The present invention relates to robotic arm technology and more particularly, to a robotic arm, which has a compact size and can achieve multi-degree of freedom motion.
The robotic arm is now widely used in a variety of surgical procedures. With the aid of a robotic arm, many surgical-related treatments (such as the judgment of the location of the lesion or the control of the depth of the incision) can be accurately grasped by the surgeon, thereby greatly reducing risk of any potential medical problems caused by human error. However, the current robotic arms have the problem of large volume. When using a robotic arm, it requires a large space.
The present invention has been accomplished under the circumstances in view. It is the main object of the present invention to provide a robotic arm, which has a compact size and can achieve multi-degree of freedom motion.
To achieve this and other objects of the present invention, a robotic arm comprises a base frame, a drive module, a transmission linkage and a driven link set. The drive module comprises a first driving source and a second driving source. The first driving source and the second driving source are mounted on the base frame. The transmission linkage comprises a first transmission link, a second transmission link and a third transmission link. The first transmission link has a bottom end thereof connected to the first driving source such that the first transmission link can be driven by the first driving source to turn around a first axis. The second transmission link has a front end thereof connected to the second driving source such that the second transmission link can be driven by the second driving source to turn around a second axis that is parallel to the first axis. The third transmission link has a rear end thereof pivotally connected to an opposing top end of the first transmission link. The driven link set comprises a first driven link, a second driven link, a third driven link and a fourth driven link. The first driven link has a bottom end thereof pivotally connected to the rear end of the second transmission link, and an opposing top end thereof pivotally connected to a rear end of the second driven link. The second driven link has an opposing front end thereof pivotally connected to the base frame such that the first driven link can be driven by the second transmission link to turn the second driven link around the first axis. The third driven link has a bottom end thereof pivotally connected to the top end of the first driven link and the rear end of the second driven link, and an opposing top end thereof pivotally connected to a rear end of a fourth driven link. The fourth driven link has an opposing front end thereof connected to the rear end of the third transmission link such that the third driven link on the one hand can be driven by the first and second driven link, and on the other hand can be driven by the fourth driven link.
It can be seen from the above that the robotic arm of the present invention can improve the bulky and cumbersome problems of the prior art and can achieve the effect of compactness and multi-degree of freedom motion and is quite suitable for application in industrial/medical related fields.
Preferably, the first driving source and the second driving source are located on the same side, so that large-volume components can be concentrated to effectively achieve the purpose of volumetric compactness.
Preferably, the second driven link is parallel to the fourth driven link, the length of the second transmission link is greater than the length of the second driven link, and the length of the second driven link is equal to the length of the fourth driven link. The relationship of the second transmission link, the second driven link and the fourth driven link allows the range of motion of the third transmission link to be amplified relative to the second transmission link to meet the required working range.
Other advantages and features of the present invention will be fully understood by reference to the following specification in conjunction with the accompanying drawings, in which like reference signs denote like components of structure.
The applicant first explains here, in the embodiments and drawings which will be described below, the same reference numerals denote the same or similar elements or structural features thereof. The technical content and features of the present invention will be described in detail below by way of a number of preferred embodiments as illustrated in the accompanying drawings. The directional expressions such as “top”, “bottom”, “front” and “back” mentioned in the contents of this description are merely illustrative terms used in the normal direction of use and are not intended to limit the scope of claims.
Referring to
The drive module 30 comprises a first driving source 31 (here, a motor is taken as an example) and a second driving source 32 (here, a motor is taken as an example). The first driving source 31 and the second driving source 32 are arranged in parallel at different elevations and on the same side of the base frame 20.
The transmission linkage 40 comprises a first transmission link 41, a second transmission link 42 and a third transmission link 43. The first transmission link 41 has a bottom end thereof connected to a drive shaft (not shown) of the first driving source 31 by, for example, a coupling (not shown), such that the first transmission link 41 can be driven by the first driving source 31 to turn around a first axis A1. The second transmission link 42 has a front end thereof connected to a drive shaft (not shown) of the second driving source 32 by, for example, a coupling (not shown), such that the second transmission link 42 can be driven by the second driving source 32 to turn around a second axis A2 that is disposed in parallel to the first axis A1. The third transmission link 43 is adapted for the assembly of a multi-axis motion module 14 (as shown in
Referring to
As can be seen from the above, as shown in
Referring to
On the other hand, as shown in
Referring to
In conclusion, the robotic arm 10 of the present invention can perform multi-degree of freedom movement, so that the front-rear position and the deflection angle of the third transmission link 43 can be accurately adjusted according to actual needs, which is suitable for application in industrial/medical related fields. In addition, the robotic arm 10 of the present invention concentrates large-volume components (such as the first and second driving sources 31, 32) on the same side, thereby effectively achieving the purpose of volumetric compactness.
Number | Name | Date | Kind |
---|---|---|---|
4762016 | Stoughton | Aug 1988 | A |
5222409 | Dalakian | Jun 1993 | A |
6047610 | Stocco | Apr 2000 | A |
6339969 | Salcudean | Jan 2002 | B1 |
7331750 | Merz | Feb 2008 | B2 |
20040211284 | Roy | Oct 2004 | A1 |
20100225209 | Goldberg | Sep 2010 | A1 |
20120132018 | Tang | May 2012 | A1 |
Number | Date | Country |
---|---|---|
204976631 | Jan 2016 | CN |
3038419 | Apr 1981 | DE |
102010023788 | Dec 2011 | DE |
10235191 | Feb 2012 | DE |
102015102014 | Mar 2016 | DE |
102014116103 | May 2016 | DE |
H02-4788 | Jan 1990 | JP |
H02-279289 | Nov 1990 | JP |
2003-39352 | Feb 2003 | JP |
Number | Date | Country | |
---|---|---|---|
20200147790 A1 | May 2020 | US |