGfaacugagas{invAb}
1732
asUfscUfcAfguucugaAfaCfaccaususu
2464





D-1393
usgsguguUfuCfAfGfAfacugagacs{invAb}
1733
asGfsuCfuCfaguucugAfaAfcaccasusu
2465





D-1394
gsgsuguuUfcAfGfAfAfcugagaccs{invAb}
1734
asGfsgUfcUfcaguucuGfaAfacaccsusu
2466





D-1395
gsasggagAfaGfAfAfAfagugauucs{invAb}
1735
usGfsaAfuCfacuuuucUfuCfuccucsusu
2467





D-1396
asgsaagaAfaAfGfUfGfauucagugs{invAb}
1736
usCfsaCfuGfaaucacuUfuUfcuucususu
2468





D-1397
gsasagaaAfaGfUfGfAfuucagugas{invAb}
1737
asUfscAfcUfgaaucacUfuUfucuucsusu
2469





D-1398
gsasaaagUfgAfUfUfCfagugauuus{invAb}
1738
asAfsaAfuCfacugaauCfaCfuuuucsusu
2470





D-1399
asasagugAfuUfCfAfGfugauuucas{invAb}
1739
asUfsgAfaAfucacugaAfuCfacuuususu
2471





D-1400
ascsuacuGfaAfAfAfCfcuuuaaags{invAb}
1740
asCfsuUfuAfaagguuuUfcAfguagususu
2472





D-1401
usascugaAfaAfCfCfUfuuaaagggs{invAb}
1741
asCfscCfuUfuaaagguUfuUfcaguasusu
2473





D-1402
usgsuauaAfcUfCfUfAfagaucugas{invAb}
1742
asUfscAfgAfucuuagaGfuUfauacasusu
2474





D-1403
usasuaacUfcUfAfAfGfaucugaugs{invAb}
1743
usCfsaUfcAfgaucuuaGfaGfuuauasusu
2475





D-1404
asusaacuCfuAfAfGfAfucugaugas{invAb}
1744
usUfscAfuCfagaucuuAfgAfguuaususu
2476





D-1405
usasacucUfaAfGfAfUfcugaugaas{invAb}
1745
asUfsuCfaUfcagaucuUfaGfaguuasusu
2477





D-1406
asascucuAfaGfAfUfCfugaugaags{invAb}
1746
asCfsuUfcAfucagaucUfuAfgaguususu
2478





D-1407
ascsucuaAfgAfUfCfUfgaugaagus{invAb}
1747
usAfscUfuCfaucagauCfuUfagagususu
2479





D-1408
gsasuuggCfcCfGfGfAfaggguucas{invAb}
1748
asUfsgAfaCfccuuccgGfgCfcaaucsusu
2480





D-1409
cscsuuugGfgCfUfCfGfgggccaaas{invAb}
1749
asUfsuUfgGfccccgagCfcCfaaaggsusu
2481





D-1410
ususgggcUfcGfGfGfGfccaaaggcs{invAb}
1750
asGfscCfuUfuggccccGfaGfcccaasusu
2482





D-1411
csgscaccUfuCfCfCfCfcagcggccs{invAb}
1751
asGfsgCfcGfcugggggAfaGfgugcgsusu
2483





D-1412
cscsgccgCfcAfCfCfUfcgcggagas{invAb}
1752
usUfscUfcCfgcgagguGfgCfggcggsusu
2484





D-1413
uscscgcgCfuGfGfCfGfcgcuuugus{invAb}
1753
asAfscAfaAfgcgcgccAfgCfgcggasusu
2485





D-1414
cscsgcgcUfgGfCfGfCfgcuuugucs{invAb}
1754
asGfsaCfaAfagcgcgcCfaGfcgcggsusu
2486





D-1415
csgscgcuGfgCfGfCfGfcuuuguccs{invAb}
1755
asGfsgAfcAfaagcgcgCfcAfgcgcgsusu
2487





D-1416
csgscgcuUfuGfUfCfCfuccucgcgs{invAb}
1756
asCfsgCfgAfggaggacAfaAfgcgcgsusu
2488





D-1417
gscsgcuuUfgUfCfCfUfccucgcgcs{invAb}
1757
usGfscGfcGfaggaggaCfaAfagcgcsusu
2489





D-1418
csgscuuuGfuCfCfUfCfcucgcgcas{invAb}
1758
usUfsgCfgCfgaggaggAfcAfaagcgsusu
2490





D-1419
gscsuuugUfcCfUfCfCfucgcgcaas{invAb}
1759
asUfsuGfcGfcgaggagGfaCfaaagcsusu
2491





D-1420
csusuuguCfcUfCfCfUfcgcgcaaus{invAb}
1760
asAfsuUfgCfgcgaggaGfgAfcaaagsusu
2492





D-1421
ususugucCfuCfCfUfCfgcgcaaucs{invAb}
1761
asGfsaUfuGfcgcgaggAfgGfacaaasusu
2493





D-1422
usgsuccuCfcUfCfGfCfgcaaucccs{invAb}
1762
asGfsgGfaUfugcgcgaGfgAfggacasusu
2494





D-1423
gsusccucCfuCfGfCfGfcaaucccgs{invAb}
1763
asCfsgGfgAfuugcgcgAfgGfaggacsusu
2495





D-1424
uscscuccUfcGfCfGfCfaaucccggs{invAb}
1764
asCfscGfgGfauugcgcGfaGfgaggasusu
2496





D-1425
cscsuccuCfgCfGfCfAfaucccggcs{invAb}
1765
asGfscCfgGfgauugcgCfgAfggaggsusu
2497





D-1426
csuscgcgCfaAfUfCfCfcggcccggs{invAb}
1766
asCfscGfgGfccgggauUfgCfgcgagsusu
2498





D-1427
gscsgcaaUfcCfCfGfGfcccgggugs{invAb}
1767
asCfsaCfcCfgggccggGfaUfugcgcsusu
2499





D-1428
csgscaauCfcCfGfGfCfccggguggs{invAb}
1768
asCfscAfcCfcgggccgGfgAfuugcgsusu
2500





D-1429
gscsaaucCfcGfGfCfCfcggguggcs{invAb}
1769
asGfscCfaCfccgggccGfgGfauugcsusu
2501





D-1430
gsgscccgGfgUfGfGfCfucgggguus{invAb}
1770
asAfsaCfcCfcgagccaCfcCfgggccsusu
2502





D-1431
gscsccggGfuGfGfCfUfcgggguugs{invAb}
1771
asCfsaAfcCfccgagccAfcCfcgggcsusu
2503





D-1432
cscscgggUfgGfCfUfCfgggguugcs{invAb}
1772
asGfscAfaCfcccgagcCfaCfccgggsusu
2504





D-1433
uscsggggUfuGfCfCfGfcgcugggcs{invAb}
1773
asGfscCfcAfgcgcggcAfaCfcccgasusu
2505





D-1434
gsgsuugcCfgCfGfCfUfgggccugas{invAb}
1774
asUfscAfgGfcccagcgCfgGfcaaccsusu
2506





D-1435
gscscgcgCfuGfGfGfCfcugaccgcs{invAb}
1775
asGfscGfgUfcaggcccAfgCfgcggcsusu
2507





D-1436
gscsgcugGfgCfCfUfGfaccgcggus{invAb}
1776
asAfscCfgCfggucaggCfcCfagcgcsusu
2508





D-1437
usgsggccUfgAfCfCfGfcgguggcgs{invAb}
1777
asCfsgCfcAfccgcgguCfaGfgcccasusu
2509





D-1438
gsgsgccuGfaCfCfGfCfgguggcgcs{invAb}
1778
asGfscGfcCfaccgcggUfcAfggcccsusu
2510





D-1439
gsasgggaAfaCfAfUfGfguuacugcs{invAb}
1779
asGfscAfgUfaaccaugUfuUfcccucsusu
2511





D-1440
gsgsaaacAfuGfGfUfUfacugcucgs{invAb}
1780
asCfsgAfgCfaguaaccAfuGfuuuccsusu
2512





D-1441
gsasaacaUfgGfUfUfAfcugcucgcs{invAb}
1781
asGfscGfaGfcaguaacCfaUfguuucsusu
2513





D-1442
asasacauGfgUfUfAfCfugcucgccs{invAb}
1782
usGfsgCfgAfgcaguaaCfcAfuguuususu
2514





D-1443
asascaugGfuUfAfCfUfgcucgccas{invAb}
1783
asUfsgGfcGfagcaguaAfcCfauguususu
2515





D-1444
ascsauggUfuAfCfUfGfcucgccags{invAb}
1784
asCfsuGfgCfgagcaguAfaCfcaugususu
2516





D-1445
gsusuacuGfcUfCfGfCfcaggaaccs{invAb}
1785
asGfsgUfuCfcuggcgaGfcAfguaacsusu
2517





D-1446
ususcccuGfaCfCfUfGfcgauggugs{invAb}
1786
usCfsaCfcAfucgcaggUfcAfgggaasusu
2518





D-1447
ascscugcGfaUfGfGfUfgacacccus{invAb}
1787
asAfsgGfgUfgucaccaUfcGfcaggususu
2519





D-1448
gsusgcagCfcUfAfCfAfcaaaggacs{invAb}
1788
asGfsuCfcUfuuguguaGfgCfugcacsusu
2520





D-1449
usgscagcCfuAfCfAfCfaaaggaccs{invAb}
1789
asGfsgUfcCfuuuguguAfgGfcugcasusu
2521





D-1450
csasgccuAfcAfCfAfAfaggaccuas{invAb}
1790
asUfsaGfgUfccuuuguGfuAfggcugsusu
2522





D-1451
asgsccuaCfaCfAfAfAfggaccuacs{invAb}
1791
asGfsuAfgGfuccuuugUfgUfaggcususu
2523





D-1452
gscscuacAfcAfAfAfGfgaccuacus{invAb}
1792
usAfsgUfaGfguccuuuGfuGfuaggcsusu
2524





D-1453
cscsuacaCfaAfAfGfGfaccuacuas{invAb}
1793
asUfsaGfuAfgguccuuUfgUfguaggsusu
2525





D-1454
csusacacAfaAfGfGfAfccuacuacs{invAb}
1794
asGfsuAfgUfagguccuUfuGfuguagsusu
2526





D-1455
csascaaaGfgAfCfCfUfacuacugcs{invAb}
1795
asGfscAfgUfaguagguCfcUfuugugsusu
2527





D-1456
asgsgaccUfaCfUfAfCfugccuaucs{invAb}
1796
usGfsaUfaGfgcaguagUfaGfguccususu
2528





D-1457
gsgsaccuAfcUfAfCfUfgccuaucas{invAb}
1797
usUfsgAfuAfggcaguaGfuAfgguccsusu
2529





D-1458
ascscuacUfaCfUfGfCfcuaucaaas{invAb}
1798
usUfsuUfgAfuaggcagUfaGfuaggususu
2530





D-1459
usascuacUfgCfCfUfAfucaaaacgs{invAb}
1799
asCfsgUfuUfugauaggCfaGfuaguasusu
2531





D-1460
csusacugCfcUfAfUfCfaaaacgccs{invAb}
1800
asGfsgCfgUfuuugauaGfgCfaguagsusu
2532





D-1461
gscscuauCfaAfAfAfCfgcccaccas{invAb}
1801
asUfsgGfuGfggcguuuUfgAfuaggcsusu
2533





D-1462
ascscacaAfaUfGfCfAfgugcacaas{invAb}
1802
asUfsuGfuGfcacugcaUfuUfguggususu
2534





D-1463
csascaaaUfgCfAfGfUfgcacaagus{invAb}
1803
asAfscUfuGfugcacugCfaUfuugugsusu
2535





D-1464
csasaaugCfaGfUfGfCfacaagugcs{invAb}
1804
usGfscAfcUfugugcacUfgCfauuugsusu
2536





D-1465
asusgcagUfgCfAfCfAfagugcagas{invAb}
1805
asUfscUfgCfacuugugCfaCfugcaususu
2537





D-1466
asgsugcaCfaAfGfUfGfcagagugcs{invAb}
1806
usGfscAfcUfcugcacuUfgUfgcacususu
2538





D-1467
ascsaaguGfcAfGfAfGfugcacggcs{invAb}
1807
asGfscCfgUfgcacucuGfcAfcuugususu
2539





D-1468
csasagugCfaGfAfGfUfgcacggccs{invAb}
1808
asGfsgCfcGfugcacucUfgCfacuugsusu
2540





D-1469
usgscagaGfuGfCfAfCfggccuggas{invAb}
1809
asUfscCfaGfgccgugcAfcUfcugcasusu
2541





D-1470
asgsagugCfaCfGfGfCfcuggagaus{invAb}
1810
usAfsuCfuCfcaggccgUfgCfacucususu
2542





D-1471
gsasgugcAfcGfGfCfCfuggagauas{invAb}
1811
asUfsaUfcUfccaggccGfuGfcacucsusu
2543





D-1472
usgsgagaUfaGfAfGfGfgcagggacs{invAb}
1812
asGfsuCfcCfugcccucUfaUfcuccasusu
2544





D-1473
uscscugaAfgUfCfAfCfagcccuacs{invAb}
1813
asGfsuAfgGfgcugugaCfuUfcaggasusu
2545





D-1474
csusgaagUfcAfCfAfGfcccuaccgs{invAb}
1814
asCfsgGfuAfgggcuguGfaCfuucagsusu
2546





D-1475
gsasagucAfcAfGfCfCfcuaccgccs{invAb}
1815
asGfsgCfgGfuagggcuGfuGfacuucsusu
2547





D-1476
cscsucacAfuGfCfGfAfccgagacgs{invAb}
1816
asCfsgUfcUfcggucgcAfuGfugaggsusu
2548





D-1477
csuscacaUfgCfGfAfCfcgagacgus{invAb}
1817
asAfscGfuCfucggucgCfaUfgugagsusu
2549





D-1478
uscsacauGfcGfAfCfCfgagacgucs{invAb}
1818
asGfsaCfgUfcucggucGfcAfugugasusu
2550





D-1479
csascaugCfgAfCfCfGfagacguccs{invAb}
1819
asGfsgAfcGfucucgguCfgCfaugugsusu
2551





D-1480
ascsaugcGfaCfCfGfAfgacguccus{invAb}
1820
asAfsgGfaCfgucucggUfcGfcaugususu
2552





D-1481
usgscgacCfgAfGfAfCfguccucaus{invAb}
1821
asAfsuGfaGfgacgucuCfgGfucgcasusu
2553





D-1482
gscsgaccGfaGfAfCfGfuccucaucs{invAb}
1822
usGfsaUfgAfggacgucUfcGfgucgcsusu
2554





D-1483
cscsgagaCfgUfCfCfUfcaucaaaus{invAb}
1823
usAfsuUfuGfaugaggaCfgUfcucggsusu
2555





D-1484
csgsagacGfuCfCfUfCfaucaaauas{invAb}
1824
asUfsaUfuUfgaugaggAfcGfucucgsusu
2556





D-1485
asgsacguCfcUfCfAfUfcaaauagcs{invAb}
1825
usGfscUfaUfuugaugaGfgAfcgucususu
2557





D-1486
uscscucaUfcAfAfAfUfagcagacus{invAb}
1826
asAfsgUfcUfgcuauuuGfaUfgaggasusu
2558





D-1487
csuscaucAfaAfUfAfGfcagacuugs{invAb}
1827
asCfsaAfgUfcugcuauUfuGfaugagsusu
2559





D-1488
csasgacaCfcAfGfCfCfcauucuugs{invAb}
1828
usCfsaAfgAfaugggcuGfgUfgucugsusu
2560





D-1489
asgsacacCfaGfCfCfCfauucuugas{invAb}
1829
asUfscAfaGfaaugggcUfgGfugucususu
2561





D-1490
gsascaccAfgCfCfCfAfuucuugaus{invAb}
1830
asAfsuCfaAfgaaugggCfuGfgugucsusu
2562





D-1491
csasgcccAfuUfCfUfUfgauccuuus{invAb}
1831
asAfsaAfgGfaucaagaAfuGfggcugsusu
2563





D-1492
cscsauucUfuGfAfUfCfcuuucugas{invAb}
1832
asUfscAfgAfaaggaucAfaGfaauggsusu
2564





D-1493
gscsagagGfaUfUfCfUfugggaugas{invAb}
1833
asUfscAfuCfccaagaaUfcCfucugcsusu
2565





D-1494
asusucuuGfgGfAfUfGfagcuucuus{invAb}
1834
usAfsaGfaAfgcucaucCfcAfagaaususu
2566





D-1495
csusugggAfuGfAfGfCfuucuuauus{invAb}
1835
asAfsaUfaAfgaagcucAfuCfccaagsusu
2567





D-1496
gsgsgaugAfgCfUfUfCfuuauuggus{invAb}
1836
asAfscCfaAfuaagaagCfuCfaucccsusu
2568





D-1497
gsgsaugaGfcUfUfCfUfuauuggugs{invAb}
1837
usCfsaCfcAfauaagaaGfcUfcauccsusu
2569





D-1498
gsusggaaCfuGfAfAfAfagggugaus{invAb}
1838
asAfsuCfaCfccuuuucAfgUfuccacsusu
2570





D-1499
usgsgaacUfgAfAfAfAfgggugaugs{invAb}
1839
asCfsaUfcAfcccuuuuCfaGfuuccasusu
2571





D-1500
gsasacugAfaAfAfGfGfgugauggcs{invAb}
1840
asGfscCfaUfcacccuuUfuCfaguucsusu
2572





D-1501
csusgaaaAfgGfGfUfGfauggcuugs{invAb}
1841
asCfsaAfgCfcaucaccCfuUfuucagsusu
2573





D-1502
usgsaaaaGfgGfUfGfAfuggcuugus{invAb}
1842
asAfscAfaGfccaucacCfcUfuuucasusu
2574





D-1503
gsasaaagGfgUfGfAfUfggcuuguus{invAb}
1843
asAfsaCfaAfgccaucaCfcCfuuuucsusu
2575





D-1504
asasaaggGfuGfAfUfGfgcuuguucs{invAb}
1844
asGfsaAfcAfagccaucAfcCfcuuuususu
2576





D-1505
gsusggacCfcAfGfAfCfaccggugus{invAb}
1845
asAfscAfcCfggugucuGfgGfuccacsusu
2577





D-1506
usgsgaccCfaGfAfCfAfccggugucs{invAb}
1846
usGfsaCfaCfcggugucUfgGfguccasusu
2578





D-1507
gsgsacccAfgAfCfAfCfcggugucas{invAb}
1847
asUfsgAfcAfccgguguCfuGfgguccsusu
2579





D-1508
ascsccagAfcAfCfCfGfgugucaugs{invAb}
1848
usCfsaUfgAfcaccgguGfuCfugggususu
2580





D-1509
cscsagacAfcCfGfGfUfgucaugags{invAb}
1849
asCfsuCfaUfgacaccgGfuGfucuggsusu
2581





D-1510
csasccggUfgUfCfAfUfgagcaggas{invAb}
1850
usUfscCfuGfcucaugaCfaCfcggugsusu
2582





D-1511
gsuscaugAfgCfAfGfGfaaggaaccs{invAb}
1851
asGfsgUfuCfcuuccugCfuCfaugacsusu
2583





D-1512
asusgagcAfgGfAfAfGfgaaccgcus{invAb}
1852
asAfsgCfgGfuuccuucCfuGfcucaususu
2584





D-1513
asgsgaagGfaAfCfCfGfcuggaaacs{invAb}
1853
usGfsuUfuCfcagcgguUfcCfuuccususu
2585





D-1514
gsgsaaggAfaCfCfGfCfuggaaacas{invAb}
1854
asUfsgUfuUfccagcggUfuCfcuuccsusu
2586





D-1515
gsasaggaAfcCfGfCfUfggaaacacs{invAb}
1855
asGfsuGfuUfuccagcgGfuUfccuucsusu
2587





D-1516
csusgggcCfaGfUfAfAfugggaaccs{invAb}
1856
asGfsgUfuCfccauuacUfgGfcccagsusu
2588





D-1517
gsgsgccaGfuAfAfUfGfggaaccgus{invAb}
1857
usAfscGfgUfucccauuAfcUfggcccsusu
2589





D-1518
gsgsccagUfaAfUfGfGfgaaccguas{invAb}
1858
asUfsaCfgGfuucccauUfaCfuggccsusu
2590





D-1519
gscscaguAfaUfGfGfGfaaccguaus{invAb}
1859
asAfsuAfcGfguucccaUfuAfcuggcsusu
2591





D-1520
cscsaguaAfuGfGfGfAfaccguaugs{invAb}
1860
asCfsaUfaCfgguucccAfuUfacuggsusu
2592





D-1521
csasguaaUfgGfGfAfAfccguaugus{invAb}
1861
asAfscAfuAfcgguuccCfaUfuacugsusu
2593





D-1522
asgsuaauGfgGfAfAfCfcguaugucs{invAb}
1862
asGfsaCfaUfacgguucCfcAfuuacususu
2594





D-1523
usgsggaaCfcGfUfAfUfguccuggas{invAb}
1863
usUfscCfaGfgacauacGfgUfucccasusu
2595





D-1524
gsgsaaccGfuAfUfGfUfccuggaaus{invAb}
1864
usAfsuUfcCfaggacauAfcGfguuccsusu
2596





D-1525
gsasauauUfaGfAfUfGfccuuuuaas{invAb}
1865
usUfsuAfaAfaggcaucUfaAfuauucsusu
2597





D-1526
gsasugccUfuUfUfAfAfaaauguucs{invAb}
1866
asGfsaAfcAfuuuuuaaAfaGfgcaucsusu
2598





D-1527
gsusuucaGfaAfCfUfGfagaccucus{invAb}
1867
usAfsgAfgGfucucaguUfcUfgaaacsusu
2599





D-1528
uscsagaaCfuGfAfGfAfccucuacas{invAb}
1868
asUfsgUfaGfaggucucAfgUfucugasusu
2600





D-1529
ascsugagAfcCfUfCfUfacauuuucs{invAb}
1869
asGfsaAfaAfuguagagGfuCfucagususu
2601





D-1530
csusgagaCfcUfCfUfAfcauuuucus{invAb}
1870
asAfsgAfaAfauguagaGfgUfcucagsusu
2602





D-1531
usgsagacCfuCfUfAfCfauuuucuus{invAb}
1871
asAfsaGfaAfaauguagAfgGfucucasusu
2603





D-1532
usgsauuuUfcAfCfAfUfuuuucgucs{invAb}
1872
asGfsaCfgAfaaaauguGfaAfaaucasusu
2604





D-1533
gsasuuuuCfaCfAfUfUfuuucgucus{invAb}
1873
asAfsgAfcGfaaaaaugUfgAfaaaucsusu
2605





D-1534
asusuuucAfcAfUfUfUfuucgucuus{invAb}
1874
asAfsaGfaCfgaaaaauGfuGfaaaaususu
2606





D-1535
ususucacAfuUfUfUfUfcgucuuuus{invAb}
1875
asAfsaAfaGfacgaaaaAfuGfugaaasusu
2607





D-1536
ususcacaUfuUfUfUfCfgucuuuugs{invAb}
1876
asCfsaAfaAfgacgaaaAfaUfgugaasusu
2608





D-1537
uscsacauUfuUfUfCfGfucuuuuggs{invAb}
1877
usCfscAfaAfagacgaaAfaAfugugasusu
2609





D-1538
ascsauuuUfuCfGfUfCfuuuuggacs{invAb}
1878
asGfsuCfcAfaaagacgAfaAfaaugususu
2610





D-1539
ususuucgUfcUfUfUfUfggacuucus{invAb}
1879
asAfsgAfaGfuccaaaaGfaCfgaaaasusu
2611





D-1540
ususucguCfuUfUfUfGfgacuucugs{invAb}
1880
asCfsaGfaAfguccaaaAfgAfcgaaasusu
2612





D-1541
ususcgucUfuUfUfGfGfacuucuggs{invAb}
1881
asCfscAfgAfaguccaaAfaGfacgaasusu
2613





D-1542
uscsgucuUfuUfGfGfAfcuucuggus{invAb}
1882
asAfscCfaGfaaguccaAfaAfgacgasusu
2614





D-1543
csusuuugGfaCfUfUfCfuggugucus{invAb}
1883
asAfsgAfcAfccagaagUfcCfaaaagsusu
2615





D-1544
ususggacUfuCfUfGfGfugucucaas{invAb}
1884
asUfsuGfaGfacaccagAfaGfuccaasusu
2616





D-1545
gsgsacuuCfuGfGfUfGfucucaaugs{invAb}
1885
asCfsaUfuGfagacaccAfgAfaguccsusu
2617





D-1546
gsascuucUfgGfUfGfUfcucaaugcs{invAb}
1886
asGfscAfuUfgagacacCfaGfaagucsusu
2618





D-1547
ususcuggUfgUfCfUfCfaaugcuucs{invAb}
1887
usGfsaAfgCfauugagaCfaCfcagaasusu
2619





D-1548
gscsuucaAfuGfUfCfCfcagugcaas{invAb}
1888
usUfsuGfcAfcugggacAfuUfgaagcsusu
2620





D-1549
asusguccCfaGfUfGfCfaaaaaguas{invAb}
1889
usUfsaCfuUfuuugcacUfgGfgacaususu
2621





D-1550
usgsucccAfgUfGfCfAfaaaaguaas{invAb}
1890
usUfsuAfcUfuuuugcaCfuGfggacasusu
2622





D-1551
gsuscccaGfuGfCfAfAfaaaguaaas{invAb}
1891
asUfsuUfaCfuuuuugcAfcUfgggacsusu
2623





D-1552
uscsccagUfgCfAfAfAfaaguaaags{invAb}
1892
usCfsuUfuAfcuuuuugCfaCfugggasusu
2624





D-1553
asgsugcaAfaAfAfGfUfaaagaaaus{invAb}
1893
usAfsuUfuCfuuuacuuUfuUfgcacususu
2625





D-1554
asasgaaaUfaUfAfGfUfcucaauaas{invAb}
1894
asUfsuAfuUfgagacuaUfaUfuucuususu
2626





D-1555
asasauauAfgUfCfUfCfaauaacuus{invAb}
1895
usAfsaGfuUfauugagaCfuAfuauuususu
2627





D-1556
asusauagUfcUfCfAfAfuaacuuags{invAb}
1896
asCfsuAfaGfuuauugaGfaCfuauaususu
2628





D-1557
usasuaguCfuCfAfAfUfaacuuagus{invAb}
1897
usAfscUfaAfguuauugAfgAfcuauasusu
2629





D-1558
asusagucUfcAfAfUfAfacuuaguas{invAb}
1898
asUfsaCfuAfaguuauuGfaGfacuaususu
2630





D-1559
usasgucuCfaAfUfAfAfcuuaguags{invAb}
1899
asCfsuAfcUfaaguuauUfgAfgacuasusu
2631





D-1560
asgsucucAfaUfAfAfCfuuaguaggs{invAb}
1900
usCfscUfaCfuaaguuaUfuGfagacususu
2632





D-1561
uscsaauaAfcUfUfAfGfuaggacuus{invAb}
1901
asAfsaGfuCfcuacuaaGfuUfauugasusu
2633





D-1562
csasauaaCfuUfAfGfUfaggacuucs{invAb}
1902
usGfsaAfgUfccuacuaAfgUfuauugsusu
2634





D-1563
asusaacuUfaGfUfAfGfgacuucags{invAb}
1903
asCfsuGfaAfguccuacUfaAfguuaususu
2635





D-1564
asascuuaGfuAfGfGfAfcuucaguas{invAb}
1904
usUfsaCfuGfaaguccuAfcUfaaguususu
2636





D-1565
ascsuuagUfaGfGfAfCfuucaguaas{invAb}
1905
asUfsuAfcUfgaaguccUfaCfuaagususu
2637





D-1566
ususaguaGfgAfCfUfUfcaguaagus{invAb}
1906
asAfscUfuAfcugaaguCfcUfacuaasusu
2638





D-1567
usasguagGfaCfUfUfCfaguaagucs{invAb}
1907
usGfsaCfuUfacugaagUfcCfuacuasusu
2639





D-1568
asgsuaggAfcUfUfCfAfguaagucas{invAb}
1908
asUfsgAfcUfuacugaaGfuCfcuacususu
2640





D-1569
usasggacUfuCfAfGfUfaagucacus{invAb}
1909
asAfsgUfgAfcuuacugAfaGfuccuasusu
2641





D-1570
usasaaugAfcAfAfGfAfcaggauucs{invAb}
1910
asGfsaAfuCfcugucuuGfuCfauuuasusu
2642





D-1571
gsgsauucUfgAfAfAfAfcuccccgus{invAb}
1911
asAfscGfgGfgaguuuuCfaGfaauccsusu
2643





D-1572
gsasuucuGfaAfAfAfCfuccccguus{invAb}
1912
asAfsaCfgGfggaguuuUfcAfgaaucsusu
2644





D-1573
ususcugaAfaAfCfUfCfcccguuuas{invAb}
1913
usUfsaAfaCfggggaguUfuUfcagaasusu
2645





D-1574
uscsugaaAfaCfUfCfCfccguuuaas{invAb}
1914
asUfsuAfaAfcggggagUfuUfucagasusu
2646





D-1575
csusgaaaAfcUfCfCfCfcguuuaacs{invAb}
1915
asGfsuUfaAfacggggaGfuUfuucagsusu
2647





D-1576
usgsaaaaCfuCfCfCfCfguuuaacus{invAb}
1916
asAfsgUfuAfaacggggAfgUfuuucasusu
2648





D-1577
asasaacuCfcCfCfGfUfuuaacugas{invAb}
1917
asUfscAfgUfuaaacggGfgAfguuuususu
2649





D-1578
ascsucccCfgUfUfUfAfacugauuas{invAb}
1918
asUfsaAfuCfaguuaaaCfgGfggagususu
2650





D-1579
csusccccGfuUfUfAfAfcugauuaus{invAb}
1919
asAfsuAfaUfcaguuaaAfcGfgggagsusu
2651





D-1580
uscscccgUfuUfAfAfCfugauuaugs{invAb}
1920
asCfsaUfaAfucaguuaAfaCfggggasusu
2652





D-1581
cscsccguUfuAfAfCfUfgauuauggs{invAb}
1921
usCfscAfuAfaucaguuAfaAfcggggsusu
2653





D-1582
ususcuccUfgCfUfUfCfuccguuuas{invAb}
1922
asUfsaAfaCfggagaagCfaGfgagaasusu
2654





D-1583
uscsuccuGfcUfUfCfUfccguuuaus{invAb}
1923
asAfsuAfaAfcggagaaGfcAfggagasusu
2655





D-1584
csusccugCfuUfCfUfCfcguuuaucs{invAb}
1924
asGfsaUfaAfacggagaAfgCfaggagsusu
2656





D-1585
cscsugcuUfcUfCfCfGfuuuaucuas{invAb}
1925
asUfsaGfaUfaaacggaGfaAfgcaggsusu
2657





D-1586
gscsuucuCfcGfUfUfUfaucuaccas{invAb}
1926
usUfsgGfuAfgauaaacGfgAfgaagcsusu
2658





D-1587
csusucucCfgUfUfUfAfucuaccaas{invAb}
1927
asUfsuGfgUfagauaaaCfgGfagaagsusu
2659





D-1588
ususcuccGfuUfUfAfUfcuaccaags{invAb}
1928
usCfsuUfgGfuagauaaAfcGfgagaasusu
2660





D-1589
uscsuccgUfuUfAfUfCfuaccaagas{invAb}
1929
asUfscUfuGfguagauaAfaCfggagasusu
2661





D-1590
csusccguUfuAfUfCfUfaccaagags{invAb}
1930
asCfsuCfuUfgguagauAfaAfcggagsusu
2662





D-1591
uscscguuUfaUfCfUfAfccaagagcs{invAb}
1931
asGfscUfcUfugguagaUfaAfacggasusu
2663





D-1592
csgsuuuaUfcUfAfCfCfaagagcgcs{invAb}
1932
usGfscGfcUfcuugguaGfaUfaaacgsusu
2664





D-1593
ususaucuAfcCfAfAfGfagcgcagas{invAb}
1933
asUfscUfgCfgcucuugGfuAfgauaasusu
2665





D-1594
asuscuacCfaAfGfAfGfcgcagacus{invAb}
1934
asAfsgUfcUfgcgcucuUfgGfuagaususu
2666





D-1595
usasccaaGfaGfCfGfCfagacuugcs{invAb}
1935
usGfscAfaGfucugcgcUfcUfugguasusu
2667





D-1596
ascscaagAfgCfGfCfAfgacuugcas{invAb}
1936
asUfsgCfaAfgucugcgCfuCfuuggususu
2668





D-1597
csasagagCfgCfAfGfAfcuugcaucs{invAb}
1937
asGfsaUfgCfaagucugCfgCfucuugsusu
2669





D-1598
asasgagcGfcAfGfAfCfuugcauccs{invAb}
1938
asGfsgAfuGfcaagucuGfcGfcucuususu
2670





D-1599
gsasgcgcAfgAfCfUfUfgcauccugs{invAb}
1939
asCfsaGfgAfugcaaguCfuGfcgcucsusu
2671





D-1600
gscsgcagAfcUfUfGfCfauccugucs{invAb}
1940
usGfsaCfaGfgaugcaaGfuCfugcgcsusu
2672





D-1601
csgscagaCfuUfGfCfAfuccugucas{invAb}
1941
asUfsgAfcAfggaugcaAfgUfcugcgsusu
2673





D-1602
csasgacuUfgCfAfUfCfcugucacus{invAb}
1942
usAfsgUfgAfcaggaugCfaAfgucugsusu
2674





D-1603
csusugcaUfcCfUfGfUfcacuaccas{invAb}
1943
asUfsgGfuAfgugacagGfaUfgcaagsusu
2675





D-1604
csasuccuGfuCfAfCfUfaccacucgs{invAb}
1944
asCfsgAfgUfgguagugAfcAfggaugsusu
2676





D-1605
uscscuguCfaCfUfAfCfcacucguus{invAb}
1945
usAfsaCfgAfgugguagUfgAfcaggasusu
2677





D-1606
cscsugucAfcUfAfCfCfacucguuas{invAb}
1946
asUfsaAfcGfagugguaGfuGfacaggsusu
2678





D-1607
csusgucaCfuAfCfCfAfcucguuags{invAb}
1947
usCfsuAfaCfgagugguAfgUfgacagsusu
2679





D-1608
usgsucacUfaCfCfAfCfucguuagas{invAb}
1948
asUfscUfaAfcgaguggUfaGfugacasusu
2680





D-1609
ascsuaccAfcUfCfGfUfuagagaaas{invAb}
1949
asUfsuUfcUfcuaacgaGfuGfguagususu
2681





D-1610
asasgaguGfgGfUfGfGfgcuggaags{invAb}
1950
usCfsuUfcCfagcccacCfcAfcucuususu
2682





D-1611
uscscuagAfaUfGfUfGfuuauugccs{invAb}
1951
asGfsgCfaAfuaacacaUfuCfuaggasusu
2683





D-1612
cscsuagaAfuGfUfGfUfuauugcccs{invAb}
1952
asGfsgGfcAfauaacacAfuUfcuaggsusu
2684





D-1613
asasugugUfuAfUfUfGfccccuguus{invAb}
1953
asAfsaCfaGfgggcaauAfaCfacauususu
2685





D-1614
gsusguuaUfuGfCfCfCfcuguucaus{invAb}
1954
asAfsuGfaAfcaggggcAfaUfaacacsusu
2686





D-1615
ususauugCfcCfCfUfGfuucaugags{invAb}
1955
asCfsuCfaUfgaacaggGfgCfaauaasusu
2687





D-1616
asusugccCfcUfGfUfUfcaugaggus{invAb}
1956
usAfscCfuCfaugaacaGfgGfgcaaususu
2688





D-1617
asasugaaAfaUfUfAfAfauugcaccs{invAb}
1957
asGfsgUfgCfaauuuaaUfuUfucauususu
2689





D-1618
asusgaaaAfuUfAfAfAfuugcacccs{invAb}
1958
asGfsgGfuGfcaauuuaAfuUfuucaususu
2690





D-1619
asasauuaAfaUfUfGfCfaccccaaas{invAb}
1959
asUfsuUfgGfggugcaaUfuUfaauuususu
2691





D-1620
asusuaaaUfuGfCfAfCfcccaaauas{invAb}
1960
asUfsaUfuUfggggugcAfaUfuuaaususu
2692





D-1621
ususaaauUfgCfAfCfCfccaaauaus{invAb}
1961
asAfsuAfuUfuggggugCfaAfuuuaasusu
2693





D-1622
asasuugcAfcCfCfCfAfaauauggcs{invAb}
1962
asGfscCfaUfauuugggGfuGfcaauususu
2694





D-1623
asusugcaCfcCfCfAfAfauauggcus{invAb}
1963
asAfsgCfcAfuauuuggGfgUfgcaaususu
2695





D-1624
asusauggCfuGfGfAfAfugccacuus{invAb}
1964
asAfsaGfuGfgcauuccAfgCfcauaususu
2696





D-1625
usgsgaauGfcCfAfCfUfucccuuuus{invAb}
1965
asAfsaAfaGfggaagugGfcAfuuccasusu
2697





D-1626
ususcccuUfuUfCfUfUfcucaagccs{invAb}
1966
asGfsgCfuUfgagaagaAfaAfgggaasusu
2698





D-1627
uscsuucuCfaAfGfCfCfccgggcuas{invAb}
1967
asUfsaGfcCfcggggcuUfgAfgaagasusu
2699





D-1628
uscsucaaGfcCfCfCfGfggcuagcus{invAb}
1968
asAfsgCfuAfgcccgggGfcUfugagasusu
2700





D-1629
gscsuuuuGfaAfAfUfGfgcauaaags{invAb}
1969
usCfsuUfuAfugccauuUfcAfaaagcsusu
2701





D-1630
ususugaaAfuGfGfCfAfuaaagacus{invAb}
1970
asAfsgUfcUfuuaugccAfuUfucaaasusu
2702





D-1631
asasuggcAfuAfAfAfGfacugaggus{invAb}
1971
asAfscCfuCfagucuuuAfuGfccauususu
2703





D-1632
usgsgcauAfaAfGfAfCfugaggugas{invAb}
1972
asUfscAfcCfucagucuUfuAfugccasusu
2704





D-1633
gscsauaaAfgAfCfUfGfaggugaccs{invAb}
1973
asGfsgUfcAfccucaguCfuUfuaugcsusu
2705





D-1634
gsasagcaCfuGfCfAfGfauauuaaus{invAb}
1974
asAfsuUfaAfuaucugcAfgUfgcuucsusu
2706





D-1635
csusaaagGfuGfCfUfCfaggaggaus{invAb}
1975
asAfsuCfcUfccugagcAfcCfuuuagsusu
2707





D-1636
asgsgugcUfcAfGfGfAfggaugguus{invAb}
1976
asAfsaCfcAfuccuccuGfaGfcaccususu
2708





D-1637
gsusgcucAfgGfAfGfGfaugguugus{invAb}
1977
asAfscAfaCfcauccucCfuGfagcacsusu
2709





D-1638
gsasggauGfgUfUfGfUfguagucaus{invAb}
1978
asAfsuGfaCfuacacaaCfcAfuccucsusu
2710





D-1639
asgsgaugGfuUfGfUfGfuagucaugs{invAb}
1979
asCfsaUfgAfcuacacaAfcCfauccususu
2711





D-1640
gsgsauggUfuGfUfGfUfagucauggs{invAb}
1980
usCfscAfuGfacuacacAfaCfcauccsusu
2712





D-1641
ususguguAfgUfCfAfUfggaggaccs{invAb}
1981
asGfsgUfcCfuccaugaCfuAfcacaasusu
2713





D-1642
uscsauggAfgGfAfCfCfccuggaucs{invAb}
1982
asGfsaUfcCfaggggucCfuCfcaugasusu
2714





D-1643
asusucccCfuCfAfGfCfuaaugacgs{invAb}
1983
asCfsgUfcAfuuagcugAfgGfggaaususu
2715





D-1644
ususccccUfcAfGfCfUfaaugacggs{invAb}
1984
usCfscGfuCfauuagcuGfaGfgggaasusu
2716





D-1645
uscscccuCfaGfCfUfAfaugacggas{invAb}
1985
asUfscCfgUfcauuagcUfgAfggggasusu
2717





D-1646
uscsagcuAfaUfGfAfCfggagugcus{invAb}
1986
asAfsgCfaCfuccgucaUfuAfgcugasusu
2718





D-1647
gsasaaaaGfuUfCfUfGfaauucugus{invAb}
1987
asAfscAfgAfauucagaAfcUfuuuucsusu
2719





D-1648
asgsuucuGfaAfUfUfCfuguggaggs{invAb}
1988
usCfscUfcCfacagaauUfcAfgaacususu
2720





D-1649
asgsugauUfuCfAfGfAfuagacuacs{invAb}
1989
asGfsuAfgUfcuaucugAfaAfucacususu
2721





D-1650
asusuucaGfaUfAfGfAfcuacugaas{invAb}
1990
usUfsuCfaGfuagucuaUfcUfgaaaususu
2722





D-1651
csasgauaGfaCfUfAfCfugaaaaccs{invAb}
1991
asGfsgUfuUfucaguagUfcUfaucugsusu
2723





D-1652
usasgacuAfcUfGfAfAfaaccuuuas{invAb}
1992
usUfsaAfaGfguuuucaGfuAfgucuasusu
2724





D-1653
asgsacuaCfuGfAfAfAfaccuuuaas{invAb}
1993
usUfsuAfaAfgguuuucAfgUfagucususu
2725





D-1654
asasggaaAfgCfAfUfAfugucaguus{invAb}
1994
asAfsaCfuGfacauaugCfuUfuccuususu
2726





D-1655
asgsgaaaGfcAfUfAfUfgucaguugs{invAb}
1995
asCfsaAfcUfgacauauGfcUfuuccususu
2727





D-1656
gsgsaaagCfaUfAfUfGfucaguugus{invAb}
1996
asAfscAfaCfugacauaUfgCfuuuccsusu
2728





D-1657
asasagcaUfaUfGfUfCfaguuguuus{invAb}
1997
usAfsaAfcAfacugacaUfaUfgcuuususu
2729





D-1658
asasgcauAfuGfUfCfAfguuguuuas{invAb}
1998
usUfsaAfaCfaacugacAfuAfugcuususu
2730





D-1659
asgscauaUfgUfCfAfGfuuguuuaas{invAb}
1999
usUfsuAfaAfcaacugaCfaUfaugcususu
2731





D-1660
usasaaacCfcAfAfUfAfucuauuuus{invAb}
2000
asAfsaAfaUfagauauuGfgGfuuuuasusu
2732





D-1661
asascccaAfuAfUfCfUfauuuuuuas{invAb}
2001
usUfsaAfaAfaauagauAfuUfggguususu
2733





D-1662
ususaacuGfaUfUfGfUfauaacucus{invAb}
2002
usAfsgAfgUfuauacaaUfcAfguuaasusu
2734





D-1663
usasacugAfuUfGfUfAfuaacucuas{invAb}
2003
usUfsaGfaGfuuauacaAfuCfaguuasusu
2735





D-1664
ascsugauUfgUfAfUfAfacucuaags{invAb}
2004
usCfsuUfaGfaguuauaCfaAfucagususu
2736





D-1665
csusgauuGfuAfUfAfAfcucuaagas{invAb}
2005
asUfscUfuAfgaguuauAfcAfaucagsusu
2737





D-1666
gsasuuguAfuAfAfCfUfcuaagaucs{invAb}
2006
asGfsaUfcUfuagaguuAfuAfcaaucsusu
2738





D-1667
gscscauuUfuGfUfCfCfuuugauuas{invAb}
2007
asUfsaAfuCfaaaggacAfaAfauggcsusu
2739





D-1668
usgsuccuUfuGfAfUfUfauauugggs{invAb}
2008
usCfscCfaAfuauaaucAfaAfggacasusu
2740





D-2000
[GalNAc3]saggcccAfaUfAfUfUfguaauuucs{invAb}
2009
usGfsaaauUfacaauaUfuGfggccususu
2741





D-2001
[GalNAc3]scagaacGfaAfAfGfUfuauauggas{invAb}
2010
usUfsccauAfuaacuuUfcGfuucugsusu
2742





D-2002
[GalNAc3]suuccagAfuGfCfAfUfuuuaaccas{invAb}
2011
asUfsgguuAfaaaugcAfuCfuggaasusu
2743





D-2003
[GalNAc3]sugcauuUfuAfAfCfCfacaguggas{invAb}
2012
asUfsccacUfgugguuAfaAfaugcasusu
2744





D-2004
[GalNAc3]sccagugGfaUfAfAfCfcagcuuccs{invAb}
2013
asGfsgaagCfugguuaUfcCfacuggsusu
2745





D-2005
[GalNAc3]sgcuggaAfaCfAfCfUfgaagaguus{invAb}
2014
usAfsacucUfucagugUfuUfccagcsusu
2746





D-2006
[GalNAc3]sgaaacaCfuGfAfAfGfaguuaucgs{invAb}
2015
asCfsgauaAfcucuucAfgUfguuucsusu
2747





D-2007
[GalNAc3]saacacuGfaAfGfAfGfuuaucgccs{invAb}
2016
usGfsgcgaUfaacucuUfcAfguguususu
2748





D-2008
[GalNAc3]scccguuUfaAfCfUfGfauuauggas{invAb}
2017
usUfsccauAfaucaguUfaAfacgggsusu
2749





D-2009
[GalNAc3]saaaugaCfaAfCfAfCfuugaagcas{invAb}
2018
asUfsgcuuCfaaguguUfgUfcauuususu
2750





D-2010
[GalNAc3]scacuugAfaGfCfAfUfgguguuucs{invAb}
2019
usGfsaaacAfccaugcUfuCfaagugsusu
2751





D-2011
[GalNAc3]sgauuauGfgAfAfUfAfguucuuucs{invAb}
2020
asGfsaaagAfacuauuCfcAfuaaucsusu
2752





D-2012
[GalNAc3]sauuaugGfaAfUfAfGfuucuuucus{invAb}
2021
asAfsgaaaGfaacuauUfcCfauaaususu
2753





D-2013
[GalNAc3]sugguguCfuCfAfAfUfgcuucaaus{invAb}
2022
asAfsuugaAfgcauugAfgAfcaccasusu
2754





D-2014
[GalNAc3]sgacaagAfcAfGfGfAfuucugaaas{invAb}
2023
usUfsuucaGfaauccuGfuCfuugucsusu
2755





D-2015
[GalNAc3]scauaugUfcAfGfUfUfguuuaaaas{invAb}
2024
asUfsuuuaAfacaacuGfaCfauaugsusu
2756





D-2016
[GalNAc3]saguuguUfuAfAfAfAfcccaauaus{invAb}
2025
asAfsuauuGfgguuuuAfaAfcaacususu
2757





D-2017
[GalNAc3]suuguuuAfaAfAfCfCfcaauaucus{invAb}
2026
usAfsgauaUfuggguuUfuAfaacaasusu
2758





D-2018
[GalNAc3]sgaugaaGfuAfUfAfUfuuuuuauus{invAb}
2027
asAfsauaaAfaaauauAfcUfucaucsusu
2759





D-2019
[GalNAc3]suuuuauUfgCfCfAfUfuuuguccus{invAb}
2028
asAfsggacAfaaauggCfaAfuaaaasusu
2760





D-2020
[GalNAc3]sauugccAfuUfUfUfGfuccuuugas{invAb}
2029
asUfscaaaGfgacaaaAfuGfgcaaususu
2761





D-2021
[GalNAc3]sauauugGfgAfAfGfUfugacuaaas{invAb}
2030
asUfsuuagUfcaacuuCfcCfaauaususu
2762





D-2022
[GalNAc3]sggaaguUfgAfCfUfAfaacuugaas{invAb}
2031
usUfsucaaGfuuuaguCfaAfcuuccsusu
2763





D-2023
[GalNAc3]sacugugAfaUfAfAfAfuggaagcus{invAb}
2032
usAfsgcuuCfcauuuaUfuCfacagususu
2764





D-2024
[GalNAc3]scagauuGfcUfUfAfCfucagacacs{invAb}
2033
asGfsugucUfgaguaaGfcAfaucugsusu
2765





D-2025
[GalNAc3]scugaagAfgUfUfAfUfcgccagugs{invAb}
2034
asCfsacugGfcgauaaCfuCfuucagsusu
2766





D-2026
[GalNAc3]sacccuuCfaGfAfAfCfgaaaguuas{invAb}
2035
asUfsaacuUfucguucUfgAfagggususu
2767





D-2027
[GalNAc3]sgugaccCfuUfCfAfGfaacgaaags{invAb}
2036
asCfsuuucGfuucugaAfgGfgucacsusu
2768





D-2028
[GalNAc3]sucagaaCfgAfAfAfGfuuauauggs{invAb}
2037
usCfscauaUfaacuuuCfgUfucugasusu
2769





D-2029
[GalNAc3]suucuuaUfuGfGfUfGfacguggaas{invAb}
2038
asUfsuccaCfgucaccAfaUfaagaasusu
2770





D-2030
[GalNAc3]saguuauAfuGfGfAfAfaaucaccas{invAb}
2039
asUfsggugAfuuuuccAfuAfuaacususu
2771





D-2031
[GalNAc3]scccuucAfgAfAfCfGfaaaguuaus{invAb}
2040
usAfsuaacUfuucguuCfuGfaagggsusu
2772





D-2032
[GalNAc3]sccuucaGfaAfCfGfAfaaguuauas{invAb}
2041
asUfsauaaCfuuucguUfcUfgaaggsusu
2773





D-2033
[GalNAc3]scuucagAfaCfGfAfAfaguuauaus{invAb}
2042
asAfsuauaAfcuuucgUfuCfugaagsusu
2774





D-2034
[GalNAc3]scaacuuCfaGfGfCfCfcaauauugs{invAb}
2043
asCfsaauaUfugggccUfgAfaguugsusu
2775





D-2035
[GalNAc3]sggaaacAfcUfGfAfAfgaguuaucs{invAb}
2044
asGfsauaaCfucuucaGfuGfuuuccsusu
2776





D-2036
[GalNAc3]sacuucaGfgCfCfCfAfauauuguas{invAb}
2045
usUfsacaaUfauugggCfcUfgaagususu
2777





D-2037
[GalNAc3]saaguuaAfaGfCfAfAfccaacuucs{invAb}
2046
usGfsaaguUfgguugcUfuUfaacuususu
2778





D-2038
[GalNAc3]scuucagGfcCfCfAfAfuauuguaas{invAb}
2047
asUfsuacaAfuauuggGfcCfugaagsusu
2779





D-2039
[GalNAc3]sgaccagAfuUfGfCfUfuacucagas{invAb}
2048
asUfscugaGfuaagcaAfuCfuggucsusu
2780





D-2040
[GalNAc3]sacugauUfaUfGfGfAfauaguucus{invAb}
2049
asAfsgaacUfauuccaUfaAfucagususu
2781





D-2041
[GalNAc3]sauauggAfaAfAfUfCfaccacucus{invAb}
2050
asAfsgaguGfgugauuUfuCfcauaususu
2782





D-2042
[GalNAc3]scaaugcUfuCfAfAfUfgucccagus{invAb}
2051
asAfscuggGfacauugAfaGfcauugsusu
2783





D-2043
[GalNAc3]sugcuucAfaUfGfUfCfccagugcas{invAb}
2052
usUfsgcacUfgggacaUfuGfaagcasusu
2784





D-2044
[GalNAc3]saaugacAfaGfAfCfAfggauucugs{invAb}
2053
usCfsagaaUfccugucUfuGfucauususu
2785





D-2045
[GalNAc3]scuaagaUfcUfGfAfUfgaaguauas{invAb}
2054
asUfsauacUfucaucaGfaUfcuuagsusu
2786





D-2046
[GalNAc3]scuggugUfcUfCfAfAfugcuucaas{invAb}
2055
asUfsugaaGfcauugaGfaCfaccagsusu
2787





D-2047
[GalNAc3]sugucucAfaUfGfCfUfucaaugucs{invAb}
2056
asGfsacauUfgaagcaUfuGfagacasusu
2788





D-2048
[GalNAc3]suuuuccAfuAfGfAfUfcuggaucus{invAb}
2057
asAfsgaucCfagaucuAfuGfgaaaasusu
2789





D-2049
[GalNAc3]sugugacCfcUfUfCfAfgaacgaaas{invAb}
2058
asUfsuucgUfucugaaGfgGfucacasusu
2790





D-2050
[GalNAc3]scaguguGfaCfCfCfUfucagaacgs{invAb}
2059
usCfsguucUfgaagggUfcAfcacugsusu
2791





D-2051
[GalNAc3]scaccccAfaAfUfAfUfggcuggaas{invAb}
2060
asUfsuccaGfccauauUfuGfgggugsusu
2792





D-2052
[GalNAc3]scucaauGfcUfUfCfAfaugucccas{invAb}
2061
asUfsgggaCfauugaaGfcAfuugagsusu
2793





D-2053
[GalNAc3]sacaggaUfuCfUfGfAfaaacucccs{invAb}
2062
asGfsggagUfuuucagAfaUfccugususu
2794





D-2054
[GalNAc3]sggauccUfuGfCfCfAfuuccccucs{invAb}
2063
usGfsagggGfaauggcAfaGfgauccsusu
2795





D-2055
[GalNAc3]scugcagAfuAfUfUfAfauuuuccas{invAb}
2064
asUfsggaaAfauuaauAfuCfugcagsusu
2796





D-2056
[GalNAc3]saagaucUfgAfUfGfAfaguauauus{invAb}
2065
asAfsauauAfcuucauCfaGfaucuususu
2797





D-2057
[GalNAc3]saauagcAfgAfCfUfUfguuccgacs{invAb}
2066
asGfsucggAfacaaguCfuGfcuauususu
2798





D-2058
[GalNAc3]sgacaacAfcUfUfGfAfagcauggus{invAb}
2067
asAfsccauGfcuucaaGfuGfuugucsusu
2799





D-2059
[GalNAc3]sucagacAfgCfAfUfUfggauuuccs{invAb}
2068
asGfsgaaaUfccaaugCfuGfucugasusu
2800





D-2060
[GalNAc3]suggaaaAfuCfAfCfCfacucuuugs{invAb}
2069
asCfsaaagAfguggugAfuUfuuccasusu
2801





D-2061
[GalNAc3]sagacagCfaUfUfGfGfauuuccuas{invAb}
2070
usUfsaggaAfauccaaUfgCfugucususu
2802





D-2062
[GalNAc3]scugauuAfuGfGfAfAfuaguucuus{invAb}
2071
asAfsagaaCfuauuccAfuAfaucagsusu
2803





D-2063
[GalNAc3]sguauguCfcUfGfGfAfauauuagas{invAb}
3062
asUfscuaaUfauuccaGfgAfcauacsusu
3321





D-2064
[GalNAc3]saggcuaGfaGfAfAfGfaaaguuaas{invAb}
3063
usUfsuaacUfuucuucUfcUfagccususu
3322





D-2065
[GalNAc3]suguauaAfcUfCfUfAfagaucugas{invAb}
3064
asUfscagaUfcuuagaGfuUfauacasusu
3323





D-2066
[GalNAc3]sccguauGfuCfCfUfGfgaauauuas{invAb}
3065
asUfsaauaUfuccaggAfcAfuacggsusu
3324





D-2067
[GalNAc3]scaaaaaUfgAfCfAfAfcacuugaas{invAb}
3066
asUfsucaaGfuguuguCfaUfuuuugsusu
3325





D-2068
[GalNAc3]suacugaAfaAfCfCfUfuuaaagggs{invAb}
3067
asCfsccuuUfaaagguUfuUfcaguasusu
3326





D-2069
[GalNAc3]sacuacuGfaAfAfAfCfcuuuaaags{invAb}
3068
asCfsuuuaAfagguuuUfcAfguagususu
3327





D-2070
[GalNAc3]sagaagaAfaAfGfUfGfauucagugs{invAb}
3069
usCfsacugAfaucacuUfuUfcuucususu
3328





D-2071
[GalNAc3]suuugggCfaGfUfAfUfuuugugcus{invAb}
3070
asAfsgcacAfaaauacUfgCfccaaasusu
3329





D-2072
[GalNAc3]suaccaaGfaGfCfGfCfagacuugcs{invAb}
3071
usGfscaagUfcugcgcUfcUfugguasusu
3330





D-2073
[GalNAc3]scgggcuAfgCfUfUfUfugaaauggs{invAb}
3072
asCfscauuUfcaaaagCfuAfgcccgsusu
3331





D-2074
[GalNAc3]scuggaaAfcAfCfUfGfaagaguuas{invAb}
3073
asUfsaacuCfuucaguGfuUfuccagsusu
3332





D-2075
[GalNAc3]sauguccCfaGfUfGfCfaaaaaguas{invAb}
3074
usUfsacuuUfuugcacUfgGfgacaususu
3333





D-2076
[GalNAc3]scuggaaUfaUfUfAfGfaugccuuus{invAb}
3075
asAfsaaggCfaucuaaUfaUfuccagsusu
3334





D-2077
[GalNAc3]sccuggaAfuAfUfUfAfgaugccuus{invAb}
3076
asAfsaggcAfucuaauAfuUfccaggsusu
3335





D-2078
[GalNAc3]succuggAfaUfAfUfUfagaugccus{invAb}
3077
asAfsggcaUfcuaauaUfuCfcaggasusu
3336





D-2079
[GalNAc3]sacucuaAfgAfUfCfUfgaugaagus{invAb}
3078
usAfscuucAfucagauCfuUfagagususu
3337





D-2080
[GalNAc3]sguccugGfaAfUfAfUfuagaugccs{invAb}
3079
asGfsgcauCfuaauauUfcCfaggacsusu
3338





D-2081
[GalNAc3]suguccuGfgAfAfUfAfuuagaugcs{invAb}
3080
asGfscaucUfaauauuCfcAfggacasusu
3339





D-2082
[GalNAc3]suaacucUfaAfGfAfUfcugaugaas{invAb}
3081
asUfsucauCfagaucuUfaGfaguuasusu
3340





D-2083
[GalNAc3]sgugaugGfcUfUfGfUfuccagaugs{invAb}
3082
asCfsaucuGfgaacaaGfcCfaucacsusu
3341





D-2084
[GalNAc3]sgucuauGfcAfGfAfGfgauucuugs{invAb}
3083
asCfsaagaAfuccucuGfcAfuagacsusu
3342





D-2085
[GalNAc3]sacccugAfcUfCfUfCfagugcagcs{invAb}
3084
asGfscugcAfcugagaGfuCfagggususu
3343





D-2086
[GalNAc3]sagccuaCfaCfAfAfAfggaccuacs{invAb}
3085
asGfsuaggUfccuuugUfgUfaggcususu
3344





D-2087
[GalNAc3]saccaagAfgCfGfCfAfgacuugcas{invAb}
3086
asUfsgcaaGfucugcgCfuCfuuggususu
3345





D-2088
[GalNAc3]sgaaggaAfcCfGfCfUfggaaacacs{invAb}
3087
asGfsuguuUfccagcgGfuUfccuucsusu
3346





D-2089
[GalNAc3]suucccuUfuUfCfUfUfcucaagccs{invAb}
3088
asGfsgcuuGfagaagaAfaAfgggaasusu
3347





D-2090
[GalNAc3]sccugucAfcUfAfCfCfacucguuas{invAb}
3089
asUfsaacgAfgugguaGfuGfacaggsusu
3348





D-2091
[GalNAc3]scgcgcuUfuGfUfCfCfuccucgcgs{invAb}
3090
asCfsgcgaGfgaggacAfaAfgcgcgsusu
3349





D-2092
[GalNAc3]sgaaacaUfgGfUfUfAfcugcucgcs{invAb}
3091
asGfscgagCfaguaacCfaUfguuucsusu
3350





D-2093
[GalNAc3]scuuuguCfcUfCfCfUfcgcgcaaus{invAb}
3092
asAfsuugcGfcgaggaGfgAfcaaagsusu
3351





D-2094
[GalNAc3]sgcauaaAfgAfCfUfGfaggugaccs{invAb}
3093
asGfsgucaCfcucaguCfuUfuaugcsusu
3352





D-2095
[GalNAc3]suuugucCfuCfCfUfCfgcgcaaucs{invAb}
3094
asGfsauugCfgcgaggAfgGfacaaasusu
3353





D-2096
[GalNAc3]sgaaaagGfgUfGfAfUfggcuuguus{invAb}
3095
asAfsacaaGfccaucaCfcCfuuuucsusu
3354





D-2097
[GalNAc3]saaaaggGfuGfAfUfGfgcuuguucs{invAb}
3096
asGfsaacaAfgccaucAfcCfcuuuususu
3355





D-2098
[GalNAc3]scuacugCfcUfAfUfCfaaaacgccs{invAb}
3097
asGfsgcguUfuugauaGfgCfaguagsusu
3356





D-2099
[GalNAc3]scucaucAfaAfUfAfGfcagacuugs{invAb}
3098
asCfsaaguCfugcuauUfuGfaugagsusu
3357





D-2100
[GalNAc3]sagacacCfaGfCfCfCfauucuugas{invAb}
3099
asUfscaagAfaugggcUfgGfugucususu
3358





D-2101
[GalNAc3]scagcccAfuUfCfUfUfgauccuuus{invAb}
3100
asAfsaaggAfucaagaAfuGfggcugsusu
3359





D-2102
[GalNAc3]sgcagagGfaUfUfCfUfugggaugas{invAb}
3101
asUfscaucCfcaagaaUfcCfucugcsusu
3360





D-2103
[GalNAc3]scuaaagGfuGfCfUfCfaggaggaus{invAb}
3102
asAfsuccuCfcugagcAfcCfuuuagsusu
3361





D-2104
[GalNAc3]saaagcaUfaUfGfUfCfaguuguuus{invAb}
3103
usAfsaacaAfcugacaUfaUfgcuuususu
3362





D-2105
[GalNAc3]suuaacuGfaUfUfGfUfauaacucus{invAb}
3104
usAfsgaguUfauacaaUfcAfguuaasusu
3363





D-2106
[GalNAc3]suaacugAfuUfGfUfAfuaacucuas{invAb}
3105
usUfsagagUfuauacaAfuCfaguuasusu
3364





D-2107
[GalNAc3]sugaaaaCfuCfCfCfCfguuuaacus{invAb}
3106
asAfsguuaAfacggggAfgUfuuucasusu
3365





D-2108
[GalNAc3]sgaugccUfuUfUfAfAfaaauguucs{invAb}
3107
asGfsaacaUfuuuuaaAfaGfgcaucsusu
3366





D-2109
[GalNAc3]saaguugAfcUfAfAfAfcuugaaaas{invAb}
3108
usUfsuuucAfaguuuaGfuCfaacuususu
3367





D-2110
[GalNAc3]scacaaaGfgAfCfCfUfacuacugcs{invAb}
3109
asGfscaguAfguagguCfcUfuugugsusu
3368





D-2111
[GalNAc3]sgauuuuCfaCfAfUfUfuuucgucus{invAb}
3110
asAfsgacgAfaaaaugUfgAfaaaucsusu
3369





D-2112
[GalNAc3]sccauucUfuGfAfUfCfcuuucugas{invAb}
3111
asUfscagaAfaggaucAfaGfaauggsusu
3370





D-2113
[GalNAc3]sgaauauUfaGfAfUfGfccuuuuaas{invAb}
3112
usUfsuaaaAfggcaucUfaAfuauucsusu
3371





D-2114
[GalNAc3]saaggaaAfgCfAfUfAfugucaguus{invAb}
3113
asAfsacugAfcauaugCfuUfuccuususu
3372





D-2115
[GalNAc3]saggaaaGfcAfUfAfUfgucaguugs{invAb}
3114
asCfsaacuGfacauauGfcUfuuccususu
3373





D-2116
[GalNAc3]sccccguUfuAfAfCfUfgauuauggs{invAb}
3115
usCfscauaAfucaguuAfaAfcggggsusu
3374





D-2117
[GalNAc3]sggaaagCfaUfAfUfGfucaguugus{invAb}
3116
asAfscaacUfgacauaUfgCfuuuccsusu
3375





D-2118
[GalNAc3]sgccauuUfuGfUfCfCfuuugauuas{invAb}
3117
asUfsaaucAfaaggacAfaAfauggcsusu
3376





D-2119
[GalNAc3]saugacaAfcAfCfUfUfgaagcaugs{invAb}
3118
asCfsaugcUfucaaguGfuUfgucaususu
3377





D-2120
[GalNAc3]scuccugCfuUfCfUfCfcguuuaucs{invAb}
3119
asGfsauaaAfcggagaAfgCfaggagsusu
3378





D-2121
[GalNAc3]scagacuUfgCfAfUfCfcugucacus{invAb}
3120
usAfsgugaCfaggaugCfaAfgucugsusu
3379





D-2122
[GalNAc3]sgagggaAfaCfAfUfGfguuacugcs{invAb}
3121
asGfscaguAfaccaugUfuUfcccucsusu
3380





D-2123
[GalNAc3]suggcauAfaAfGfAfCfugaggugas{invAb}
3122
asUfscaccUfcagucuUfuAfugccasusu
3381





D-2124
[GalNAc3]succuagAfaUfGfUfGfuuauugccs{invAb}
3123
asGfsgcaaUfaacacaUfuCfuaggasusu
3382





D-2125
[GalNAc3]suggaaaCfaCfUfGfAfagaguuaus{invAb}
3124
asAfsuaacUfcuucagUfgUfuuccasusu
3383





D-2130
[GalNAc3]suggauuUfcCfUfAfAfaggugcucs{invAb}
3125
usGfsagcaCfcuuuagGfaAfauccasusu
3384





D-2131
[GalNAc3]sgaggagAfaGfAfAfAfagugauucs{invAb}
3126
usGfsaaucAfcuuuucUfuCfuccucsusu
3385





D-2134
[GalNAc3]saccuacUfaCfUfGfCfcuaucaaas{invAb}
3127
usUfsuugaUfaggcagUfaGfuaggususu
3386





D-2135
[GalNAc3]suacuacUfgCfCfUfAfucaaaacgs{invAb}
3128
asCfsguuuUfgauaggCfaGfuaguasusu
3387





D-2136
[GalNAc3]saaauauAfgUfCfUfCfaauaacuus{invAb}
3129
usAfsaguuAfuugagaCfuAfuauuususu
3388





D-2137
[GalNAc3]saacucuAfaGfAfUfCfugaugaags{invAb}
3130
asCfsuucaUfcagaucUfuAfgaguususu
3389





D-2138
[GalNAc3]saagaguUfaUfCfGfCfcagugugas{invAb}
3131
asUfscacaCfuggcgaUfaAfcucuususu
3390





D-2139
[GalNAc3]sccgggcUfaGfCfUfUfuugaaaugs{invAb}
3132
asCfsauuuCfaaaagcUfaGfcccggsusu
3391





D-2140
[GalNAc3]sguuauaUfgGfAfAfAfaucaccacs{invAb}
3133
asGfsugguGfauuuucCfaUfauaacsusu
3392





D-2141
[GalNAc3]saaagugAfuUfCfAfGfugauuucas{invAb}
3134
asUfsgaaaUfcacugaAfuCfacuuususu
3393





D-2142
[GalNAc3]suaugucCfuGfGfAfAfuauuagaus{invAb}
3135
asAfsucuaAfuauuccAfgGfacauasusu
3394





D-2143
[GalNAc3]sauaacuCfuAfAfGfAfucugaugas{invAb}
3136
usUfscaucAfgaucuuAfgAfguuaususu
3395





D-2144
[GalNAc3]scuuguuCfcAfGfAfUfgcauuuuas{invAb}
3137
usUfsaaaaUfgcaucuGfgAfacaagsusu
3396





D-2145
[GalNAc3]suauugcCfaUfUfUfUfguccuuugs{invAb}
3138
usCfsaaagGfacaaaaUfgGfcaauasusu
3397





D-2146
[GalNAc3]sugauuuUfcAfCfAfUfuuuucgucs{invAb}
3139
asGfsacgaAfaaauguGfaAfaaucasusu
3398





D-2147
[GalNAc3]scaagagCfgCfAfGfAfcuugcaucs{invAb}
3140
asGfsaugcAfagucugCfgCfucuugsusu
3399





D-2148
[GalNAc3]scagauaGfaCfUfAfCfugaaaaccs{invAb}
3141
asGfsguuuUfcaguagUfcUfaucugsusu
3400





D-2149
[GalNAc3]suuauggAfaUfAfGfUfucuuucucs{invAb}
3142
asGfsagaaAfgaacuaUfuCfcauaasusu
3401





D-2150
[GalNAc3]scaugguGfuUfUfCfAfgaacugags{invAb}
3143
usCfsucagUfucugaaAfcAfccaugsusu
3402





D-2151
[GalNAc3]sgaagaaAfaGfUfGfAfuucagugas{invAb}
3144
asUfscacuGfaaucacUfuUfucuucsusu
3403





D-2152
[GalNAc3]sgucccaGfuGfCfAfAfaaaguaaas{invAb}
3145
asUfsuuacUfuuuugcAfcUfgggacsusu
3404





D-2153
[GalNAc3]sacugauUfgUfAfUfAfacucuaags{invAb}
3146
usCfsuuagAfguuauaCfaAfucagususu
3405





D-2154
[GalNAc3]saccguaUfgUfCfCfUfggaauauus{invAb}
3147
usAfsauauUfccaggaCfaUfacggususu
3406





D-2155
[GalNAc3]succccgUfuUfAfAfCfugauuaugs{invAb}
3148
asCfsauaaUfcaguuaAfaCfggggasusu
3407





D-2156
[GalNAc3]sauauagUfcUfCfAfAfuaacuuags{invAb}
3149
asCfsuaagUfuauugaGfaCfuauaususu
3408





D-2157
[GalNAc3]succcagUfgCfAfAfAfaaguaaags{invAb}
3150
usCfsuuuaCfuuuuugCfaCfugggasusu
3409





D-2158
[GalNAc3]saugcuuCfaAfUfGfUfcccaguuus{invAb}
3151
asAfscuggGfacauugAfaGfcaususu
3410





D-2159
[GalNAc3]sgaacgaAfaGfUfUfAfuauggaaus{invAb}
3152
usUfsccauAfuaacuuUfcGfuucsusu
3411





D-2160
[GalNAc3]sgauugcUfuAfCfUfCfagacacuus{invAb}
3153
asGfsugucUfgaguaaGfcAfaucsusu
3412





D-2161
[GalNAc3]scuucagGfcCfCfAfAfuauuguaas{invAb}
2047
asUfsuAfcAfauauuggGfcCfugaagsusu
2212





D-2162
[GalNAc3]scaaugcUfuCfAfAfUfgucccagus{invAb}
2051
asAfscUfgGfgacauugAfaGfcauugsusu
2249





D-2163
[GalNAc3]scagaacGfaAfAfGfUfuauauggas{invAb}
2010
usUfscCfaUfauaacuuUfcGfuucugsusu
2168





D-2164
[GalNAc3]sggaaguUfgAfCfUfAfaacuugaas{invAb}
2031
usUfsuCfaAfguuuaguCfaAfcuuccsusu
2328





D-2165
[GalNAc3]sccagugGfaUfAfAfCfcagcuuccs{invAb}
2013
asGfsgAfaGfcugguuaUfcCfacuggsusu
2116





D-2166
[GalNAc3]scuaagaUfcUfGfAfUfgaaguauas{invAb}
2054
asUfsaUfaCfuucaucaGfaUfcuuagsusu
2317





D-2167
[GalNAc3]scagauuGfcUfUfAfCfucagacacs{invAb}
2033
asGfsuGfuCfugaguaaGfcAfaucugsusu
2185





D-2168
[GalNAc3]scuucaggcCfcAfAfUfAfuuguaas{invAb}
3154
asUfsuacaAfuauuGfgGfccugaagsusu
3413





D-2169
[GalNAc3]scaaugcuuCfaAfUfGfUfcccagus{invAb}
3155
asAfscuggGfacauUfgAfagcauugsusu
3414





D-2170
[GalNAc3]scagaacgaAfaGfUfUfAfuauggas{invAb}
3156
usUfsccauAfuaacUfuUfcguucugsusu
3415





D-2171
[GalNAc3]sggaaguugAfcUfAfAfAfcuugaas{invAb}
3157
usUfsucaaGfuuuaGfuCfaacuuccsusu
3416





D-2172
[GalNAc3]sccaguggaUfaAfCfCfAfgcuuccs{invAb}
3158
asGfsgaagCfugguUfaUfccacuggsusu
3417





D-2173
[GalNAc3]scuaagaucUfgAfUfGfAfaguauas{invAb}
3159
asUfsauacUfucauCfaGfaucuuagsusu
3418





D-2174
[GalNAc3]scagauugcUfuAfCfUfCfagacacs{invAb}
3160
asGfsugucUfgaguAfaGfcaaucugsusu
3419





D-2175
[GalNAc3]scuucagGfcCfCfAfAfuauuguaas{invAb}
2047
asUfsuacaAfuauuggGfcCfugasasgsusg
3420





D-2176
[GalNAc3]scaaugcUfuCfAfAfUfgucccagus{invAb}
2051
asAfscuggGfacauugAfaGfcaususgsusg
3421





D-2177
[GalNAc3]scagaacGfaAfAfGfUfuauauggas{invAb}
2010
usUfsccauAfuaacuuUfcGfuucsusgsusg
3422





D-2178
[GalNAc3]sggaaguUfgAfCfUfAfaacuugaas{invAb}
2031
usUfsucaaGfuuuaguCfaAfcuuscscsusg
3423





D-2179
[GalNAc3]sccagugGfaUfAfAfCfcagcuuccs{invAb}
2013
asGfsgaagCfugguuaUfcCfacusgsgsusg
3424





D-2180
[GalNAc3]scuaagaUfcUfGfAfUfgaaguauas{invAb}
2054
asUfsauacUfucaucaGfaUfcuusasgsusg
3425





D-2181
[GalNAc3]scagauuGfcUfUfAfCfucagacacs{invAb}
2033
asGfsugucUfgaguaaGfcAfaucsusgsusg
3426





D-2182
[GalNAc3]scaaugcUfuCfAfAfUfgucccagus{invAb}
2051
asAfscuggGfacauugAfaGfcauugsasg
3427





D-2183
[GalNAc3]scaaugcUfuCfaAfugucccagus{invAb}
3161
asAfscugggacauUfgAfaGfcauugsusu
3428





D-2184
[GalNAc3]scaaugcUfuCfAfAfUfgucccagus{invAb}
2051
asAfscUfggGfacauugAfaGfcauugsusu
3429





D-2185
[GalNAc3]scaaugcUfuCfAfAfUfgucccagus{invAb}
2051
asAfscugGfGfacauugAfaGfcauugsusu
3430





D-2186
[GalNAc3]scaaugcUfuCfAfAfUfgucccagus{invAb}
2051
asAfscuggGfacauUfgAfaGfcauugsusu
3431





D-2187
[GalNAc3]scaaugcUfuCfAfAfUfgucccagus{invAb}
2051
asAfscUfgGfGfacauugAfaGfcauugsusu
3432





D-2188
[GalNAc3]scuucagGfcCfCfAfAfuauuguaas{invAb}
2047
asUfsuacaAfuauuggGfcCfugasasg
3433





D-2189
[GalNAc3]scaaugcUfuCfAfAfUfgucccagus{invAb}
2051
asAfscuggGfacauugAfaGfcaususg
3434





D-2190
[GalNAc3]scagaacGfaAfAfGfUfuauauggas{invAb}
2010
usUfsccauAfuaacuuUfcGfuucsusg
3435





D-2191
[GalNAc3]sggaaguUfgAfCfUfAfaacuugaas{invAb}
2031
usUfsucaaGfuuuaguCfaAfcuuscsc
3436





D-2192
[GalNAc3]sccagugGfaUfAfAfCfcagcuuccs{invAb}
2013
asGfsgaagCfugguuaUfcCfacusgsg
3437





D-2193
[GalNAc3]scuaagaUfcUfGfAfUfgaaguauas{invAb}
2054
asUfsauacUfucaucaGfaUfcuusasg
3438





D-2194
[GalNAc3]scagauuGfcUfUfAfCfucagacacs{invAb}
2033
asGfsugucUfgaguaaGfcAfaucsusg
3439





D-2195
[GalNAc3]scaaugcUfuCfAfAfUfgucccauus{invAb}
3162
asUfsgggaCfauugaaGfcAfuugsusu
3440





D-2196
[GalNAc3]sguuuaaAfaCfCfCfAfauaucuaus{invAb}
3163
usAfsgauaUfuggguuUfuAfaacsusu
3441





D-2197
[GalNAc3]scuucaaUfgUfCfCfCfagugcaaus{invAb}
3164
usUfsgcacUfgggacaUfuGfaagsusu
3442





D-2198
[GalNAc3]sagacagCfaUfUfGfGfauuuccuus{invAb}
3165
asGfsgaaaUfccaaugCfuGfucususu
3443





D-2199
[GalNAc3]sgaaaauCfaCfCfAfCfucuuuguus{invAb}
3166
asCfsaaagAfguggugAfuUfuucsusu
3444





D-2200
[GalNAc3]sacagcaUfuGfGfAfUfuuccuaaus{invAb}
3167
usUfsaggaAfauccaaUfgCfugususu
3445





D-2201
[GalNAc3]saggauuCfuGfAfAfAfacucccuus{invAb}
3168
asGfsggagUfuuucagAfaUfccususu
3446





D-2202
[GalNAc3]scaacacUfuGfAfAfGfcaugguuus{invAb}
3169
asAfsccauGfcuucaaGfuGfuugsusu
3447





D-2203
[GalNAc3]scucaaugcUfuCfAfAfUfgucccas{invAb}
3170
asUfsgggaCfauugAfaGfcauugagsusu
3448





D-2204
[GalNAc3]suuguuuaaAfaCfCfCfAfauaucus{invAb}
3171
usAfsgauaUfugggUfuUfuaaacaasusu
3449





D-2205
[GalNAc3]sugcuucaaUfgUfCfCfCfagugcas{invAb}
3172
usUfsgcacUfgggaCfaUfugaagcasusu
3450





D-2206
[GalNAc3]sucagacagCfaUfUfGfGfauuuccs{invAb}
3173
asGfsgaaaUfccaaUfgCfugucugasusu
3451





D-2207
[GalNAc3]suggaaaauCfaCfCfAfCfucuuugs{invAb}
3174
asCfsaaagAfguggUfgAfuuuuccasusu
3452





D-2208
[GalNAc3]sagacagcaUfuGfGfAfUfuuccuas{invAb}
3175
usUfsaggaAfauccAfaUfgcugucususu
3453





D-2209
[GalNAc3]sacaggauuCfuGfAfAfAfacucccs{invAb}
3176
asGfsggagUfuuucAfgAfauccugususu
3454





D-2210
[GalNAc3]sgacaacacUfuGfAfAfGfcauggus{invAb}
3177
asAfsccauGfcuucAfaGfuguugucsusu
3455





D-2211
[GalNAc3]scucaauGfcUfUfCfAfaugucccas{invAb}
2061
asUfsgGfgAfcauugaaGfcAfuugagsusu
2248





D-2212
[GalNAc3]suuguuuAfaAfAfCfCfcaauaucus{invAb}
2026
usAfsgAfuAfuuggguuUfuAfaacaasusu
2315





D-2213
[GalNAc3]sugcuucAfaUfGfUfCfccagugcas{invAb}
2052
usUfsgCfaCfugggacaUfuGfaagcasusu
2251





D-2214
[GalNAc3]sucagacAfgCfAfUfUfggauuuccs{invAb}
2068
asGfsgAfaAfuccaaugCfuGfucugasusu
2285





D-2215
[GalNAc3]suggaaaAfuCfAfCfCfacucuuugs{invAb}
2069
asCfsaAfaGfaguggugAfuUfuuccasusu
2222





D-2216
[GalNAc3]sagacagCfaUfUfGfGfauuuccuas{invAb}
2070
usUfsaGfgAfaauccaaUfgCfugucususu
2287





D-2217
[GalNAc3]sacaggaUfuCfUfGfAfaaacucccs{invAb}
2062
asGfsgGfaGfuuuucagAfaUfccugususu
2256





D-2218
[GalNAc3]sgacaacAfcUfUfGfAfagcauggus{invAb}
2067
asAfscCfaUfgcuucaaGfuGfuugucsusu
2238





D-2219
[GalNAc3]scucaauGfcUfUfCfAfaugucccas{invAb}
2061
asUfsgggaCfauugaaGfcAfuugsasg
3456





D-2220
[GalNAc3]suuguuuAfaAfAfCfCfcaauaucus{invAb}
2026
usAfsgauaUfuggguuUfuAfaacsasa
3457





D-2221
[GalNAc3]sugcuucAfaUfGfUfCfccagugcas{invAb}
2052
usUfsgcacUfgggacaUfuGfaagscsa
3458





D-2222
[GalNAc3]sucagacAfgCfAfUfUfggauuuccs{invAb}
2068
asGfsgaaaUfccaaugCfuGfucusgsa
3459





D-2223
[GalNAc3]suggaaaAfuCfAfCfCfacucuuugs{invAb}
2069
asCfsaaagAfguggugAfuUfuucscsa
3460





D-2224
[GalNAc3]sagacagCfaUfUfGfGfauuuccuas{invAb}
2070
usUfsaggaAfauccaaUfgCfuguscsu
3461





D-2225
[GalNAc3]sacaggaUfuCfUfGfAfaaacucccs{invAb}
2062
asGfsggagUfuuucagAfaUfccusgsu
3462





D-2226
[GalNAc3]sgacaacAfcUfUfGfAfagcauggus{invAb}
2067
asAfsccauGfcuucaaGfuGfuugsusc
3463





D-2227
[GalNAc3]sucagaaCfgAfAfAfGfuuauauggs{invAb}
2037
usCfscAfuAfuaacuuuCfgUfucugasusu
2167





D-2228
[GalNAc3]suuccagAfuGfCfAfUfuuuaaccas{invAb}
2011
asUfsgGfuUfaaaaugcAfuCfuggaasusu
2133





D-2229
[GalNAc3]sccuucaGfaAfCfGfAfaaguuauas{invAb}
2041
asUfsaUfaAfcuuucguUfcUfgaaggsusu
2164





D-2230
[GalNAc3]scuucagAfaCfGfAfAfaguuauaus{invAb}
2042
asAfsuAfuAfacuuucgUfuCfugaagsusu
2165





D-2231
[GalNAc3]scaacuuCfaGfGfCfCfcaauauugs{invAb}
2043
asCfsaAfuAfuugggccUfgAfaguugsusu
2210





D-2232
[GalNAc3]sacuucaGfgCfCfCfAfauauuguas{invAb}
2045
usUfsaCfaAfuauugggCfcUfgaagususu
2211





D-2233
[GalNAc3]scuguuuAfaAfAfCfCfcaauaucus{invAb}
3178
usAfsgauaUfuggguuUfuAfaacagsusu
3464





D-2234
[GalNAc3]scgcuucAfaUfGfUfCfccagugcas{invAb}
3179
usUfsgcacUfgggacaUfuGfaagcgsusu
3465





D-2235
[GalNAc3]sccagacAfgCfAfUfUfggauuuccs{invAb}
3180
asGfsgaaaUfccaaugCfuGfucuggsusu
3466





D-2236
[GalNAc3]scggaaaAfuCfAfCfCfacucuuugs{invAb}
3181
asCfsaaagAfguggugAfuUfuuccgsusu
3467





D-2237
[GalNAc3]sggacagCfaUfUfGfGfauuuccuas{invAb}
3182
usUfsaggaAfauccaaUfgCfuguccsusu
3468





D-2238
[GalNAc3]sgcaggaUfuCfUfGfAfaaacucccs{invAb}
3183
asGfsggagUfuuucagAfaUfccugcsusu
3469





D-2239
[GalNAc3]sgauggcUfuGfUfUfCfcagauguus{invAb}
3184
asCfsaucuGfgaacaaGfcCfaucsusu
3470





D-2240
[GalNAc3]succuggAfaUfAfUfUfagaugcuus{invAb}
3185
asGfscaucUfaauauuCfcAfggasusu
3471





D-2241
[GalNAc3]sccuggaAfuAfUfUfAfgaugccuus{invAb}
3076
asGfsgcauCfuaauauUfcCfaggsusu
3472





D-2242
[GalNAc3]sucuaagAfuCfUfGfAfugaaguaus{invAb}
3186
usAfscuucAfucagauCfuUfagasusu
3473





D-2243
[GalNAc3]scuggaaUfaUfUfAfGfaugccuuus{invAb}
3075
asAfsggcaUfcuaauaUfuCfcagsusu
3474





D-2244
[GalNAc3]sgugauggcUfuGfUfUfCfcagaugs{invAb}
3187
asCfsaucuGfgaacAfaGfccaucacsusu
3475





D-2245
[GalNAc3]suguccuggAfaUfAfUfUfagaugcs{invAb}
3188
asGfscaucUfaauaUfuCfcaggacasusu
3476





D-2246
[GalNAc3]sguccuggaAfuAfUfUfAfgaugccs{invAb}
3189
asGfsgcauCfuaauAfuUfccaggacsusu
3477





D-2247
[GalNAc3]sacucuaagAfuCfUfGfAfugaagus{invAb}
3190
usAfscuucAfucagAfuCfuuagagususu
3478





D-2248
[GalNAc3]succuggaaUfaUfUfAfGfaugccus{invAb}
3191
asAfsggcaUfcuaaUfaUfuccaggasusu
3479





D-2249
[GalNAc3]sgugaugGfcUfUfGfUfuccagaugs{invAb}
3082
asCfsaUfcUfggaacaaGfcCfaucacsusu
2439





D-2250
[GalNAc3]suguccuGfgAfAfUfAfuuagaugcs{invAb}
3080
asGfscAfuCfuaauauuCfcAfggacasusu
2458





D-2251
[GalNAc3]sguccugGfaAfUfAfUfuagaugccs{invAb}
3079
asGfsgCfaUfcuaauauUfcCfaggacsusu
2459





D-2252
[GalNAc3]sacucuaAfgAfUfCfUfgaugaagus{invAb}
3078
usAfscUfuCfaucagauCfuUfagagususu
2479





D-2253
[GalNAc3]succuggAfaUfAfUfUfagaugccus{invAb}
3077
asAfsgGfcAfucuaauaUfuCfcaggasusu
2460





D-2254
[GalNAc3]sgugaugGfcUfUfGfUfuccagaugs{invAb}
3082
asCfsaucuGfgaacaaGfcCfaucsasc
3480





D-2255
[GalNAc3]suguccuGfgAfAfUfAfuuagaugcs{invAb}
3080
asGfscaucUfaauauuCfcAfggascsa
3481





D-2256
[GalNAc3]sguccugGfaAfUfAfUfuagaugccs{invAb}
3079
asGfsgcauCfuaauauUfcCfaggsasc
3482





D-2257
[GalNAc3]sacucuaAfgAfUfCfUfgaugaagus{invAb}
3078
usAfscuucAfucagauCfuUfagasgsu
3483





D-2258
[GalNAc3]succuggAfaUfAfUfUfagaugccus{invAb}
3077
asAfsggcaUfcuaauaUfuCfcagsgsa
3484





D-2259
[GalNAc3]scccuggAfaUfAfUfUfagaugccus{invAb}
3192
asAfsggcaUfcuaauaUfuCfcagggsusu
3485





D-2260
+GalNAcThgcucuaAfgAfUfCfUfgaugaagus{invAb}
3193
usAfscuucAfucagauCfuUfagagcsusu
3486





D-2261
[GalNAc3]scguccuGfgAfAfUfAfuuagaugcs{invAb}
3194
asGfscaucUfaauauuCfcAfggacgsusu
3487





D-2262
[GalNAc3]scaacucUfaAfGfAfUfcugaugaas{invAb}
3195
asUfsucauCfagaucuUfaGfaguugsusu
3488





D-2263
[GalNAc3]sggaagaAfaAfGfUfGfauucagugs{invAb}
3196
usCfsacugAfaucacuUfuUfcuuccsusu
3489





D-2264
[GalNAc3]s[invAb]guccugGfaAfUfAfUfuagaugcscs{invAb}
3197
asGfsgcauCfuaauauUfcCfaggacsusu
3338





D-2265
[GalNAc3]s[invAb]uccuggAfaUfAfUfUfagaugccsus{invAb}
3198
asAfsggcaUfcuaauaUfuCfcaggasusu
3336





D-2266
[GalNAc3]s[invAb]acucuaAfgAfUfCfUfgaugaagsus{invAb}
3199
usAfscuucAfucagauCfuUfagagususu
3337





D-2267
[GalNAc3]s[invAb]agacagCfaUfUfGfGfauuuccusas{invAb}
3200
usUfsaggaAfauccaaUfgCfugucususu
2802





D-2268
[GalNAc3]sguccagGfaAfUfAfUfuagaugccs{invAb}
3201
asGfsgcauCfuaauauUfcCfuggacsusu
3490





D-2269
[GalNAc3]sgugcugGfaAfUfAfUfuagaugccs{invAb}
3202
asGfsgcauCfuaauauUfcCfagcacsusu
3491





D-2270
[GalNAc3]succucgAfaUfAfUfUfagaugccus{invAb}
3203
asAfsggcaUfcuaauaUfuCfgaggasusu
3492





D-2271
[GalNAc3]sucguggAfaUfAfUfUfagaugccus{invAb}
3204
asAfsggcaUfcuaauaUfuCfcacgasusu
3493





D-2272
[GalNAc3]sacacuaAfgAfUfCfUfgaugaagus{invAb}
3205
usAfscuucAfucagauCfuUfagugususu
3494





D-2273
[GalNAc3]sagucuaAfgAfUfCfUfgaugaagus{invAb}
3206
usAfscuucAfucagauCfuUfagacususu
3495





D-2274
[GalNAc3]sagucagCfaUfUfGfGfauuuccuas{invAb}
3207
usUfsaggaAfauccaaUfgCfugacususu
3496





D-2275
[GalNAc3]sacacagCfaUfUfGfGfauuuccuas{invAb}
3208
usUfsaggaAfauccaaUfgCfugugususu
3497





D-2276
[GalNAc3]s{invAb}guccuggaAfuAfUfUfAfgaugcscs{invAb}
3209
asGfsgcauCfuaauauUfcCfaggacsusu
3338





D-2277
[GalNAc3]s{invAb}guccugGfaAfuAfuuagaugcscs{invAb}
3210
asGfsgcauCfuaauauUfcCfaggacsusu
3338





D-2278
[GalNAc3]s{invAb}guccugGfaAfUfAfUfuagaugcscs{invAb}
3211
asGfsgcauCfuaauAfuUfccaggacsusu
3477





D-2279
[GalNAc3]s{invAb}guccuggaAfuAfUfUfAfgaugcscs{invAb}
3209
asGfsgcauCfuaauAfuUfccaggacsusu
3477





D-2280
[GalNAc3]s{invAb}guccugGfaAfuAfuuagaugcscs{invAb}
3210
asGfsgcauCfuaauAfuUfccaggacsusu
3477





D-2281
[GalNAc3]s{invAb}guccugGfaAfUfAfUfuagaugcscs{invAb}
3211
asGfsgcaucuaauauUfcCfaggacsusu
3498





D-2282
[GalNAc3]s{invAb}guccuggaAfuAfUfUfAfgaugcscs{invAb}
3209
asGfsgcaucuaauauUfcCfaggacsusu
3498





D-2283
[GalNAc3]s{invAb}guccugGfaAfuAfuuagaugcscs{invAb}
3210
asGfsgcaucuaauauUfcCfaggacsusu
3498





D-2284
[GalNAc3]s{invAb}guccugGfaAfUfAfUfuagaugcscs{invAb}
3211
asGfsgcaUfCfuaauauUfcCfaggacsusu
3499





D-2285
[GalNAc3]s{invAb}guccuggaAfuAfUfUfAfgaugcscs{invAb}
3209
asGfsgcaUfCfuaauauUfcCfaggacsusu
3499





D-2286
[GalNAc3]s{invAb}guccugGfaAfuAfuuagaugcscs{invAb}
3210
asGfsgcaUfCfuaauauUfcCfaggacsusu
3499





D-2287
[GalNAc3]s{invAb}guccugGfaAfUfAfUfuagaugcscs{invAb}
3211
asGfsgcauCfuaauAfuUfcCfaggacsusu
3500





D-2288
[GalNAc3]s{invAb}guccuggaAfuAfUfUfAfgaugcscs{invAb}
3209
asGfsgcauCfuaauAfuUfcCfaggacsusu
3500





D-2289
[GalNAc3]s{invAb}guccugGfaAfuAfuuagaugcscs{invAb}
3210
asGfsgcauCfuaauAfuUfcCfaggacsusu
3500





D-2291
[GalNAc3]scaaugcUfuCfaAfugucccagus{invAb}
3161
asAfscuggGfacauugAfaGfcauugsusu
2783





D-2292
[GalNAc3]scaaugcUfuCfAfAfUfgucccagus{invAb}
2051
asAfscuggGfacauUfgAfagcauugsusu
3414





D-2293
[GalNAc3]scaaugcUfuCfaAfugucccagus{invAb}
3161
asAfscuggGfacauUfgAfagcauugsusu
3414





D-2294
[GalNAc3]scaaugcUfuCfAfAfUfgucccagus{invAb}
2051
asAfscugggacauUfgAfaGfcauugsusu
3428





D-2295
[GalNAc3]scaaugcuuCfaAfUfGfUfcccagus{invAb}
3155
asAfscugggacauUfgAfaGfcauugsusu
3428





D-2296
[GalNAc3]scaaugcuuCfaAfUfGfUfcccagus{invAb}
3155
asAfscugGfGfacauugAfaGfcauugsusu
3430





D-2297
[GalNAc3]scaaugcUfuCfaAfugucccagus{invAb}
3161
asAfscugGfGfacauugAfaGfcauugsusu
3430





D-2298
[GalNAc3]scaaugcuuCfaAfUfGfUfcccagus{invAb}
3155
asAfscuggGfacauUfgAfaGfcauugsusu
3431





D-2299
[GalNAc3]scaaugcUfuCfaAfugucccagus{invAb}
3161
asAfscuggGfacauUfgAfaGfcauugsusu
3431





D-2301
[GalNAc3]sauguccUfgGfAfAfUfauuagaugs{invAb}
3212
asCfsaucuAfauauucCfaGfgacaususu
3501





D-2302
[GalNAc3]suauaacUfcUfAfAfGfaucugaugs{invAb}
3213
usCfsaucaGfaucuuaGfaGfuuauasusu
3502





D-2303
[GalNAc3]suaagauCfuGfAfUfGfaaguauaus{invAb}
3214
asAfsuauaCfuucaucAfgAfucuuasusu
3503





D-2304
[GalNAc3]sggugucUfcAfAfUfGfcuucaaugs{invAb}
3215
asCfsauugAfagcauuGfaGfacaccsusu
3504





D-2305
[GalNAc3]sgugucuCfaAfUfGfCfuucaaugus{invAb}
3216
asAfscauuGfaagcauUfgAfgacacsusu
3505





D-2306
[GalNAc3]sucucaaUfgCfUfUfCfaaugucccs{invAb}
3217
usGfsggacAfuugaagCfaUfugagasusu
3506





D-2307
[GalNAc3]saaugcuUfcAfAfUfGfucccagugs{invAb}
3218
asCfsacugGfgacauuGfaAfgcauususu
3507





D-2308
[GalNAc3]saugcuuCfaAfUfGfUfcccagugcs{invAb}
3219
usGfscacuGfggacauUfgAfagcaususu
3508





D-2309
[GalNAc3]succuggAfaUfaUfuagaugccus{invAb}
3220
asAfsggcaUfcuaauaUfuCfcaggasusu
3336





D-2310
[GalNAc3]sacucuaAfgAfuCfugaugaagus{invAb}
3221
usAfscuucAfucagauCfuUfagagususu
3337





D-2311
[GalNAc3]sguccugGfaAfuAfuuagaugccs{invAb}
3222
asGfsgcauCfuaauauUfcCfaggacsusu
3338





D-2312
[GalNAc3]suguccuGfgAfaUfauuagaugcs{invAb}
3223
asGfscaucUfaauauuCfcAfggacasusu
3339





D-2313
[GalNAc3]suaacucUfaAfgAfucugaugaas{invAb}
3224
asUfsucauCfagaucuUfaGfaguuasusu
3340





D-2314
[GalNAc3]succuggaaUfaUfUfAfGfaugccus{invAb}
3191
asAfsggcaUfcuaauaUfuCfcaggasusu
3336





D-2315
[GalNAc3]sacucuaagAfuCfUfGfAfugaagus{invAb}
3190
usAfscuucAfucagauCfuUfagagususu
3337





D-2316
[GalNAc3]sguccuggaAfuAfUfUfAfgaugccs{invAb}
3189
asGfsgcauCfuaauauUfcCfaggacsusu
3338





D-2317
[GalNAc3]suguccuggAfaUfAfUfUfagaugcs{invAb}
3188
asGfscaucUfaauauuCfcAfggacasusu
3339





D-2318
[GalNAc3]suaacucuaAfgAfUfCfUfgaugaas{invAb}
3225
asUfsucauCfagaucuUfaGfaguuasusu
3340





D-2319
[GalNAc3]succuggAfaUfaUfuagaugccus{invAb}
3220
asAfsggcaUfcuaaUfaUfuccaggasusu
3479





D-2320
[GalNAc3]sacucuaAfgAfuCfugaugaagus{invAb}
3221
usAfscuucAfucagAfuCfuuagagususu
3478





D-2321
[GalNAc3]sguccugGfaAfuAfuuagaugccs{invAb}
3222
asGfsgcauCfuaauAfuUfccaggacsusu
3477





D-2322
[GalNAc3]suguccuGfgAfaUfauuagaugcs{invAb}
3223
asGfscaucUfaauaUfuCfcaggacasusu
3476





D-2323
[GalNAc3]suaacucUfaAfgAfucugaugaas{invAb}
3224
asUfsucauCfagauCfuUfagaguuasusu
3509





D-2324
[GalNAc3]succuggAfaUfAfUfUfagaugccus{invAb}
3077
asAfsggcaucuaaUfaUfuCfcaggasusu
3510





D-2325
[GalNAc3]sacucuaAfgAfUfCfUfgaugaagus{invAb}
3078
usAfscuucaucagAfuCfuUfagagususu
3511





D-2326
[GalNAc3]sguccugGfaAfUfAfUfuagaugccs{invAb}
3079
asGfsgcaucuaauAfuUfcCfaggacsusu
3512





D-2327
[GalNAc3]suguccuGfgAfAfUfAfuuagaugcs{invAb}
3080
asGfscaucuaauaUfuCfcAfggacasusu
3513





D-2328
[GalNAc3]suaacucUfaAfGfAfUfcugaugaas{invAb}
3081
asUfsucaucagauCfuUfaGfaguuasusu
3514





D-2329
[GalNAc3]succuggAfaUfAfUfUfagaugccus{invAb}
3077
asAfsggcaUfcuaaUfaUfuccaggasusu
3479





D-2330
[GalNAc3]sacucuaAfgAfUfCfUfgaugaagus{invAb}
3078
usAfscuucAfucagAfuCfuuagagususu
3478





D-2331
[GalNAc3]sguccugGfaAfUfAfUfuagaugccs{invAb}
3079
asGfsgcauCfuaauAfuUfccaggacsusu
3477





D-2332
[GalNAc3]suguccuGfgAfAfUfAfuuagaugcs{invAb}
3080
asGfscaucUfaauaUfuCfcaggacasusu
3476





D-2333
[GalNAc3]suaacucUfaAfGfAfUfcugaugaas{invAb}
3081
asUfsucauCfagauCfuUfagaguuasusu
3509





D-2334
[GalNAc3]succuggaaUfaUfUfAfGfaugccus{invAb}
3191
asAfsggcaucuaaUfaUfuCfcaggasusu
3510





D-2335
[GalNAc3]sacucuaagAfuCfUfGfAfugaagus{invAb}
3190
usAfscuucaucagAfuCfuUfagagususu
3511





D-2336
[GalNAc3]sguccuggaAfuAfUfUfAfgaugccs{invAb}
3189
asGfsgcaucuaauAfuUfcCfaggacsusu
3512





D-2337
[GalNAc3]suguccuggAfaUfAfUfUfagaugcs{invAb}
3188
asGfscaucuaauaUfuCfcAfggacasusu
3513





D-2338
[GalNAc3]suaacucuaAfgAfUfCfUfgaugaas{invAb}
3225
asUfsucaucagauCfuUfaGfaguuasusu
3514





D-2339
[GalNAc3]succuggaaUfaUfUfAfGfaugccus{invAb}
3191
asAfsggcaUfcuaaUfaUfuCfcaggasusu
3515





D-2340
[GalNAc3]sacucuaagAfuCfUfGfAfugaagus{invAb}
3190
usAfscuucAfucagAfuCfuUfagagususu
3516





D-2341
[GalNAc3]sguccuggaAfuAfUfUfAfgaugccs{invAb}
3189
asGfsgcauCfuaauAfuUfcCfaggacsusu
3500





D-2342
[GalNAc3]suguccuggAfaUfAfUfUfagaugcs{invAb}
3188
asGfscaucUfaauaUfuCfcAfggacasusu
3517





D-2343
[GalNAc3]suaacucuaAfgAfUfCfUfgaugaas{invAb}
3225
asUfsucauCfagauCfuUfaGfaguuasusu
3518





D-2344
[GalNAc3]succuggAfaUfaUfuagaugccus{invAb}
3220
asAfsggcAfUfcuaauaUfuCfcaggasusu
3519





D-2345
[GalNAc3]sacucuaAfgAfuCfugaugaagus{invAb}
3221
usAfscuuCfAfucagauCfuUfagagususu
3520





D-2346
[GalNAc3]sguccugGfaAfuAfuuagaugccs{invAb}
3222
asGfsgcaUfCfuaauauUfcCfaggacsusu
3499





D-2347
[GalNAc3]suguccuGfgAfaUfauuagaugcs{invAb}
3223
asGfscauCfUfaauauuCfcAfggacasusu
3521





D-2348
[GalNAc3]suaacucUfaAfgAfucugaugaas{invAb}
3224
asUfsucaUfCfagaucuUfaGfaguuasusu
3522





D-2349
[GalNAc3]succuggaaUfaUfUfAfGfaugccus{invAb}
3191
asAfsggcAfUfcuaauaUfuCfcaggasusu
3519





D-2350
[GalNAc3]sacucuaagAfuCfUfGfAfugaagus{invAb}
3190
usAfscuuCfAfucagauCfuUfagagususu
3520





D-2351
[GalNAc3]sguccuggaAfuAfUfUfAfgaugccs{invAb}
3189
asGfsgcaUfCfuaauauUfcCfaggacsusu
3499





D-2352
[GalNAc3]suguccuggAfaUfAfUfUfagaugcs{invAb}
3188
asGfscauCfUfaauauuCfcAfggacasusu
3521





D-2353
[GalNAc3]suaacucuaAfgAfUfCfUfgaugaas{invAb}
3225
asUfsucaUfCfagaucuUfaGfaguuasusu
3522





D-2354
[GalNAc3]succuggAfaUfaUfuagaugccus{invAb}
3220
asAfsggcaUfcuaaUfaUfuCfcaggasusu
3515





D-2355
[GalNAc3]sacucuaAfgAfuCfugaugaagus{invAb}
3221
usAfscuucAfucagAfuCfuUfagagususu
3516





D-2356
[GalNAc3]sguccugGfaAfuAfuuagaugccs{invAb}
3222
asGfsgcauCfuaauAfuUfcCfaggacsusu
3500





D-2357
[GalNAc3]suguccuGfgAfaUfauuagaugcs{invAb}
3223
asGfscaucUfaauaUfuCfcAfggacasusu
3517





D-2358
[GalNAc3]suaacucUfaAfgAfucugaugaas{invAb}
3224
asUfsucauCfagauCfuUfaGfaguuasusu
3518





D-2359
[GalNAc3]sugauggCfuUfGfUfUfccagaugcs{invAb}
3226
usGfscaucUfggaacaAfgCfcaucasusu
3523





D-2360
[GalNAc3]sgauggcUfuGfUfUfCfcagaugcas{invAb}
3227
asUfsgcauCfuggaacAfaGfccaucsusu
3524





D-2361
[GalNAc3]scucagaCfaGfCfAfUfuggauuucs{invAb}
3228
asGfsaaauCfcaaugcUfgUfcugagsusu
3525





D-2362
[GalNAc3]sugccauUfuUfGfUfCfcuuugauus{invAb}
3229
usAfsaucaAfaggacaAfaAfuggcasusu
3526





D-2363
[GalNAc3]sccauuuUfgUfCfCfUfuugauuaus{invAb}
3230
usAfsuaauCfaaaggaCfaAfaauggsusu
3527





D-2364
[GalNAc3]sugauggcuUfgUfUfCfCfagaugcs{invAb}
3231
usGfscaucUfggaaCfaAfgccaucasusu
3528





D-2365
[GalNAc3]sgauggcuuGfuUfCfCfAfgaugcas{invAb}
3232
asUfsgcauCfuggaAfcAfagccaucsusu
3529





D-2366
[GalNAc3]scucagacaGfcAfUfUfGfgauuucs{invAb}
3233
asGfsaaauCfcaauGfcUfgucugagsusu
3530





D-2367
[GalNAc3]sugccauuuUfgUfCfCfUfuugauus{invAb}
3234
usAfsaucaAfaggaCfaAfaauggcasusu
3531





D-2368
[GalNAc3]sccauuuugUfcCfUfUfUfgauuaus{invAb}
3235
usAfsuaauCfaaagGfaCfaaaauggsusu
3532





D-2369
[GalNAc3]sugauggCfuUfGfUfUfccagaugcs{invAb}
3226
usGfscAfuCfuggaacaAfgCfcaucasusu
3533





D-2370
[GalNAc3]sgauggcUfuGfUfUfCfcagaugcas{invAb}
3227
asUfsgCfaUfcuggaacAfaGfccaucsusu
3534





D-2371
[GalNAc3]scucagaCfaGfCfAfUfuggauuucs{invAb}
3228
asGfsaAfaUfccaaugcUfgUfcugagsusu
3535





D-2372
[GalNAc3]sugccauUfuUfGfUfCfcuuugauus{invAb}
3229
usAfsaUfcAfaaggacaAfaAfuggcasusu
3536





D-2373
[GalNAc3]sccauuuUfgUfCfCfUfuugauuaus{invAb}
3230
usAfsuAfaUfcaaaggaCfaAfaauggsusu
3537





D-2374
[GalNAc3]sgsauuuuCfaCfAfUfUfuuucgucus{invAb}
3236
asAfsgacgAfaaaaugUfgAfaaaucsusu
3369





D-2375
[GalNAc3]sgauuuucaCfaUfUfUfUfucgucus{invAb}
3237
asAfsgacgAfaaaaUfgUfgaaaaucsusu
3538





D-2376
[GalNAc3]sgaauauuaGfaUfGfCfCfuuuuaas{invAb}
3238
usUfsuaaaAfggcaUfcUfaauauucsusu
3539





D-2377
[GalNAc3]saggaaagcAfuAfUfGfUfcaguugs{invAb}
3239
asCfsaacuGfacauAfuGfcuuuccususu
3540





D-2378
[GalNAc3]sgccauuuuGfuCfCfUfUfugauuas{invAb}
3240
asUfsaaucAfaaggAfcAfaaauggcsusu
3541





D-2379
[GalNAc3]sgauuuuCfaCfAfUfUfuuucgucus{invAb}
3110
asAfsgAfcGfaaaaaugUfgAfaaaucsusu
2605





D-2380
[GalNAc3]sgaauauUfaGfAfUfGfccuuuuaas{invAb}
3112
usUfsuAfaAfaggcaucUfaAfuauucsusu
2597





D-2381
[GalNAc3]saggaaaGfcAfUfAfUfgucaguugs{invAb}
3114
asCfsaAfcUfgacauauGfcUfuuccususu
2727





D-2382
[GalNAc3]sgccauuUfuGfUfCfCfuuugauuas{invAb}
3117
asUfsaAfuCfaaaggacAfaAfauggcsusu
2739





D-2383
[GalNAc3]sgsasuuuuCfaCfAfUfUfuuucgucus{invAb}
3241
asAfsgacgAfaaaaugUfgAfaaaucsusu
3369





D-2384
[GalNAc3]scaaugcuuCfaAfUfGfUfcccagus{invAb}
3155
asAfscuggGfacauugAfaGfcaususg
3434





D-2385
[GalNAc3]scaaugcUfuCfAfAfUfgucccagus{invAb}
2051
asAfscugGfGfacauugAfaGfcaususg
3542





D-2386
[GalNAc3]saugcuuCfaAfUfGfUfcccaguuus{invAb}
3151
asAfscuggGfacauugAfaGfcaususg
3434





D-2387
[GalNAc3]saugcuuCfaAfUfGfUfcccaguuus{invAb}
3151
asAfscugGfGfacauugAfaGfcaususu
3543





D-2388
[GalNAc3]scaaugcuuCfaAfUfGfUfcccagus{invAb}
3155
asAfscuggGfacauugAfaGfcauugsusu
2783





D-2389
[GalNAc3]scaaugcuuCfaAfUfGfUfcccagus{invAb}
3155
asAfscuggGfacauugAfaGfcauugsasg
3427





D-2390
[GalNAc3]saugcUfuCfAfAfUfgucccaguuus{invAb}
3242
asAfscuggGfacauugAfaGfcaususu
3410





D-2391
[GalNAc3]scaaugcUfuCfAfAfUfgucccagus{invAb}
2051
asAfscugGfGfacauugAfaGfcauugsasg
3544





D-2392
[GalNAc3]saugcUfuCfAfAfUfgucccaguuus{invAb}
3242
asAfscuggGfacauugAfaGfcaususg
3434





D-2393
[GalNAc3]succuggAfaUfaUfuagaugccus{invAb}
3220
asAfsggcaucuaaUfaUfuCfcaggasusu
3510





D-2394
[GalNAc3]sacucuaAfgAfuCfugaugaagus{invAb}
3221
usAfscuucaucagAfuCfuUfagagususu
3511





D-2395
[GalNAc3]sguccugGfaAfuAfuuagaugccs{invAb}
3222
asGfsgcaucuaauAfuUfcCfaggacsusu
3512





D-2396
[GalNAc3]suguccuGfgAfaUfauuagaugcs{invAb}
3223
asGfscaucuaauaUfuCfcAfggacasusu
3513





D-2397
[GalNAc3]suaacucUfaAfgAfucugaugaas{invAb}
3224
asUfsucaucagauCfuUfaGfaguuasusu
3514





D-2399
[GalNAc3]scaaugcUfuCfAfAfUfgucccagus{invAb}
2051
asAfscuggGfacauUfgAfaGfcaususg
3545





D-2400
[GalNAc3]saugcuuCfaAfUfGfUfcccaguuus{invAb}
3151
asAfscuggGfacauUfgAfaGfcaususu
3546





D-2401
[GalNAc3]scaaugcUfuCfAfAfUfgucccagus{invAb}
2051
asAfscuggGfacauUfgAfaGfcauugsasg
3547





D-2402
[GalNAc3]scaaugcuuCfaAfUfGfUfcccagus{invAb}
3155
asAfscugGfGfacauugAfaGfcauugsasg
3544





D-2403
[GalNAc3]scaaugcuuCfaAfUfGfUfcccagus{invAb}
3155
asAfscuggGfacauUfgAfaGfcauugsasg
3547





D-2430
[GalNAc3]sgauuuuCfaCfAfUfUfuuucgucus{invAb}
3110
asAfsgacgAfaaaaugUfgAfaaasusc
3548





D-2431
[GalNAc3]sgaauauUfaGfAfUfGfccuuuuaas{invAb}
3112
usUfsuaaaAfggcaucUfaAfuaususc
3549





D-2432
[GalNAc3]saggaaaGfcAfUfAfUfgucaguugs{invAb}
3114
asCfsaacuGfacauauGfcUfuucscsu
3550





D-2433
[GalNAc3]sgccauuUfuGfUfCfCfuuugauuas{invAb}
3117
asUfsaaucAfaaggacAfaAfaugsgsc
3551





D-2434
[GalNAc3]saaauauAfgUfCfUfCfaauaacuus{invAb}
3129
usAfsaguuAfuugagaCfuAfuaususu
3552





D-2435
[GalNAc3]suaccaaGfaGfCfGfCfagacuugcs{invAb}
3071
usGfscaagUfcugcgcUfcUfuggsusa
3553





D-2436
[GalNAc3]sgaugccUfuUfUfAfAfaaauguucs{invAb}
3107
asGfsaacaUfuuuuaaAfaGfgcasusc
3554





D-2437
[GalNAc3]sauguccUfgGfAfAfUfauuagaugs{invAb}
3212
asCfsaucuAfauauucCfaGfgacsasu
3555





D-2438
[GalNAc3]saaauauagUfcUfCfAfAfuaacuus{invAb}
3243
usAfsaguuAfuugaGfaCfuauauuususu
3556





D-2439
[GalNAc3]suaccaagaGfcGfCfAfGfacuugcs{invAb}
3244
usGfscaagUfcugcGfcUfcuugguasusu
3557





D-2440
[GalNAc3]sgaugccuuUfuAfAfAfAfauguucs{invAb}
3245
asGfsaacaUfuuuuAfaAfaggcaucsusu
3558





D-2441
[GalNAc3]sauguccugGfaAfUfAfUfuagaugs{invAb}
3246
asCfsaucuAfauauUfcCfaggacaususu
3559





D-2442
[GalNAc3]saaauauAfgUfCfUfCfaauaacuus{invAb}
3129
usAfsaGfuUfauugagaCfuAfuauuususu
2627





D-2443
[GalNAc3]suaccaaGfaGfCfGfCfagacuugcs{invAb}
3071
usGfscAfaGfucugcgcUfcUfugguasusu
2667





D-2444
[GalNAc3]sgaugccUfuUfUfAfAfaaauguucs{invAb}
3107
asGfsaAfcAfuuuuuaaAfaGfgcaucsusu
2598





D-2445
[GalNAc3]sauguccUfgGfAfAfUfauuagaugs{invAb}
3212
asCfsaUfcUfaauauucCfaGfgacaususu
2457





D-2446
[GalNAc3]suuuucaCfaUfUfUfUfucgucuuus{invAb}
3247
asAfsgacgAfaaaaugUfgAfaaasusu
3560





D-2447
[GalNAc3]sauauuaGfaUfGfCfCfuuuuaaaus{invAb}
3248
usUfsuaaaAfggcaucUfaAfuaususu
3561





D-2448
[GalNAc3]sgaaagcAfuAfUfGfUfcaguuguus{invAb}
3249
asCfsaacuGfacauauGfcUfuucsusu
3562





D-2449
[GalNAc3]scauuuuGfuCfCfUfUfugauuauus{invAb}
3250
asUfsaaucAfaaggacAfaAfaugsusu
3563





D-2450
[GalNAc3]sauauagUfcUfCfAfAfuaacuuaus{invAb}
3251
usAfsaguuAfuugagaCfuAfuaususu
3552





D-2451
[GalNAc3]sccaagaGfcGfCfAfGfacuugcaus{invAb}
3252
usGfscaagUfcugcgcUfcUfuggsusu
3564





D-2452
[GalNAc3]sugccuuUfuAfAfAfAfauguucuus{invAb}
3253
asGfsaacaUfuuuuaaAfaGfgcasusu
3565





D-2453
[GalNAc3]sguccugGfaAfUfAfUfuagauguus{invAb}
3254
asCfsaucuAfauauucCfaGfgacsusu
3566





D-2454
[GalNAc3]sgcucuaAfgAfUfCfUfgaugaagus{invAb}
3193
usAfscUfuCfaucagauCfuUfagagcsusu
3567





D-2455
[GalNAc3]sgcucuaagAfuCfUfGfAfugaagus{invAb}
3255
usAfscuucAfucagAfuCfuuagagcsusu
3568





D-2456
[GalNAc3]sgcucuaagAfuCfUfGfAfugaagus{invAb}
3255
usAfscUfuCfaucagAfuCfuuagagcsusu
3569





D-2457
[GalNAc3]sccuaagAfuCfUfGfAfugaaguaus{invAb}
3256
usAfscuucAfucagauCfuUfaggsusu
3570





D-2458
[GalNAc3]sccuaagAfuCfUfGfAfugaaguaus{invAb}
3256
usAfscUfuCfaucagauCfuUfaggsusu
3571





D-2459
[GalNAc3]sccuaAfgAfUfCfUfgaugaaguaus{invAb}
3257
usAfscuucAfucagauCfuUfaggsusu
3570





D-2460
[GalNAc3]sccuaAfgAfUfCfUfgaugaaguaus{invAb}
3257
usAfscUfuCfaucagauCfuUfaggsusu
3571





D-2461
[GalNAc3]suuguuuAfaAfAfCfCfcaauaucus{invAb}
2026
usAfsgauaUfuggguuUfuAfaacaascsu
3572





D-2462
[GalNAc3]scagaacGfaAfAfGfUfuauauggas{invAb}
2010
usUfsccauAfuaacuuUfcGfuucugsasa
3573





D-2463
[GalNAc3]scuaagaUfcUfGfAfUfgaaguauas{invAb}
2054
asUfsauacUfucaucaGfaUfcuuagsasg
3574





D-2464
[GalNAc3]suggaaaAfuCfAfCfCfacucuuugs{invAb}
2069
asCfsaaagAfguggugAfuUfuuccasusa
3575





D-2465
[GalNAc3]suaacucUfaAfGfAfUfcugaugaas{invAb}
3081
asUfsucauCfagaucuUfaGfagususa
3576





D-2466
[GalNAc3]sagaagaAfaAfGfUfGfauucagugs{invAb}
3069
usCfsacugAfaucacuUfuUfcuuscsu
3577





D-2467
[GalNAc3]sgauuuuCfaCfAfUfUfuuucgucus{invAb}
3110
asAfsgacgAfaaaaugUfgAfaaaucsasc
3578





D-2468
[GalNAc3]suaacucUfaAfGfAfUfcugaugaas{invAb}
3081
asUfsucauCfagaucuUfaGfaguuasusa
3579





D-2469
[GalNAc3]sagaagaAfaAfGfUfGfauucagugs{invAb}
3069
usCfsacugAfaucacuUfuUfcuucuscsc
3580





D-2470
[GalNAc3]suaacucuaAfgAfUfCfUfgaugaas{invAb}
3225
asUfsucauCfagauCfuUfagaguuasusu
3509





D-2471
[GalNAc3]sagaagaaaAfgUfGfAfUfucagugs{invAb}
3258
usCfsacugAfaucaCfuUfuucuucususu
3581





D-2472
[GalNAc3]saagaucUfgAfUfGfAfaguauauus{invAb}
2065
asUfsauacUfucaucaGfaUfcuusasg
3438





D-2473
[GalNAc3]sacucuaAfgAfUfCfUfgaugaauus{invAb}
3259
asUfsucauCfagaucuUfaGfagususu
3582





D-2474
[GalNAc3]saagaaaAfgUfGfAfUfucagugaus{invAb}
3260
usCfsacugAfaucacuUfuUfcuususu
3583





D-2475
[GalNAc3]sgaaaauCfaCfCfAfCfucuuuguus{invAb}
3166
asCfsaaagAfguggugAfuUfuucscsa
3460





D-2476
[GalNAc3]suuuucaCfaUfUfUfUfucgucuuus{invAb}
3247
asAfsgacgAfaaaaugUfgAfaaasusc
3548





D-2477
[GalNAc3]sacucuaAfgAfUfCfUfgaugaauus{invAb}
3259
asUfsucauCfagaucuUfaGfagususa
3576





D-2478
[GalNAc3]saagaaaAfgUfGfAfUfucagugaus{invAb}
3260
usCfsacugAfaucacuUfuUfcuuscsu
3577





D-2479
[GalNAc3]sgaacgaAfaGfUfUfAfuauggaaus{invAb}
3152
usUfsccauAfuaacuuUfcGfuucsusg
3435





D-2480
[GalNAc3]suaccaaGfaGfCfGfCfagacuugcs{invAb}
3071
usGfscaagUfcugcgcUfcUfugguasgsa
3584





D-2481
[GalNAc3]sccaagaGfcGfCfAfGfacuugcaus{invAb}
3252
usGfscaagUfcugcgcUfcUfuggsusa
3553





D-2482
[GalNAc3]sccuggaAfuAfUfUfAfgaugccusus{invAb}
3261
asGfsgcauCfuaauauUfcCfaggsusu
3472





D-2483
[GalNAc3]saauagcAfgAfCfUfUfguuccgacs{invAb}
2066
asGfsucggAfacaaguCfuGfcuasusu
3585





D-2484
[GalNAc3]sccccguUfuAfAfCfUfgauuauggs{invAb}
3115
usCfscauaAfucaguuAfaAfcggsgsg
3586





D-2485
[GalNAc3]saugacaAfcAfCfUfUfgaagcaugs{invAb}
3118
asCfsaugcUfucaaguGfuUfgucsasu
3587





D-2486
[GalNAc3]suauugcCfaUfUfUfUfguccuuugs{invAb}
3138
usCfsaaagGfacaaaaUfgGfcaasusa
3588





D-2487
[GalNAc3]suauaacUfcUfAfAfGfaucugaugs{invAb}
3213
usCfsaucaGfaucuuaGfaGfuuasusa
3589





D-2488
[GalNAc3]sgugucuCfaAfUfGfCfuucaaugus{invAb}
3216
asAfscauuGfaagcauUfgAfgacsasc
3590





D-2489
[GalNAc3]saauagcAfgAfCfUfUfguuccgacs{invAb}
2066
asGfsuCfgGfaacaaguCfuGfcuauususu
2171





D-2490
[GalNAc3]sccccguUfuAfAfCfUfgauuauggs{invAb}
3115
usCfscAfuAfaucaguuAfaAfcggggsusu
2653





D-2491
[GalNAc3]saugacaAfcAfCfUfUfgaagcaugs{invAb}
3118
asCfsaUfgCfuucaaguGfuUfgucaususu
2371





D-2492
[GalNAc3]suauugcCfaUfUfUfUfguccuuugs{invAb}
3138
usCfsaAfaGfgacaaaaUfgGfcaauasusu
2338





D-2493
[GalNAc3]suauaacUfcUfAfAfGfaucugaugs{invAb}
3213
usCfsaUfcAfgaucuuaGfaGfuuauasusu
2475





D-2494
[GalNAc3]sgugucuCfaAfUfGfCfuucaaugus{invAb}
3216
asAfscAfuUfgaagcauUfgAfgacacsusu
2245





D-2495
[GalNAc3]suagcagAfcUfUfGfUfuccgacusus{invAb}
3262
asGfsucggAfacaaguCfuGfcuasusu
3585





D-2496
[GalNAc3]sccguuuAfaCfUfGfAfuuauggasus{invAb}
3263
usCfscauaAfucaguuAfaAfcggsusu
3591





D-2497
[GalNAc3]sgacaacAfcUfUfGfAfagcaugusus{invAb}
3264
asCfsaugcUfucaaguGfuUfgucsusu
3592





D-2498
[GalNAc3]suugccaUfuUfUfGfUfccuuugasus{invAb}
3265
usCfsaaagGfacaaaaUfgGfcaasusu
3593





D-2499
[GalNAc3]suaacucUfaAfGfAfUfcugaugasus{invAb}
3266
usCfsaucaGfaucuuaGfaGfuuasusu
3594





D-2500
[GalNAc3]sgucucaAfuGfCfUfUfcaauguusus{invAb}
3267
asAfscauuGfaagcauUfgAfgacsusu
3595





D-2501
[GalNAc3]saauagcagAfcUfUfGfUfuccgacs{invAb}
3268
asGfsucggAfacaaGfuCfugcuauususu
3596





D-2502
[GalNAc3]sccccguuuAfaCfUfGfAfuuauggs{invAb}
3269
usCfscauaAfucagUfuAfaacggggsusu
3597





D-2503
[GalNAc3]saugacaacAfcUfUfGfAfagcaugs{invAb}
3270
asCfsaugcUfucaaGfuGfuugucaususu
3598





D-2504
[GalNAc3]suauugccaUfuUfUfGfUfccuuugs{invAb}
3271
usCfsaaagGfacaaAfaUfggcaauasusu
3599





D-2505
[GalNAc3]suauaacucUfaAfGfAfUfcugaugs{invAb}
3272
usCfsaucaGfaucuUfaGfaguuauasusu
3600





D-2506
[GalNAc3]sgugucucaAfuGfCfUfUfcaaugus{invAb}
3273
asAfscauuGfaagcAfuUfgagacacsusu
3601





D-2507
[GalNAc3]saauagcagAfcUfUfGfUfuccgacs{invAb}
3268
asGfsucggAfacaaGfuCfuGfcuauususu
3602





D-2508
[GalNAc3]sccccguuuAfaCfUfGfAfuuauggs{invAb}
3269
usCfscauaAfucagUfuAfaAfcggggsusu
3603





D-2509
[GalNAc3]saugacaacAfcUfUfGfAfagcaugs{invAb}
3270
asCfsaugcUfucaaGfuGfuUfgucaususu
3604





D-2510
[GalNAc3]suauugccaUfuUfUfGfUfccuuugs{invAb}
3271
usCfsaaagGfacaaAfaUfgGfcaauasusu
3605





D-2511
[GalNAc3]suauaacucUfaAfGfAfUfcugaugs{invAb}
3272
usCfsaucaGfaucuUfaGfaGfuuauasusu
3606





D-2512
[GalNAc3]sgugucucaAfuGfCfUfUfcaaugus{invAb}
3273
asAfscauuGfaagcAfuUfgAfgacacsusu
3607





D-2514
gsusgaugGfcUfUfGfUfuccggaugs{invAb}
3274
asCfsauccGfgaacaaGfcCfaucsasc
3608





D-2515
gsusgaugGfcUfUfGfUfugcagaugs{invAb}
3275
asCfsaucuGfcaacaaGfcCfaucsasc
3609





D-2516
csasgaacGfaAfAfGfUfuaugugga{invAb}
3276
usUfsccacAfuaacuuUfcGfuucugsasa
3610





D-2517
csasgaacGfaAfAfGfUfuguaugga{invAb}
3277
usUfsccauAfcaacuuUfcGfuucugsasa
3611





D-2518
usasugucCfuGfGfAfAfuauaagaus{invAb}
3278
asAfsucuuAfuauuccAfgGfacauasusu
3612





D-2519
usasugucCfuGfGfAfAfuguuagaus{invAb}
3279
asAfsucuaAfcauuccAfgGfacauasusu
3613





D-2520
asusguccUfgGfAfAfUfauuggaugs{invAb}
3280
asCfsauccAfauauucCfaGfgacaususu
3614





D-2521
asusguccUfgGfAfAfUfaauagaugs{invAb}
3281
asCfsaucuAfuuauucCfaGfgacaususu
3615





D-2522
usgsuccuGfgAfAfUfAfuuaaaugcs{invAb}
3282
asGfscauuUfaauauuCfcAfggacasusu
3616





D-2523
usgsuccuGfgAfAfUfAfuaagaugcs{invAb}
3283
asGfscaucUfuauauuCfcAfggacasusu
3617





D-2524
cscsuggaAfuAfUfUfAfggugccuus{invAb}
3284
asGfsgcacCfuaauauUfcCfaggsusu
3618





D-2525
cscsuggaAfuAfUfUfGfgaugccuus{invAb}
3285
asGfsgcauCfcaauauUfcCfaggsusu
3619





D-2526
uscscuggAfaUfAfUfUfagaagccus{invAb}
3286
asAfsggcuUfcuaauaUfuCfcagsgsa
3620





D-2527
uscscuggAfaUfAfUfUfaaaugccus{invAb}
3287
asAfsggcaUfuuaauaUfuCfcagsgsa
3621





D-2528
cscsuggaAfuAfUfUfAfgauaccuus{invAb}
3288
asAfsagguAfucuaauAfuUfccaggsusu
3622





D-2529
cscsuggaAfuAfUfUfAfggugccuus{invAb}
3284
asAfsaggcAfccuaauAfuUfccaggsusu
3623





D-2530
csusggaaUfaUfUfAfGfauggcuuus{invAb}
3289
asAfsaagcCfaucuaaUfaUfuccagsusu
3624





D-2531
csusggaaUfaUfUfAfGfaagccuuus{invAb}
3290
asAfsaaggCfuucuaaUfaUfuccagsusu
3625





D-2532
gsasauauUfaGfAfUfGfccuauuaa{invAb}
3291
usUfsuaauAfggcaucUfaAfuauucsusu
3626





D-2533
gsasauauUfaGfAfUfGfcguuuuaa{invAb}
3292
usUfsuaaaAfcgcaucUfaAfuauucsusu
3627





D-2534
gsasugccUfuUfUfAfAfaaaaguucs{invAb}
3293
asGfsaacuUfuuuuaaAfaGfgcaucsusu
3628





D-2535
gsasugccUfuUfUfAfAfagauguucs{invAb}
3294
asGfsaacaUfcuuuaaAfaGfgcaucsusu
3629





D-2536
gsasuuuuCfaCfAfUfUfuuuggucus{invAb}
3295
asAfsgaccAfaaaaugUfgAfaaaucsusu
3630





D-2537
gsasuuuuCfaCfAfUfUfuaucgucus{invAb}
3296
asAfsgacgAfuaaaugUfgAfaaaucsusu
3631





D-2538
csuscaauGfcUfUfCfAfaugaccca{invAb}
3297
asUfsggguCfauugaaGfcAfuugagsusu
3632





D-2539
csuscaauGfcUfUfCfAfaaguccca{invAb}
3298
asUfsgggaCfuuugaaGfcAfuugagsusu
3633





D-2540
csasaugcUfuCfAfAfUfgucgcagus{invAb}
3299
asAfscugcGfacauUfgAfaGfcaususg
3634





D-2541
csasaugcUfuCfAfAfUfgacccagus{invAb}
3300
asAfscuggGfucauUfgAfaGfcaususg
3635





D-2542
asasauauAfgUfCfUfCfaaugacuus{invAb}
3301
usAfsagucAfuugagaCfuAfuauuususu
3636





D-2543
asasauauAfgUfCfUfCfaguaacuus{invAb}
3302
usAfsaguuAfcugagaCfuAfuauuususu
3637





D-2544
gscsaggaUfuCfUfGfAfaaagucccs{invAb}
3303
asGfsggacUfuuucagAfaUfccugcsusu
3638





D-2545
gscsaggaUfuCfUfGfAfagacucccs{invAb}
3304
asGfsggagUfcuucagAfaUfccugcsusu
3639





D-2546
usasccaaGfaGfCfGfCfagaguugcs{invAb}
3305
usGfscaacUfcugcgcUfcUfugguasusu
3640





D-2547
usasccaaGfaGfCfGfCfaaacuugcs{invAb}
3306
usGfscaagUfuugcgcUfcUfugguasusu
3641





D-2548
asgsgaaaGfcAfUfAfUfgucgguugs{invAb}
3307
asCfsaaccGfacauauGfcUfuuccususu
3642





D-2549
asgsgaaaGfcAfUfAfUfgacaguugs{invAb}
3308
asCfsaacuGfucauauGfcUfuuccususu
3643





D-2550
gsusuuaaAfaCfCfCfAfaaaucuaus{invAb}
3309
usAfsgauuUfuggguuUfuAfaacsusu
3644





D-2551
gsusuuaaAfaCfCfCfGfauaucuaus{invAb}
3310
usAfsgauaUfcggguuUfuAfaacsusu
3645





D-2552
ususaacuGfaUfUfGfUfauagcucus{invAb}
3311
usAfsgagcUfauacaaUfcAfguuaasusu
3646





D-2553
ususaacuGfaUfUfGfUfaaaacucus{invAb}
3312
usAfsgaguUfuuacaaUfcAfguuaasusu
3647





D-2554
usasacucUfaAfGfAfUfcuggugaa{invAb}
3313
asUfsucacCfagaucuUfaGfagususa
3648





D-2555
usasacucUfaAfGfAfUfcagaugaa{invAb}
3314
asUfsucauCfugaucuUfaGfagususa
3649





D-2556
ascsucuaAfgAfUfCfUfgauaaagus{invAb}
3315
usAfscuuuAfucagauCfuUfagagususu
3650





D-2557
ascsucuaAfgAfUfCfUfggugaagus{invAb}
3316
usAfscuucAfccagauCfuUfagagususu
3651





D-2558
usasuugccaUfuUfUfGfUfcguuugs{invAb}
3317
usCfsaaacGfacaaAfaUfgGfcaauausu
3652





D-2559
usasuugccaUfuUfUfGfAfccuuugs{invAb}
3318
usCfsaaagGfucaaAfaUfgGfcaauausu
3653





D-2560
gscscauuUfuGfUfCfCfuuuaauua{invAb}
3319
asUfsaauuAfaaggacAfaAfauggcsusu
3654





D-2561
gscscauuUfuGfUfCfCfuaugauua{invAb}
3320
asUfsaaucAfuaggacAfaAfauggcsusu
3655









Example 3. In Vitro Evaluation of mARC1 siRNA Molecules in a Cell-Based Assay

The mARC1 siRNA molecules having different sequences prioritized from the bioinformatics analyses described in Example 2 were screened for efficacy in reducing human mARC1 mRNA using an RNA FISH (fluorescence in situ hybridization) assay. Hep3B cells (purchased from ATCC) were cultured in Eagle's Minimum Essential Medium (EMEM) (ATCC 30-2003) supplemented with 10% fetal bovine serum (FBS, Sigma) and 1% penicillin-streptomycin (P-S, Corning). siRNAs were transfected into cells by reverse transfection using Lipofectamine RNAiMAX transfection reagent (Thermo Fisher Scientific). The mARC1 siRNA molecules were tested in a 10-point dose response format, 3-fold dilutions, ranging from 500 nM to 25 pM (run 1), 25 nM to 1 pM (run 2), or 100 nM to 5 pM (run 3), final concentrations. 1 μL of the test siRNA molecule or phosphate-buffered saline (PBS) vehicle and 4 μL of base EMEM without supplements were added to PDL-coated CellCarrier-384 Ultra assay plates (PerkinElmer) by a Bravo automated liquid handling platform (Agilent). 5 μL of Lipofectamine RNAiMAX (Thermo Fisher Scientific), pre-diluted in base EMEM without supplements (0.035 μL of RNAiMAX in 5 μL EMEM), was then dispensed into the assay plates by a Multidrop Combi reagent dispenser (Thermo Fisher Scientific). After 20-minute incubation of the siRNA/RNAiMAX mixture at room temperature (RT), 30 μL of Hep3B cells (2000 cells per well) in EMEM supplemented with 10% FBS and 1% P-S were added to the transfection complex using a Multidrop Combi reagent dispenser. The assay plates were incubated at RT for 20 mins prior to being placed in an incubator. Cells were incubated for 72 hrs at 37° C. and 5% CO2. RNA FISH assay was performed 72 hours after siRNA transfection using the manufacturer's assay reagents and protocol (QuantiGene® ViewRNA HC Screening Assay from Thermo Fisher Scientific) on an in-house assembled automated FISH assay platform. In brief, cells were fixed in 4% formaldehyde (Thermo Fisher Scientific) for 15 mins at RT, permeabilized with detergent for 3 mins at RT and then treated with protease solution for 10 mins at RT. Target-specific probes (Thermo Fisher Scientific) or vehicle (target probe diluent without target probes as negative control) were incubated for 3 hours, whereas preamplifiers, amplifiers, and label probes were incubated for 1 hour each. All hybridization steps were carried out at 40° C. in a Cytomat 2 C-LIN automated incubator (Thermo Fisher Scientific). After hybridization reactions, cells were stained for 30 mins with Hoechst and CellMask Blue (Thermo Fisher Scientific) and then imaged on an Opera Phenix high-content screening system (PerkinElmer). The images were analyzed using a Columbus image data storage and analysis system (PerkinElmer) to obtain the mean spot count per cell. The mean spot count per cell was normalized using the high (PBS with target probes) and low (PBS without target probes) control wells. The normalized values against the total siRNA concentrations were plotted and the data were fit to a four-parameter sigmoidal model using Genedata Screener data analysis software (Genedata) to obtain IC50 and maximum activity values. If the data could not be fit to the model, an IC50 value was not calculated and only a maximum activity value was reported.


The mARC1 siRNA molecules were initially screened in a first run at ten different concentrations ranging from 500 nM to 25 pM. siRNA molecules exhibiting significant activity in the first run were screened in second and third runs at ten different concentrations over narrower concentration ranges (run 2: 25 nM to 1 pM; run 3: 100 nM to 5 pM). The results of the assays for all three runs are shown in Table 3 below.









TABLE 3







In vitro inhibition of human mARC1 mRNA in Hep3B cells











Run 1
Run 2
Run 3



(500 nM to 25 pM)
(25 nM to 1 pM)
(100 nM to 5 pM)













Duplex
IC50
Max
IC50
Max
IC50
Max


No.
[M]
Activity
[M]
Activity
[M]
Activity
















D-1092
1.64E−10
−96.0
1.60E−09
−93.0
2.43E−09
−96.5


D-1093
1.03E−10
−89.5
1.19E−09
−90.9
9.30E−10
−95.8


D-1139
3.44E−10
−87.1
2.43E−09
−93.7
2.35E−09
−90.6


D-1061
3.44E−11
−89.0
9.04E−10
−90.5
1.79E−09
−93.0


D-1138
1.13E−10
−89.9
2.19E−09
−87.9
1.60E−09
−92.4


D-1095
1.27E−10
−86.9
1.34E−09
−86.5
1.28E−09
−92.4


D-1191

−93.5
1.06E−09
−91.7
8.45E−10
−86.4


D-1180
1.52E−10
−86.2
1.41E−09
−88.3
2.15E−09
−89.6


D-1090
1.26E−10
−88.1
1.42E−09
−87.6
2.10E−09
−89.5


D-1062
3.36E−11
−88.5
1.15E−09
−87.9
1.01E−09
−89.0


D-1177
5.02E−11
−81.0
1.43E−09
−90.2
2.33E−09
−86.5


D-1083
6.31E−10
−87.8
1.88E−09
−84.8
1.19E−09
−91.8


D-1245
1.04E−10
−83.9
4.46E−10
−87.6
2.19E−09
−88.5


D-1067

−79.8
1.41E−09
−85.5
9.69E−10
−90.3


D-1143

−92.8
1.49E−09
−85.2
2.41E−09
−90.3


D-1170
1.87E−10
−86.4
1.21E−09
−86.0
9.50E−10
−89.1


D-1044
4.69E−11
−81.3
1.45E−09
−89.4
1.03E−09
−85.6


D-1096
7.11E−11
−91.0
5.60E−10
−82.5
8.71E−10
−91.8


D-1113
1.15E−10
−85.9
1.56E−09
−87.1
1.39E−09
−85.5


D-1086
2.40E−10
−83.5
2.26E−09
−84.0
2.28E−09
−88.5


D-1256

−88.9
6.08E−10
−87.1
8.37E−10
−85.2


D-1189
1.50E−10
−84.7
1.36E−09
−85.4
2.08E−09
−86.7


D-1091
9.38E−11
−88.8
2.12E−09
−87.8
1.42E−09
−84.2


D-1174
1.50E−10
−84.1
1.57E−09
−85.5
2.53E−09
−86.5


D-1185
3.25E−11
−86.6
4.67E−10
−82.6
2.18E−09
−88.6


D-1066
4.91E−11
−80.3
1.33E−09
−86.7
1.21E−09
−84.3


D-1171

−83.8
1.10E−09
−88.0
1.01E−09
−83.0


D-1140
3.09E−10
−87.8
2.64E−09
−86.5
2.97E−09
−84.0


D-1130
1.76E−10
−77.0
2.94E−09
−88.9
2.36E−09
−81.5


D-1068
4.98E−11
−80.1
1.40E−09
−82.9
1.08E−09
−87.5


D-1243

−90.2
6.70E−10
−84.9
8.36E−10
−85.4


D-1074
6.75E−11
−76.5
1.01E−09
−85.8
1.41E−09
−83.7


D-1150
1.78E−10
−87.5
1.21E−09
−84.3
2.11E−09
−84.7


D-1249
2.48E−11
−85.1
1.03E−09
−84.2
2.11E−09
−84.5


D-1111
6.71E−11
−87.3
1.10E−09
−85.4
1.52E−09
−82.9


D-1230
3.95E−11
−83.7
9.01E−10
−84.7
1.20E−09
−83.5


D-1087
2.03E−10
−83.3
1.75E−09
−85.3
1.76E−09
−82.9


D-1099
4.39E−11
−79.6
1.82E−09
−84.8
1.16E−09
−82.9


D-1190
1.47E−10
−82.9
1.15E−09
−84.8
2.01E−09
−82.8


D-1236
2.72E−10
−85.2
1.20E−09
−85.3
2.14E−09
−82.2


D-1184
1.62E−10
−81.3
2.24E−09
−81.8
2.43E−09
−85.6


D-1228

−83.3
5.73E−10
−78.9
5.66E−10
−87.3


D-1220
5.60E−10
−86.0
2.05E−09
−80.8
9.99E−10
−85.1


D-1204
4.99E−11
−79.7
1.84E−09
−78.9
2.51E−09
−87.0


D-1179
7.45E−11
−81.8
1.64E−09
−86.5
1.26E−09
−78.1


D-1147
3.64E−10
−85.0
8.60E−10
−89.7
2.85E−09
−73.8


D-1097
3.39E−10
−86.6
2.97E−09
−85.2
3.27E−09
−78.0


D-1194
1.31E−10
−78.9
1.40E−09
−71.2
2.49E−09
−86.3


D-1054
1.63E−10
−66.3
1.89E−09
−85.2
4.36E−09
−71.2


D-1176
4.61E−11
−74.7
1.34E−09
−67.1
1.55E−09
−85.1


D-1215
1.08E−10
−85.0
1.53E−09
−84.5
2.35E−09
−82.4


D-1166
8.24E−11
−84.0
1.94E−09
−84.2
2.39E−09
−82.4


D-1213
4.13E−11
−73.9
5.89E−10
−84.3
1.23E−09
−82.1


D-1187
1.55E−10
−87.9
2.30E−09
−82.7
2.25E−09
−83.3


D-1210


2.12E−09
−82.4
1.93E−09
−83.5


D-1209
1.10E−10
−78.7
1.81E−09
−82.3
1.84E−09
−83.0


D-1246
5.28E−11
−77.0
5.07E−10
−84.1
2.19E−09
−80.4


D-1257

−82.1
9.40E−10
−80.7
2.03E−09
−83.4


D-1020
1.18E−10
−78.3
2.53E−09
−84.8
1.79E−09
−78.9


D-1168
3.87E−11
−84.5
1.32E−09
−82.0
8.52E−10
−81.5


D-1241
2.42E−10
−81.0
1.92E−09
−81.2
2.63E−09
−81.9


D-1255
2.93E−11
−80.7
1.27E−09
−80.4
1.24E−09
−82.5


D-1181
2.85E−10
−85.0
1.30E−09
−78.1
1.69E−09
−84.6


D-1252

−81.6
8.95E−10
−78.4
2.22E−09
−84.3


D-1172
9.64E−11
−78.7
1.51E−09
−83.3
1.04E−09
−79.2


D-1175
6.64E−11
−76.8
1.28E−09
−80.9
2.21E−09
−81.5


D-1235
2.60E−10
−83.0
1.66E−09
−81.3
2.63E−09
−80.8


D-1229
1.30E−10
−82.5
6.74E−10
−84.3
1.29E−09
−77.9


D-1070

−80.2
1.32E−09
−81.7
1.48E−09
−79.9


D-1203
9.51E−11
−80.8
1.73E−09
−82.0
2.51E−09
−78.4


D-1183
1.14E−10
−76.4
9.71E−10
−81.9
2.10E−09
−78.3


D-1050
5.15E−11
−87.0
1.30E−09
−83.6
1.22E−09
−76.7


D-1167
2.87E−11
−76.6
5.21E−10
−79.4
1.14E−09
−80.8


D-1164
3.14E−10
−87.8
1.75E−09
−81.6
2.49E−09
−78.4


D-1237
9.94E−10
−78.1
1.88E−09
−80.7
2.19E−09
−79.0


D-1247
2.30E−11
−78.7
8.40E−10
−77.1
2.03E−09
−82.3


D-1075
1.17E−10
−73.8
1.90E−09
−84.5
1.00E−09
−74.9


D-1211
6.67E−11
−72.9
1.52E−09
−75.0
3.10E−09
−84.0


D-1248
3.22E−11
−83.3
8.91E−10
−80.6
1.37E−09
−77.8


D-1250
5.19E−11
−77.3
6.63E−10
−77.5
2.30E−09
−80.8


D-1069
8.02E−11
−78.9
1.81E−09
−78.2
2.22E−09
−80.1


D-1253

−81.2
4.63E−10
−77.9
2.21E−09
−80.3


D-1056
6.68E−11
−76.7
2.02E−09
−78.4
1.48E−09
−79.6


D-1079
8.81E−11
−66.6
1.23E−09
−78.5
1.70E−09
−79.2


D-1162
6.89E−11
−77.8
2.08E−09
−83.7
2.24E−09
−73.5


D-1045
7.98E−11
−71.8
2.14E−09
−78.6
1.63E−09
−78.5


D-1173
1.41E−10
−84.6
1.70E−09
−77.0
2.35E−09
−80.0


D-1182
6.61E−11
−90.2
3.09E−09
−81.5
2.92E−09
−75.4


D-1146
1.18E−10
−77.7
3.39E−09
−77.3
3.03E−09
−79.2


D-1244
7.71E−11
−74.6
8.53E−10
−78.7
2.23E−09
−77.8


D-1186
1.07E−10
−71.3
1.03E−09
−77.5
2.35E−09
−78.9


D-1258
1.60E−10
−76.9
1.42E−09
−77.4
2.26E−09
−78.7


D-1043
8.57E−10
−81.2
3.33E−09
−71.8
9.87E−09
−83.9


D-1163
3.85E−11
−87.7
1.85E−10
−80.1
2.11E−09
−75.4


D-1206
1.35E−10
−78.8
1.62E−09
−77.8
1.91E−09
−77.5


D-1089
2.34E−10
−84.6
2.27E−09
−81.6
2.51E−09
−73.7


D-1207
2.94E−11
−74.0
1.54E−09
−77.6
1.40E−09
−77.6


D-1202
3.74E−11
−67.6
1.31E−09
−77.0
1.47E−09
−78.3


D-1221
1.77E−10
−84.4
2.08E−09
−79.4
3.46E−09
−75.7


D-1212
6.59E−11
−77.9
2.20E−09
−77.9
2.18E−09
−77.0


D-1188
2.07E−10
−84.5
1.62E−09
−70.6
1.57E−09
−83.7


D-1037
3.48E−10
−80.6
2.28E−09
−76.3
2.12E−09
−77.5


D-1251
3.53E−11
−78.2
6.32E−10
−77.3
2.00E−09
−76.0


D-1148
9.64E−11
−86.5
1.80E−09
−76.0
1.41E−09
−77.0


D-1214
4.88E−11
−71.7
1.72E−09
−75.4
6.69E−10
−77.6


D-1046
2.18E−10
−70.4
3.35E−09
−84.0
4.63E−09
−68.4


D-1051
1.12E−10
−72.4
1.53E−09
−78.6
1.05E−09
−73.6


D-1112
6.34E−11
−67.5
1.80E−09
−77.6
2.24E−09
−74.7


D-1114
7.18E−11
−75.2
1.66E−09
−75.0
2.27E−09
−77.1


D-1149
2.18E−10
−76.5
1.86E−09
−80.9
2.15E−09
−71.0


D-1119
8.91E−11
−73.1
3.58E−09
−78.6
5.56E−09
−73.4


D-1126
1.04E−10
−82.6
2.07E−09
−70.7
2.02E−09
−81.1


D-1254
6.11E−11
−81.4
1.45E−09
−73.5
2.37E−09
−78.2


D-1219
5.51E−11
−72.2
1.85E−09
−77.9
2.36E−09
−73.8


D-1134
2.91E−10
−75.9
1.69E−09
−77.5
2.11E−09
−73.4


D-1023
1.49E−10
−86.2
2.22E−09
−74.7
2.97E−09
−76.1


D-1201
9.75E−11
−69.6
2.02E−09
−71.0
2.77E−09
−79.0


D-1059

−66.9
2.32E−09
−77.5
1.80E−09
−72.2


D-1195


1.48E−09
−71.7
5.53E−10
−77.5


D-1160
1.39E−10
−78.9
5.70E−10
−66.1
1.70E−09
−82.5


D-1141
4.31E−10
−81.0
4.03E−09
−74.1
3.60E−09
−73.9


D-1137
1.93E−10
−81.6
3.29E−09
−65.3
6.20E−09
−82.5


D-1260
6.31E−11
−69.6
1.51E−09
−74.8
5.40E−09
−72.4


D-1073

−77.7
1.78E−09
−75.5
1.90E−09
−71.6


D-1178
4.29E−10
−73.4
4.35E−09
−67.2
8.66E−09
−79.1


D-1157
3.87E−10
−74.0

−70.6
7.10E−09
−75.3


D-1047
1.26E−10
−74.5
2.58E−09
−76.4
2.69E−09
−69.0


D-1161
5.65E−11
−76.8
1.10E−09
−61.9
2.17E−09
−83.5


D-1098
4.18E−10
−86.1

−68.2
3.05E−09
−75.3


D-1081
7.18E−11
−67.3
2.33E−09
−73.4
2.35E−09
−69.6


D-1240
8.69E−10
−72.9
1.68E−09
−69.4
1.86E−09
−73.2


D-1259
2.52E−11
−70.1
7.91E−10
−73.1
7.64E−10
−69.3


D-1120
3.48E−10
−83.6
2.24E−09
−71.1
2.52E−09
−69.3


D-1104
9.89E−11
−64.0
2.73E−09
−69.8
2.86E−09
−70.5


D-1225

−68.8
1.17E−09
−65.3
2.11E−09
−74.4


D-1052
3.31E−11
−70.1
1.64E−09
−69.5
9.63E−10
−70.2


D-1072

−75.6
2.14E−09
−71.8
1.53E−09
−67.7


D-1082
1.54E−10
−70.1
2.11E−09
−72.4
2.47E−09
−67.2


D-1224
9.53E−11
−80.0
2.19E−09
−67.3
2.87E−09
−70.3


D-1032
1.35E−10
−89.8
3.18E−09
−73.1
2.64E−09
−64.3


D-1017
1.16E−10
−69.3
2.49E−09
−69.6
1.90E−09
−66.5


D-1208
1.46E−10
−67.5
2.45E−09
−64.3
3.96E−09
−71.7


D-1048
2.86E−10
−67.2
3.12E−09
−70.4
2.60E−09
−65.6


D-1080
1.19E−10
−55.0
3.84E−09
−75.4
1.82E−09
−59.2


D-1102
4.22E−11
−64.6
2.07E−09
−70.8
1.97E−09
−63.8


D-1076
1.18E−10
−57.7
2.38E−09
−62.5
2.29E−09
−71.5


D-1055

−47.6
2.89E−09
−64.5
5.23E−09
-69.2


D-1216
1.83E−10
−70.6
4.14E−09
−67.1
3.59E−09
−66.2


D-1193
1.79E−10
−82.0
1.40E−09
−60.6
4.45E−09
−72.5


D-1217
2.58E−10
−67.5
3.12E−09
−60.9
4.77E−09
−71.1


D-1200
1.40E−10
−70.4
3.63E−09
−64.5
4.11E−09
−67.1


D-1058
1.46E−10
−52.8
2.63E−09
−65.4
1.94E−09
−65.7


D-1084
1.13E−10
−75.6
1.98E−09
−71.5
2.19E−09
−59.4


D-1118
3.51E−10
−75.1
2.94E−09
−65.1
6.26E−09
−65.0


D-1136
1.63E−10
−65.7
3.06E−09
−65.6
3.20E−09
−63.3


D-1116
3.67E−10
−76.6
3.95E−09
−58.9
3.33E−09
−69.4


D-1169
1.79E−10
−72.8
1.99E−09
−53.5
4.33E−09
−74.5


D-1065
1.57E−10
−60.6
1.91E−09
−64.1
2.14E−09
−63.5


D-1063
2.80E−11
−65.2
1.38E−09
−63.2
1.26E−09
−63.1


D-1034
1.45E−10
−68.7
1.87E−09
−62.6
1.70E−09
−60.7


D-1218
2.05E−10
−62.9
2.21E−09
−58.8
2.67E−09
−63.7


D-1154
1.84E−10
−69.2
2.55E−09
−55.5
3.44E−09
−66.0


D-1049
3.04E−10
−70.7
2.10E−09
−69.9
2.53E−09
−51.4


D-1088
5.85E−10
−73.7
3.65E−09
−58.6
3.15E−09
−62.6


D-1199
3.95E−10
−73.2
2.70E−09
−55.1
4.45E−09
−64.4


D-1165
2.02E−10
−72.7

−52.5
4.14E−09
−66.5


D-1028
1.82E−09
−84.0
5.79E−09
−51.0
1.80E−08
−64.3


D-1078
1.53E−10
−55.4
1.97E−09
−54.0
4.95E−09
−60.8


D-1222
1.82E−10
−59.9
2.33E−09
−60.4
2.18E−09
−54.4


D-1131
6.25E−10
−75.0
5.53E−09
−56.9
5.17E−09
−57.8


D-1027
6.87E−11
−66.4
1.94E−09
−51.6
2.22E−09
−63.1


D-1151
1.39E−10
−59.0
2.21E−09
−52.8
1.89E−09
−61.2


D-1135
2.33E−10
−61.2
4.03E−09
−56.0
5.09E−09
−56.9


D-1038

−35.4
3.59E−09
−73.4
7.37E−09
−36.7


D-1196
1.37E−10
−57.4
3.05E−09
−49.5
3.84E−09
−58.0


D-1223
1.38E−10
−63.6
2.96E−09
−54.8
2.75E−09
−44.6


D-1100
8.61E−11
−46.0
2.94E−09
−54.5
1.94E−09
−43.5


D-1197
1.96E−10
−53.9
3.68E−09
−49.1
5.22E−09
−46.9


D-1205
2.98E−10
−67.1
2.83E−09
−50.0
4.84E−09
−43.7


D-1192

−84.6
>25E−9
−5.1
2.17E−09
−82.6


D-1024
8.25E−10
−71.0
3.63E−09
−52.2
>100E−9
−34.5


D-1231
2.40E−09
−74.7
6.04E−09
−37.4
1.15E−08
−45.5


D-1031
9.42E−11
−43.6

−38.0
6.12E−09
−41.0


D-1103
6.03E−11
−67.1
>25E−9
−2.0
1.77E−09
−60.0


D-1132
2.93E−10
−79.2
>25E−9
−2.4
2.87E−09
−50.1


D-1025

−27.8
>25E−9
−21.9
>100E−9
−20.8


D-1004
>500E−9
−5.3






D-1005
>500E−9
−8.5






D-1006
>500E−9
17.0






D-1007
>500E−9
38.0






D-1008
>500E−9
4.8






D-1009
>500E−9
−2.1






D-1010
>500E−9
9.8






D-1011
>500E−9
−6.4






D-1012
>500E−9
39.7






D-1013
>500E−9
37.7






D-1014
>500E−9
−23.4






D-1015
3.51E−10
−57.4






D-1016
2.06E−10
−51.2






D-1018
>500E−9
1.9






D-1019
2.61E−10
−36.5






D-1021
1.86E−10
−39.0






D-1022
2.63E−09
−47.8






D-1026
>500E−9
21.9






D-1029
2.61E−10
−57.4






D-1030
2.66E−10
−55.4






D-1033
>500E−9
37.1






D-1035
7.68E-10
−57.2






D-1036
5.91E-10
−55.7






D-1039
>500E−9
−18.2






D-1040
>500E−9
−14.3






D-1041
>500E−9
−18.8






D-1042
3.74E−10
−45.5






D-1053
>500E−9
−17.6






D-1057
>500E−9
−5.1






D-1060
>500E−9
−3.6






D-1064
>500E−9
22.6






D-1071
>500E−9
−6.8






D-1077
>500E−9
−4.7






D-1085
>500E−9
−0.4






D-1094
3.76E−10
−66.8






D-1101
>500E−9
−3.5






D-1105
>500E−9
−10.8






D-1106
4.64E−10
−53.1






D-1107
>500E−9
−0.1






D-1108
>500E−9
−7.8






D-1109
7.32E−10
−36.0






D-1110
>500E−9
1.0






D-1115
>500E−9
−5.2






D-1117
2.06E−10
−41.7






D-1121
2.62E−09
−54.1






D-1122
3.22E−10
−65.9






D-1123
>500E−9
16.9






D-1124
4.33E−10
−56.1






D-1128
3.74E−10
−51.3






D-1129
>500E−9
−24.9






D-1133
6.33E−10
−39.4






D-1142
4.80E−10
−65.9






D-1144
>500E−9
6.1






D-1145
>500E−9
2.0






D-1152
7.09E−10
−44.4






D-1153
8.57E−08
−48.1






D-1155
1.48E−10
−32.2






D-1156
>500E−9
−8.3






D-1158
1.94E−09
−35.0






D-1159
7.15E−10
−67.2






D-1198
3.37E−10
−69.0






D-1226
>500E−9
−2.5






D-1227
>500E−9
3.4






D-1232
8.99E−10
−61.4






D-1233
1.19E−09
−68.5






D-1234
5.48E−10
−65.1






D-1238
1.51E−09
−45.6






D-1239
6.25E−10
−67.1






D-1242
6.22E−10
−63.4






D-1261
>500E−9
−19.1






D-1262
>500E−9
−21.5













Of the initial 257 mARC1 siRNA molecules evaluated in the RNA FISH assay, 74 molecules exhibited an average of 80% or greater knockdown of human mARC1 mRNA and had IC50 values at least in the single-digit nanomolar range in assay runs 2 and 3. In particular, 32 molecules (duplex nos. D-1092; D-1093; D-1139; D-1061; D-1138; D-1095; D-1191; D-1180; D-1090; D-1062; D-1177; D-1083; D-1245; D-1067; D-1143; D-1170; D-1044; D-1096; D-1113; D-1086; D-1256; D-1189; D-1091; D-1174; D-1185; D-1066; D-1171; D-1140; D-1130; D-1068; D-1243; D-1074) reduced human mARC1 mRNA by at least 85% in one or both assay runs 2 and 3.


In a second series of experiments, additional mARC1 siRNA molecules were evaluated in the RNA FISH assay at ten different concentrations ranging from 100 nM to 5 pM, and IC50 and maximum activity values were calculated as described above. The results of the assays from this second series of experiments are shown in Table 4 below. Assays were repeated for a subset of molecules. For such molecules, the IC50 and maximum activity values for both runs are shown.









TABLE 4







In vitro inhibition of human mARC1 mRNA by select mARC1


siRNA molecules in Hep3B cells












Duplex No.
IC50 [M]
Max Activity
Duplex No.
IC50 [M]
Max Activity















D-1061
   663E−12
−99.13
D-1267-run 1
  3.4E−9
−80.64


D-1093
   720E−12
−90.29
D-1267-run 2
  1.33E−09
−83.64


D-1139
  1.72E−09
−97.32
D-1268-run 1
  1.23E−9
−88.75


D-1220
  3.26E−9
−97.17
D-1268-run 2
  3.98E−10
−89.45


D-1245
  93.3E−12
−88.21
D-1269
 >100E−9
−32.26


D-1263
  3.9E−9
−74.11
D-1270
  1.38E−9
−56.38


D-1264
  1.4E−9
−79.53
D-1271
 >100E−9
−26.78


D-1265
  2.68E−9
−77.10
D-1272-run 1
   941E−12
−84.38


D-1266-run 1
   541E−12
−85.44
D-1272-run 2
  1.36E−09
−89.35


D-1266-run 2
  1.61E−10
−93.80
D-1273-run 1
  1.22E−9
−85.29


D-1274-run 1
   638E−12
−86.28
D-1273-run 2
  1.17E−09
−90.43


D-1274-run 2
  8.95E−10
−89.55
D-1281-run 1
  2.58E−9
−86.39


D-1275
   428E−12
−79.99
D-1281-run 2
  1.43E−09
−88.37


D-1276-run 1
  1.54E−9
−92.38
D-1282-run 1
   638E−12
−87.53


D-1276-run 2
  1.59E−09
−88.32
D-1282-run 2
  5.56E−10
−95.34


D-1277
    2E−9
−79.86
D-1283-run 1
  1.97E−9
−80.62


D-1278-run 1
  1.21E−9
−81.71
D-1283-run 2
  1.90E−09
−81.20


D-1278-run 2
  1.55E−09
−84.13
D-1284-run 1
  1.94E−9
−91.35


D-1279
   323E−12
−76.50
D-1284-run 2
  3.09E−09
−91.61


D-1280
 >100E−9
1.94
D-1285-run 1
    1E−9
−88.21


D-1286-run 1
  2.04E−9
−89.49
D-1285-run 2
  1.54E−09
−86.72


D-1286-run 2
  2.42E−09
−94.63
D-1293

−56.99


D-1287-run 1
  1.31E−9
−82.87
D-1294
  2.72E−9
−40.67


D-1287-run 2
  1.11E−09
−83.35
D-1295-run 1
  3.86E−9
−81.47


D-1288-run 1
  3.58E−9
−88.81
D-1295-run 2
  4.77E−09
−79.64


D-1288-run 2
  3.36E−09
−90.32
D-1296-run 1
  1.29E−9
−87.96


D-1289
  2.17E−9
−73.71
D-1296-run 2
  1.97E−09
−89.76


D-1290
  29.3E−9
−50.69
D-1297
 >100E−9
0.97


D-1291
  2.37E−9
−62.67
D-1298-run 1
   636E−12
−94.52


D-1292-run 1
  6.56E−9
−81.82
D-1298-run 2
  4.99E−10
−94.67


D-1292-run 2
  5.35E−09
−75.91
D-1299-run 1
   293E−12
−86.71


D-1300
  2.7E−9
−79.68
D-1299-run 2
  6.23E−10
−90.92


D-1301
 >100E−9
−46.76
D-1308-run 1
  1.61E−9
−83.41


D-1302
  2.15E−9
−80.01
D-1308-run 2
  1.28E−09
−85.58


D-1303-run 1
  1.44E−9
−85.61
D-1309
   405E−12
−78.77


D-1303-run 2
  1.05E−09
−88.46
D-1310-run 1
  1.83E−9
−89.68


D-1304-run 1
   490E−12
−85.23
D-1310-run 2
  1.91E−09
−95.65


D-1304-run 2
  6.56E−10
−88.62
D-1311-run 1
  1.05E−9
−90.99


D-1305
   802E−12
−79.34
D-1311-run 2
  8.00E−10
−87.63


D-1306
  2.4E−9
−77.95
D-1312-run 1
  2.26E−9
−87.43


D-1307
  2.43E−9
−77.80
D-1312-run 2
  1.65E−09
−82.70


D-1314
   768E−12
−76.88
D-1313
  1.85E−9
−78.77


D-1315-run 1
  2.2E−9
−88.75
D-1322-run 1
 >100E−9
−6.77


D-1315-run 2
  2.49E−09
−83.37
D-1322-run 2
 >100E−9
−1.46


D-1316
  3.66E−9
−71.22
D-1323
 >100E−9
2.99


D-1317
  3.03E−9
−69.28
D-1324
 >100E−9
−6.04


D-1318
  8.65E−9
−59.48
D-1325
 >100E−9
15.82


D-1319-run 1
  6.1E−9
−82.28
D-1326-run 1
 >100E−9
−16.18


D-1319-run 2
  3.94E−09
−79.12
D-1326-run 2
 >100E−9
−6.29


D-1320
  4.95E−9
−70.44
D-1327
  6.21E−9
−56.80


D-1321-run 1
  2.21E−9
−84.41
D-1328
 >100E−9
−40.40


D-1321-run 2
  1.74E−09
−79.23
D-1329
 >100E−9
−39.95


D-1330-run 1
  7.48E−9
−82.11
D-1335-run 1
  1.15E−9
−87.64


D-1330-run 2
  7.14E−09
−78.69
D-1335-run 2
  9.61E−10
−86.06


D-1331-run 1
  3.59E−9
−65.41
D-1336-run 1
  2.62E−9
−85.53


D-1331-run 2
  4.38E−9
−65.82
D-1336-run 2
  1.58E−09
−80.06


D-1332-run 1
 >100E−9
−11.88
D-1337
  4.88E−9
−68.99


D-1332-run 2
 >100E−9
−8.78
D-1338-run 1
  2.16E−9
−95.31


D-1333-run 1
  5.73E−9
−60.02
D-1338-run 2
  2.44E−09
−95.49


D-1333-run 2
  20.5E−9
−72.67
D-1339
  5.6E−9
−77.24


D-1334-run 1
  5.96E−9
−86.77
D-1340
  3.77E−9
−67.14


D-1334-run 2
  5.74E−9
−70.29
D-1341-run 1
  1.27E−9
−82.33


D-1334-run 3
  6.24E−09
−79.62
D-1341-run 2
  1.22E−09
−85.14


D-1342
  3.79E−9
−79.64
D-1351-run 1
  2.49E−9
−83.34


D-1343
  7.69E−9
−76.38
D-1351-run 2
  2.06E−09
−84.99


D-1344
  4.7E−9
−80.14
D-1352
  2.29E−9
−78.03


D-1345
 >100E−9
−33.98
D-1353
  2.4E−9
−51.04


D-1346
  1.8E−9
−67.30
D-1354
  1.99E−9
−69.59


D-1347
  3.71E−9
−72.82
D-1355
  3.05E−9
−60.02


D-1348
  21.7E−9
−58.27
D-1356
  5.45E−9
−41.04


D-1349
  1.7E−9
−78.63
D-1357
  2.85E−9
−57.34


D-1350-run 1
   438E−12
−86.65
D-1358-run 1
   967E−12
−82.23


D-1350-run 2
  4.23E−10
−82.90
D-1358-run 2
  1.17E−09
−90.43


D-1359
  2.03E−9
−70.00
D-1366
  4.75E−9
−76.16


D-1360-run 1
  3.62E−9
−87.34
D-1367-run 1
  2.26E−9
−93.08


D-1360-run 2
  3.10E−09
−83.45
D-1367-run 2
  1.98E−09
−93.44


D-1361
   632E−12
−76.77
D-1368-run 1
  2.82E−9
−83.59


D-1362
  2.58E−9
−76.67
D-1368-run 2
  1.12E−09
−88.39


D-1363-run 1
  1.29E−9
−91.72
D-1369
  2.11E−9
−75.09


D-1363-run 2
  2.30E−09
−91.91
D-1370
  1.96E−9
−79.61


D-1364-run 1
  1.11E−9
−87.19
D-1371-run 1
  1.19E−9
−84.84


D-1364-run 2
  1.14E−09
−91.01
D-1371-run 2
  1.14E−09
−86.39


D-1365-run 1
  1.42E−9
−85.38
D-1372
  1.38E−9
−69.85


D-1365-run 2
  1.80E−09
−88.72
D-1373
  2.62E−9
−68.36


D-1374
  2.83E−9
−78.50
D-1380-run 1
  2.43E−9
−81.50


D-1375-run 1
   754E−12
−91.87
D-1380-run 2
  2.13E−09
−84.97


D-1375-run 2
  8.44E−10
−89.51
D-1381-run 1
   202E−12
−89.58


D-1376-run 1
  2.47E−9
−85.68
D-1381-run 2
  3.79E−10
−89.29


D-1376-run 2
  2.26E−09
−85.67
D-1382-run 1
   429E−12
−97.54


D-1377-run 1
  1.24E−9
−83.02
D-1382-run 2
  2.17E−10
−90.44


D-1377-run 2
  1.45E−09
−88.30
D-1383-run 1
   939E−12
−92.11


D-1378
  4.05E−9
−53.31
D-1383-run 2
  7.75E−10
−90.60


D-1379-run 1
  2.45E−9
−85.07
D-1384-run 1
  29.6E−9
−81.72


D-1379-run 2
  1.58E−09
−87.92
D-1384-run 2
  1.62E−10
−93.78


D-1385-run 1
   470E−12
−84.34
D-1390-run 1
   587E−12
−101.09


D-1385-run 2
  1.96E−10
−85.42
D-1390-run 2
  2.46E−10
−93.89


D-1386-run 1
   508E−12
−93.47
D-1391-run 1
   206E−12
−86.03


D-1386-run 2
  3.20E−10
−93.01
D-1391-run 2
  1.91E−10
−89.58


D-1387-run 1
   564E−12
−93.18
D-1392-run 1
   602E−12
−87.07


D-1387-run 2
  3.07E−10
−90.08
D-1392-run 2
  8.32E−10
−83.70


D-1388-run 1
   632E−12
−92.58
D-1393-run 1
  1.28E−9
−80.15


D-1388-run 2
  7.64E−10
−95.22
D-1393-run 2
  8.95E−10
−74.95


D-1389-run 1
   227E−12
−94.67
D-1394-run 1
  1.72E−9
−80.33


D-1389-run 2
  3.90E−10
−95.16
D-1394-run 2
  1.05E−09
−80.33


D-1395-run 1
   746E−12
−88.44
D-1400-run 1
  1.17E−9
−93.27


D-1395-run 2
  5.06E−10
−77.24
D-1400-run 2
  6.99E−10
−86.44


D-1396-run 1
   784E−12
−92.23
D-1401-run 1
   753E−12
−92.66


D-1396-run 2
  9.88E−10
−86.55
D-1401-run 2
  6.27E−10
−85.65


D-1397-run 1
   551E−12
−86.58
D-1402-run 1
   411E−12
−90.34


D-1397-run 2
  5.51E−10
−84.90
D-1402-run 2
  1.29E−10
−91.80


D-1398-run 1
   489E−12
−80.69
D-1403-run 1
   771E−12
−88.84


D-1398-run 2
  2.09E−10
−86.47
D-1403-run 2
  4.78E−10
−86.79


D-1399-run 1
   369E−12
−86.49
D-1404-run 1
   421E−12
−86.45


D-1399-run 2
  1.34E−10
−93.52
D-1404-run 2
  4.48E−10
−93.17


D-1405-run 1
   187E−12
−91.82
D-1412
 >100E−9
−20.63


D-1405-run 2
  2.50E−10
−95.68
D-1413-run 1
  5.18E−9
−81.68


D-1406-run 1
   282E−12
−88.00
D-1413-run 2
  3.13E−09
−76.27


D-1406-run 2
  1.25E−10
−91.00
D-1414
  2.02E−9
−63.97


D-1407-run 1
   403E−12
−91.27
D-1415
  3.84E−9
−56.01


D-1407-run 2
  2.01E−10
−82.75
D-1416-run 1
  1.94E−9
−94.76


D-1408
 >100E−9
19.37
D-1416-run 2
  1.47E−09
−85.86


D-1409
 >100E−9
44.69
D-1417
  5.26E−9
−50.98


D-1410
 >100E−9
−16.05
D-1418
  5.94E−9
−63.89


D-1411
 >100E−9
10.66
D-1419
 >100E−9
−19.86


D-1420-run 1
  2.68E−9
−94.55
D-1428
 >100E−9
4.40


D-1420-run 2
  1.24E−09
−86.57
D-1429
 >100E−9
−9.19


D-1421-run 1
   5.7E−9
−89.95
D-1430
 >100E−9
2.73


D-1421-run 2
  6.19E−09
−84.56
D-1431
 >100E−9
−19.92


D-1422
  25.5E−9
−53.28
D-1432
 >100E−9
−2.75


D-1423
  31.8E−9
−62.33
D-1433
 >100E−9
−12.03


D-1424
 >100E−9
−30.24
D-1434
  4.58E−9
−53.99


D-1425
 >100E−9
19.38
D-1435
 >100E−9
2.85


D-1426
 >100E−9
1.22
D-1436
 >100E−9
−21.73


D-1427
 >100E−9
−8.72
D-1437
  9.37E−9
−53.74


D-1438
  33.3E−9
−33.44
D-1445
  7.92E−9
−71.51


D-1439-run 1
  3.21E−9
−88.80
D-1446
   100E−9
−28.05


D-1439-run 2
  2.07E−09
−86.97
D-1447-run 1
  4.6E−9
−81.98


D-1440
  15.8E−9
−53.11
D-1447-run 2
  1.92E−09
−74.90


D-1441-run 1
   860E−12
−93.62
D-1448
   754E−12
−75.31


D-1441-run 2
  1.41E−09
−92.60
D-1449
  1.61E−9
−73.73


D-1442
  15.3E−9
−60.48
D-1450
  1.91E−9
−78.64


D-1443
  4.55E−9
−61.60
D-1451-run 1
  1.41E−9
−92.19


D-1444-run 1
  3.64E−9
−80.44
D-1451-run 2
  1.61E−09
−88.76


D-1444-run 2
  1.88E−09
−75.71
D-1452-run 1
   477E−12
−84.31


D-1453
  1.64E−9
−77.22
D-1452-run 2
  5.50E−10
−81.90


D-1454-run 1
  1.39E−9
−87.14
D-1459-run 1
   845E−12
−85.31


D-1454-run 2
  2.24E−09
−87.40
D-1459-run 2
  1.24E−09
−93.61


D-1455-run 1
   341E−12
−86.11
D-1460-run 1
   702E−12
−88.96


D-1455-run 2
  2.42E−10
−95.21
D-1460-run 2
  9.15E−10
−89.53


D-1456-run 1
  2.03E−9
−86.90
D-1461
  1.49E−9
−71.01


D-1456-run 2
  1.41E−09
−84.06
D-1462
  7.37E−9
−66.33


D-1457
  1.92E−9
−78.57
D-1463
 >100E−9
−17.28


D-1458-run 1
  6.71E−9
−86.68
D-1464
  7.58E−9
−61.74


D-1458-run 2
  2.24E−09
−94.33
D-1465
  5.16E−9
−75.36


D-1466
 >100E−9
−17.33
D-1475
  9.72E−9
−59.40


D-1467
  10.9E−9
−56.04
D-1476
  1.08E−9
−54.33


D-1468
  3.78E−9
−61.93
D-1477
  2.27E−9
−55.97


D-1469-run 1
   953E−12
−81.14
D-1478
  1.15E−9
−54.86


D-1469-run 2
  1.59E−09
−83.63
D-1479
  1.33E−9
−44.54


D-1470
  19.6E−9
−41.41
D-1480-run 1
  2.03E−9
−85.44


D-1471
  46.7E−9
−37.18
D-1480-run 2
  8.61E−10
−88.52


D-1472
  4.45E−9
−50.43
D-1481-run 1
  1.57E−9
−80.97


D-1473
  2.17E−9
−78.87
D-1481-run 2
  1.33E−09
−90.57


D-1474
  8.29E−9
−61.78
D-1482
  6.26E−9
−53.31


D-1483
  10.8E−9
−73.64
D-1489-run 1
  2.49E−9
−92.70


D-1484
  1.63E−9
−80.04
D-1489-run 2
  2.02E−09
−100.75


D-1485-run 1
   614E−12
−86.35
D-1490
  7.08E−9
−77.03


D-1485-run 2
  7.55E−10
−90.60
D-1491-run 1
  1.31E−9
−95.30


D-1486-run 1
  2.44E−9
−81.67
D-1491-run 2
  9.32E−10
−92.84


D-1486-run 2
  5.61E−10
−85.95
D-1492-run 1
   470E−12
−88.29


D-1487-run 1
  3.14E−9
−92.01
D-1492-run 2
  6.96E−10
−91.86


D-1487-run 2
  4.26E−10
−90.53
D-1493-run 1
  2.72E−9
−89.31


D-1488-run 1
  4.58E−9
−82.33
D-1493-run 2
  2.25E−09
−89.06


D-1488-run 2
  2.65E−09
−80.98
D-1494
  2.08E−9
−79.36


D-1495
  3.7E−9
−63.78
D-1502
  12.3E−9
−60.25


D-1496-run 1
  2.26E−9
−82.93
D-1503-run 1
  1.35E−9
−94.10


D-1496-run 2
  6.17E−10
−86.34
D-1503-run 2
  8.46E−10
−88.39


D-1497-run 1
  3.09E−9
−83.24
D-1504-run 1
  2.62E−9
−92.42


D-1497-run 2
  1.20E−09
−89.93
D-1504-run 2
  2.39E−09
−84.78


D-1498
   958E−12
−79.10
D-1505
  12.1E−9
−44.23


D-1499-run 1
   434E−12
−82.58
D-1506-run 1
  2.33E−9
−82.44


D-1499-run 2
  7.85E−10
−86.02
D-1506-run 2
  2.43E−09
−74.70


D-1500
  2.94E−9
−64.87
D-1507-run 1
  7.22E−9
−85.49


D-1501
  3.79E−9
−67.10
D-1507-run 2
  3.07E−09
−78.73


D-1508
  9.61E−9
−69.25
D-1516
  4.11E−9
−72.86


D-1509-run 1
  1.84E−9
−87.02
D-1517
  1.86E−9
−70.15


D-1509-run 2
  1.54E−09
−90.33
D-1518
  5.19E−9
−80.44


D-1510-run 1
    2E−9
−84.70
D-1519-run 1
  3.16E−9
−87.18


D-1510-run 2
  1.33E−09
−74.09
D-1519-run 2
  1.85E−09
−81.61


D-1511
  4.91E−9
−70.77
D-1520
  2.61E−9
−75.37


D-1512
  13.7E−9
−50.81
D-1521
  8.95E−9
−71.81


D-1513
  10.4E−9
−61.35
D-1522
  1.05E−9
−77.55


D-1514
  8.52E−9
−58.65
D-1523
  5.61E−9
−56.61


D-1515-run 1
  3.02E−9
−94.07
D-1524
  8.18E−9
−70.51


D-1515-run 2
  2.11E−09
−88.32
D-1525-run 1
   187E−12
−85.31


D-1526-run 1
   724E−12
−88.90
D-1525-run 2
  3.09E−10
−89.32


D-1526-run 2
  1.09E−10
−93.08
D-1533-run 1
   160E−12
−87.58


D-1527
   969E−12
−79.47
D-1533-run 2
  1.77E−10
−89.17


D-1528-run 1
   476E−12
−81.98
D-1534
  4.12E−9
−77.89


D-1528-run 2
  5.16E−10
−86.43
D-1535-run 1
  3.91E−9
−81.08


D-1529
   275E−12
−80.46
D-1535-run 2
  2.53E−09
−83.97


D-1530
   603E−12
−79.76
D-1536-run 1
  1.17E−9
−85.54


D-1531-run 1
   465E−12
−81.21
D-1536-run 2
  5.45E−10
−84.54


D-1531-run 2
  4.26E−10
−86.14
D-1537
  5.53E−9
−72.51


D-1532-run 1
   234E−12
−82.79
D-1538
   869E−12
−74.09


D-1532-run 2
  2.09E−10
−88.87
D-1539
  6.85E−9
−74.08


D-1540-run 1
  2.09E−9
−83.12
D-1548
  27.6E−9
−37.78


D-1540-run 2
  1.27E−09
−88.11
D-1549-run 1
  1.04E−9
−93.06


D-1541
   932E−12
−76.06
D-1549-run 2
  8.95E−10
−88.71


D-1542-run 1
  3.16E−9
−81.16
D-1550
   652E−12
−79.25


D-1542-run 2
  1.48E−09
−83.09
D-1551-run 1
   500E−12
−86.59


D-1543
  8.54E−9
−79.76
D-1551-run 2
  5.64E−10
−84.20


D-1544
  8.28E−9
−73.28
D-1552-run 1
   228E−12
−81.86


D-1545
  1.7E−9
−75.05
D-1552-run 2
  3.22E−10
−89.73


D-1546
  1.45E−9
−79.08
D-1553-run 1
   931E−12
−80.68


D-1547
  22.3E−9
−69.31
D-1553-run 2
  8.28E−10
−89.65


D-1554
  1.27E−9
−78.63
D-1560
   456E−12
−74.69


D-1555-run 1
   663E−12
−88.13
D-1561-run 1
  2.39E−9
−83.41


D-1555-run 2
  4.61E−10
−90.35
D-1561-run 2
  3.83E−9
−80.47


D-1556-run 1
   165E−12
−83.51
D-1561-run 3
  2.15E−09
−83.36


D-1556-run 2
  2.53E−10
−87.06
D-1562-run 1
  1.1E−9
−72.98


D-1557-run 1
   440E−12
−87.71
D-1562-run 2
  1.26E−9
−74.09


D-1557-run 2
  2.50E−10
−85.00
D-1563-run 1
   898E−12
−78.70


D-1558-run 1
   762E−12
−81.35
D-1563-run 2
  1.07E−9
−76.14


D-1558-run 2
  2.60E−10
−80.18
D-1564-run 1
   906E−12
−85.03


D-1559-run 1
   668E−12
−87.94
D-1564-run 2
  1.75E−9
−76.80


D-1559-run 2
  5.42E−10
−86.43
D-1564-run 3
  1.01E−09
−81.88


D-1565-run 1
   467E−12
−79.91
D-1570-run 1
   925E−12
−78.14


D-1565-run 2
  1.27E−9
−78.07
D-1570-run 2
   992E−12
−76.81


D-1566-run 1
  1.5E−9
−80.84
D-1571-run 1
   779E−12
−80.29


D-1566-run 2
  4.17E−9
−85.05
D-1571-run 2
  2.7E−9
−80.52


D-1566-run 3
  8.64E−10
−84.74
D-1571-run 3
  8.27E−10
−84.74


D-1567-run 1
  3.71E−9
−75.99
D-1572
   820E−12
−76.58


D-1567-run 2
  2.34E−9
−72.76
D-1573-run 1
  1.52E−9
−79.66


D-1568
  7.49E−9
−49.04
D-1573-run 2
  3.19E−9
−79.88


D-1569-run 1
  2.74E−9
−78.08
D-1574-run 1
  4.19E−9
−60.81


D-1569-run 2
  3.13E−9
−74.70
D-1574-run 2
 >100E−9
−15.89


D-1575-run 1
  1.59E−9
−76.35
D-1579-run 1
   515E−12
−84.80


D-1575-run 2
  2.88E−9
−71.95
D-1579-run 2
   207E−12
−79.57


D-1576-run 1
  1.07E−9
−90.18
D-1579-run 3
  2.98E−09
−83.77


D-1576-run 2
  1.37E−09
−94.66
D-1580-run 1
   233E−12
−83.48


D-1577-run 1
  1.3E−9
−83.26
D-1580-run 2
  3.19E−10
−90.62


D-1577-run 2
  1.52E−9
−80.99
D-1581-run 1
   376E−12
−89.56


D-1577-run 3
  1.14E−09
−85.26
D-1581-run 2
   164E−12
−84.43


D-1578-run 1
  1.34E−9
−84.03
D-1581-run 3
  4.10E−10
−88.78


D-1578-run 2
   571E−12
−77.18
D-1582-run 1
  1.25E−9
−77.75


D-1578-run 3
  6.20E−10
−79.39
D-1582-run 2
  1.38E−9
−73.23


D-1583-run 1
  3.97E−9
−79.12
D-1589
  1.89E−9
−79.52


D-1583-run 2
  2.2E−9
−78.20
D-1590-run 1
  1.56E−9
−86.60


D-1584-run 1
   377E−12
−84.12
D-1590-run 2
  9.85E−10
−86.66


D-1584-run 2
  5.41E−10
−86.04
D-1591
  1.01E−9
−78.77


D-1585-run 1
   854E−12
−83.31
D-1592
  1.67E−9
−78.16


D-1585-run 2
  1.15E−09
−89.54
D-1593
  3.47E−9
−58.82


D-1586
  1.24E−9
−76.28
D-1594
  2.08E−9
−71.26


D-1587-run 1
  1.04E−9
−87.24
D-1595-run 1
   531E−12
−92.76


D-1587-run 2
  1.22E−09
−90.08
D-1595-run 2
  4.46E−10
−93.09


D-1588-run 1
  1.24E−9
−82.16
D-1596-run 1
   655E−12
−95.03


D-1588-run 2
  2.00E−09
−84.12
D-1596-run 2
  6.71E−10
−88.34


D-1597-run 1
   566E−12
−87.01
D-1603-run 1
   868E−12
−84.49


D-1597-run 2
  9.25E−10
−86.25
D-1603-run 2
  1.25E−09
−89.46


D-1598-run 1
  1.07E−9
−81.80
D-1604-run 1
  1.03E−9
−85.81


D-1598-run 2
  1.18E−09
−77.57
D-1604-run 2
  8.37E−10
−82.91


D-1599-run 1
   844E−12
−85.25
D-1605-run 1
   831E−12
−87.43


D-1599-run 2
  7.40E−10
−79.77
D-1605-run 2
  7.85E−10
−84.90


D-1600
  1.34E−9
−65.29
D-1606-run 1
   617E−12
−91.60


D-1601
   646E−12
−71.11
D-1606-run 2
  9.69E−10
−83.11


D-1602-run 1
   668E−12
−88.45
D-1607-run 1
   549E−12
−85.52


D-1602-run 2
  8.97E−10
−91.07
D-1607-run 2
  7.47E−10
−77.90


D-1608
  1.35E−9
−75.97
D-1614-run 1
   803E−12
−80.05


D-1609-run 1
  1.54E−9
−81.34
D-1614-run 2
  6.78E−10
−86.26


D-1609-run 2
  1.63E−09
−77.49
D-1615
  2.12E−9
−67.39


D-1610-run 1
  2.58E−9
−84.25
D-1616
  38.3E−9
−57.61


D-1610-run 2
  2.56E−09
−80.89
D-1617
  4.8E−9
−57.99


D-1611-run 1
   865E−12
−89.50
D-1618-run 1
  1.18E−9
−85.32


D-1611-run 2
  6.04E−10
−86.80
D-1618-run 2
  2.42E−09
−85.91


D-1612
  1.89E−9
−77.95
D-1619
 >100E−9
2.12


D-1613-run 1
  1.29E−9
−84.46
D-1620

−47.40


D-1613-run 2
  1.44E−09
−80.67
D-1621
 >100E−9
1.40


D-1622
  1.37E−9
−79.11
D-1630-run 1
  1.67E−9
−83.08


D-1623
  3.43E−9
−66.62
D-1630-run 2
  2.29E−09
−83.88


D-1624-run 1
  6.9E−9
−85.54
D-1631-run 1
  1.42E−9
−87.66


D-1624-run 2
  3.15E−09
−84.79
D-1631-run 2
  1.12E−09
−86.08


D-1625
  2.07E−9
−79.25
D-1632-run 1
  1.3E−9
−88.34


D-1626-run 1
  2.14E−9
−98.64
D-1632-run 2
  8.33E−10
−85.76


D-1626-run 2
  2.02E−09
−87.31
D-1633-run 1
  1.79E−9
−90.59


D-1627
    6E−9
−67.49
D-1633-run 2
  1.66E−09
−82.90


D-1628
 >100E−9
3.55
D-1634-run 1
   837E−12
−82.47


D-1629-run 1
  1.13E−9
−87.48
D-1634-run 2
  7.69E−10
−84.53


D-1629-run 2
  1.43E−09
−81.66
D-1635-run 1
  1.04E−9
−88.75


D-1636
   964E−12
−69.05
D-1635-run 2
  1.58E−09
−93.88


D-1637
  2.36E−9
−75.45
D-1646
   517E−12
−80.04


D-1638-run 1
   583E−12
−82.46
D-1647
   319E−12
−73.09


D-1638-run 2
  7.20E−10
−85.90
D-1648-run 1
  1.57E−9
−81.70


D-1639
   411E−12
−68.37
D-1648-run 2
  1.30E−09
−84.65


D-1640
   788E−12
−79.76
D-1649
   275E−12
−79.59


D-1641
  1.85E−9
−69.30
D-1650
  1.63E−9
−80.12


D-1642
  2.52E−9
−75.03
D-1651-run 1
   415E−12
−83.10


D-1643
  3.97E−9
−73.66
D-1651-run 2
  3.97E−10
−90.33


D-1644
   886E−12
−67.60
D-1652-run 1
   445E−12
−81.69


D-1645
   822E−12
−70.30
D-1652-run 2
  1.61E−10
−86.02


D-1653
   197E−12
−79.25
D-1663-run 1
   144E−12
−87.88


D-1654-run 1
   279E−12
−85.62
D-1663-run 2
  1.92E−10
−91.58


D-1654-run 2
  3.82E−10
−89.31
D-1664-run 1
   155E−12
−81.73


D-1655-run 1
   380E−12
−88.31
D-1664-run 2
  2.87E−10
−89.13


D-1655-run 2
  3.35E−10
−96.53
D-1665-run 1
   164E−12
−81.33


D-1656-run 1
   200E−12
−87.91
D-1665-run 2
  2.62E−10
−87.08


D-1656-run 2
  1.86E−10
−85.63
D-1666-run 1
   484E−12
−84.08


D-1657-run 1
   144E−12
−85.58
D-1666-run 2
  2.86E−10
−82.03


D-1657-run 2
  3.53E−10
−88.57
D-1667-run 1
   408E−12
−85.17


D-1658
   197E−12
−80.34
D-1667-run 2
  2.66E−10
−87.72


D-1659
   255E−12
−80.45
D-1668-run 1
   650E−12
−83.77


D-1660
   597E−12
−78.68
D-1668-run 2
  2.74E−10
−86.81


D-1661
   219E−12
−78.29





D-1662-run 1
   369E−12
−89.73





D-1662-run 2
  2.84E−10
−96.38












Of the additional 406 mARC1 siRNA molecules targeting different regions of the human mARC1 transcript, 128 molecules produced a reduction of human mARC1 mRNA in Hep3B cells of 85% or greater. Forty-six molecules (duplex nos. D-1061; D-1093; D-1220; D-1276; D-1284; D-1298; D-1310; D-1311; D-1338; D-1363; D-1367; D-1375; D-1381; D-1382; D-1383; D-1386; D-1387; D-1388; D-1389; D-1390; D-1396; D-1400; D-1401; D-1402; D-1405; D-1407; D-1416; D-1420; D-1421; D-1441; D-1451; D-1487; D-1489; D-1491; D-1503; D-1504; D-1515; D-1549; D-1576; D-1581; D-1595; D-1596; D-1606; D-1626; D-1633; and D-1662) reduced human mARC1 mRNA by at least 90% with the majority of the molecules having IC50 values below 1 nM.


Example 4. In Vivo Efficacy of siRNA Molecules in AAV Human mARC1 Mouse Model

To assess the efficacy of the mARC1 siRNA molecules in vivo, the sense strand in each siRNA molecule was conjugated to the trivalent GalNAc moiety shown in Formula VII by the methods described in Example 2 and the mARC1 siRNA molecules were administered to mice expressing the human MARC1 gene. 10-12-week-old C57BL/6 mice (The Jackson Laboratory) were fed standard chow (Harlan, 2020× Teklad global soy protein-free extruded rodent diet). Mice were intraperitoneally (i.p.) injected with an adeno-associated virus (AAV) encoding the human MARC1 gene (AAV-hmARC1) at a dose of 1×1011 genome copies (GC) per animal. One week following AAV-hmARC1 injection, mice received a single subcutaneous (s.c.) injection of buffer or the mARC1 siRNA molecule at a dose of 0.5 mg/kg, 1 mg/kg, or 3 mg/kg body weight in buffer (n=3 each group). Animals were fasted and harvested four weeks following siRNA administration for further analysis. Liver total RNA from harvested animals was processed for qPCR analysis and serum parameters were measured by clinical analyzer (AU400 Chemistry Analyzer, Olympus). A percentage change in human mARC1 mRNA in liver for each animal was calculated relative to human mARC1 mRNA liver levels in control animals which expressed human mARC1 mRNA and received the buffer only injection (i.e. AAV-hmARC1 only animals).


The top performing mARC1 siRNA molecules from the in vitro activity assays described in Example 3 were evaluated for in vivo efficacy in this model. mARC1 siRNA molecules that exhibited significant in vivo knockdown activity were further evaluated in SAR studies to further improve in vivo potency and durability by altering chemical modification patterns. Results of 18 separate studies in the AAV-hmARC1 mouse model with different mARC1 siRNA molecules are shown in Tables 5-22 below. Data are expressed as average percent change from control at week 5 of study (4 weeks after siRNA injection) for each treatment group (n=3 animals/group). If a mARC1 siRNA molecule has the same trigger family designation as another mARC1 siRNA molecule, then the two molecules have the same core sequence (i.e. target the same region of the mARC1 transcript) but differ in chemical modification pattern.









TABLE 5







In vivo inhibition of human mARC1 mRNA in AAV-hmARC1 mice-Study 1

















Avg. %



Avg. %





Change



Change





in



in


Treatment

Trigger
human
Treatment

Trigger
human


(duplex
Dose
Family
mARC1
(duplex
Dose
Family
mARC1


no.)
(mg/kg)
Designation
mRNA
no.)
(mg/kg)
Designation
mRNA

















D-2000
1
T918
−58
D-2032
1
T1110
6.8


D-2001
1
T1114
−71.6
D-2033
1
T1111
8.4


D-2002
1
T1016
−50.6
D-2034
1
T911
−14.1


D-2003
1
T1023
−51.5
D-2035
1
T1079
−25


D-2004
1
T704
−67.4
D-2036
1
T913
−23.6


D-2005
1
T1076
−43.3
D-2038
1
T914
−67.2


D-2008
1
T1476
−45.3
D-2040
1
T1484
−54.7


D-2011
1
T1487
−54.2
D-2042
1
T1372
−76.6


D-2013
1
T1364
−17.3
D-2044
1
T1449
−62.6


D-2022
1
T2131
−67.6
D-2045
1
T2077
−69.2


D-2024
1
T816
−72.8
D-2046
1
T1363
−39.7


D-2026
1
T1108
−10.5
D-2047
1
T1367
−58.4


D-2028
1
T1113
−4.8
D-2049
1
T1104
−26


D-2031
1
T1109
−27.8
D-2050
1
T1101
−42.4
















TABLE 6







In vivo inhibition of human mARC1 mRNA in AAV-hmARC1 mice-Study 2

















Avg. %



Avg. %





Change



Change





in



in


Treatment

Trigger
human
Treatment

Trigger
human


(duplex
Dose
Family
mARC1
(duplex
Dose
Family
mARC1


no.)
(mg/kg)
Designation
mRNA
no.)
(mg/kg)
Designation
mRNA

















D-2006
1
T1080
−60.12
D-2048
1
T1780
−48.24


D-2015
1
T2024
−59.3
D-2051
1
T1670
−61.04


D-2016
1
T2032
−63.1
D-2052
1
T1370
−89.53


D-2017
1
T2034
−70.1
D-2053
1
T1458
−81.49


D-2019
1
T2099
−43.07
D-2054
1
T1878
−36.34


D-2025
1
T1086
−53.07
D-2055
1
T1767
−66.47


D-2027
1
T1105
−22.88
D-2057
1
T788
−69.06


D-2029
1
T976
−42.62
D-2058
1
T1275
−84.33


D-2030
1
T1123
−28.6
D-2059
1
T1814
−78.71


D-2037
1
T898
−18.98
D-2060
1
T1130
−74.14


D-2039
1
T813
−69.93
D-2061
1
T1816
−75.23


D-2041
1
T1127
−21.84
D-2062
1
T1485
−58.27


D-2043
1
T1375
−72.11
















TABLE 7







In vivo inhibition of human mARC1 mRNA in AAV-hmARC1 mice-Study 3

















Avg. %



Avg. %





Change



Change





in



in


Treatment

Trigger
human
Treatment

Trigger
human


(duplex
Dose
Family
mARC1
(duplex
Dose
Family
mARC1


no.)
(mg/kg)
Designation
mRNA
no.)
(mg/kg)
Designation
mRNA

















D-2063
1
T1229
−69.57
D-2075
1
T1382
−52.85


D-2064
1
T885
−26.21
D-2076
1
T1236
−86.21


D-2065
1
T2068
−73.42
D-2077
1
T1235
−87.22


D-2066
1
T1227
−54.74
D-2078
1
T1234
−91.7


D-2067
1
T1268
−27.15
D-2079
1
T2074
−85.91


D-2068
1
T1992
−56.89
D-2080
1
T1233
−88.99


D-2069
1
T1990
−17.92
D-2081
1
T1232
−89.64


D-2070
1
T1959
−72.22
D-2082
1
T2072
−74.89


D-2071
1
T1146
−55.69
D-2083
1
T1005
−78.85


D-2072
1
T1526
−81.87
D-2084
1
T948
−45.28


D-2073
1
T1717
−57.1
D-2085
1
T573
−34.79


D-2074
1
T1077
−25.26
D-2101
1
T836
−57
















TABLE 8







In vivo inhibition of human mARC1 mRNA in AAV-hmARC1 mice-Study 4

















Avg. %



Avg. %





Change



Change





in



in


Treatment

Trigger
human
Treatment

Trigger
human


(duplex
Dose
Family
mARC1
(duplex
Dose
Family
mARC1


no.)
(mg/kg)
Designation
mRNA
no.)
(mg/kg)
Designation
mRNA

















D-2042
1
T1372
−72.75
D-2097
1
T999
−11.78


D-2086
1
T590
−18.09
D-2098
1
T609
−44.23


D-2087
1
T1527
−51.27
D-2099
1
T781
−60.5


D-2088
1
T1067
−23.35
D-2100
1
T830
−41.23


D-2089
1
T1696
−40.51
D-2102
1
T954
−61.93


D-2090
1
T1548
−51.00
D-2103
1
T1833
−35.41


D-2091
1
T235
−20.06
D-2104
1
T2020
−36.31


D-2092
1
T508
−5.28
D-2105
1
T2059
−70.02


D-2093
1
T239
−11.41
D-2106
1
T2060
−64.34


D-2094
1
T1736
−50.26
D-2107
1
T1467
−37.67


D-2095
1
T240
13.33
D-2108
1
T1247
−79.83


D-2096
1
T998
−7.13
D-2109
1
T2133
−31.79
















TABLE 9







In vivo inhibition of human mARC1 mRNA in AAV-hmARC1 mice-Study 5

















Avg. %



Avg. %





Change



Change





in



in


Treatment

Trigger
human
Treatment

Trigger
human


(duplex
Dose
Family
mARC1
(duplex
Dose
Family
mARC1


no.)
(mg/kg)
Designation
mRNA
no.)
(mg/kg)
Designation
mRNA

















D-2042
1
T1372
−75.98
D-2110
1
T596
−67.89


D-2052
3
T1370
−91.31
D-2111
1
T1334
−88.01


D-2052
1
T1370
−79.79
D-2112
1
T840
−57.49


D-2052
0.5
T1370
−51.84
D-2113
1
T1239
−76.41


D-2053
3
T1458
−91.83
D-2114
1
T2016
−59.91


D-2053
1
T1458
−85.54
D-2115
1
T2017
−80.5


D-2053
0.5
T1458
−30.4
D-2116
1
T1475
−71.84


D-2058
3
T1275
−85.79
D-2117
1
T2018
−59.18


D-2058
1
T1275
−74.59
D-2118
1
T2106
−82.04


D-2058
0.5
T1275
−52.58
D-2119
1
T1273
−70.63


D-2059
1
T1814
−71.24
D-2120
1
T1506
−53.72


D-2061
1
T1816
−67.34
D-2121
1
T1537
−67.99
















TABLE 10







In vivo inhibition of human mARC1 mRNA in AAV-hmARC1 mice-Study 6

















Avg. %



Avg. %





Change



Change





in



in


Treatment

Trigger
human
Treatment

Trigger
human


(duplex
Dose
Family
mARC1
(duplex
Dose
Family
mARC1


no.)
(mg/kg)
Designation
mRNA
no.)
(mg/kg)
Designation
mRNA

















D-2042
1
T1372
−70.56
D-2137
1
T2073
−28.29


D-2078
3
T1234
−95.31
D-2138
1
T1089
−42.53


D-2078
1
T1234
−81.28
D-2139
1
T1716
−60.34


D-2078
0.5
T1234
−78.05
D-2140
1
T1124
−46.49


D-2079
3
T2074
−87.42
D-2141
1
T1965
−51.64


D-2079
1
T2074
−71.78
D-2142
1
T1230
−73.09


D-2079
0.5
T2074
−68.17
D-2143
1
T2071
−47.83


D-2080
1
T1233
−87.66
D-2144
1
T1012
−17.18


D-2081
3
T1232
−96.49
D-2145
1
T2102
−73.86


D-2081
1
T1232
−85.71
D-2158
1
T1372
−80.83


D-2081
0.5
T1232
−70.37
D-2169
1
T1372
−71.01


D-2083
1
T1005
−64.01
D-2182
1
T1372
−80.03


D-2134
1
T604
15.84
D-2185
1
T1372
−76.36


D-2135
1
T607
−47.29
D-2189
1
T1372
−82.41


D-2136
1
T1405
−76.24
















TABLE 11







In vivo inhibition of human mARC1 mRNA in


AAV-hmARC1 mice - Study 7















Avg. %






Change






in



Treatment

Trigger
human



(duplex
Dose
Family
mARC1



no.)
(mg/kg)
Designation
mRNA
















D-2042
1
T1372
−70.27



D-2161
1
T914
−29.66



D-2162
1
T1372
−53.65



D-2163
1
T1114
−60.02



D-2166
1
T2077
−9.73



D-2167
1
T816
−9.79



D-2183
1
T1372
−64.17



D-2184
1
T1372
−68.3



D-2186
1
T1372
−73.66



D-2187
1
T1372
−65.74



D-2201
1
T1458
−46.02



D-2206
1
T1814
−32.35



D-2207
1
T1130
−24.97



D-2208
1
T1816
24.09



D-2209
1
T1458
−71.78



D-2210
1
T1275
−40.33



D-2211
1
T1370
−80.39



D-2212
1
T2034
−66.09



D-2213
1
T1375
−72.26



D-2214
1
T1814
−66.69



D-2215
1
T1130
−24.86



D-2216
1
T1816
−44.88



D-2217
1
T1458
−53.44



D-2218
1
T1275
−67.9



D-2222
1
T1814
−61.29



D-2223
1
T1130
−71.27



D-2224
1
T1816
−41.34



D-2225
1
T1458
−82.05



D-2226
1
T1275
−66.42

















TABLE 12







In vivo inhibition of human mARC1 mRNA in AAV-


hmARC1 mice - Study 8













Avg. %





Change





in


Treatment

Trigger
human


(duplex
Dose
Family
mARC1


no.)
(mg/kg)
Designation
mRNA













D-2081
1
T1232
−89


D-2081
1
T1232
−84.81


D-2081
0.5
T1232
−81.83


D-2239
0.5
T1005
−43.57


D-2240
0.5
T1232
−70.09


D-2241
0.5
T1233
−91.21


D-2242
0.5
T2074
−72.33


D-2243
0.5
T1234
−82.12


D-2244
0.5
T1005
−61.6


D-2245
0.5
T1232
−70.32


D-2246
0.5
T1233
−82.34


D-2247
0.5
T2074
−71.57


D-2248
0.5
T1234
−78.58


D-2249
0.5
T1005
−33.8


D-2250
0.5
T1232
−68.42


D-2251
0.5
T1233
−61.68


D-2252
0.5
T2074
−73.55


D-2253
0.5
T1234
−75.93


D-2254
0.5
T1005
−72.84


D-2255
0.5
T1232
−85.73


D-2256
0.5
T1233
−73.31


D-2257
0.5
T2074
−57.42


D-2258
0.5
T1234
−86.98


D-2259
0.5
T1234
−76.42


D-2260
0.5
T2074
−72.66


D-2261
0.5
T1232
−78.9


D-2262
0.5
T2072
−43.95
















TABLE 13







In vivo inhibition of human mARC1 mRNA


in AAV-hmARC1 mice - Study 9















Avg. %






Change






in



Treatment

Trigger
human



(duplex
Dose
Family
mARC1



no.)
(mg/kg)
Designation
mRNA
















D-2042
1
T1372
−70.46



D-2081
0.5
T1232
−73.32



D-2168
1
T914
−25.57



D-2170
1
T1114
−59.16*



D-2173
1
T2077
−29.63



D-2190
1
T1114
−1.89



D-2193
1
T2077
−52.59*



D-2204
1
T2034
−37.36



D-2220
1
T2034
−65.89



D-2227
1
T1113
−39.03



D-2229
1
T1110
−67.96



D-2232
1
T913
−63.89



D-2233
1
T2034
−62.85



D-2236
1
T1130
−61.02



D-2264
0.5
T1233
−63.96



D-2265
0.5
T1234
−70



D-2266
0.5
T2074
−47.47



D-2268
0.5
T1233
−63.89



D-2269
0.5
T1233
−58.41



D-2270
0.5
T1234
−53.36



D-2271
0.5
T1234
−57.52



D-2272
0.5
T2074
−65.81



D-2273
0.5
T2074
−62.06



D-2301
1
T1231
−81.85



D-2302
1
T2070
−72.03



D-2303
1
T2078
−54.08



D-2304
1
T1365
−67.08



D-2305
1
T1366
−71.92



D-2306
1
T1369
−64.17







*averages include one outlier; if outlier removed, average % change would be −79.41% (D-2170) and −70.68% (D-2193).













TABLE 14







In vivo inhibition of human mARC1 mRNA in


AAV-hmARC1 mice - Study 10















Avg. %






Change






in



Treatment

Trigger
human



(duplex
Dose
Family
mARC1



no.)
(mg/kg)
Designation
mRNA
















D-2042
1
T1372
−74.85



D-2081
0.5
T1232
−79.33



D-2307
1
T1373
−57.28



D-2308
1
T1374
−54.28



D-2309
0.5
T1234
−68.23



D-2310
0.5
T2074
−49.9



D-2311
0.5
T1233
−71.87



D-2312
0.5
T1232
−56.57



D-2313
0.5
T2072
−46.01



D-2314
0.5
T1234
−72.33



D-2315
0.5
T2074
−61.11



D-2316
0.5
T1233
−80.59



D-2317
0.5
T1232
−79.12



D-2318
0.5
T2072
−60.72



D-2344
0.5
T1234
−79.85



D-2345
0.5
T2074
−66.64



D-2346
0.5
T1233
−71.49



D-2347
0.5
T1232
−67.88



D-2348
0.5
T2072
−29.7



D-2349
0.5
T1234
−63.39



D-2350
0.5
T2074
−53.12



D-2351
0.5
T1233
−67.77



D-2352
0.5
T1232
−36.82



D-2353
0.5
T2072
−37.66



D-2393
0.5
T1234
−47.75



D-2394
0.5
T2074
−65.84



D-2395
0.5
T1233
−70.01



D-2396
0.5
T1232
−54.78



D-2397
0.5
T2072
−28.06

















TABLE 15







In vivo inhibition of human mARC1 mRNA in


AAV-hmARC1 mice - Study 11















Avg. %






Change






in



Treatment

Trigger
human



(duplex
Dose
Family
mARC1



no.)
(mg/kg)
Designation
mRNA
















D-2081
0.5
T1232
−79.43



D-2319
0.5
T1234
−63.31



D-2320
0.5
T2074
−61.86



D-2321
0.5
T1233
−75.48



D-2322
0.5
T1232
−59.65



D-2323
0.5
T2072
−34.97



D-2324
0.5
T1234
−72.96



D-2325
0.5
T2074
−66.78



D-2326
0.5
T1233
−66.35



D-2327
0.5
T1232
−55.48



D-2328
0.5
T2072
−32.95



D-2329
0.5
T1234
−79.94



D-2330
0.5
T2074
−35.52



D-2331
0.5
T1233
−55.59



D-2332
0.5
T1232
−77.85



D-2333
0.5
T2072
−28.56



D-2334
0.5
T1234
−69.42



D-2335
0.5
T2074
−40.1



D-2336
0.5
T1233
−59.06



D-2337
0.5
T1232
−53.38



D-2338
0.5
T2072
−56.97



D-2339
0.5
T1234
−72.93



D-2340
0.5
T2074
−46.96



D-2341
0.5
T1233
−83.39



D-2342
0.5
T1232
−64.03



D-2354
0.5
T1234
−66.85



D-2355
0.5
T2074
−49.63



D-2356
0.5
T1233
−80.84



D-2357
0.5
T1232
−76.56

















TABLE 16







In vivo inhibition of human mARC1 mRNA


in AAV-hmARC1 mice - Study 12















Avg. %






Change






in



Treatment

Trigger
human



(duplex
Dose
Family
mARC1



no.)
(mg/kg)
Designation
mRNA
















D-2042
1
T1372
−78.96



D-2080
0.5
T1233
−76.6



D-2081
0.5
T1232
−80.5



D-2241
0.5
T1233
−79.44



D-2258
0.5
T1234
−79.5



D-2374
1
T1334
−76.39



D-2375
1
T1334
−84.32



D-2376
1
T1239
−77.92



D-2377
1
T2017
−68.11



D-2378
1
T2106
−73.92



D-2379
1
T1334
−81.46



D-2380
1
T1239
−60.94



D-2381
1
T2017
−73.06



D-2382
1
T2106
−72.66



D-2384
1
T1372
−87.07



D-2385
1
T1372
−86.66



D-2386
1
T1372
−82.75



D-2387
1
T1372
−85.64



D-2388
1
T1372
−85.26



D-2389
1
T1372
−82.12



D-2390
1
T1372
−78.41



D-2391
1
T1372
−88.62



D-2392
1
T1372
−79.8



D-2399
1
T1372
−90.61



D-2400
1
T1372
−82.94



D-2401
1
T1372
−92.12



D-2402
1
T1372
−73.56



D-2403
1
T1372
−89.72

















TABLE 17







In vivo inhibition of human mARC1 mRNA in


AAV-hmARC1 mice - Study 13















Avg. %






Change






in



Treatment

Trigger
human



(duplex
Dose
Family
mARC1



no.)
(mg/kg)
Designation
mRNA
















D-2042
1
T1372
−72.06



D-2045
1
T2077
−70.1



D-2053
0.5
T1458
−43.98



D-2079
0.5
T2074
−74.22



D-2079
0.5
T2074
−67.06



D-2081
0.5
T1232
−75.85



D-2158
0.5
T1372
−77.49



D-2159
1
T1114
−73.23



D-2170
1
T1114
−69.02



D-2182
0.5
T1372
−80.47



D-2188
1
T914
−78.98



D-2189
0.5
T1372
−76.83



D-2193
1
T2077
−69.63



D-2196
1
T2034
−87.29



D-2200
1
T1816
−69.25



D-2225
0.5
T1458
−65.93



D-2228
1
T1016
−81.59



D-2230
1
T1111
−28.82



D-2231
1
T911
−41.89



D-2237
1
T1816
−50.64



D-2238
1
T1458
−80.45



D-2242
0.5
T2074
−69.91



D-2247
0.5
T2074
−59.81



D-2252
0.5
T2074
−63.16



D-2254
0.5
T1005
−34.25



D-2260
0.5
T2074
−71.08



D-2267
1
T1816
−21.42



D-2343
0.5
T2072
−37.41



D-2358
0.5
T2072
−36.05

















TABLE 18







In vivo inhibition of human mARC1 mRNA


in AAV-hmARC1 mice - Study 14















Avg. %






Change






in



Treatment

Trigger
human



(duplex
Dose
Family
mARC1



no.)
(mg/kg)
Designation
mRNA
















D-2081
0.5
T1232
−76.37



D-2108
0.5
T1247
−75.82



D-2111
0.5
T1334
−78.2



D-2113
0.5
T1239
−69.06



D-2115
0.5
T2017
−69.6



D-2118
0.5
T2106
−66.06



D-2430
0.5
T1334
−72.94



D-2431
0.5
T1239
−66.56



D-2432
0.5
T2017
−76.11



D-2433
0.5
T2106
−67.19



D-2434
0.5
T1405
−24.95



D-2435
0.5
T1526
−68.17



D-2436
0.5
T1247
−69.01



D-2437
0.5
T1231
−75.43



D-2438
0.5
T1405
−35.85



D-2439
0.5
T1526
−64.23



D-2440
0.5
T1247
−78.51



D-2441
0.5
T1231
−72.52



D-2442
0.5
T1405
−9.8



D-2443
0.5
T1526
−48.33



D-2444
0.5
T1247
−62.49



D-2445
0.5
T1231
−56.81



D-2446
0.5
T1334
−68.94



D-2447
0.5
T1239
−56.33



D-2448
0.5
T2017
−67.27



D-2449
0.5
T2106
−75.69



D-2450
0.5
T1405
−45.34



D-2451
0.5
T1526
−64.83



D-2453
0.5
T1231
−65.09

















TABLE 19







In vivo inhibition of human mARC1 mRNA in


AAV-hmARC1 mice - Study 15















Avg. %






Change






in



Treatment

Trigger
human



(duplex
Dose
Family
mARC1



no.)
(mg/kg)
Designation
mRNA
















D-2081
0.5
T1232
−78.97



D-2199
0.5
T1130
−59.09



D-2454
0.5
T2074
−65.23



D-2455
0.5
T2074
−67.42



D-2456
0.5
T2074
−61.94



D-2457
0.5
T2074
−65.7



D-2458
0.5
T2074
−46.41



D-2459
0.5
T2074
−50.02



D-2460
0.5
T2074
−60.38



D-2461
0.5
T2034
−58.32



D-2462
0.5
T1114
−77.64



D-2463
0.5
T2077
−70.9



D-2464
0.5
T1130
−58.04



D-2465
0.5
T2072
−65.15



D-2466
0.5
T1959
−55.27



D-2467
0.5
T1334
−75.26



D-2468
0.5
T2072
−60.05



D-2469
0.5
T1959
−44.15



D-2470
0.5
T2072
−51.87



D-2471
0.5
T1959
−34.89



D-2472
0.5
T2077
−43.85



D-2473
0.5
T2072
−60.33



D-2474
0.5
T1959
−38.56



D-2475
0.5
T1130
−38.23



D-2476
0.5
T1334
−65.84



D-2477
0.5
T2072
−45.84



D-2478
0.5
T1959
−50.33



D-2479
0.5
T1114
−62.99



D-2480
0.5
T1526
−79.32

















TABLE 20







In vivo inhibition of human mARC1 mRNA


in AAV-hmARC1 mice - Study 16















Avg. %






Change






in



Treatment

Trigger
human



(duplex
Dose
Family
mARC1



no.)
(mg/kg)
Designation
mRNA
















D-2078
0.5
T1234
−80.46



D-2080
0.5
T1233
−78.74



D-2081
0.5
T1232
−71.47



D-2082
0.5
T2072
−63.84



D-2105
0.5
T2059
−62.69



D-2136
0.5
T1405
−32.32



D-2241
3
T1233
−96.62



D-2241
1
T1233
−92.47



D-2241
0.5
T1233
−84.8



D-2243
3
T1234
−97.39



D-2243
1
T1234
−94.88



D-2243
0.5
T1234
−83.38



D-2246
3
T1233
−95.55



D-2246
1
T1233
−92.55



D-2246
0.5
T1233
−81.55



D-2255
3
T1232
−95.38



D-2255
1
T1232
−84.2



D-2255
0.5
T1232
−76.6



D-2258
3
T1234
−96.65



D-2258
1
T1234
−89.16



D-2258
0.5
T1234
−79.98



D-2301
0.5
T1231
−87.12



D-2316
0.5
T1233
−76.86



D-2317
0.5
T1232
−66.58



D-2318
0.5
T2072
−54.2



D-2341
0.5
T1233
−90.21



D-2344
0.5
T1234
−72.37



D-2481
0.5
T1526
−78.98



D-2072
0.5
T1526
−71.36

















TABLE 21







In vivo inhibition of human mARC1 mRNA


in AAV-hmARC1 mice - Study 17















Avg. %






Change






in



Treatment

Trigger
human



(duplex
Dose
Family
mARC1



no.)
(mg/kg)
Designation
mRNA
















D-2057
0.5
T788
−36.45



D-2060
0.5
T1130
−49.77



D-2081
0.5
T1232
−78.72



D-2188
0.5
T914
−41.93



D-2196
3
T2034
−94.08



D-2196
1
T2034
−78.27



D-2196
0.5
T2034
−67.92



D-2225
3
T1458
−91.32



D-2225
1
T1458
−79.05



D-2225
0.5
T1458
−57.61



D-2238
0.5
T1458
−74.65



D-2260
3
T2074
−91.09



D-2260
1
T2074
−74.13



D-2260
0.5
T2074
−56.43



D-2384
0.5
T1372
−76.06



D-2391
0.5
T1372
−69.13



D-2399
0.5
T1372
−75.08



D-2399
1
T1372
−78.92



D-2399
3
T1372
−95.3



D-2401
0.5
T1372
−56.74



D-2401
1
T1372
−84.24



D-2401
3
T1372
−91.75



D-2403
0.5
T1372
−58.73



D-2462
3
T1114
−86.71



D-2462
1
T1114
−55.52



D-2462
0.5
T1114
−35.15



D-2465
3
T2072
−91.63



D-2465
1
T2072
−67.47



D-2465
0.5
T2072
−62.5

















TABLE 22







In vivo inhibition of human mARC1 mRNA


in AAV-hmARC1 mice - Study 18















Avg. %






Change






in



Treatment

Trigger
human



(duplex
Dose
Family
mARC1



no.)
(mg/kg)
Designation
mRNA
















D-2081
0.5
T1232
−80.49



D-2483
0.5
T788
−19.16



D-2484
0.5
T1475
−48.32



D-2485
0.5
T1273
−34.62



D-2486
0.5
T2102
−50.34



D-2487
0.5
T2070
−44.11



D-2488
0.5
T1366
−55.46



D-2489
0.5
T788
−15.04



D-2490
0.5
T1475
−71.42



D-2491
0.5
T1273
−47.55



D-2492
0.5
T2102
−59.06



D-2493
0.5
T2070
−51.01



D-2494
0.5
T1366
−65.43



D-2495
0.5
T788
−46.33



D-2496
0.5
T1475
−35.85



D-2497
0.5
T1273
−59.29



D-2498
0.5
T2102
−21.14



D-2499
0.5
T2070
−15.52



D-2500
0.5
T1366
−35.23



D-2501
0.5
T788
−23.95



D-2502
0.5
T1475
−53.81



D-2503
0.5
T1273
−52.52



D-2504
0.5
T2102
−66.42



D-2505
0.5
T2070
−37.75



D-2506
0.5
T1366
−62.14



D-2507
0.5
T788
−45.32



D-2509
0.5
T1273
−15.16



D-2510
0.5
T2102
−80.41



D-2511
0.5
T2070
−65.62



D-2512
0.5
T1366
−68.19










Two mARC1 siRNA molecules, which exhibited significant silencing activity in early in vivo studies (duplex nos. D-2042 and D-2081), were used as benchmark compounds in later in vivo studies. Seventy mARC1 siRNA molecules produced a 75% or greater reduction of human mARC1 mRNA in the AAV-hmARC1 mice at four weeks following a single s.c. injection at a dose of 1 mg/kg. Some of the tested mARC1 siRNA molecules, including D-2081, D-2241, D-2255, and D-2258, were particularly potent as evidenced by an 85% or greater reduction of human mARC1 mRNA at four weeks with just a single s.c. injection of 0.5 mg/kg. In addition, mARC1 siRNA molecules targeting certain regions of the human mARC1 transcript were observed to produce greater reductions of human mARC1 mRNA in vivo as compared to mARC1 siRNA molecules targeting other regions of the transcript. For example, mARC1 siRNA molecules with antisense strands having a sequence complementary to a region of the human mARC1 transcript (SEQ ID NO: 1) between nucleotides 1205 to 1250, nucleotides 1345 to 1375, or nucleotides 2039 to 2078 exhibited significant knockdown activity four weeks after a single s.c. injection at 1 mg/kg (Table 23). Table 23 summarizes the average percent change in human mARC1 mRNA liver levels from the studies described above for siRNA molecules having the same chemical modification pattern and targeting the human transcript at the indicated nucleotide range. mARC1 siRNA molecules targeting the human transcript between nucleotides 1211 to 1236 were especially efficacious as administration of a single s.c. dose of 1 mg/kg of such siRNA molecules reduced human mARC1 mRNA levels by greater than 80% for at least four weeks following dosing.









TABLE 23







Summary of in vivo efficacy for mARC1 siRNA molecules targeting specific


transcript regions















Avg. %



Target site


change in



within


human



human MARC1


mARC1



transcript


mRNA at 4


Duplex
(SEQ ID
Antisense sequence
Antisense sequence
weeks


No.
NO: 1)
(unmodified)
(modified)
(1 mg/kg)










Human MARC1 transcript region 1











D-2066
1207-
AUAAUAUUCCAGGACAUACGGUU
asUfsaauaUfuccaggAfcAfuacggsusu
-54.74



1227
(SEQ ID NO: 1053)
(SEQ ID NO: 3324)






D-2063
1209-
AUCUAAUAUUCCAGGACAUACUU
asUfscuaaUfauuccaGfgAfcauacsusu
-69.57



1229
(SEQ ID NO: 1054)
(SEQ ID NO: 3321)






D-2142
1210-
AAUCUAAUAUUCCAGGACAUAUU
asAfsucuaAfuauuccAfgGfacauasusu
-73.09



1230
(SEQ ID NO: 1055)
(SEQ ID NO: 3394)






D-2301
1211-
ACAUCUAAUAUUCCAGGACAUUU
asCfsaucuAfauauucCfaGfgacaususu
-81.85



1231
(SEQ ID NO: 1055)
(SEQ ID NO: 3501)






D-2081
1212-
AGCAUCUAAUAUUCCAGGACAUU
asGfscaucUfaauauuCfcAfggacasusu
-87.301



1232
(SEQ ID NO: 1057)
(SEQ ID NO: 3339)






D-2080
1213-
AGGCAUCUAAUAUUCCAGGACUU
asGfsgcauCfuaauauUfcCfaggacsusu
-88.322



1233
(SEQ ID NO: 1058)
(SEQ ID NO: 3338)






D-2078
1214-
AAGGCAUCUAAUAUUCCAGGAUU
asAfsggcaUfcuaauaUfuCfcaggasusu
-86.492



1234
(SEQ ID NO: 1059)
(SEQ ID NO: 3336)






D-2077
1215-
AAAGGCAUCUAAUAUUCCAGGUU
asAfsaggcAfucuaauAfuUfccaggsusu
-87.22



1235
(SEQ ID NO: 1060)
(SEQ ID NO: 3335)






D-2076
1216-
AAAAGGCAUCUAAUAUUCCAGUU
asAfsaaggCfaucuaaUfaUfuccagsusu
-86.21



1236
(SEQ ID NO: 1061)
(SEQ ID NO: 3334)






D-2113
1219-
UUUAAAAGGCAUCUAAUAUUCUU
usUfsuaaaAfggcaucUfaAfuauucsusu
-76.41



1239
(SEQ ID NO: 1196)
(SEQ ID NO: 3371)






D-2108
1227-
AGAACAUUUUUAAAAGGCAUCUU
asGfsaacaUfuuuuaaAfaGfgcaucsusu
-79.83



1247
(SEQ ID NO: 1197)
(SEQ ID NO: 3366)






D-2067
1248-
AUUCAAGUGUUGUCAUUUUUGUU
asUfsucaaGfuguuguCfaUfuuuugsusu
-27.15



1268
(SEQ ID NO: 969)
(SEQ ID NO: 3325)











Human MARC1 transcript region 2











D-2013
1344-
AAUUGAAGCAUUGAGACACCAUU
asAfsuugaAfgcauugAfgAfcaccasusu
-17.3



1364
(SEQ ID NO: 842)
(SEQ ID NO: 2754)






D-2304
1345-
ACAUUGAAGCAUUGAGACACCUU
asCfsauugAfagcauuGfaGfacaccsusu
-67.08



1365
(SEQ ID NO: 843)
(SEQ ID NO: 3504)






D-2305
1346-
AACAUUGAAGCAUUGAGACACUU
asAfscauuGfaagcauUfgAfgacacsusu
-71.92



1366
(SEQ ID NO: 844)
(SEQ ID NO: 3505)






D-2047
1347-
AGACAUUGAAGCAUUGAGACAUU
asGfsacauUfgaagcaUfuGfagacasusu
-58.4



1367
(SEQ ID NO: 845)
(SEQ ID NO: 2788)






D-2306
1349-
UGGGACAUUGAAGCAUUGAGAUU
usGfsggacAfuugaagCfaUfugagasusu
-64.17



1369
(SEQ ID NO: 846)
(SEQ ID NO: 3506)






D-2052
1350-
AUGGGACAUUGAAGCAUUGAGUU
asUfsgggaCfauugaaGfcAfuugagsusu
-84.663



1370
(SEQ ID NO: 847)
(SEQ ID NO: 2793)






D-2042
1352-
AACUGGGACAUUGAAGCAUUGUU
asAfscuggGfacauugAfaGfcauugsusu
-73.614



1372
(SEQ ID NO: 848)
(SEQ ID NO: 2783)






D-2307
1353-
ACACUGGGACAUUGAAGCAUUUU
asCfsacugGfgacauuGfaAfgcauususu
-57.28



1373
(SEQ ID NO: 973)
(SEQ ID NO: 3507)






D-2308
1354-
UGCACUGGGACAUUGAAGCAUUU
usGfscacuGfggacauUfgAfagcaususu
-54.28



1374
(SEQ ID NO: 849)
(SEQ ID NO: 3508)






D-2043
1355-
UUGCACUGGGACAUUGAAGCAUU
usUfsgcacUfgggacaUfuGfaagcasusu
-72.11



1375
(SEQ ID NO: 850)
(SEQ ID NO: 2784)






D-2075
1362-
UUACUUUUUGCACUGGGACAUUU
usUfsacuuUfuugcacUfgGfgacaususu
-52.85



1382
(SEQ ID NO: 1220)
(SEQ ID NO: 3333)











Human MARC1 transcript region 3











D-2017
2014-
UAGAUAUUGGGUUUUAAACAAUU
usAfsgauaUfuggguuUfuAfaacaasusu
-70.1



2034
(SEQ ID NO: 914)
(SEQ ID NO: 2758)






D-2105
2039-
UAGAGUUAUACAAUCAGUUAAUU
usAfsgaguUfauacaaUfcAfguuaasusu
-70.02



2059
(SEQ ID NO: 1333)
(SEQ ID NO: 3363)






D-2106
2040-
UUAGAGUUAUACAAUCAGUUAUU
usUfsagagUfuauacaAfuCfaguuasusu
-64.34



2060
(SEQ ID NO: 1334)
(SEQ ID NO: 3364)






D-2065
2048-
AUCAGAUCUUAGAGUUAUACAUU
asUfscagaUfcuuagaGfuUfauacasusu
-73.42



2068
(SEQ ID NO: 1073)
(SEQ ID NO: 3323)






D-2302
2050-
UCAUCAGAUCUUAGAGUUAUAUU
usCfsaucaGfaucuuaGfaGfuuauasusu
-72.03



2070
(SEQ ID NO: 1074)
(SEQ ID NO: 3502)






D-2143
2051-
UUCAUCAGAUCUUAGAGUUAUUU
usUfscaucAfgaucuuAfgAfguuaususu
-47.83



2071
(SEQ ID NO: 1075)
(SEQ ID NO: 3395)






D-2082
2052-
AUUCAUCAGAUCUUAGAGUUAUU
asUfsucauCfagaucuUfaGfaguuasusu
-74.89



2072
(SEQ ID NO: 1075)
(SEQ ID NO: 3340)






D-2137
2053-
ACUUCAUCAGAUCUUAGAGUUUU
asCfsuucaUfcagaucUfuAfgaguususu
-28.29



2073
(SEQ ID NO: 1077)
(SEQ ID NO: 3389)






D-2079
2054-
UACUUCAUCAGAUCUUAGAGUUU
usAfscuucAfucagauCfuUfagagususu
-78.842



2074
(SEQ ID NO: 1078)
(SEQ ID NO: 3337)






D-2045
2057-
AUAUACUUCAUCAGAUCUUAGUU
asUfsauacUfucaucaGfaUfcuuagsusu
-69.655



2077
(SEQ ID NO: 916)
(SEQ ID NO: 2786)






D-2303
2058-
AAUAUACUUCAUCAGAUCUUAUU
asAfsuauaCfuucaucAfgAfucuuasusu
-54.08



2078
(SEQ ID NO: 917)
(SEQ ID NO: 3503)






D-2019
2079-
AAGGACAAAAUGGCAAUAAAAUU
asAfsggacAfaaauggCfaAfuaaaasusu
-43.07



2099
(SEQ ID NO: 920)
(SEQ ID NO: 2760)






1Average from 1 mg/kg dose groups in studies 3, 6, and 8 (Tables 7, 10, and 12, respectively)




2Average from 1 mg/kg dose groups in studies 3 and 6 (Tables 7 and 10, respectively)




3Average from 1 mg/kg dose groups in studies 2 and 5 (Tables 6 and 9, respectively)




4Average from 1 mg/kg dose groups in studies 1, 4, 5, 6, 7, 9, 10, 12, and 13 (Tables 5, 8, 9, 10, 11, 13, 14, 16 and 17, respectively)




5Average from 1 mg/kg dose groups in studies 1 and 13 (Tables 5 and 17, respectively)







Example 5. Efficacy of mARC1 siRNA in Treatment of NASH in a Mouse Model

To determine whether inhibition of mARC1 expression may be therapeutic for fatty liver diseases, mice on a 0.2% cholesterol diet (TD190883 diet) were administered an siRNA molecule targeting the mouse Marc1 gene or a control siRNA molecule. The TD190883 diet contains 0.2% cholesterol, 20% fructose, 12% sucrose, and 22% hydrogenated vegetable oil (HVO). Similar diets have been shown to induce features of NAFLD and NASH in mice placed on the diet over several weeks (see, e.g., Zhong et al., Digestion, Vol. 101:522-535, 2020 and Kroh et al., Gastroenterol Res Pract. Vol. 2020:7347068, 2020, doi:10.1155/2020/7347068).


6-week-old male c57BL/6 mice (Charles River Laboratories) were fed standard chow (Harlan, 2020× Teklad global soy protein-free extruded rodent diet) or 0.2% cholesterol diet (TD190883, Envigo). Mice on the 0.2% cholesterol diet received, by subcutaneous injection, buffer alone (phosphate-buffered saline), mARC1-targeted siRNA (duplex no. D-1000), or a control siRNA (duplex no. D-1002) at 3 mg/kg body weight in 0.2 ml buffer once every two weeks for 24 weeks. The siRNA molecules were synthesized and conjugated to a trivalent GalNAc moiety (structure shown in Formula VII) as described in Example 2. The structure of each of the siRNA molecules is provided in Tables 1 and 2. Animals were fasted and harvested on week 24 for further analysis. Liver total RNA from harvested animals was processed for qPCR analysis and serum parameters were measured by clinical analyzer (AU400 Chemistry Analyzer, Olympus). mRNA levels were first normalized to 18S ribosomal RNA levels in each liver sample, and then compared to the expression levels in the chow control group. Data were presented as relative fold over expression in the chow control group. Liver tissues were homogenized and extracted by isopropanol for total cholesterol and total triglyceride measurement (ThermoFisher, Infinity cholesterol and Infinity triglyceride). All animal housing conditions and research protocols were approved by the Amgen Institutional Animal Care and Use Committee (IACUC). Mice were housed in a specified-pathogen free, AAALAC, Intl-accredited facility in ventilated microisolators. Procedures and housing rooms were positively pressured and regulated on a 12:12 dark:light cycle. All animals received reverse-osmosis purified water ad libitum via an automatic watering system.


Liver expression of both mARC1 and mARC2 was reduced in mice fed the 0.2% cholesterol diet. mARC1 expression, but not mARC2 expression, was further reduced in animals treated with the mARC1-targeted siRNA (FIGS. 5A and 5B). As expected, mice on the 0.2% cholesterol diet had increased serum levels of liver enzymes (AST and ALT), cholesterol, LDL-cholesterol (LDL-C) and HDL-cholesterol (HDL-C) over the course of the study (FIGS. 6A-6E). Treatment with the mARC1-targeted siRNA reduced the diet-induced increases in serum cholesterol, LDL-C and HDL-C (FIGS. 6C-6E). The mARC1 siRNA treatment also showed a trend in reducing diet-induced serum levels of liver enzymes (FIGS. 6A-6B). Animals on the 0.2% cholesterol diet had increased body and liver weight after 24 weeks (FIGS. 7A and 7B). Triglyceride and cholesterol levels in the liver were also increased in animals on the 0.2% cholesterol diet at 24 weeks (FIGS. 7C and 7D). mARC1 siRNA treatment did not significantly reduce the diet-induced increases in body weight, liver weight, liver triglyceride levels or liver cholesterol levels (FIGS. 7A-7D).


In sum, the results of this study show that inhibition of mARC1 liver expression with a mARC1-targeted siRNA molecule reduces serum cholesterol, LDL-C, HDL-C, and liver enzymes in a mouse model of NASH, suggesting that mARC1 siRNA molecules may be a novel therapeutic approach for treating this disease and other fatty liver disorders.


Example 6. Impact of Mismatches on Potency of mARC1 siRNA Molecules

To assess the effect of base pair mismatches on the potency of mARC1 siRNA molecules, analogs of a subset of the most potent siRNA molecules were synthesized to have a different nucleotide at positions 6 or 8 from the 5′ end of the antisense strand such that a base pair mismatch was created at that position when the antisense strand hybridized to its target region of the mARC1 mRNA transcript. However, in each analog, the sequence of the sense strand was designed to be fully complementary to the sequence of the antisense strand so no mismatches were created between the sense and antisense strands in the siRNA duplex. The unmodified and modified sequences for each of the mismatch analogs (duplex nos. D-2514 to D-2561) and the parental siRNA molecules (duplex nos. D-2052, D-2072, D-2076, D-2077, D-2079, D-2081, D-2105, D-2108, D-2111, D-2113, D-2115, D-2118, D-2142, D-2136, D-2189, D-2196, D-2238, D-2241, D-2254, D-2258, D-2301, D-2462, D-2465, and D-2510) are provided in Tables 1 and 2, respectively. The efficacy of the mismatch analogs and the parental siRNA molecules in reducing human mARC1 mRNA levels was evaluated in Hep3B cells using the in vitro RNA FISH assay described in Example 3 above. Ten different concentrations of each of the siRNA molecules ranging from 100 nM to 5 pM were tested, and IC50 and maximum activity values were calculated from the dose response curves as described in Example 3. The results of these assays are shown in Table 24 below.









TABLE 24







In vitro efficacy of mARC1 siRNA mismatch analogs in Hep3B cells












Target site
Mismatch





within human
Position





MARC1
from 5′ end





transcript (SEQ
of antisense

Max


Duplex No.
ID NO: 1)
strand
IC50 [M]
Activity





D-2254
 985-1005
none
4.17E−09
−83.59


D-2514
 985-1005
6

−74.91


D-2515
 985-1005
8
2.97E−08
−78.35


D-2462
1092-1114
none
 6.9E−10
−93.14


D-2516
1092-1114
6
2.00E−08
−79.30


D-2517
1092-1114
8
1.54E−09
−87.85


D-2142
1210-1230
none
6.82E−10
−90.23


D-2518
1210-1230
6
3.34E−09
−82.58


D-2519
1210-1230
8
4.63E−09
−85.78


D-2301
1211-1231
none
 3.3E−10
−84.34


D-2520
1211-1231
6
7.59E−09
−79.51


D-2521
1211-1231
8
1.49E−08
−70.30


D-2081
1212-1232
none
5.88E−10
−86.84


D-2522
1212-1232
6
2.91E−09
−85.61


D-2523
1212-1232
8
2.33E−09
−89.43


D-2241
1215-1233
none
1.26E−09
−86.29


D-2524
1215-1233
6
2.51E−08
−82.90


D-2525
1215-1233
8
5.49E−09
−85.28


D-2258
1214-1234
none
7.55E−10
−81.90


D-2526
1214-1234
6
3.37E−09
−86.17


D-2527
1214-1234
8
2.24E−08
−73.80


D-2077
1215-1235
none
4.42E−10
−87.32


D-2528
1215-1235
6
5.33E−09
−86.59


D-2529
1215-1235
8
 5.6E−09
−86.43


D-2076
1216-1236
none
5.41E−10
−89.64


D-2530
1216-1236
6
1.79E−08
−82.25


D-2531
1216-1236
8
2.52E−09
−82.91


D-2113
1219-1239
none
5.86E−10
−86.53


D-2532
1219-1239
6
1.10E−08
−82.08


D-2533
1219-1239
8
6.44E−09
−76.61


D-2108
1227-1247
none
1.44E−09
−85.90


D-2534
1227-1247
6
 4.7E−09
−78.40


D-2535
1227-1247
8
3.69E−09
−85.20


D-2111
1314-1334
none
2.78E−10
−88.86


D-2536
1314-1334
6

−31.51


D-2537
1314-1334
8
 4.7E−09
−83.69


D-2052
1350-1370
none
5.75E−10
−80.89


D-2538
1350-1370
6
1.49E−08
−75.03


D-2539
1350-1370
8
2.19E−09
−81.35


D-2189
1352-1372
none
1.49E−09
−85.52


D-2540
1352-1372
6

−76.77


D-2541
1352-1372
8
 4.1E−09
−88.64


D-2136
1385-1405
none
9.11E−10
−84.91


D-2542
1385-1405
6

−16.91


D-2543
1385-1405
8
3.21E−08
−70.17


D-2238
1438-1458
none
7.37E−10
−77.36


D-2544
1438-1458
6
1.12E−08
−61.11


D-2545
1438-1458
8
7.51E−09
−82.10


D-2072
1506-1526
none
8.57E−10
−87.83


D-2546
1506-1526
6
8.49E−09
−83.30


D-2547
1506-1526
8
2.68E−09
−87.92


D-2115
1997-2017
none
5.67E−10
−82.42


D-2548
1997-2017
6
8.32E−09
−84.98


D-2549
1997-2017
8
2.82E−09
−83.58


D-2196
2016-2034
none
1.38E−09
−82.91


D-2550
2016-2034
6
1.85E−08
−78.12


D-2551
2016-2034
8

−75.52


D-2105
2039-2059
none
7.52E−10
−89.10


D-2552
2039-2059
6
1.45E−08
−83.79


D-2553
2039-2059
8
4.00E−09
−82.31


D-2465
2052-2072
none
5.98E−10
−84.77


D-2554
2052-2072
6
6.74E−09
−77.83


D-2555
2052-2072
8
2.05E−09
−86.44


D-2079
2054-2074
none
4.03E−10
−85.54


D-2556
2054-2074
6
2.74E−09
−71.14


D-2557
2054-2074
8
3.57E−09
−84.85


D-2510
2082-2102
none
4.08E−10
−81.51


D-2558
2082-2102
6
2.35E−08
−62.54


D-2559
2082-2102
8
1.61E−09
−84.40


D-2118
2086-2106
none
4.64E−10
−82.20


D-2560
2086-2106
6
9.57E−09
−75.61


D-2561
2086-2106
8
7.37E−09
−83.48









For the majority of the molecules, the mismatches at positions 6 and 8, which are located within the seed region of the antisense strand, did not significantly affect the maximum knockdown activity or the potency of the siRNA molecules as compared to the parental molecules in which the antisense strand was fully complementary to the target mARC1 mRNA sequence. These results are somewhat surprising as the seed region of the antisense strand (i.e. nucleotides 2 to 8 from the 5′ end) is believed to be important for on-target efficacy.


Example 7. In Vivo Efficacy of mARC1 siRNA Molecules in Non-Human Primates

Efficacy and pharmacokinetic profile of three different mARC1 siRNA molecules (duplex nos. D-2241, D-2081, or D-2258) were evaluated in cynomolgus monkeys. Each of the three different mARC1 siRNA molecules had antisense strand sequences that cross-reacted with the cynomolgus monkey (Macaca fascicularis) MARC1 gene. Female treatment-naïve cynomolgus macaque monkeys, ages 22 to 48 months, of Mauritius origin were sourced from Charles River Laboratories, Inc. Research Model Services (Houston, Tex.). Animals (n=3 per treatment group) were administered a single 3 mg/kg subcutaneous (s.c.) injection into the scapular and mid-dorsal region of GalNAc-conjugated mARC1 siRNA molecule, either duplex no. D-2241, D-2081, or D-2258, formulated in 1× phosphate buffered saline. Serum was prepared from whole blood collected at the following time points post-dose: 0.083, 0.25, 1, 2, 4, 24, 28, 96, 168, 264, 336, 456, 528, 576, 720, 864, and 1056 hours. Surgical liver biopsies (approximately 100 mg tissue per left and right liver lobe) were collected under anesthesia at pre-treatment (either days −13 or −7) and days 14 and 30 post-dose. Day 44 post-dose liver samples were collected at necropsy.


Serum and Liver Pharmacokinetics

To determine the serum and liver pharmacokinetic profiles of each of the GalNAc-conjugated mARC1 siRNA molecules, serum and liver samples collected at different time points following treatment with a single 3 mg/kg s.c. dose of the mARC1 siRNA molecules were analyzed for each of the mARC1 siRNA molecules (antisense and sense strands) using a plate-based oligonucleotide electro-chemiluminescent (POE) immunoassay similar to that described in Thayer et al., Sci. Rep., Vol. 10(1): 10425, 2020. Oligonucleotide capture (biotin) and detection (digoxygenin) probes were custom synthesized from Qiagen Inc. (Hilden, Germany), the sequences for which are listed in Table 25 below. Liver samples were homogenized in lysis buffer containing 50 mM Tris HCl, 100 nM NaCl, 0.1% Triton X100, and Roche protease inhibitor cocktail (11836170001) to a final concentration of 200 mg/mL. For the bioanalysis, GalNAc-mARC1 siRNA standards were spiked into serum or liver homogenate over a concentration range of 0.13 to 2500 ng/mL. Standards and biological samples were then diluted 1:10 in a 96 well PCR plate to a final volume of 50 μL. Oligonucleotide capture and detection probes were prepared in a hybridization buffer consisting of 60 mM Na2PO4 (pH 7.0, dibasic), 1 M NaCl, 5 mM EDTA, and 0.02% Tween 20. Probes were combined and added to the PCR plate at a final concentration of 10 nM bringing the total sample volume to 100 μL per well. Hybridization was performed using a thermal cycler under the following conditions: 90° C. for 5 minutes, 40° C. for 30 minutes, and a final hold at 12° C. After hybridization, 45 μL of samples were transferred to a Meso Scale Diagnostics, LLC MSD Gold 96-well Streptavidin SECTOR plate (L15SA) and incubated at room temperature for 30 minutes while shaking. The plates were washed with SerCare Life Sciences 1×KPL immunoassay wash solution (5150-0011). After washing, plates were incubated for 1 hour with 50 μL of 0.5 μg/mL ruthenium labeled anti-digoxygenin antibody diluted in ThermoFisher Scientific SuperBlock T20 TBS Blocking Buffer (37536). A final wash was performed prior to the addition of Meso Scale Diagnostics, LLC 1×MSD Read Buffer T (R92TC; 150 μL) and read on a Meso Scale Diagnostics, LLC Meso Sector S 600 instrument. Serum and liver concentrations of the mARC1 siRNA molecules were interpolated from a standard curve using a 4-parameter logistic model and a weighting factor of 1/Y2 in Watson LIMS bioanalytical software version 7.5 (ThermoFisher Scientific). Liver concentrations were converted from units of ng/mL to ng/mg by dividing by 200 mg/mL. Serum pharmacokinetic parameters from 0.083 to 24 hours post-dose were determined using noncompartmental analysis in Phoenix WinNonlin software version 8.3.2.116 (Pharsight).









TABLE 25







POE immunoassay capture and detection probes










Duplex


SEQ


No.
Strand
Sequence (5′→3′)1
ID NO:





D-2241
Antisense
/5Biosg/ACCTGGAATA
3659





D-2241
Antisense
TTAGATGCCT/3Di_N/
3660





D-2241
Sense
/5Biosg/AAGGCATCTA
3661





D-2241
Sense
ATATTCCAGG/3Dig_N/
3662





D-2081
Antisense
/5Biosg/ATGTCCTGGAA
3663





D-2081
Antisense
TATTAGATGCT/3Dig_N/
3664





D-2081
Sense
/5Biosg/GCATCTAATA
3665





D-2081
Sense
TTCCAGGACA/3Dig_N/
3666





D-2258
Antisense
/5Biosg/CCTGGAATAT
3667





D-2258
Antisense
TAGATGCCTT/3Dig_N/
3668





D-2258
Sense
/5Biosg/AGGCATCTAA
3669





D-2258
Sense
TATTCCAGGA/3Dig_N/
3670






1Underlined base = locked nucleic acid modification; /5Biosg/ = biotin conjugation via a six-carbon linker;



/3Dig_N/ = digoxygenin conjugation via a N-hydroxysuccinimide ester.






Serum concentration-time profiles for antisense and sense strand concentrations for each of the three different mARC1 siRNA molecules are shown in FIGS. 8A-8F. The mean maximum observed antisense strand concentration (Cmax) in serum was 511, 496, and 321 ng/mL for D-2241, D-2258, and D-2081, respectively, at 2.0 to 4.0 hours post-dose as summarized in Table 26. The mean area under the concentration time curve from the start of dose administration to 24 hours post-dose (AUC0-24 hour) for serum antisense strands was 6399, 5040, and 4137 h*ng/mL for D-2258, D-2241, and D-2081, respectively. The ratio of the serum concentrations of the sense strand to antisense strand for duplex no. D-2258 indicates a potential instability of the duplex with strand separation possibly occurring at the site of injection or in systemic circulation. siRNA liver concentrations for antisense and sense strands on days 14, 30 and 44 post-dose are reported in Table 27. Day 14 liver antisense strand concentrations were greatest for duplex no. D-2081 followed by D-2241 and then D-2258. Consistent with the serum pharmacokinetic profile, the ratio of the liver concentrations of the sense and antisense strands for duplex no. D-2258 indicates strand separation.









TABLE 26







Antisense strand serum pharmacokinetic parameters with a single 3 mg/kg s.c.


dose of mARC1 siRNA molecules in cynomolgus macaque monkeys









GalNAc-conjugated mARC1


Pharmacokinetic
siRNA Treatment (duplex no.)










Parameter1
D-2241
D-2081
D-2258













Tmax (h)
2.0
4.0
4.0


Cmax (ng/mL)
511
321
496


AUC0-24 hour
5040
4137
6399


(h*ng/mL)









1Tmax = the time after dosing at which the maximum observed concentration was observed;



Cmax = the maximum observed concentration measured after dosing;


AUC0-24 hour = the area under the concentration versus time curve using the linear trapezoidal method from the start of dose administration to 24 hours post-dose.


N = 3 animals per treatment group.













TABLE 27







Antisense and sense strand liver concentrations with a single 3 mg/kg


s.c. dose of mARC1 siRNA molecules in cynomolgus macaque monkeys









GaINAc-conjugated mARC1 siRNA Treatment (duplex no.)











D-2241
D-2081
D-2258



(Mean ± SD; ng/mg)
(Mean ± SD; ng/mg)
(Mean ± SD; ng/mg)














Antisense
Sense
Antisense
Sense
Antisense
Sense





Day 14
28 ± 11
 29 ± 6.7
39 ± 10
 20 ± 3.5
 14 ± 1.1
42 ± 3.7


Post-Dose








Day 30
 11 ± 4.5
 12 ± 1.7
 4.3 ± 0.37
 11 ± 1.9
 7.4 ± 0.60
29 ± 1.4


Post-Dose








Day 44
5.9 ± 3.0
0.69 ± 0.29
 2.4 ± 0.33
 5.1 ± 0.95
 5.1 ± 0.57
16 ± 3.6


Post-Dose





SD = standard deviation







Liver mARC1 mRNA Silencing


The three GalNAc-conjugated mARC1 siRNA molecules (duplex nos. D-2241, D-2081, and D-2258) were evaluated for efficacy in knocking down mARC1 mRNA levels in the liver of cynomolgus macaque monkeys following a 3 mg/kg s.c. dose. RNA was purified from snap frozen liver using the ThermoFisher Scientific MagMAX-96 Total RNA Isolation Kit (AM1830) of which sample integrity (260/280 ratio) and RNA concentrations were determined with a ThermoFisher Scientific NanoDrop 2000 Spectrophotometer (ND-2000). One step reverse transcription-polymerase chain reaction (RT-PCR) was performed using ThermoFisher Scientific's TaqMan™ RNA-to-CT 1-Step Kit (4392938). Reactions were assembled into a 96 well PCR plate by mixing 50 ng of RNA template with 2× TaqMan RT-PCR Mix, 40× TaqMan RT Enzyme Mix, 20× mARC1 primer-probe (IDT, forward primer 5′-TTCAGGATGCGATGT CTATGC-3′ (SEQ ID NO: 3671), reverse primer 5′-TGCCCAAAGAGTGGTGATTT-3′ (SEQ ID NO: 3672), probe 5′-/56-FAM/AGCCGCTGG (SEQ ID NO: 3673)/ZEN/AAACACT GAAGAGTT (SEQ ID NO: 3674)/3IABkFQ/-3′), and 20× glyceraldehyde-3-phosphate dehydrogenase primer-probe (GAPDH; ThermoFisher Scientific, Mf04392546_g1 VIC-MGB). RT-PCR was performed using the ThermoFisher Scientific QuantStudio 7 Flex Real-Time PCR System (4485701) under the following conditions: 48° C. for 30 minutes, and 90° C. for 10 minutes followed by 40 cycles of 90° C. for 15 seconds and 60° C. for 1 minute. mRNA expression for each sample was normalized by taking a ratio of the concentration of the gene of interest (mARC1) over the concentration of the housekeeping gene (GAPDH). Percent (%) of mARC1 mRNA expression post-siRNA dose (days 14, 30, and 44) was then calculated relative to the pre-treatment (days −13 or −7) time point for each animal replicate per treatment group, which was expressed as % remaining of pre-treatment. Percent (%) silencing of mARC1 mRNA transcript was ultimately calculated by subtracting the % remaining of pre-treatment value from 100%. Both mRNA % remaining of pre-treatment and % silencing values are summarized below in Table 28. Duplex no. D-2241 was the most potent GalNAc-conjugated mARC1 siRNA molecule tested, reducing cynomolgus mARC1 liver mRNA to <20% remaining of pre-treatment (>80% silencing) on days 14, 30, and 44 following a single subcutaneous injection.









TABLE 28







Cynomolgus macaque liver mARC1 mRNA silencing with


a single 3 mg/kg s.c. dose of GaINAc-conjugated mARC


siRNA molecules












GaINAc-






conjugated






mARC1 siRNA






Treatment






(duplex no.)
D-2241
D-2081
D-2258


















Animal Replicate
1
2
3
1
2
3
1
2
3




















Day 14
% Remaining of
ND
0.67
0.57
29
22
14
20
38
1.0


Post-Dose
Pre-treatment
(0)











% Silencing
100
99
99
71
78
86
80
62
99












% Silencing;
  99 ± 0.58
 78 ± 7.5
80 ± 19



Mean ± SD




















Day 30
% Remaining of
3.7
23
22
36
52
21
37
40
57


Post-Dose
Pre-treatment












% Silencing
96
77
78
64
48
79
63
60
43












% Silencing;
84 ± 11
64 ± 16
55 ± 11



Mean ± SD




















Day 44
% Remaining of
0.20
23
21
47
41
8.8
30
30
28


Post-Dose
Pre-treatment












% Silencing
100
78
79
53
59
91
70
70
72












% Silencing;
86 ± 12
68 ± 21
 71 ± 1.0



Mean ± SD





ND = not detected;


SC = subcutaneous;


SD = standard deviation;


Samples in which mARC1 mRNA expression was below the limit of assay detection were denoted as “ND” (not detected) and set to zero.







Liver mARC1 Protein Silencing


Efficacy of the three GalNAc-conjugated mARC1 siRNA molecules (duplex nos. D-2241, D-2081, and D-2258) in knocking down mARC1 protein levels in the liver of cynomolgus macaque following a 3 mg/kg s.c. dose was also assessed. Snap frozen liver tissue was homogenized at 200 mg/mL in Boston Bioproduct NP-40 Lysis Buffer (BP-119) containing ThermoFisher Scientific Protease Inhibitor Tablets (A32963). Homogenates were then spun down at 10,000×g under 4° C. for 10 minutes and supernatants were transferred to a 2 mL 96 deep-well plate. Supernatants were treated with 1% trifluoroacetic acid in methanol while incubating for 15 minutes at room temperature and shaking at 1400 rpm. Precipitated proteins were pelleted for 15 minutes at 4,000 rpm from which the supernatants were aspirated and the pellets were washed twice with methanol. Resulting proteins were reduced and denatured in a solution containing 10 mM tris(2-carboxyethyl)phosphine (ThermoFisher Scientific, 77720) and 8 M urea for 30 minutes at 37° C. Iodoacetamide (20 mM; ThermoFisher Scientific, A39271) was then added to the samples in 20 mM ammonium bicarbonate buffer and incubated for 30 minutes at room temperature. Tryptic digestion was performed overnight at 37° C. with the addition of 30 μg trypsin (ThermoFisher Scientific, A90058) and 10 pmol of the stable isotopically labeled (SIL) peptide (ThermoFisher Scientific custom peptide; SPLFGQYFVLENPGTIK (SEQ ID NO: 3675)). The digestion reaction was terminated with 20% formic acid and the samples were prepared for solid phase extraction (SPE) desalting (Waters Corporation, 186008052). Prior to loading samples, the SPE plate was conditioned with methanol and washed once with 1% acetonitrile. Samples were added to the conditioned SPE plate and analytes were eluted using 70% acetonitrile. Eluates were resuspended in 10 mM ammonium formate at pH 10 and injected onto an Agilent 1260 Infinity Bio-inert Analytical-scale Fraction Collector (G5664A). The fractionated samples (11th fraction) were resuspended in 0.1% formic acid solution for analysis on a ThermoFisher Scientific Ultimate 3000 ultra-high performance liquid chromatography (LC) system coupled to an Orbitrap Lumos mass spectrometer (MS). The LC method was performed as follows: trapping at 3% acetonitrile/water, 8 μL/minute and analytical gradient at 3.0 to 36% acetonitrile/water over 1.0 to 12.1 minutes, 350 nL/minute, with a column temperature at 45° C. A parallel reaction monitoring experiment was performed on the Orbitrap Fusion Lumos instrument monitoring light- and heavy-labeled peptides SPLFGQYFVLENPGTIK (SEQ ID NO: 3675) at m/z=955.5066 and SPLFGQYFVLENPGTIK (SEQ ID NO: 3675) at m/z=959.5137, respectively. Data was then imported into Skyline 21.1 software (Pino L K et al. The Skyline ecosystem: Informatics for quantitative mass spectrometry proteomics. Mass Spectrom Rev. 2020 May; 39(3):229-244. doi: 10.1002/mas.21540. Epub 2017 Jul. 9.), where the SPLFGQYFVLENPGTIK (SEQ ID NO: 3675) peptide peak area from each sample was normalized to the peak area of the spiked-in SIL peptide SPLFGQYFVLENPGTIK (SEQ ID NO: 3675). The measurement of GAPDH housekeeping protein was performed using the same starting tissue homogenate and precipitated with ice-cold acetone followed by mixing at 1250 rpm for 10 minutes and centrifugation at 3220×g for 15 minutes. The supernatants were aspirated and protein pellets were washed with methanol, dissolved in 50 mM ammonium bicarbonate buffer containing 10 μg trypsin, and digested overnight at 37° C. with mixing at 1000 rpm. The digestion reaction was terminated with 20% formic acid and injected for LC-MS/MS analysis monitoring the GAPDH peptide: LISWYDNEFGYSNR (SEQ ID NO: 3676) at 588.61 and 743.35 m/z. The GAPDH peptide peak area was integrated using SCIEX Analyst software. Protein expression for each sample was normalized by taking a ratio of the concentration of the protein of interest (mARC1) as determined relative to the SIL peptide over the concentration of the housekeeping protein (GAPDH). Percent (%) of mARC1 protein expression post-siRNA dose (days 14, 30, and 44) was then calculated relative to the pre-treatment (days −13 or −7) time point for each animal replicate per treatment group, which was expressed as % remaining of pre-treatment. Percent (%) silencing of mARC1 protein expression was ultimately calculated by subtracting the % remaining of pre-treatment value from 100%. Both protein % remaining of pre-treatment and % silencing values are summarized in Table 29. Duplex no. D-2081 showed the greatest reduction in cynomolgus mARC1 liver protein expression on day 14 post-dose with 89±0.71% silencing following a single subcutaneous injection. On day 30 post-dose, duplex nos. D-2081 and D-2241 decreased protein expression to <20% remaining of pre-treatment with 82±7.8% and 87±11% silencing, respectively, which was maintained or increased through day 44 post-dose.









TABLE 29







Cynomolgus macaque liver mARC1 protein silencing with a single


3 mg/kg s.c. dose of GaINAc-conjugated mARC siRNA molecules












GaINAc-






conjugated






mARC1






siRNA






Treatment






(duplex no.)
D-2241
D-2081
D-2258


















Animal Replicate
1
2
3
1
2
3
1
2
3




















Day
% Remaining of
34
35
22
ND
11
12
56
68
25


14
Pre-treatment



(0)







Post-
% Silencing
66
65
78
N/A
89
88
44
32
75











Dose
% Silencing;
 70 ± 7.2
 89 ± 0.71
50 ± 22



Mean ± SD




















Day
% Remaining of
0.99
14
22
ND
24
13
39
54
3.6


30
Pre-treatment



(0)







Post-
% Silencing
99
86
78
N/A
76
87
61
46
96











Dose
% Silencing;
87 ± 11
 82 ± 7.8
68 ± 26



Mean ± SD




















Day
% Remaining of
10
16
ND
ND
9
12
44
52
14


44
Pre-treatment


(0)
(0)







Post-
% Silencing
90
84
N/A
N/A
91
88
56
48
86











Dose
% Silencing;
 86 ± 4.2
 90 ± 2.1
64 ± 20



Mean ± SD





N/A = not applicable;


ND = not detected;


SC = subcutaneous;


SD = standard deviation; Samples in which mARC1 protein expression was below the limit of assay detection were denoted as “ND” (not detected) and set to zero.






All publications, patents, and patent applications discussed and cited herein are hereby incorporated by reference in their entireties. It is understood that the disclosed invention is not limited to the particular methodology, protocols and materials described as these can vary. It is also understood that the terminology used herein is for the purposes of describing particular embodiments only and is not intended to limit the scope of the appended claims.


Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

Claims
  • 1. An RNAi construct comprising a sense strand and an antisense strand, wherein the antisense strand comprises a region having a sequence that is substantially complementary to a mARC1 mRNA sequence, and wherein said region comprises at least 15 contiguous nucleotides from an antisense sequence listed in Table 1 or Table 2.
  • 2. The RNAi construct of claim 1, wherein the sense strand comprises a sequence that is sufficiently complementary to the sequence of the antisense strand to form a duplex region of about 15 to about 30 base pairs in length.
  • 3. The RNAi construct of claim 2, wherein the duplex region is about 17 to about 24 base pairs in length.
  • 4. (canceled)
  • 5. The RNAi construct of claim 1, wherein the sense strand and the antisense strand are each independently about 19 to about 30 nucleotides in length.
  • 6. The RNAi construct of claim 5, wherein the sense strand and the antisense strand are each independently about 19 to about 23 nucleotides in length.
  • 7. The RNAi construct of claim 1, wherein the RNAi construct comprises one or two blunt ends.
  • 8. The RNAi construct of claim 1, wherein the RNAi construct comprises one or two nucleotide overhangs of 1 to 4 unpaired nucleotides.
  • 9. (canceled)
  • 10. The RNAi construct of claim 8, wherein the RNAi construct comprises a nucleotide overhang at the 3′ end of the sense strand, the 3′ end of the antisense strand, or the 3′ end of both the sense strand and the antisense strand.
  • 11. The RNAi construct of claim 1, wherein the RNAi construct comprises at least one modified nucleotide.
  • 12. (canceled)
  • 13. The RNAi construct of claim 11, wherein the modified nucleotide is a 2′-fluoro modified nucleotide, a 2′-O-methyl modified nucleotide, a 2′-O-methoxyethyl modified nucleotide, 2′-O-alkyl modified nucleotide, a 2′-O-allyl modified nucleotide, a bicyclic nucleic acid (BNA), a deoxyribonucleotide, or combinations thereof.
  • 14. (canceled)
  • 15. (canceled)
  • 16. The RNAi construct of claim 1, wherein the sense strand comprises an abasic nucleotide as the terminal nucleotide at its 3′ end, its 5′ end, or both its 3′ and 5′ ends.
  • 17. The RNAi construct of claim 16, wherein the abasic nucleotide is linked to the adjacent nucleotide through a 3′-3′ internucleotide linkage or a 5′-5′ internucleotide linkage.
  • 18. The RNAi construct of claim 1, wherein the sense strand, the antisense strand, or both the sense and antisense strands comprise one or more phosphorothioate internucleotide linkages.
  • 19. The RNAi construct of claim 18, wherein the antisense strand comprises two consecutive phosphorothioate internucleotide linkages between the terminal nucleotides at both the 3′ and 5′ ends.
  • 20. The RNAi construct of claim 18, wherein the sense strand comprises a single phosphorothioate internucleotide linkage between the terminal nucleotides at the 3′ end.
  • 21. (canceled)
  • 22. The RNAi construct of claim 1, wherein the antisense strand comprises or consists of a sequence selected from the antisense sequences listed in Table 1 or Table 2.
  • 23. The RNAi construct of claim 1, wherein the antisense strand comprises or consists of a sequence selected from SEQ ID NO: 715; SEQ ID NO: 732; SEQ ID NO: 733; SEQ ID NO: 738; SEQ ID NO: 754; SEQ ID NO: 761; SEQ ID NO: 763; SEQ ID NO: 764; SEQ ID NO: 766; SEQ ID NO: 809; SEQ ID NO: 810; SEQ ID NO: 814; SEQ ID NO: 841; SEQ ID NO: 848; SEQ ID NO: 851; SEQ ID NO: 862; SEQ ID NO: 916; SEQ ID NO: 1057; SEQ ID NO: 1078; SEQ ID NO: 2919; SEQ ID NO: 2926; SEQ ID NO: 2946; SEQ ID NO: 2949; SEQ ID NO: 2953; and SEQ ID NO: 2956.
  • 24-26. (canceled)
  • 27. The RNAi construct of claim 1, wherein: (i) the sense strand comprises or consists of the sequence of SEQ ID NO: 409 and the antisense strand comprises or consists of the sequence of SEQ ID NO: 1078;(ii) the sense strand comprises or consists of the sequence of SEQ ID NO: 388 and the antisense strand comprises or consists of the sequence of SEQ ID NO: 1057;(iii) the sense strand comprises or consists of the sequence of SEQ ID NO: 2808 and the antisense strand comprises or consists of the sequence of SEQ ID NO: 2926;(iv) the sense strand comprises or consists of the sequence of SEQ ID NO: 2820 and the antisense strand comprises or consists of the sequence of SEQ ID NO: 2946;(v) the sense strand comprises or consists of the sequence of SEQ ID NO: 391 and the antisense strand comprises or consists of the sequence of SEQ ID NO: 2949;(vi) the sense strand comprises or consists of the sequence of SEQ ID NO: 390 and the antisense strand comprises or consists of the sequence of SEQ ID NO: 2956;(vii) the sense strand comprises or consists of the sequence of SEQ ID NO: 179 and the antisense strand comprises or consists of the sequence of SEQ ID NO: 2919;(viii) the sense strand comprises or consists of the sequence of SEQ ID NO: 388 and the antisense strand comprises or consists of the sequence of SEQ ID NO: 2953; or(ix) the sense strand comprises or consists of the sequence of SEQ ID NO: 388 and the antisense strand comprises or consists of the sequence of SEQ ID NO: 1057.
  • 28. The RNAi construct of claim 27, wherein: (i) the sense strand comprises or consists of the sequence of modified nucleotides according to SEQ ID NO: 3078 and the antisense strand comprises or consists of the sequence of modified nucleotides according to SEQ ID NO: 3337;(ii) the sense strand comprises or consists of the sequence of modified nucleotides according to SEQ ID NO: 3080 and the antisense strand comprises or consists of the sequence of modified nucleotides according to SEQ ID NO: 3339;(iii) the sense strand comprises or consists of the sequence of modified nucleotides according to SEQ ID NO: 3163 and the antisense strand comprises or consists of the sequence of modified nucleotides according to SEQ ID NO: 3441;(iv) the sense strand comprises or consists of the sequence of modified nucleotides according to SEQ ID NO: 3183 and the antisense strand comprises or consists of the sequence of modified nucleotides according to SEQ ID NO: 3469;(v) the sense strand comprises or consists of the sequence of modified nucleotides according to SEQ ID NO: 3076 and the antisense strand comprises or consists of the sequence of modified nucleotides according to SEQ ID NO: 3472;(vi) the sense strand comprises or consists of the sequence of modified nucleotides according to SEQ ID NO: 3077 and the antisense strand comprises or consists of the sequence of modified nucleotides according to SEQ ID NO: 3484;(vii) the sense strand comprises or consists of the sequence of modified nucleotides according to SEQ ID NO: 2051 and the antisense strand comprises or consists of the sequence of modified nucleotides according to SEQ ID NO: 3545;(viii) the sense strand comprises or consists of the sequence of modified nucleotides according to SEQ ID NO: 3080 and the antisense strand comprises or consists of the sequence of modified nucleotides according to SEQ ID NO: 3481;(ix) the sense strand comprises or consists of the sequence of modified nucleotides according to SEQ ID NO: 3188 and the antisense strand comprises or consists of the sequence of modified nucleotides according to SEQ ID NO: 3339;(x) the sense strand comprises or consists of the sequence of modified nucleotides according to SEQ ID NO: 3080 and the antisense strand comprises or consists of the sequence of modified nucleotides according to SEQ ID NO: 3476; or(xi) the sense strand comprises or consists of the sequence of modified nucleotides according to SEQ ID NO: 3223 and the antisense strand comprises or consists of the sequence of modified nucleotides according to SEQ ID NO: 3517.
  • 29-31. (canceled)
  • 32. An RNAi construct for inhibiting expression of a human MARC1 gene in a cell, said RNAi construct comprising a sense strand and an antisense strand that hybridize to form a duplex region of about 15 to about 30 base pairs in length, and wherein the antisense strand comprises a region having a sequence that is substantially complementary to the sequence of at least 15 contiguous nucleotides of nucleotides 1205 to 1250 of SEQ ID NO: 1.
  • 33. The RNAi construct of claim 32, wherein the region of the antisense strand comprises a sequence that is substantially complementary to the sequence of at least 15 contiguous nucleotides of nucleotides 1209 to 1239 of SEQ ID NO: 1.
  • 34. The RNAi construct of claim 32, wherein the region of the antisense strand comprises a sequence of CAUCUAAUAUUCCAG (SEQ ID NO: 3656).
  • 35. (canceled)
  • 36. (canceled)
  • 37. An RNAi construct for inhibiting expression of a human MARC1 gene in a cell, said RNAi construct comprising a sense strand and an antisense strand that hybridize to form a duplex region of about 15 to about 30 base pairs in length, and wherein the antisense strand comprises a region having a sequence that is substantially complementary to the sequence of at least 15 contiguous nucleotides of nucleotides 1345 to 1375 of SEQ ID NO: 1.
  • 38. The RNAi construct of claim 37, wherein the region of the antisense strand comprises a sequence of UGGGACAUUGAAGCA (SEQ ID NO: 3657).
  • 39. (canceled)
  • 40. (canceled)
  • 41. An RNAi construct for inhibiting expression of a human MARC1 gene in a cell, said RNAi construct comprising a sense strand and an antisense strand that hybridize to form a duplex region of about 15 to about 30 base pairs in length, and wherein the antisense strand comprises a region having a sequence that is substantially complementary to the sequence of at least 15 contiguous nucleotides of nucleotides 2039 to 2078 of SEQ ID NO: 1.
  • 42. The RNAi construct of claim 41, wherein the region of the antisense strand comprises a sequence that is substantially complementary to the sequence of at least 15 contiguous nucleotides of nucleotides 2048 to 2074 of SEQ ID NO: 1.
  • 43. The RNAi construct of claim 41, wherein the region of the antisense strand comprises a sequence of AUCAGAUCUUAGAGU (SEQ ID NO: 3658).
  • 44-63. (canceled)
  • 64. The RNAi construct of claim 1, wherein the RNAi construct further comprises a ligand.
  • 65. The RNAi construct of claim 64, wherein the ligand comprises a cholesterol moiety, a vitamin, a steroid, a bile acid, a folate moiety, a fatty acid, a carbohydrate, a glycoside, or antibody or antigen-binding fragment thereof.
  • 66. The RNAi construct of claim 64, wherein the ligand comprises galactose, galactosamine, or N-acetyl-galactosamine.
  • 67. The RNAi construct of claim 66, wherein the ligand comprises a multivalent galactose moiety or multivalent N-acetyl-galactosamine moiety.
  • 68. The RNAi construct of claim 67, wherein the multivalent galactose moiety or multivalent N-acetyl-galactosamine moiety is trivalent or tetravalent.
  • 69. The RNAi construct of claim 64, wherein the ligand is covalently attached to the sense strand optionally through a linker.
  • 70. The RNAi construct of claim 69, wherein the ligand is covalently attached to the 5′ end of the sense strand.
  • 71. A pharmaceutical composition comprising the RNAi construct of claim 1 and a pharmaceutically acceptable carrier or excipient.
  • 72. A method for reducing the expression of mARC1 protein in a patient in need thereof comprising administering to the patient the RNAi construct of claim 1.
  • 73-76. (canceled)
  • 77. A method for treating, preventing, or reducing the risk of developing fatty liver disease in a patient in need thereof comprising administering to the patient the RNAi construct of claim 1.
  • 78. The method of claim 77, wherein the fatty liver disease is nonalcoholic fatty liver disease or nonalcoholic steatohepatitis.
  • 79. (canceled)
  • 80. (canceled)
  • 81. A method for treating, preventing, or reducing liver fibrosis in a patient in need thereof comprising administering to the patient the RNAi construct of claim 1.
  • 82-97. (canceled)
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 63/065,190, filed Aug. 13, 2020, and U.S. Provisional Application No. 63/214,016, filed Jun. 23, 2021, both of which are hereby incorporated by reference in their entireties.

Provisional Applications (2)
Number Date Country
63065190 Aug 2020 US
63214016 Jun 2021 US