The present application relates to a robot hand.
A robot hand that can achieve so-called follow-gripping of a workpiece has been known. For example, Patent Document 1 discloses a robot hand including a pair of fingers that grips a workpiece, a motor that operates the pair of fingers, and a differential gear mechanism that transmits power of the motor to the pair of fingers. When the workpiece is misaligned with the center of the robot hand, one of the pair of fingers (one finger) closer to the workpiece touches the workpiece first and then stops. Although the one finger stops, the other finger keeps moving and then stops when touches the workpiece. Thus, the follow-gripping of the workpiece is achieved.
The above-described robot hand uses the differential gear mechanism, and thus has a disadvantage in that the other finger moves less smooth after the one finger stops.
In view of the foregoing background, the present disclosure has been made to provide a robot hand that can achieve smooth follow-gripping.
An aspect of the present disclosure relates to a robot hand including: a first finger and a second finger; and a first moving mechanism that brings the first and second fingers close to each other in a predetermined moving direction so that the first and second fingers grip a workpiece. The first moving mechanism includes a first movable pulley, a first cord-like member, and a first actuator. The first cord-like member has two ends, one of which is connected to the first finger and the other is connected to the second finger, and is wrapped around the first movable pulley. The first actuator moves the first movable pulley. The first actuator moves the first movable pulley so that a tension of the first cord-like member acts on the first and second fingers to bring the first and second fingers close to each other.
In this aspect, the first cord-like member pulls and moves the first and second fingers in accordance with the amount of movement of the first movable pulley caused by the first actuator. Specifically, when the first actuator moves the first movable pulley, the tension of the first cord-like member acts on the first and second fingers to move the first and second fingers in a direction approaching each other. This allows the first and second fingers to approach to each other and grip the workpiece from outside. The amount of movement of the first finger and the amount of movement of the second finger in accordance with the amount of movement of the first movable pulley are suitably adjusted based on a resistance to the movement of the first finger and a resistance to the movement of the second finger. For example, when the first finger touches the workpiece and the resistance to the movement of the first finger increases, the first finger stops, and the amount of movement of the second finger is suitably increased. This allows the second finger to keep moving smoothly toward the workpiece. Thus, the second finger reaches the workpiece to achieve smooth follow-gripping.
Another aspect of the present disclosure relates to a robot hand including: a first finger and a second finger; and a second moving mechanism that moves the first and second fingers away from each other in a predetermined moving direction so that the first and second fingers grip a workpiece. The second moving mechanism includes a second movable pulley, a second cord-like member, and a second actuator. The second cord-like member has two ends, one of which is connected to the first finger and the other is connected to the second finger, and is wrapped around the second movable pulley. The second actuator moves the second movable pulley. The second actuator moves the second movable pulley so that a tension of the second cord-like member acts on the first and second fingers to move the first and second fingers away from each other.
In this aspect, the second cord-like member pulls and moves the first and second fingers in accordance with the amount of movement of the second movable pulley caused by the second actuator. Specifically, when the second actuator moves the second movable pulley, the tension of the second cord-like member acts on the first and second fingers to move the first and second fingers in a direction away from each other. This allows the first and second fingers to move away from each other and grip the workpiece W from inside. The amount of movement of the first finger and the amount of movement of the second finger in accordance with the amount of movement of the second movable pulley are suitably adjusted based on a resistance to the movement of the first finger and a resistance to the movement of the second finger. For example, when the first finger touches the workpiece W and the resistance to the movement of the first finger increases, the first finger stops, and the amount of movement of the second finger is suitably increased. This allows the second finger to keep moving smoothly toward the workpiece W. Thus, the second finger reaches the workpiece W to achieve smooth follow-gripping.
The robot hand described above can achieve smooth follow-gripping.
Exemplary embodiments will be described in detail below with reference to the drawings.
As shown in
The directions and positions of the hand 100 described herein are relative to the hand 100 with a pair of fingers described later (a first finger 2 and a second finger 3) extending in a vertical direction (a perpendicular direction), i.e., the hand 100 in a state shown in
The hand 100 is configured to be able to achieve so-called follow-gripping of a workpiece. The “follow-gripping” is achieved by a pair of fingers (a first finger 2 and a second finger 3). When one of the moving fingers receives an increased resistance, the other finger moves further to grip the workpiece together. For example, although the one finger touches the workpiece first and stops, the other finger does not stop and keeps moving to touch the workpiece so that the fingers grip the workpiece together.
Specifically, as shown in
The base 1 is a part connected to the robot arm 10 and has a substantially rectangular profile. The base 1 is long in the vertical direction. The base 1 has a front plate 11, a rear plate 12, and a top plate 13. The front plate 11 and the rear plate 12 have the same shape and face each other. The top plate 13 is arranged on top of the front and rear plates 11 and 12 to connect the front and rear plates 11 and 12.
The base 1 also has an intermediate plate 14. The intermediate plate 14 divides an internal space surrounded by the front plate 11, the rear plate 12, and the top plate 13 into vertically arranged spaces. That is, the intermediate plate 14 divides the internal space into an upper space and a lower space. The intermediate plate 14 is arranged closer to the top plate 13 in the internal space, making the upper space smaller than the lower space.
The first and second fingers 2 and 3 are grippers that grip the workpiece. The first and second fingers 2 and 3 may be collectively referred to as the fingers 2 and 3.
Each of the first and second fingers 2 and 3 is a substantially rod-shaped member extending in the vertical direction. The first and second fingers 2 and 3 have the same shape. The first and second fingers 2 and 3 are arranged in parallel with each other. The first and second fingers 2 and 3 are arranged side by side in the width direction of the base 1. The first and second fingers 2 and 3 are shaped to be symmetric about a line extending in the vertical direction (a lengthwise direction). Specifically, the first finger 2 has a basal part 21 and a finger body 22, and the second finger 3 has a basal part 31 and a finger body 32. The basal parts 21 and 31 are plate members extending in a horizontal direction. The finger bodies 22 and 32, each of which is substantially in the shape of a rod, extend downward from lower surfaces of the basal parts 21 and 31. The first and second fingers 2 and 3 may have any other shape than the rod shape or may have shapes different from each other.
The support 4 movably supports the first and second fingers 2 and 3 below the base 1. The first and second fingers 2 and 3 move in the width direction of the base 1, i.e., in the direction in which the fingers 2 and 3 are arranged side by side. The first and second fingers 2 and 3 move with their orientations maintained. Specifically, the fingers 2 and 3 can approach each other in the moving direction to grip (sandwich) the workpiece from outside. The fingers 2 and 3 can also move away from each other in the moving direction to grip the workpiece from inside.
The support 4 includes a guide rail 41, a first guide block 42, and a second guide block 43.
The guide rail 41 guides the first and second guide blocks 42 and 43 and is attached to a lower part of the base 1. The guide rail 41 is a linear rail extending in the width direction of the base 1. Specifically, the guide rail 41 extends in the moving direction of the first and second fingers 2 and 3. The guide rail 41 is arranged almost over the whole width of the base 1.
The first and second guide blocks 42 and 43 are attached to the guide rail 41 to be slidable in the extending direction of the guide rail 41. The first and second guide blocks 42 and 43 are tubular in shape. The guide rail 41 is located inside the first and second guide blocks 42 and 43 (see
A lower surface of the first guide block 42 serves as a finger attachment 425 to which the first finger 2 is attached. A lower surface of the second guide block 43 serves as a finger attachment 435 to which the second finger 3 is attached. Specifically, the basal part 21 of the finger 2 is bolted to the finger attachment 425 to attach the finger 2 to the first guide bloc 42, and the basal part 31 of the finger 3 is bolted to the finger attachment 435 to attach the finger 3 to the second guide block 43. Thus, the fingers 2 and 3 are supported to be movable in parallel with the guide rail 41. The support 4 sets a predetermined movable range of the fingers 2 and 3 (may be hereinafter referred to as a “movable range of the fingers 2 and 3”).
A wire attachment 421 is provided on top of the first guide block 42. The wire attachment 421 is an attachment for an end of a wire 56 of the first moving mechanism 5 and an end of a second wire 66 of the second moving mechanism 6, which will be described later. Specifically, the wire attachment 421 has a first slit 422 and a second slit 423. The end of the second wire 66 of the second moving mechanism 6 is fixed to the first slit 422, and the end of the wire 56 of the first moving mechanism 5 is fixed to the second slit 423.
Two wire attachments 431, 432 are provided on top of the second guide block 43. The wire attachments 431, 432 are attachments for the end of the wire 56 of the first moving mechanism 5 and the end of the second wire 66 of the second moving mechanism 6, just like the wire attachment of the first guide block 42. Specifically, the wire attachment 431 has a first slit 433, and the wire attachment 432 has a second slit 434. The end of the second wire 66 of the second moving mechanism 6 is fixed to the first slit 433, and the end of the wire 56 of the first moving mechanism 5 is fixed to the second slit 434.
When viewed in the extending direction of the guide rail 41 as shown in
The first moving mechanism 5 brings the first and second fingers 2 and 3 close to each other in the moving direction so that the first and second fingers 2 and 3 grip the workpiece. The first moving mechanism 5 is able to achieve the follow-gripping with the first and second fingers 2 and 3. The “moving direction” is the direction in which the first and second fingers 2 and 3 move in the hand 100 and corresponds with the width direction of the base 1.
Specifically, the first moving mechanism 5 includes a first fixed pulley 51, a second fixed pulley 52, a first movable pulley 53, and the first wire 56. The first moving mechanism is arranged in the lower space formed in the internal space of the base 1 by the intermediate plate 14.
The first fixed pulley 51 is arranged closer to the first finger 2 in the moving direction of the first and second fingers 2 and 3. The second fixed pulley 52 is arranged closer to the second finger 3 in the moving direction of the first and second fingers 2 and 3. Specifically, the first and second fixed pulleys 51 and 52 are arranged to sandwich the fingers 2 and 3 in the moving direction of the fingers 1 and 3. The first and second fixed pulleys 51 and 52 are arranged in a lower part of the lower space in the base 1.
In this example, as shown in
The first movable pulley 53 is located higher than the first and second fixed pulleys 51 and 52. The first movable pulley 53 is located on a perpendicular axis passing the center between the first and second fixed pulleys 51 and 52. In this example, as shown in
The first wire 56 is an example of a first cord-like member. The first wire 56 includes two ends (a first end 56a and a second end 56b), one of which is directly or indirectly connected to the first finger 2 and the other is directly or indirectly connected to the second finger 3, and is wrapped around the second fixed pulley 52, the first movable pulley 53, and the first fixed pulley 51 in this order as the first wire extends from the first finger 2 to the second finger 3. Note that this merely determines the order of wrapping the wire around the three pulleys of the second fixed pulley 52, the first movable pulley 53, and the first fixed pulley 51, and does not exclude a situation that the first wire 56 is wrapped around an additional pulley provided between the three pulleys. The first moving mechanism 5 is not limited to have the above-described configuration.
Specifically, the first wire 56 is wrapped in the first moving mechanism 5 as shown in
The second moving mechanism 6 moves the first and second fingers 2 and 3 away from each other in the moving direction so that the first and second fingers 2 and 3 grip the workpiece. The second moving mechanism 6 is also able to achieve the follow-gripping of the workpiece with the first and second fingers 2 and 3. The “moving direction” is the direction in which the first and second fingers 2 and 3 move in the hand 100 as described for the first moving mechanism 5.
Specifically, the second moving mechanism 6 includes a third fixed pulley 61, a fourth fixed pulley 62, a second movable pulley 65, and the second wire 66. The second moving mechanism 6 further includes a fifth fixed pulley 63 and a sixth fixed pulley 64. The second moving mechanism 6 is arranged in the lower space in the base 1 just like the first moving mechanism 5.
The third fixed pulley 61 is arranged closer to the first finger 2 in the moving direction of the first and second fingers 2 and 3. The fourth fixed pulley 62 is arranged closer to the second finger 3 in the moving direction of the first and second fingers 2 and 3. Specifically, the third and fourth fixed pulleys 61 and 62 are arranged to sandwich the fingers 2 and 3 in the moving direction of the fingers 2 and 3. The third and fourth fixed pulleys 61 and 62 are arranged in a lower part of the lower space in the base 1. In this example, each of the third and fourth fixed pulleys 61 and 62 includes a single fixed pulley.
The fifth and sixth fixed pulleys 63 and 64 are arranged in an upper part of the lower space in the base 1. The fifth fixed pulley 63 is arranged above the third fixed pulley 61. The sixth fixed pulley 64 is arranged above the fourth fixed pulley 62. The fifth and sixth fixed pulleys 63 and 64 are arranged at the same level.
In this example, the fifth fixed pulley 63 includes three fixed pulleys 631, 632, 633. The sixth fixed pulley 64 includes three fixed pulleys 641, 642, 643. The three fixed pulleys 631, 632, 633 are coaxially arranged, i.e., rotatably supported on a common shaft 635. The three fixed pulleys 641, 642, 643 are coaxially arranged, i.e., rotatably supported on a common shaft 645.
The second movable pulley 65 is located higher than the third and fourth fixed pulleys 61 and 62 and lower than the fifth and sixth fixed pulleys 63 and 64. The second movable pulley 65 is located on a perpendicular axis passing the center between the third and fourth fixed pulleys 61 and 62 and the center between the fifth and sixth fixed pulleys 63 and 64. In this example, as shown in
The second wire 66 is an example of a second cord-like member. The second wire 66 includes two ends (a first end 66a and a second end 66b), one of which is directly or indirectly connected to the first finger 2 and the other is directly or indirectly connected to the second finger 3, and is wrapped around the third fixed pulley 61, the second movable pulley and the fourth fixed pulley 62 in this order as the second wire extends from the first finger 2 to the second finger 3. Note that this merely determines the order of wrapping the wire around the three pulleys of the third fixed pulley 61, the second movable pulley 65, and the fourth fixed pulley 62, and does not exclude a situation that the second wire 66 is wrapped around an additional pulley provided between the three pulleys.
Specifically, the second wire 66 is wrapped in the second moving mechanism 6 as shown in
As shown in
Specifically, the first air cylinders 57 can move the first and second movable pulleys 53 and 65 by moving the common shaft 535. Piston rods 571 of the first air cylinders 57 are connected to the ends of the shaft 535 via connecting members 572. The first air cylinders 57 are arranged so that the piston rods 571 reciprocate (move in and out of the cylinders) in the vertical direction.
The shaft 535 moves up and down, and the first and second movable pulleys 53 and as well, along with the reciprocating motion (in and out motion) of the piston rods 571. For example, when the piston rods 571 move out of the cylinders, i.e., the piston rods 571 are pushed upward, the first and second movable pulleys 53 and 65 move upward (see the upper piston rods drawn with a phantom line in
Thus, as shown in
The first adjustment mechanism 7 rotates the first movable pulley 53 to move the first wire 56, moving the first and second fingers 2 and 3 with a gap between the fingers maintained. The first adjustment mechanism 7 also rotates the second movable pulley 65 to move the second wire 66, moving the first and second fingers 2 and 3 with the gap between the fingers maintained. The first adjustment mechanism 7 also functions as a second adjustment mechanism.
Specifically, the first adjustment mechanism 7 includes a third movable pulley 71, a third wire 72, a guide 73, a wire attachment 76, and a third air cylinder 77. The first adjustment mechanism 7 moves the first and second fingers 2 and 3 so that the center of the gap between the first and second fingers 2 and 3 comes to the center of the movable range of the first and second fingers 2 and 3.
The third movable pulley 71 moves and rotates integrally with the first movable pulley 53 of the first moving mechanism 5 and the second movable pulley 65 of the second moving mechanism 6. Specifically, the third movable pulley 71 is arranged coaxial with the first and second movable pulleys 53 and 65 and rotatably supported on the common shaft 535. The third movable pulley 71 is arranged between the first and second movable pulleys 53 and 65. Specifically, the third movable pulley 71 is formed integrally with the movable pulley 531 of the first moving mechanism 5 and the movable pulley 653 of the second moving mechanism 6 on the sides of the third movable pulley 71. Thus, the movable pulley 531, the third movable pulley 71, and the movable pulley 653 rotate together. That is, the third movable pulley 71 surely rotates as the movable pulleys 531 and 653 rotate for the follow-gripping described later. The third movable pulley 71 also functions as a fourth movable pulley.
The first wire 56 is fixed to the movable pulley 531 of the first movable pulley 53. Thus, the movable pulley 531 rotates when the first wire 56 moves. The second wire 66 is fixed to the movable pulley 653 of the second movable pulley 65. Thus, the movable pulley 653 rotates when the second wire 66 moves. Specifically, the movable pulley 531 has a fixing part P1 that fixes the first wire 56, and the movable pulley 653 has a fixing part P2 that fixes the second wire 66. When the first and second wires 56 and 66 move, the fixing parts keep the first and second wires 56 and 66 from slipping on the movable pulleys 531 and 653. In
The third wire 72 is connected to the third movable pulley 71 and wound about the third movable pulley 71 when the movable pulleys 531 and 653 rotate. The third wire 72 is an example of a third cord-like member and also an example of a fourth cord-like member. That is, the third wire 72 also functions as the fourth cord-like member. Specifically, a first end 72a of the third wire 72 is attached to the wire attachment 76 arranged in the upper space in the base 1. A second end 72b of the third wire 72 is attached to the third movable pulley 71.
As shown in
The guide 73 is substantially cylindrical and is provided on the intermediate plate 14. The third wire 72 extends from the third movable pulley 71 toward the upper space in the base 1 through the guide 73. That is, the guide 73 leads the third wire 72 to extend in the vertical direction. In the upper space in the base 1, a movable pulley 74 is provided between the guide 73 and the wire attachment 76. The third wire 72 that has passed through the guide 73 is attached to the wire attachment 76 via the movable pulley 74.
The movable pulley 74 is rotatably attached to a connecting member 772. Specifically, the connecting member 772 has a shaft 741, and the movable pulley 74 is rotatably supported on the shaft 741. The shaft 741 is arranged to extend in the vertical direction. The connecting member 772 is connected to a piston rod 771 of the third air cylinder 77.
The third air cylinder 77 rewinds the third wire 72 wound about the third movable pulley 71 to rotate the first and second movable pulleys 53 and 65 in a reverse direction. That is, the third air cylinder 77 rewinds the third wire 72 from the third movable pulley 71 to rotate the first and second movable pulleys 53 and 65 opposite to the direction of winding the third wire 72 about the third movable pulley 71.
The third air cylinder 77 is an example of a third actuator and also functions as a fourth actuator. The third air cylinder 77 is arranged so that the piston rod 771 reciprocates (moves in and out of the cylinder) in the horizontal direction. For example, at the start of a close-gripping motion and an open-gripping motion described later, the piston rod 771 has moved inside (see the state drawn with a solid line in
The first adjustment mechanism 7 is configured to rewind the third wire 72 to the maximum to set the third movable pulley 71 in a predetermined first rotation position and moves the first and second fingers 2 and 3 to a predetermined first position with a gap between the fingers 2 and 3 maintained by setting the third movable pulley 71 in the first rotation position. In this example, the position of the third movable pulley 71 when the third wire 72 has been rewound to the maximum is the first rotation position. The predetermined first position is the center of the movable range of the fingers 2 and 3.
The control device 8 is a robot controller including a computer, such as a microcontroller. As shown in
The memory 81 is, for example, a ROM and a RAM, and stores information such as basic programs for the robot controller and various fixed data items. The calculator 82 is, for example, a CPU, and reads and executes software such as the basic programs stored in the memory 81 to generate a control command for controlling various motions of the robot arm and the robot hand 100. The controller 83 controls and drives the first air cylinders 57, a second air cylinder 58, and the third air cylinder 77 based on the control command generated by the calculator 82.
<Motions>
The motions of the hand 100 will be described below with reference to
At the start of the close-gripping motion, the piston rods 571, 571 of the first air cylinders 57, 57 have moved inside (downward), and the piston rod 771 of the third air cylinder 77 has also moved inside. For the close-gripping motion, first, the robot arm 10 moves the hand 100 to the position of the workpiece W, which an object to grip. The workpiece W is placed not to move in the horizontal direction. The workpiece W is, for example, columnar or prismatic in shape. When the hand 100 moves to the position of the workpiece W, the fingers 2 and 3 are fully opened, and thus make no shake.
When the hand 100 has moved to the position of the workpiece W, the fingers 2 and 3 are located outside the workpiece W. In this state, as shown in
At the start of the close-gripping motion, the third movable pulley 71 is in the first rotation position. As shown in
In this state, the first air cylinders 57, 57 are controlled by the control device 8, the piston rods 571, 571 move outside (upward), and the first movable pulley 53 rises. Then, as shown in
As shown in
When the movable pulley 531 rotates as described above, the third movable pulley 71 of the first adjustment mechanism 7 also rotates in the same direction as the movable pulley 531. As shown in
Thus, the first and second fingers 2 and 3 achieve the follow-gripping of the workpiece W, and the close-gripping motion is finished. The fingers 2 and 3 grip the workpiece W from outside. The follow-gripping is achieved smoothly although the center of the workpiece W is misaligned with the center C of the movable range when the hand 100 has moved to the position of the workpiece W. In addition, the third movable pulley 71 that winds the third wire 72 receives less rotational resistance as described above, making the follow-gripping smoother. After the close-gripping motion is finished, the robot arm 10 moves the hand 100 upward to move the workpiece W upward from the original position.
Next, the centering motion is performed. When the follow-gripping is done as described above, the center of the fingers 2 and 3 is misaligned with the center C of the movable range as shown in
For the centering motion, the control device 8 controls the third air cylinder 77 to move the piston rod 771 out of the cylinder. When the piston rod 771 moves outside, the third wire 72 is rewound from the third movable pulley 71, making the third wire 72 including the two branches 721, 722 taut as shown in
When the third movable pulley 71 rotates, the movable pulley 531 (the first movable pulley 53) rotates opposite to the direction of rotation for the close-gripping motion (the direction of rotation shown in
The open-gripping motion will be described below. At the start of the open-gripping motion, the piston rods 571, 571 of the first air cylinders 57, 57 have moved outside (upward), and the piston rod 771 of the third air cylinder 77 has moved inside. For the open-gripping motion, first, the robot arm 10 moves the hand 100 to the position of the workpiece W, which an object to grip. The workpiece W is placed not to move in the horizontal direction. The workpiece W is, for example, a cylindrical member having a round or rectangular space inside.
When the hand 100 has moved to the position of the workpiece W, the fingers 2 and 3 are located inside the workpiece W. In this state, as shown in
At the start of the open-gripping motion, the third movable pulley 71 is in the first rotation position. Just like at the start of the close-gripping motion, the third wire 72 is not taut but loose (see
In this state, the first air cylinders 57, 57 are controlled by the control device 8, the piston rods 571, 571 move inside (downward), and the second movable pulley 65 descends. Then, as shown in
As shown in
Also in this case, when the movable pulley 653 rotates as described above, the third movable pulley 71 of the first adjustment mechanism 7 rotates in the same direction as the movable pulley 653. As shown in
Thus, the first and second fingers 2 and 3 achieve the follow-gripping of the workpiece W, and the open-gripping motion is finished. The fingers 2 and 3 grip the workpiece W from inside. The follow-gripping is achieved smoothly although the center of the workpiece W is misaligned with the center C of the movable range when the hand 100 has moved to the position of the workpiece W. In addition, the third movable pulley 71 that winds the third wire 72 receives less rotational resistance as described above, making the follow-gripping smoother. After the open-gripping motion is finished, the robot arm 10 moves the hand 100 upward to move the workpiece W upward from the original position.
Next, the centering motion is performed. When the follow-gripping is done as described above, the center of the fingers 2 and 3 is misaligned with the center C of the movable range as shown in
For the centering motion, the control device 8 controls the third air cylinder 77 to move the piston rod 771 out of the cylinder. When the piston rod 771 moves outside, the third wire 72 is rewound from the third movable pulley 71, making the third wire 72 including the two branches 721, 722 taut as shown in
When the third movable pulley 71 rotates, the movable pulley 653 (the second movable pulley 65) rotates opposite to the direction of rotation for the “open-gripping motion” (the direction of rotation shown in
As described above, the robot hand 100 includes the first moving mechanism 5 that brings the first and second fingers 2 and 3 close to each other in the predetermined moving direction so that the first and second fingers 2 and 3 grip the workpiece W. The first moving mechanism 5 includes the first movable pulley 53, the first wire 56 (the first cord-like member) that has two ends (the first end 56a and the second end 56b), one of which is connected to the first finger 2 and the other is connected to the second finger 3, and is wrapped around the first movable pulley 53, and the first air cylinders 57 (the first actuator) that move the first movable pulley 53. The first air cylinders 57 move the first movable pulley 53 so that the tension of the first wire 56 acts on the first and second fingers 2 and 3 to bring the first and second fingers 2 and 3 close to each other.
Specifically, the first moving mechanism 5 includes the first fixed pulley 51 arranged closer to the first finger 2 and the second fixed pulley 52 arranged closer to the second finger 3 in the moving direction. The first wire 56 is wrapped around the second fixed pulley 52, the first movable pulley 53, and the first fixed pulley 51 in this order as the first wire extends from the first finger 2 to the second finger 3.
In this configuration, the first wire 56 pulls and moves the first and second fingers 2 and 3 in accordance with the amount of movement of the first movable pulley 53 caused by the first air cylinders 57. Part of the first wire 56 extending from the first movable pulley 53 toward the first fixed pulley 51 is wrapped around the first fixed pulley 51 and connected to the second finger 3. Part of the first wire 56 extending from the first movable pulley 53 toward the second fixed pulley 52 is wrapped around the second fixed pulley 52 and connected to the first finger 2. The first fixed pulley 51 is arranged closer to the first finger 2 in the moving direction, and the second fixed pulley 52 is arranged closer to the second finger 3 in the moving direction. Thus, when pulled by the first wire 56, the first and second fingers 2 and 3 move in a direction approaching each other. This allows the first and second fingers 2 and 3 approach each other to grip the workpiece W from outside.
The amount of movement of the first finger 2 and the amount of movement of the second finger 3 in accordance with the amount of movement of the first movable pulley 53 are suitably adjusted based on a resistance to the movement of the first finger 2 and a resistance to the movement of the second finger 3. For example, when the first finger 2 touches the workpiece W and the resistance to the movement of the first finger 2 increases, the first finger 2 stops, and the amount of movement of the second finger 3 is suitably increased. This allows the second finger 3 to keep moving smoothly toward the workpiece W. Thus, the second finger 3 reaches the workpiece W to achieve smooth follow-gripping.
The follow-gripping is achieved smoothly although the center C of the movable range is misaligned with the center of the workpiece W, for example. Thus, accurate position detection of the workpiece W is no longer necessary when moving the robot hand 100 to the position of the workpiece W. This can reduce the load on the control.
The robot hand 100 includes the second moving mechanism 6 that moves the first and second fingers 2 and 3 away from each other in the moving direction so that the first and second fingers 2 and 3 grip the workpiece W. The second moving mechanism 6 includes the second movable pulley, the second wire 66 (the second cord-like member) that has two ends (the first end 66a and the second end 66b), one of which is connected to the first finger 2 and the other is connected to the second finger 3, and is wrapped around the second movable pulley 65, and the first air cylinders 57 (the second actuator) that move the second movable pulley 65. The first air cylinders 57 move the second movable pulley 65 so that the tension of the second wire 66 acts on the first and second fingers 2 and 3 to move the first and second fingers 2 and 3 away from each other.
Specifically, the second moving mechanism 6 includes the third fixed pulley 61 arranged closer to the first finger 2 and the fourth fixed pulley 62 arranged closer to the second finger 3 in the moving direction. The second wire 66 is wrapped around the third fixed pulley 61, the second movable pulley 65, and the fourth fixed pulley 62 in this order as the second wire extends from the first finger 2 to the second finger 3.
In this configuration, the second wire 66 pulls and moves the first and second fingers 2 and 3 in accordance with the amount of movement of the second movable pulley 65 caused by the first air cylinders 57. Part of the second wire 66 extending from the second movable pulley 65 toward the third fixed pulley 61 is wrapped around the third fixed pulley 61 and connected to the first finger 2. Part of the second wire 66 extending from the second movable pulley 65 toward the fourth fixed pulley 62 is wrapped around the fourth fixed pulley 62 and connected to the second finger 3. The third fixed pulley 61 is arranged closer to the first finger 2 in the moving direction, and the fourth fixed pulley 62 is arranged closer to the second finger 3 in the moving direction. Thus, when pulled by the second wire 66, the first and second fingers 2 and 3 move in a direction away from each other. This allows the first and second fingers 2 and 3 to move away from each other and grip the workpiece W from inside.
The amount of movement of the first finger 2 and the amount of movement of the second finger 3 in accordance with the amount of movement of the second movable pulley 65 are suitably adjusted based on a resistance to the movement of the first finger 2 and a resistance to the movement of the second finger 3. For example, when the first finger 2 touches the workpiece W and the resistance to the movement of the first finger 2 increases, the first finger 2 stops, and the amount of movement of the second finger 3 is suitably increased. This allows the second finger 3 to keep moving smoothly toward the workpiece W. Thus, the second finger 3 reaches the workpiece W to achieve smooth follow-gripping.
The first and second movable pulleys 53 and 65 of the robot hand 100 are configured to move integrally. Thus, the first movable pulley 53 that brings the first and second fingers 2 and 3 close to each other and the second movable pulley 65 that moves the first and second fingers 2 and 3 away from each other move in the opposite directions. The first air cylinders 57 (the first actuator) also serve as the second actuator and move the first and second movable pulleys 53 and 65.
In this configuration, the first air cylinders 57 that move the first movable pulley 53 also function as the second actuator that moves the second movable pulley 65. This can achieve both of the motion of bringing the first and second fingers 2 and 3 close to each other so that the fingers 2 and 3 grip the workpiece W (the close-gripping motion) and the motion of moving the first and second fingers 2 and 3 away from each other so that the fingers 2 and 3 grip the workpiece W (the open-gripping motion), and also can downsize the first and second moving mechanisms 5 and 6, and the robot hand 100 as well.
The robot hand 100 further includes the first adjustment mechanism 7 that rotates the first movable pulley 53 to move the first wire 56, moving the first and second fingers 2 and 3 with a gap between the fingers 2 and 3 maintained. The first and second movable pulleys 53 and 65 are configured to rotate integrally. The first adjustment mechanism 7 rotates the first and second movable pulleys 53 and 65 together to move the first and second wires 56 and 66, moving the first and second fingers 2 and 3 with a gap between the fingers 2 and 3 maintained.
This configuration can easily move the first and second fingers 2 and 3 gripping the workpiece W to any position within the hand 100, for example. Thus, for example, the first and second fingers 2 and 3 can move within the robot hand 100 taking workability of a next process into consideration. For a common differential gear mechanism that may deteriorate the gripping force when the gear rotates opposite to the gripping direction due to backlash or play of the gear, it is difficult to move the first and second fingers gripping the workpiece.
The first adjustment mechanism 7 of the robot hand 100 includes the third movable pulley 71, the third wire 72 (the third cord-like member), and the third air cylinder 77 (the third actuator). The third movable pulley 71 moves and rotates integrally with the first and second movable pulleys 53 and 65. The third wire 72 is connected to the third movable pulley 71 and wound about the third movable pulley 71 when the first and second movable pulleys 53 and 65 rotate. The third air cylinder 77 rewinds the third wire 72 wound about the third movable pulley 71 to rotate the first and second movable pulleys 53 and 65.
In this configuration, the third movable pulley 71 moves and rotates integrally with the first and second movable pulleys 53 and 65. Thus, simply rewinding the third wire 72 can rotate both of the first and second movable pulleys 53 and 65. This can downsize the robot hand 100.
In the robot hand 100, the first wire 56 is fixed to the first movable pulley 53, and the second wire 66 is fixed to the second movable pulley 65.
This configuration allows the first wire 56 to surely move without slipping as the first movable pulley 53 rotates and allows the second wire 66 to surely move without slipping as the second movable pulley 65 rotates. Thus, the first and second fingers 2 and 3 can accurately move with a gap between the fingers maintained.
The first adjustment mechanism 7 of the robot hand 100 is configured to rewind the third wire 72 to the maximum to set the third movable pulley 71 in the predetermined first rotation position and moves the first and second fingers 2 and 3 to the predetermined first position with a gap between the fingers maintained by setting the third movable pulley 71 in the first rotation position.
In this configuration, the third wire 72 is rewound to the maximum to set the third movable pulley 71 in the first rotation position, moving the first and second fingers 2 and 3 to the predetermined first position with the gap between the fingers maintained. When the predetermined first position is the center C of the movable range of the fingers 2 and 3, the first and second fingers 2 and 3 can smoothly and easily move to the center without detecting the amount of rewind of the third wire 72 with a sensor or any other devices.
The robot hand 100 uses the air cylinders 57, 58, and 77 as the first, second, and third actuators.
In this configuration, the robot hand 100 can be produced less expensively than when a motor (a servomotor), for example, is used. In particular, the air cylinder that can make a reciprocating motion is effectively used because the first and second movable pulleys 53 and 65 move up and down.
The embodiment has been described above as an example of the disclosure of the present application. However, the present disclosure is not limited to this exemplary embodiment but is also applicable to other embodiments which are altered or substituted, to which other features are added, or from which some features are omitted, as needed. The components described in the embodiment may be combined to create a new embodiment. The components illustrated on the accompanying drawings and described in the detailed description include not only essential components that need to be used to overcome the problem, but also other unessential components that do not have to be used to overcome the problem. Therefore, such unessential components should not be taken for essential ones, simply because such unessential components are illustrated in the drawings or mentioned in the detailed description.
The second moving mechanism 6 of the embodiment may be omitted. Specifically, the robot hand 100 may only make the “close-gripping motion” as the gripping motion.
The first moving mechanism 5 of the embodiment may be omitted. Specifically, the robot hand 100 may only make the “open-gripping motion” as the gripping motion. In this case, the second adjustment mechanism is provided in place of the first adjustment mechanism 7. The second adjustment mechanism rotates the second movable pulley 65 to move the second wire 66 (the second cord-like member), moving the first and second fingers 2 and 3 with a gap between the fingers maintained.
When the robot hand has no first moving mechanism 5 and is configured to perform the “open-gripping motion” alone, the second moving mechanism 6 may have the structure shown in
The second adjustment mechanism may include a fourth movable pulley that moves and rotates integrally with the second movable pulley 65, a fourth wire (a fourth cord-like member) that is connected to the fourth movable pulley and wound about the fourth movable pulley when the second movable pulley 65 rotates, and a fourth air cylinder (a fourth actuator) that rewinds the fourth wire wound about the fourth movable pulley to rotate the second movable pulley 65.
The second adjustment mechanism is configured to rewind the fourth wire to the maximum to set the fourth movable pulley in a predetermined second rotation position and moves the first and second fingers 2 and 3 to a predetermined second position with a gap between the fingers maintained by setting the fourth movable pulley in the second rotation position.
At the start of the close-gripping motion and the open-gripping motion, the piston rod 771 has moved inside the third air cylinder 77 of the first adjustment mechanism 7 to loosen the third wire 72. In the present disclosure, however, the piston rod 771 may move out of the third air cylinder 77 to strain the third wire 72.
From the robot hand of the embodiment, the first adjustment mechanism 7 may be omitted, the second moving mechanism 6 and the first adjustment mechanism 7 may be omitted, or the first moving mechanism 5 and the first adjustment mechanism 7 may be omitted.
How the first and second wires 56 and 66 are wrapped around the pulleys is not limited to the examples described in the embodiment. Specifically, the wires may be wrapped in any way as long as the tensions of the first and second wires 56 and 66 act on the first and second fingers 2 and 3 when the first and second movable pulleys 53 and 65 move up and down.
The number of fixed pulleys constituting each of the first, second, third, fourth, fifth, and sixth fixed pulleys 51, 52, 61, 62, 63, and 64 and the number of movable pulleys constituting each of the first and second movable pulleys 53 and 65 are not limited to the numbers described in the embodiment. Basically, the number of turns of the wire increases as the number of fixed pulleys and movable pulleys increases. Thus, the amounts of movement of the first and second movable pulleys 53 and 65 required for moving the first and second fingers 2 and 3 can be reduced, making the robot hand 100 compact.
The third movable pulley and the third wire of the embodiment may be configured as described below. As shown in
Other components than the air cylinders may be used as the first, second, and third actuators of the embodiment. For example, a motor or a hydraulic cylinder can be used.
Although the wire has been used as the cord-like member in the embodiment, the cord-like member is not limited to the wire, and may be, for example, a fiber rope.
In the embodiment, the length of the wire wrapped around the first and second movable pulleys 53 and 65 varies depending on the vertical positions of the first and second movable pulleys 53 and 65. This may require the wire to be wrapped slightly loosely. In this case, the wire may possibly be detached from the fixed pulley or any other pulleys. Thus, for example, a tensioner that can absorb unnecessary looseness of the wire or a guide that avoids the wire from detaching from the pulleys may be provided.
Number | Date | Country | Kind |
---|---|---|---|
2020-181378 | Oct 2020 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2021/036878 | 10/5/2021 | WO |