This invention relates to Advanced Driver-Assistance Systems (ADAS) and, in particular, to a system that detects road lane conditions and provides vehicle lane assist using an infrared detecting device.
ADAS technology has come a long way over the years and has saved multiple lives in the process. However, such systems can be improved further, particularly during driving at night. Although there is significantly less traffic on the road at night (60 percent less), 40 percent of all fatal car accidents occur at night. Lane conditions at night are some of the hardest things to gauge as a driver. Patent Application Publication US2018/0141561 A1 discloses a system, having a conventional camera, for detecting and assessing reflections of light on a road to determine road conditions. However, such systems may have difficulty accessing road conditions at night when visible light is at a minimum.
Furthermore, conventional lane assist systems for vehicles use conventional cameras to detect road lane markers typically painted on the road. However, during night driving with poor lighting, or when the lane markings lack sufficient paint, these systems may be unable to be detect the lane markings.
Thus, there is a need to provide an improved ADAS system using an infrared detecting device to detect road conditions and that can aid in the lane assist function.
An objective of the invention is to fulfill the need referred to above. In accordance with the principles of an embodiment, this objective is achieved by a system for a vehicle having a front, a rear, a right side and a left side. The system includes an infrared detecting device mounted on the front of the vehicle. The infrared detecting device is constructed and arranged to 1) detect variations in road temperature and 2) detect heat tracks left on a road lane by preceding vehicles. A control unit is mounted in the vehicle and is connected to the infrared detecting device so as to process signals received from the infrared detecting device. The control unit is constructed and arranged 1) to predict road conditions based on the variations in road temperature detected by the infrared detecting device or 2) to predict road lane location, based on a path defined by the heat tracks detected by the infrared detecting device.
In accordance with another aspect of an embodiment, a method provides road condition data for a vehicle. The vehicle has a front, a rear, a right side and a left side. The method provides an infrared detecting device on the front of the vehicle. Variations in road temperature is detected with the infrared detecting device. Road conditions are predicted in a control unit based on the variations in road temperature detected by the infrared detecting device.
In accordance with yet another aspect of an embodiment, a method of provides lane assist for a vehicle. The method provides an infrared detecting device on a front of the vehicle. Heat tracks left on a road lane by preceding vehicles are detected with the infrared detecting device. Road lane location is predicted by a control unit based on a path defined by the heat tracks detected by the infrared detecting device.
Other objectives, features and characteristics of the present invention, as well as the methods of operation and the functions of the related elements of the structure, the combination of parts and economics of manufacture will become more apparent upon consideration of the following detailed description and appended claims with reference to the accompanying drawings, all of which form a part of this specification.
The invention will be better understood from the following detailed description of the preferred embodiments thereof, taken in conjunction with the accompanying drawings, wherein like reference numerals refer to like parts, in which:
With reference to
In the embodiment, the infrared (IR) detecting device 14 comprises an infrared camera or a thermal imaging camera. The infrared camera typically uses short wavelength infrared light to illuminate an area of interest. Some of the infrared energy is reflected back to the infrared camera and interpreted to generate an image data. A thermal imaging camera typically uses mid or long wavelength infrared energy. Thermal imaging cameras are passive, and only sense differences in heat. Thus, the infrared detecting device 14 can detect variations in road temperature (heat signature) without the presence of light. This allows algorithms, executed by the processor circuit 22 of the control unit 18, to use this temperature variation data to determine predictions of road conditions. As shown in
The data provided by the infrared detecting device 14 can be used in collaboration with the data from a conventional surround view camera system having a plurality of normal (non IR) cameras 26a-26d, each configure to obtain an image. First camera 26a is located on the front 16 of the vehicle 12, second camera 26b is located on the rear 17 of the vehicle 12, third camera 26c is located on the left side 19 of the vehicle 12 and fourth camera 26d is located on the right side 21 of the vehicle 12. These cameras 26a-26d are typically mono cameras having a FOV 27 of up to 125 degrees or fish-eye cameras having a FOV greater than 180 degrees, which can be used at least for lane assist, parking assist, and emergency braking for crash avoidance. Cameras 26a-26d are connected to the control unit 18. Certain of the cameras 26a-26d can also be used for road condition observance, as disclosed Patent Application Publication US2018/0141561 A1, the content of which is hereby incorporated by reference herein. Thus, the light-reflective image capturing cameras 26a-26d, can provide image data to the control unit 18 regarding road conditions when sufficient light is available, with the infrared detecting device 14 providing thermal data regarding road conditions to the control unit 18 when sufficient light is unavailable. With such data, the control unit 18 or other vehicle controller can control various vehicle systems (e.g., vehicle braking, speed control, etc.) depending on the sensed or predicted road conditions. Memory circuit 28 of the control unit 18 can store the algorithms and/or data from the infrared detecting device 14, and cameras 26a-26d.
Thus, the infrared detecting device 14 can detect water, ice, or any lane irregularities much easier at night. The infrared detecting device 14 is able to determine road conditions based on variations in infrared readings across the road and these readings can then be compared to the output provided by the surround view cameras 26a-26d for improved accuracy. It can be appreciated that the control unit 18 can receive data other than from just the infrared detecting device 14 and/or the cameras 26a-26d, such as outside temperature, humidity, wind speed data, whether the vehicle wipers are on, etc. for use in predicting road conditions. Also, the infrared detecting device 14 can be always on, or can be activated based on an ambient light sensors (e.g., the conventional light sensor that can automatically turn on the vehicle's lights as daylight fades).
With reference to
The processor circuit 22 of the control unit 18 can execute an algorithm to predict the road lane L location, based on the path most traveled by the other vehicles 32. For example, the processor circuit 22 can execute an algorithm including the steps of receiving a heat signature of heat tracks 30 on the road that have a heat signature different from a heat signature of surrounding areas on the road; and calculating or predicting a lane location L on the road based on the location of the heat tracks 30. If the driver deviates from the lane L, the control unit 18 can activate a warning signal or can cause automatic control of the steering to bring the vehicle back into the lane. Alternatively, the output from the infrared lane assist algorithm can then be compared to the output from the standard systems already present on the vehicle and these outputs can then be sent to the main computer system that is controlling the vehicle actuation for fusion.
The use of the infrared detecting device 14 reduces the need for quality lane markers 34 that are employed in conventional lane keeping technologies. The infrared detecting device 14 should be mounted to the front of the vehicle 12 as close to the road as possible. Infrared detecting device 14 can be used alone, or in conjunction with the surround view cameras 26a-26d of
The operations and algorithms described herein can be implemented as executable code within a micro-controller or control unit 18 having processor circuit 22 as described, or stored on a standalone computer or machine readable non-transitory tangible storage medium that are completed based on execution of the code by a processor circuit implemented using one or more integrated circuits. Example implementations of the disclosed circuits include hardware logic that is implemented in a logic array such as a programmable logic array (PLA), a field programmable gate array (FPGA), or by mask programming of integrated circuits such as an application-specific integrated circuit (ASIC). Any of these circuits also can be implemented using a software-based executable resource that is executed by a corresponding internal processor circuit such as a micro-processor circuit (not shown) and implemented using one or more integrated circuits, where execution of executable code stored in an internal memory circuit causes the integrated circuit(s) implementing the processor circuit to store application state variables in processor memory, creating an executable application resource (e.g., an application instance) that performs the operations of the circuit as described herein.
Hence, use of the term “circuit” in this specification refers to both a hardware-based circuit implemented using one or more integrated circuits and that includes logic for performing the described operations, or a software-based circuit that includes a processor circuit (implemented using one or more integrated circuits), the processor circuit including a reserved portion of processor memory for storage of application state data and application variables that are modified by execution of the executable code by a processor circuit. The memory circuit 28 can be implemented, for example, using a non-volatile memory such as a programmable read only memory (PROM) or an EPROM, and/or a volatile memory such as a DRAM, etc.
The foregoing preferred embodiments have been shown and described for the purposes of illustrating the structural and functional principles of the present invention, as well as illustrating the methods of employing the preferred embodiments and are subject to change without departing from such principles. Therefore, this invention includes all modifications encompassed within the scope of the following claims.