This application is a U.S. National Phase application of PCT International Application No. PCT/EP2013/077377, filed Dec. 19, 2013, which is incorporated by reference herein.
The invention relates to a robotic cleaning device and to methods of operating and teaching the robotic cleaning device to recognize and to associate specific types of markers and their features with a specific area or room and control its operation accordingly.
Robotic vacuum cleaners such as for example robotic vacuum cleaners are known in the art. In general robotic vacuum cleaners are equipped with drive arrangement in the form of a motor for moving the cleaner across a surface to be cleaned. The robotic vacuum cleaners are further equipped with intelligence in the form of microprocessor(s) and navigation means for causing an autonomous behaviour such that the robotic vacuum cleaners freely can move around and clean a space in the form of e.g. a room.
In many fields of technology, it is desirable to use robots with an autonomous behaviour such that they freely can move around a space without colliding with possible obstacles.
It is a desire to support the navigation and positioning of a robotic vacuum cleaner, especially within complex environments and surfaces to be cleaned. The navigation and positioning may thus be improved by using artificial markers or artificial landmarks.
As an a example, robotic vacuum cleaners exist in the art with the capability of more or less autonomously vacuum cleaning a room in which furniture such as tables and chairs and other obstacles such as walls and stairs are located. Traditionally, these robotic vacuum cleaners have navigated a room by means of using e.g. ultrasound or light waves or laser beams. Further, the robotic vacuum cleaners typically must be complemented with additional sensors, such as stair sensors, wall-tracking sensors and various transponders to perform accurately. Such sensors are expensive and affect the reliability of the robot.
A large number of prior art robotic vacuum cleaner use a technology referred to as Simultaneous Localization and Mapping (SLAM). SLAM is concerned with the problem of building a map of an unknown environment by a mobile robotic vacuum cleaner while at the same time navigating the environment using the map. This is typically combined with a horizontally scanning laser for range measurement. Further, odometry is used to provide an approximate position of the robot as measured by the movement of the wheels of the robot.
US 2002/0091466 discloses a mobile robot with a first camera directed toward the ceiling of a room for recognizing a base mark on the ceiling and a line laser for emitting a linear light beam toward an obstacle, a second camera for recognizing a reflective linear light beam from the obstacle. The line laser emits a beam in the form of straight line extending horizontally in front of the mobile robot.
The use of a base mark on the ceiling and markers on the ceiling in general poses certain disadvantages. First, the robot will need to have two cameras with at least one camera “looking” up towards the ceiling and another camera looking in the direction of movement and thus in the direction of the laser beams from the horizontal line laser, this is expensive and complicates the build up of the robot. Further, the user has to position at least one base mark on the ceiling by using a chair or ladder.
In addition if the robotic vacuum cleaner can only rely on natural landmarks or markers within a surface to be cleaned, or if the environment is too sterile, too repetitive, thus if the signature of the environment is not rich enough, the robotic cleaning device may run into problems during the navigation and when it tries to identify its current position.
It is further difficult to communicate special information to the robotic cleaning device.
An object of the present invention is to solve the above mentioned problems and to provide a robotic cleaning device that can navigate and position itself accurately, that is efficient in its use and that provides a high flexibility to the user.
A further object of the present invention is to provide a robotic cleaning device that supports an efficient electric recharging of a robotic cleaning device by a charging station and that enables the robotic cleaning device to easily find and recognize the charging station.
Another object of the present invention is to provide methods of teaching and operating the robotic cleaning device which allows an easy set up, which methods enhance the programmability of the cleaning performed by the robotic cleaning device and which later on enhances the accuracy of the cleaning operation.
The above mentioned objects are solved by a robotic cleaning device and by methods of teaching and operating a robotic cleaning device, as claimed in the independent claims.
Disclosed herein is a robotic cleaning device comprising a body, an obstacle detecting device configured to obtain data from a vicinity of the robotic cleaning device. The robotic cleaning device comprises further a cleaning member and a propulsion system, said propulsion system being configured to drive the robotic cleaning device across a surface to be cleaned, wherein a processing unit is arranged to extract and attain at least one feature from said data obtained by the obstacle detecting device and compare the attained feature with stored features and when the attained feature matches one of the stored features, deduce a position of the robotic cleaning device.
Disclosed herein is further in an embodiment of the present invention a robotic cleaning device comprising a body, an obstacle detecting device in the form of a three dimensional (3D) sensor system, said 3D sensor system comprising a camera being configured to record an image of at least a portion of the vicinity of the robotic cleaning device. The 3D sensor system and the camera, respectively, produces data from a vicinity of the robotic cleaning device in the form of recorded images, from which the processing unit is configured to extract the at least one feature from said image in order to attain the feature and its position, compare the attained feature with stored features and, when the attained feature matches one of the stored feature, deduce a position of the robotic cleaning device.
The stored features may be stored in a database, which is integrated or at least connected to a processing unit of the obstacle detecting device.
The obstacle detection device may comprise a 3D sensor system, which 3D sensor system may be a laser scanner, a camera, a radar, etc.
The robotic cleaning device may thus perform a cleaning operation by constantly observing and recording its vicinity while moving around on the surface to be cleaned. When one of its many attained features match a stored feature, the robotic cleaning device may perform an operation based on an instruction associated with the stored feature. Thus it may be possible to associate a stored feature, for example “kitchen”, with the instruction “do not clean”, which will make the robotic cleaning device not cleaning the kitchen as soon as one of its attained features does match the specific stored feature “kitchen”. The stored feature kitchen may either be derived from a specific, artificial 3D marker or from recognizing the specific feature from the fridge, stove, etc.
The 3D sensor system may comprise a camera device configured to record images of a vicinity of the robotic cleaning device; and a first and second vertical line lasers configured to illuminate said vicinity of the robotic cleaning device.
The processing unit may further be configured to derive the positional data from the recorded images.
The 3D or vertical markers may be natural or artificial markers.
The attained features and the stored features may be derived from 3D markers. The position of the 3D markers and thus the robotic cleaning device may also be derived from the recorded images.
Once the robotic cleaning device has build up a map of the surface to be cleaned, it will start to remember or attain where the stored features and the associated rooms are located and the user may command the robotic cleaning device to clean the “bathroom”, which will lead to the robotic cleaning device going straight to the bathroom and clean it.
Disclosed herein is further a method of teaching a robotic cleaning device comprising the steps of:
After the teaching phase the robotic cleaning device may start the cleaning by autonomously moving, recognizing the positioned markers and attaining their features and their position and the corresponding area assigned, comparing the attained feature with the stored features and, when the attained feature matches one of the stored features, controlling its operation or movement according to instructions assigned to the said one stored feature.
The method allows a user to easily install the robotic cleaning device and set it up so that it may operate efficiently basically from when the set up is done. The teaching phase, which may be done when the robotic cleaning device is set to a teaching mode, is comparably short and it enables the user to control the cleaning process easily. For example is it possible for a user to tell the robotic cleaning device not to clean the specific area or room defined as “kitchen”, “bedroom” or “bathroom” at a certain time, since you may not want to have your robotic cleaning device in the bedroom at night or in the bathroom when you get ready in the morning. Further areas which are forbidden for the robotic cleaning device such as the staircase can also be taught to the robotic cleaning device so that it will not go further when it sees the specific vertical marker that was assigned for example to the specific area named “staircase”. Each stored feature may be assigned to corresponding instructions, in the case of the staircase this may be “turn around” or “don't go”.
The teaching phase may be done in the factory using 3D markers. Each of the 3D markers would then need to tagged with “kitchen”, “bathroom”, “bedroom”, “office”, “living room”, etc. so that a user only needs to install the 3D markers at an entrance to the corresponding room. The user may then, after positioning the 3D markers, switch on the robotic cleaning device, which will lead to the robotic cleaning device starting to move and clean and at the same time learn about its environment or surface to be cleaned and the position of the 3D markers and their corresponding stored features.
Disclosed herein is another method of operating a robotic cleaning device comprising the steps of:
The method allows to perform customized cleanings and to improve the efficiency of the cleaning operation.
The obtained data may by in the form of an image, a picture, a map a 3D representation of the room, etc.
In an embodiment the at least one feature may be attained from at least two reflective elements having a predetermined vertical offset.
The two reflective elements may be used to mark the way to a charging station configured to charge the robotic cleaning device or they may be used to directly mark the charging station.
The vertical offset may be chosen to be in a range of 1 to 10 cm, preferably 2 to cm, more preferably 3 cm.
The may ease the recognition of the reflective markers and their offset, respectively, by the robotic cleaning device.
The above mentioned attained feature may be attained from a vertically arranged bar code.
In a preferred embodiment of the robotic cleaning device, the obstacle detecting device may comprise the 3D sensor system and at least one line laser, which is configured to illuminate the vicinity of the robotic cleaning device.
The line laser improves the recording and the image quality of the 3D sensor system by illuminating the vicinity of the robotic cleaning device.
In an embodiment the at least one line may be a vertical line laser.
This facilitates the build up of a 3D map of the environment the robotic cleaning device is operating in.
In an embodiment the obstacle detecting device of the robotic cleaning device are configured to record images of 3D object markers and derive and attain at least one feature from at least one of the markers.
The 3D markers may preferably be 3D object markers that are at least partially symmetric so that they look the same for the robotic cleaning device from various horizontal directions from the surface to be cleaned.
The at least partially symmetrical 3D object markers may be completely symmetric.
Using 3D object markers improves recognition by the obstacle detecting device and thus the 3D sensor system and the processing unit.
The various types of different vertical markers may be configured as modular sets of vertical and/or horizontal markers that may be extended depending on the size and geometry of a surface that should be cleaned by the robotic cleaning device.
It may be possible that the 3D object markers are everyday articles such as symmetrical floorlamps, symmetrical chess figures, symmetrical vases, symmetrical hall stands, symmetrical candle holders and so on.
This may create opportunities to use design objects as different vertical markers for the robot. Since the robotic cleaning kit is designed as a home appliance the use of everyday articles as vertical markers allows to combine a technical cleaning kit with design features or furniture features, whereby the design features are used and built into the actual technical appliance.
The everyday articles used as vertical markers may need to have a unique, symmetrical shape for easy recognition by the robot.
The 3D markers may be comparably small discreet 3D object markers, which are configured to be glued or stuck to a vertically extending object such as a wall or furniture.
If a user does not want to have comparably big free standing 3D objects such as high vases, hallstands or the like as vertical markers he may use the comparably small discreet 3D objects which can be glued or stuck to the wall. The small 3D objects may have a height from 5 to 20 cm and can be discreetly stuck next to electric outlets, comparably close to the floor. The 3D objects or 3D artificial markers may thus be installed in a range of 0 cm-50 cm from the floor.
The 3D markers or objects may be configured to be stuck close to an entrance, such as a door, gate or corridor in order to “show” the robotic cleaning device which area or room it is about to enter.
In a further embodiment the processing unit may comprise a user interface configured to receive input from a user regarding at least one attained feature derived from at least one of the 3D object markers, in order to generate a stored feature.
The user interface may also be used to give commands to the robotic cleaning device and program it.
In a further embodiment the obstacle detecting device may comprise a second vertical line laser, whereby the first and second vertical line lasers are arranged laterally of the 3D sensor system.
A second vertical line laser may improve the ability of the obstacle detecting device to recognize the vertical markers. The lateral positioning of the vertical line lasers may better illuminate the angle in which the camera is operating.
Further, the vertical line laser may comprise an oscillating or vertically rotating laser beam, which oscillates or rotates with a high frequency, so that said line laser creates a vertical laser plane which vertically projects a vertical laser line across a space or room.
The aforementioned method of operating the robotic cleaning device may further comprise the step of installing different types of markers in close proximity to entrances to different rooms, the robotic cleaning device being configured to recognize and attain features and a position from at least one of the installed markers and control its operation or movement according to instructions assigned to the known feature of the at least one type of marker.
Advantageously the method further comprises the step of installing a charging station and a unique charging station marker in close proximity to the charging station, the robotic cleaning device being configured to recognize and attain the unique charging station marker and its specific feature in order to find its way to the charging station.
As stated above the use of a unique charging station marker improves the ability of the robotic cleaning device to find its way to the charging station. The unique charging station marker may further help the robotic cleaning device to position itself better in order to actually connect to the charging station.
Additionally the method may further comprise the step of programming and teaching a processing unit of the robotic cleaning device via the interface so that only some or one of the specific areas or rooms are/is cleaned at a time.
This gives the user a high flexibility and she/he can adjust the robotic cleaning device according to her/his needs. The user interface may also provide a function with a timer or the like so that the robotic cleaning device does, for example, not clean during the night.
It is noted that the invention relates to all possible combinations of features recited in the claims. Further features of, and advantageous with the present invention will become apparent when studying the appended claims and the following description. Those skilled in the art realize that different features of the present invention can be combined to create embodiments other than those described in the following.
The steps of any method disclosed herein do not have to be performed in the exact order disclosed, unless explicitly stated.
Further the terms recognizable, discoverable, remarkably different, etc. stated herein refer to the ability of the robotic cleaning device and not the ability of a human eye.
The invention is now described, by way of example, with reference to the accompanying drawings, in which:
The invention will now be described more fully hereinafter with reference to the accompanying drawings, in which certain embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided by way of example so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout the description.
Referring now to the figures, which show an exemplary embodiment of the invention, a robotic cleaning kit or system 1 comprises a robotic cleaning device 2 and a modular, artificial vertical marker set 4, as illustrated in
The robotic cleaning device 2 comprises an obstacle detecting device in the form of 3D sensor comprising a first and a second line laser 8, 10, which may be horizontal or vertical line lasers and a camera device 13. The robotic cleaning device may further comprise a processing unit 14, a propulsion system 20 comprising a driving wheel 16, a body 18 and a cleaning member 22, as best illustrated in
The propulsion system 20 may, alternatively to the driving wheel 16, comprise crawlers or even a hoover craft system.
The cleaning member 22 may comprise a brush roll, a floor mop, a cleaning opening. In the case the robotic cleaning device 2 is a robotic cleaning device, the cleaning member 22 may further comprise a suction fan connected to the cleaning opening.
The propulsion system 20 the robotic cleaning device 1, as best illustrated in
The first and second vertical line laser 8, 10 are configured to scan, preferably vertically scan, the vicinity of the robotic cleaning device 2, normally in the direction of movement of the robotic cleaning device 2. The first and second line lasers 8, 10 are configured to send out laser beams, which illuminate furniture, walls and other objects of a home or room. The 3D sensor system 12 and the camera device 13, respectively, takes and records images and the processing unit 14 may create an image or layout of the surroundings the robotic cleaning device 2 is operating in, by putting the pieces together and by measuring the distance covered by the robotic cleaning device 2, while the robotic cleaning device 2 is operating. The robotic cleaning device 2 is thus configured to learn about its environment or surroundings by operating/cleaning.
With reference to
With respect to
The modular vertical marker set 4 comprises a plurality of various types of artificial markers 24b-24g. The modular vertical marker set 4 may comprise a plurality of pairs of identical types of markers 24b-24g, which pairs of identical types of vertical markers 24b-24g may be installed on either side of a doorframe that leads into a room, as illustrated in
The robotic cleaning device 2 and its processing unit 14, respectively, may recognize and store at least one feature or characteristic, created when the various types of vertical markers 24b-24g are illuminated by the first and second laser 8, 10. The first and second lasers 8, 10 are however not necessary to generate said feature, it is possible to derive a feature from a marker 24b-24g or other object within a surface 52 to be cleaned, without the first and second laser 8, 10. The feature comprises data that is extracted from an image that is generated when the 3D sensor system 13 takes pictures while the robotic cleaning device 2 is moving around. This is best illustrated in
Preferably a plurality of features may be extracted and stored from each of the vertical markers 24b-24g. The more features or characteristics are derived from a vertical marker 24b-24g, the better can the robotic cleaning device recognize and identify the artificial marker 24b-24g.
In order to teach the robotic cleaning device 2 to record and recognize the various markers 24b-24g and their feature, the robotic cleaning device 2 may be positioned in front of a vertical reference surface and then a user may temporarily install the markers 24b-24g, one after the other. An image of each type of marker 24b-24g is then taken by an obstacle detecting device, the image is analysed and at least one feature is attained and stored in a database, which for example is located on the storage medium 50. The attained feature stored in the database is forming a stored feature. Thus each different type of marker 24b-24g has at least one associated stored feature in the database. There may be more than one stored feature in the database for each different type of marker 24b-24g.
The processing unit 14 may comprise a user interface 44, as illustrated in
For example, the user may want to name and flag the kitchen to the robotic cleaning device 2, therefore a specific pair of or one specific marker 24b-24g is temporarily installed on the vertical reference surface, then scanned and the feature is recorded by the robotic cleaning device 2, then the name of the room or area associated with the specific marker and its feature or pair of vertical markers 24 as well as instructions regarding what to do when the specific stored feature is recognized may be typed into the user interface 44 and saved by the processing unit 14. After that, as a last step, the specific pair or one of the specific markers 24b-24g may be installed at the entrance to the kitchen. When the robotic cleaning device 2 is now set to a cleaning mode to clean the surface 52 it will record images, derive and attain features from the images and compare those attained features with stored features from the database. When the attained feature matches the stored feature for “kitchen”, the robotic cleaning device 2 will perform according to instructions assigned to the specific stored feature for “kitchen”. The user may have decided that the kitchen should not be cleaned (instruction), and the robotic cleaning device 2 will thus turn away or go back when an attained feature matches the stored feature for “kitchen”. The present invention thus allows telling or teaching the cleaning robotic cleaning device 2 not to enter the kitchen or clean the kitchen only at a certain time of the day etc. The method and the robotic cleaning device also enable the user to set and mark no-go areas such as staircases or other thresholds.
After a certain time of operating, the robotic cleaning device 2 will also remember where the stored feature and thus the installed markers 24b-24g are positioned within the cleaning surface 52 and the map build up by the robotic cleaning device 2 itself.
The robotic cleaning device 2 may be configured, among others, to work in the teaching or learning mode and in the cleaning mode. Thus after the above described teaching process, which is done in a teaching mode, the robotic cleaning device 2 may be switched to the cleaning mode in which it autonomously starts to operate and clean the surface 52, whereby it will recognize the different markers 24b-24g and their corresponding feature taught, said markers being now placed at the entrance to the correspondingly named room or area as best illustrated in
All the makers 24b, 24c, 24d, 24e, 24f, 24g illustrated in
The unique charging station marker 40 may be positioned either directly on the charging station 6 or it may be positioned at least in close proximity to the charging station 6. Positioning the unique charging station marker 40 on the charging station 6 may have the advantage that this could be done directly in the factory side prior to selling the robotic cleaning kit 1 and that in case the charging station 6 is moved to another place within the surface 52 to be cleaned, the unique charging station marker 40 follows and the robotic cleaning device 2 finds the charging station 6.
Since the robotic cleaning device 2 now knows each room or area basically by name, the user can adjust, control and program the whole cleaning process. It may even be possible to tell the robotic cleaning device 2 when to clean which room or area via the interface 44. For example the user may be able to tell the robotic cleaning device 2 that the kitchen 66 should be cleaned after preparation of the meal. Since the robotic cleaning device 2 learned and stored the layout of the cleaning surface 52 and thus knows where the kitchen is located, as illustrated in
The various types of markers 24b, 24c, 24d, 24e, 24f, 24g are configured to be glued or stuck to the wall 68, preferably lower than the light switches close to the electric sockets.
However, the different markers 24b-24g do not need to be configured to be stuck or glued to the wall 68. The various types of different markers 24-24g may be configured to be standing freely in the room and may thus be everyday articles such as candle holders 32, hallstands, vases with special shapes that can be recognized by the robotic cleaning device 2 or special objects like chess figures (pawn 28, queen or rook), which may also be recognized by a robotic cleaning device 2. When freely standing objects are used as markers 24b-24g for the robotic cleaning device 2, there is however, a slight risk that they may be moved around by a person and that they then may confuse the robotic cleaning device 2.
The various types of different markers 24b-24g have a height profile which creates a specific vertical signature, when the vertical markers 24b-24g are illuminated by the vertical line lasers 8, 10.
In addition, the various types of different vertical markers 24b-24g do not require any electric or other power and are configured to work as passive markers that can be easily installed and positioned without additional accessories.
Various bar codes may also be used as markers 24b-24g, as illustrated in
The invention has now been described by a robotic cleaning device 2 comprising vertical line lasers 8, 10, which may vertically scan various types of markers 24b-24g.
It is also possible and falls within the scope of the invention to use horizontal line lasers and various types of horizontal markers, which extend in a horizontal direction and which have a specific horizontal profile.
The robotic cleaning kit 1 has now been described using a few of the almost indefinite amounts of various types of markers 24b-24g. Many shapes or types of vertically extending and at least partially or completely symmetric objects may fulfil the requirements to function as a specific type of marker 24b-24g. One of the only limiting requirements to a marker 24b-24g may be that it is easily portable by a person. The different markers 24b-24g may be various types of vertical markers 24b-24g which have a specific vertical signature along their height.
The embodiment according to the invention has now been described by using markers 24b-24g to generate the stored and attained features. Due to the capability of the obstacle detecting device and the processing unit 14 of the robotic cleaning device 2 it is however possible to teach the robotic cleaning device 2 the surface 52 and its areas and rooms to be cleaned by using common objects that can be found in a home, as markers (not illustrated). The staircase 56 for example, has quite a special shape in a home and may be easily recognizable by the robot 2 without using markers 24b-24g. Same is valid for other rooms, such as the kitchen with the stove as potential marker 24b-24g, etc.
Thus the scope of the invention is not limited to markers 24b-24g as shown in the figures and as described herein. The markers may incorporate any suitable object or shape arranged or positioned in the area to be cleaned. Examples for such markers may be vases, TV-screens, furniture, lamps, bathtubs, etc.
The invention has mainly been described above with reference to a few embodiments. However, as is readily appreciated by a person skilled in the art, other embodiments than the ones disclosed above are equally possible within the scope of the invention, as defined by the appended patent claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2013/077377 | 12/19/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/090397 | 6/25/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1286321 | Hoover | Dec 1918 | A |
1401007 | Staples | Dec 1921 | A |
3010129 | Moore | Nov 1961 | A |
3233274 | Kroll | Feb 1966 | A |
3550714 | Bellinger | Dec 1970 | A |
3570227 | Bellinger | Mar 1971 | A |
3713505 | Muller | Jan 1973 | A |
3837028 | Bridge | Sep 1974 | A |
4028765 | Liebscher | Jun 1977 | A |
4036147 | Westling | Jul 1977 | A |
4114711 | Wilkins | Sep 1978 | A |
4119900 | Kremnitz | Oct 1978 | A |
4306174 | Mourier | Dec 1981 | A |
4306329 | Yokoi | Dec 1981 | A |
4369543 | Chen | Jan 1983 | A |
4502173 | Patzold | Mar 1985 | A |
4627511 | Yajima | Dec 1986 | A |
4647209 | Neukomm | Mar 1987 | A |
4800978 | Wasa | Jan 1989 | A |
4822450 | Davis | Apr 1989 | A |
4825091 | Breyer | Apr 1989 | A |
4836905 | Davis | Jun 1989 | A |
4838990 | Jucha | Jun 1989 | A |
4842686 | Davis | Jun 1989 | A |
4849067 | Jucha | Jul 1989 | A |
4854000 | Takimoto | Aug 1989 | A |
4864511 | Moy | Sep 1989 | A |
4872938 | Davis | Oct 1989 | A |
4878003 | Knepper | Oct 1989 | A |
4886570 | Davis | Dec 1989 | A |
4918607 | Wible | Apr 1990 | A |
4919224 | Shyu | Apr 1990 | A |
4922559 | Wall | May 1990 | A |
4959192 | Trundle | Sep 1990 | A |
4962453 | Pong | Oct 1990 | A |
4989818 | Trundle | Feb 1991 | A |
5001635 | Yasutomi | Mar 1991 | A |
5006302 | Trundle | Apr 1991 | A |
5023444 | Ohman | Jun 1991 | A |
5032775 | Mizuno | Jul 1991 | A |
5034673 | Shoji | Jul 1991 | A |
5042861 | Trundle | Aug 1991 | A |
5045118 | Mason | Sep 1991 | A |
5086535 | Grossmeyer | Feb 1992 | A |
5095577 | Jonas | Mar 1992 | A |
5107946 | Kamimura | Apr 1992 | A |
5155683 | Rahim | Oct 1992 | A |
5243732 | Koharagi | Sep 1993 | A |
5245177 | Schiller | Sep 1993 | A |
5276933 | Hennessey | Jan 1994 | A |
5279672 | Betker | Jan 1994 | A |
5293955 | Lee | Mar 1994 | A |
5307273 | Oh | Apr 1994 | A |
5309592 | Hiratsuka | May 1994 | A |
5341540 | Soupert | Aug 1994 | A |
5345639 | Tanoue | Sep 1994 | A |
5349378 | Maali | Sep 1994 | A |
5353224 | Lee | Oct 1994 | A |
5367458 | Roberts et al. | Nov 1994 | A |
5369347 | Yoo | Nov 1994 | A |
5377106 | Drunk | Dec 1994 | A |
5390627 | van der Berg | Feb 1995 | A |
5398632 | Goldbach | Mar 1995 | A |
5402051 | Fujiwara | Mar 1995 | A |
5440216 | Kim | Aug 1995 | A |
5444965 | Colens | Aug 1995 | A |
5446356 | Kim | Aug 1995 | A |
5454129 | Kell | Oct 1995 | A |
5518552 | Tanoue | May 1996 | A |
5534762 | Kim | Jul 1996 | A |
5548511 | Bancroft | Aug 1996 | A |
5560077 | Crotchett | Oct 1996 | A |
5568589 | Hwang | Oct 1996 | A |
5621291 | Lee | Apr 1997 | A |
5646494 | Han | Jul 1997 | A |
5666689 | Andersen | Sep 1997 | A |
5682313 | Edlund | Oct 1997 | A |
5682640 | Han | Nov 1997 | A |
5687294 | Jeong | Nov 1997 | A |
5698957 | Sowada | Dec 1997 | A |
5745946 | Thrasher | May 1998 | A |
5758298 | Guldner | May 1998 | A |
5778554 | Jones | Jul 1998 | A |
5781960 | Kilstrom | Jul 1998 | A |
5787545 | Colens | Aug 1998 | A |
5815880 | Nakanishi | Oct 1998 | A |
5825981 | Matsuda | Oct 1998 | A |
5841259 | Kim | Nov 1998 | A |
5852984 | Matsuyama | Dec 1998 | A |
5867800 | Leif | Feb 1999 | A |
5890250 | Lange | Apr 1999 | A |
5896488 | Jeong | Apr 1999 | A |
5903124 | Kawakami | May 1999 | A |
5926909 | McGee | Jul 1999 | A |
5933902 | Frey | Aug 1999 | A |
5935179 | Kleiner | Aug 1999 | A |
5940927 | Haegermarck | Aug 1999 | A |
5942869 | Katou | Aug 1999 | A |
5947051 | Geiger | Sep 1999 | A |
5959423 | Nakanishi | Sep 1999 | A |
5959424 | Elkmann | Sep 1999 | A |
5966765 | Hamada | Oct 1999 | A |
RE36391 | vandenBerg | Nov 1999 | E |
5983833 | van der Lely | Nov 1999 | A |
5987696 | Wang | Nov 1999 | A |
5991951 | Kubo | Nov 1999 | A |
5995884 | Allen | Nov 1999 | A |
5997670 | Walter | Dec 1999 | A |
5999865 | Bloomquist et al. | Dec 1999 | A |
6012470 | Jones | Jan 2000 | A |
6024107 | Jones | Feb 2000 | A |
6064926 | Sarangapani | May 2000 | A |
6076662 | Bahten | Jun 2000 | A |
6082377 | Frey | Jul 2000 | A |
6124694 | Bancroft | Sep 2000 | A |
6142252 | Kinto | Nov 2000 | A |
6176067 | Bahten | Jan 2001 | B1 |
6213136 | Jones | Apr 2001 | B1 |
6226830 | Hendriks | May 2001 | B1 |
6230360 | Singleton | May 2001 | B1 |
6251551 | Kunze-Concewitz | Jun 2001 | B1 |
6255793 | Peless | Jul 2001 | B1 |
6263989 | Won | Jul 2001 | B1 |
6300737 | Bergvall | Oct 2001 | B1 |
6311366 | Sepke | Nov 2001 | B1 |
6327741 | Reed | Dec 2001 | B1 |
6339735 | Peless | Jan 2002 | B1 |
6358325 | Andreas | Mar 2002 | B1 |
6360801 | Walter | Mar 2002 | B1 |
6370452 | Pfister | Apr 2002 | B1 |
6370453 | Sommer | Apr 2002 | B2 |
6381801 | Clemons, Sr. | May 2002 | B1 |
6389329 | Colens | May 2002 | B1 |
6413149 | Wada | Jul 2002 | B1 |
6417641 | Peless | Jul 2002 | B2 |
6431296 | Won | Aug 2002 | B1 |
6438456 | Feddema | Aug 2002 | B1 |
6443509 | Levin | Sep 2002 | B1 |
6457199 | Frost | Oct 2002 | B1 |
6457206 | Judson | Oct 2002 | B1 |
6459955 | Bartsch | Oct 2002 | B1 |
6465982 | Bergvall | Oct 2002 | B1 |
6481515 | Kirkpatrick | Nov 2002 | B1 |
6482678 | Frost | Nov 2002 | B1 |
6493612 | Bisset | Dec 2002 | B1 |
6493613 | Peless | Dec 2002 | B2 |
6496754 | Song | Dec 2002 | B2 |
6504610 | Bauer | Jan 2003 | B1 |
6519804 | Vujik | Feb 2003 | B1 |
6525509 | Petersson | Feb 2003 | B1 |
D471243 | Cioffi | Mar 2003 | S |
6532404 | Colens | Mar 2003 | B2 |
6535793 | Allard | Mar 2003 | B2 |
6571415 | Gerber | Jun 2003 | B2 |
6580246 | Jacobs | Jun 2003 | B2 |
6581239 | Dyson | Jun 2003 | B1 |
6594844 | Jones | Jul 2003 | B2 |
6597143 | Song | Jul 2003 | B2 |
6601265 | Burlington | Aug 2003 | B1 |
6605156 | Clark | Aug 2003 | B1 |
6609962 | Wakabayashi | Aug 2003 | B1 |
6611120 | Song | Aug 2003 | B2 |
6611318 | LaPolice | Aug 2003 | B2 |
6615108 | Peless | Sep 2003 | B1 |
6615885 | Ohm | Sep 2003 | B1 |
6633150 | Wallach | Oct 2003 | B1 |
6637446 | Frost | Oct 2003 | B2 |
6658325 | Zweig | Dec 2003 | B2 |
6661239 | Ozick | Dec 2003 | B1 |
6662889 | De Fazio | Dec 2003 | B2 |
6667592 | Jacobs | Dec 2003 | B2 |
6668951 | Won | Dec 2003 | B2 |
6671592 | Bisset | Dec 2003 | B1 |
6690134 | Jones | Feb 2004 | B1 |
6726823 | Wang | Apr 2004 | B1 |
6732826 | Song | May 2004 | B2 |
6745431 | Dijksman | Jun 2004 | B2 |
6748297 | Song | Jun 2004 | B2 |
6769004 | Barrett | Jul 2004 | B2 |
6774596 | Bisset | Aug 2004 | B1 |
6775871 | Finch | Aug 2004 | B1 |
6781338 | Jones | Aug 2004 | B2 |
6809490 | Jones | Oct 2004 | B2 |
6810305 | Kirkpatrick, Jr. | Oct 2004 | B2 |
6820801 | Kaneko | Nov 2004 | B2 |
6841963 | Song | Jan 2005 | B2 |
6845297 | Allard | Jan 2005 | B2 |
6850024 | Peless | Feb 2005 | B2 |
6859010 | Jeon | Feb 2005 | B2 |
6859976 | Plankenhorn | Mar 2005 | B2 |
6860206 | Rudakevych | Mar 2005 | B1 |
6868307 | Song | Mar 2005 | B2 |
6869633 | Sus | Mar 2005 | B2 |
6870792 | Chiappetta | Mar 2005 | B2 |
6882334 | Meyer | Apr 2005 | B1 |
6883201 | Jones | Apr 2005 | B2 |
6885912 | Peless | Apr 2005 | B2 |
6901624 | Mori | Jun 2005 | B2 |
6925679 | Wallach | Aug 2005 | B2 |
D510066 | Hickey | Sep 2005 | S |
6938298 | Aasen | Sep 2005 | B2 |
6939208 | Kamimura | Sep 2005 | B2 |
6940291 | Ozick | Sep 2005 | B1 |
6941199 | Bottomley | Sep 2005 | B1 |
6942548 | Wada | Sep 2005 | B2 |
6956348 | Landry | Oct 2005 | B2 |
6957712 | Song | Oct 2005 | B2 |
6964312 | Maggio | Nov 2005 | B2 |
6965209 | Jones | Nov 2005 | B2 |
6967275 | Ozick | Nov 2005 | B2 |
6971140 | Kim | Dec 2005 | B2 |
6971141 | Tak | Dec 2005 | B1 |
6984952 | Peless | Jan 2006 | B2 |
7000623 | Welsh | Feb 2006 | B2 |
7004269 | Song | Feb 2006 | B2 |
7013200 | Wakui | Mar 2006 | B2 |
7013527 | Thomas, Sr. | Mar 2006 | B2 |
7015831 | Karlsson | Mar 2006 | B2 |
7024278 | Chiappetta | Apr 2006 | B2 |
7031805 | Lee | Apr 2006 | B2 |
7040968 | Kamimura | May 2006 | B2 |
7042342 | Luo | May 2006 | B2 |
7043794 | Conner | May 2006 | B2 |
7050926 | Theurer et al. | May 2006 | B2 |
7053580 | Aldred | May 2006 | B2 |
7053678 | Diehl et al. | May 2006 | B2 |
7054716 | McKee | May 2006 | B2 |
7059012 | Song | Jun 2006 | B2 |
7079923 | Abramson | Jul 2006 | B2 |
7082350 | Skoog | Jul 2006 | B2 |
D526753 | Tani | Aug 2006 | S |
7085624 | Aldred | Aug 2006 | B2 |
7103449 | Woo | Sep 2006 | B2 |
7113847 | Chmura | Sep 2006 | B2 |
7117067 | McLurkin | Oct 2006 | B2 |
7133745 | Wang | Nov 2006 | B2 |
7134164 | Alton | Nov 2006 | B2 |
7135992 | Karlsson | Nov 2006 | B2 |
7143696 | Rudakevych | Dec 2006 | B2 |
7145478 | Goncalves | Dec 2006 | B2 |
7150068 | Ragner | Dec 2006 | B1 |
7155308 | Jones | Dec 2006 | B2 |
7155309 | Peless | Dec 2006 | B2 |
7162338 | Goncalves | Jan 2007 | B2 |
7167775 | Abramson | Jan 2007 | B2 |
7173391 | Jones | Feb 2007 | B2 |
7174238 | Zweig | Feb 2007 | B1 |
7177737 | Karlsson | Feb 2007 | B2 |
7184586 | Jeon | Feb 2007 | B2 |
7185396 | Im | Mar 2007 | B2 |
7185397 | Stuchlik | Mar 2007 | B2 |
7188000 | Chiappetta | Mar 2007 | B2 |
7196487 | Jones | Mar 2007 | B2 |
7199711 | Field | Apr 2007 | B2 |
7200892 | Kim | Apr 2007 | B2 |
7202630 | Dan | Apr 2007 | B2 |
7206677 | Hulden | Apr 2007 | B2 |
7207081 | Gerber | Apr 2007 | B2 |
7208892 | Tondra | Apr 2007 | B2 |
7213298 | Cipolla | May 2007 | B2 |
7213663 | Kim | May 2007 | B2 |
7222390 | Cipolla | May 2007 | B2 |
7225500 | Diehl | Jun 2007 | B2 |
7237298 | Reindle | Jul 2007 | B2 |
7240396 | Thomas, Sr. | Jul 2007 | B2 |
7246405 | Yan | Jul 2007 | B2 |
7248951 | Hulden | Jul 2007 | B2 |
7251853 | Park | Aug 2007 | B2 |
7254464 | McLurkin | Aug 2007 | B1 |
7254859 | Gerber | Aug 2007 | B2 |
7269877 | Tondra | Sep 2007 | B2 |
7272467 | Goncalves | Sep 2007 | B2 |
7272868 | Im | Sep 2007 | B2 |
7274167 | Kim | Sep 2007 | B2 |
7275280 | Haegermarck | Oct 2007 | B2 |
7288912 | Landry | Oct 2007 | B2 |
D556961 | Swyst | Dec 2007 | S |
7303776 | Sus | Dec 2007 | B2 |
7324870 | Lee | Jan 2008 | B2 |
7331436 | Pack | Feb 2008 | B1 |
7332890 | Cohen | Feb 2008 | B2 |
7343221 | Ann | Mar 2008 | B2 |
7343719 | Sus | Mar 2008 | B2 |
7346428 | Huffman | Mar 2008 | B1 |
7349759 | Peless | Mar 2008 | B2 |
7359766 | Jeon | Apr 2008 | B2 |
7363994 | DeFazio | Apr 2008 | B1 |
7369460 | Chiappetta | May 2008 | B2 |
7372004 | Buchner | May 2008 | B2 |
7388343 | Jones | Jun 2008 | B2 |
7389156 | Ziegler | Jun 2008 | B2 |
7389166 | Harwig | Jun 2008 | B2 |
7403360 | Cunningham | Jul 2008 | B2 |
7412748 | Lee | Aug 2008 | B2 |
7417404 | Lee | Aug 2008 | B2 |
7418762 | Arai | Sep 2008 | B2 |
7424766 | Reindle | Sep 2008 | B2 |
7429843 | Jones | Sep 2008 | B2 |
7430455 | Casey | Sep 2008 | B2 |
7438766 | Song | Oct 2008 | B2 |
7441298 | Svendsen | Oct 2008 | B2 |
7444206 | Abramson | Oct 2008 | B2 |
7448113 | Jones | Nov 2008 | B2 |
7459871 | Landry | Dec 2008 | B2 |
7464157 | Okude | Dec 2008 | B2 |
7474941 | Kim | Jan 2009 | B2 |
7480958 | Song | Jan 2009 | B2 |
7480960 | Kim | Jan 2009 | B2 |
D586959 | Geringer | Feb 2009 | S |
7489277 | Sung | Feb 2009 | B2 |
7489985 | Ko | Feb 2009 | B2 |
7499774 | Barrett | Mar 2009 | B2 |
7499775 | Filippov | Mar 2009 | B2 |
7499776 | Allard | Mar 2009 | B2 |
7499804 | Svendsen | Mar 2009 | B2 |
7503096 | Lin | Mar 2009 | B2 |
7515991 | Egawa | Apr 2009 | B2 |
D593265 | Carr | May 2009 | S |
7539557 | Yamauchi | May 2009 | B2 |
7546891 | Won | Jun 2009 | B2 |
7546912 | Pack | Jun 2009 | B1 |
7555363 | Augenbraun | Jun 2009 | B2 |
7556108 | Won | Jul 2009 | B2 |
7559269 | Rudakevych | Jul 2009 | B2 |
7564571 | Karabassi | Jul 2009 | B2 |
7566839 | Hukuba | Jul 2009 | B2 |
7567052 | Jones | Jul 2009 | B2 |
7568259 | Yan | Aug 2009 | B2 |
7568536 | Yu | Aug 2009 | B2 |
7571511 | Jones | Aug 2009 | B2 |
7573403 | Goncalves | Aug 2009 | B2 |
7574282 | Petersson | Aug 2009 | B2 |
7578020 | Jaworski | Aug 2009 | B2 |
7579803 | Jones | Aug 2009 | B2 |
7581282 | Woo | Sep 2009 | B2 |
7597162 | Won | Oct 2009 | B2 |
7600521 | Woo | Oct 2009 | B2 |
7600593 | Filippov | Oct 2009 | B2 |
7603744 | Reindle | Oct 2009 | B2 |
7604675 | Makarov | Oct 2009 | B2 |
7610651 | Baek | Nov 2009 | B2 |
7613543 | Petersson | Nov 2009 | B2 |
7620476 | Morse | Nov 2009 | B2 |
7636982 | Jones | Dec 2009 | B2 |
7647144 | Haegermarck | Jan 2010 | B2 |
7650666 | Jang | Jan 2010 | B2 |
7654348 | Ohm | Feb 2010 | B2 |
7660650 | Kawagoe | Feb 2010 | B2 |
7663333 | Jones | Feb 2010 | B2 |
7673367 | Kim | Mar 2010 | B2 |
7679532 | Karlsson | Mar 2010 | B2 |
7688676 | Chiappetta | Mar 2010 | B2 |
7693654 | Dietsch | Apr 2010 | B1 |
7697141 | Jones | Apr 2010 | B2 |
7706917 | Chiappetta | Apr 2010 | B1 |
7706921 | Jung | Apr 2010 | B2 |
7709497 | Christensen, IV | May 2010 | B2 |
7711450 | Im | May 2010 | B2 |
7720572 | Ziegler | May 2010 | B2 |
7721829 | Lee | May 2010 | B2 |
7729801 | Abramson | Jun 2010 | B2 |
7749294 | Oh | Jul 2010 | B2 |
7751940 | Lee | Jul 2010 | B2 |
7761954 | Ziegler | Jul 2010 | B2 |
7765635 | Park | Aug 2010 | B2 |
7765638 | Pineschi et al. | Aug 2010 | B2 |
7769490 | Abramson | Aug 2010 | B2 |
7774158 | Domingues Goncalves | Aug 2010 | B2 |
7779504 | Lee | Aug 2010 | B2 |
7780796 | Shim | Aug 2010 | B2 |
7784139 | Sawalski | Aug 2010 | B2 |
7784570 | Couture | Aug 2010 | B2 |
7785544 | Alward | Aug 2010 | B2 |
7787991 | Jeung | Aug 2010 | B2 |
7793614 | Ericsson | Sep 2010 | B2 |
7801645 | Taylor | Sep 2010 | B2 |
7805220 | Taylor | Sep 2010 | B2 |
7827653 | Liu | Nov 2010 | B1 |
7832048 | Harwig | Nov 2010 | B2 |
7835529 | Hernandez | Nov 2010 | B2 |
7843431 | Robbins | Nov 2010 | B2 |
7844364 | McLurkin | Nov 2010 | B2 |
7849555 | Hahm | Dec 2010 | B2 |
7856291 | Jung | Dec 2010 | B2 |
7860608 | Lee | Dec 2010 | B2 |
7861365 | Sun | Jan 2011 | B2 |
7861366 | Hahm | Jan 2011 | B2 |
7873437 | Aldred | Jan 2011 | B2 |
7877166 | Harwig | Jan 2011 | B2 |
7886399 | Dayton | Feb 2011 | B2 |
7890210 | Choi | Feb 2011 | B2 |
7891045 | Kim | Feb 2011 | B2 |
7891289 | Day | Feb 2011 | B2 |
7891446 | Couture | Feb 2011 | B2 |
7894951 | Norris | Feb 2011 | B2 |
7916931 | Lee | Mar 2011 | B2 |
7920941 | Park | Apr 2011 | B2 |
7921506 | Baek | Apr 2011 | B2 |
7926598 | Rudakevych | Apr 2011 | B2 |
7934571 | Chiu | May 2011 | B2 |
7937800 | Yan | May 2011 | B2 |
7942107 | Vosburgh | May 2011 | B2 |
7957837 | Ziegler | Jun 2011 | B2 |
7962997 | Chung | Jun 2011 | B2 |
7966339 | Kim | Jun 2011 | B2 |
7975790 | Kim | Jul 2011 | B2 |
7979175 | Allard | Jul 2011 | B2 |
7979945 | Dayton | Jul 2011 | B2 |
7981455 | Sus | Jul 2011 | B2 |
7997118 | Mecca | Aug 2011 | B2 |
8001651 | Chang | Aug 2011 | B2 |
8007221 | More | Aug 2011 | B1 |
8010229 | Kim | Aug 2011 | B2 |
8019223 | Hudson | Sep 2011 | B2 |
8020657 | Allard | Sep 2011 | B2 |
8032978 | Haegermarck | Oct 2011 | B2 |
8034390 | Sus | Oct 2011 | B2 |
8042663 | Pack | Oct 2011 | B1 |
8046103 | Abramson | Oct 2011 | B2 |
8061461 | Couture | Nov 2011 | B2 |
8065778 | Kim | Nov 2011 | B2 |
8073439 | Stromberg | Dec 2011 | B2 |
8074752 | Rudakevych | Dec 2011 | B2 |
8078338 | Pack | Dec 2011 | B2 |
8079432 | Ohm | Dec 2011 | B2 |
8082836 | More | Dec 2011 | B2 |
8086419 | Goncalves | Dec 2011 | B2 |
8087117 | Kapoor | Jan 2012 | B2 |
8095238 | Jones | Jan 2012 | B2 |
8095336 | Goncalves | Jan 2012 | B2 |
8107318 | Chiappetta | Jan 2012 | B2 |
8108092 | Phillips | Jan 2012 | B2 |
8109191 | Rudakevych | Feb 2012 | B1 |
8112942 | Bohm | Feb 2012 | B2 |
8113304 | Won | Feb 2012 | B2 |
8122982 | Morey | Feb 2012 | B2 |
8127396 | Mangiardi | Mar 2012 | B2 |
8127399 | Dilger | Mar 2012 | B2 |
8127704 | Vosburgh | Mar 2012 | B2 |
8136200 | Splinter | Mar 2012 | B2 |
8150650 | Goncalves | Apr 2012 | B2 |
D659311 | Geringer | May 2012 | S |
8166904 | Israel | May 2012 | B2 |
8195333 | Ziegler | Jun 2012 | B2 |
8196251 | Lynch | Jun 2012 | B2 |
8199109 | Robbins | Jun 2012 | B2 |
8200600 | Rosenstein | Jun 2012 | B2 |
8200700 | Moore | Jun 2012 | B2 |
8237389 | Fitch | Aug 2012 | B2 |
8237920 | Jones | Aug 2012 | B2 |
8239992 | Schnittman | Aug 2012 | B2 |
8244469 | Cheung | Aug 2012 | B2 |
8253368 | Landry | Aug 2012 | B2 |
8255092 | Phillips | Aug 2012 | B2 |
8256542 | Couture | Sep 2012 | B2 |
8265793 | Cross | Sep 2012 | B2 |
8274406 | Karlsson | Sep 2012 | B2 |
8281703 | Moore | Oct 2012 | B2 |
8281731 | Vosburgh | Oct 2012 | B2 |
8290619 | McLurkin | Oct 2012 | B2 |
8292007 | DeFazio | Oct 2012 | B2 |
8295125 | Chiappetta | Oct 2012 | B2 |
D670877 | Geringer | Nov 2012 | S |
8308529 | DAmbra | Nov 2012 | B2 |
8311674 | Abramson | Nov 2012 | B2 |
8316971 | Couture | Nov 2012 | B2 |
8318499 | Fritchie | Nov 2012 | B2 |
D672928 | Swell | Dec 2012 | S |
8322470 | Ohm | Dec 2012 | B2 |
8326469 | Phillips | Dec 2012 | B2 |
8327960 | Couture | Dec 2012 | B2 |
8336479 | Vosburgh | Dec 2012 | B2 |
8342271 | Filippov | Jan 2013 | B2 |
8347088 | Moore | Jan 2013 | B2 |
8347444 | Schnittman | Jan 2013 | B2 |
8350810 | Robbins | Jan 2013 | B2 |
8353373 | Rudakevych | Jan 2013 | B2 |
8364309 | Bailey | Jan 2013 | B1 |
8364310 | Jones | Jan 2013 | B2 |
8365848 | Won | Feb 2013 | B2 |
8368339 | Jones | Feb 2013 | B2 |
8370985 | Schnittman | Feb 2013 | B2 |
8374721 | Halloran | Feb 2013 | B2 |
8375838 | Rudakevych | Feb 2013 | B2 |
8378613 | Landry | Feb 2013 | B2 |
8380350 | Ozick | Feb 2013 | B2 |
8382906 | Konandreas | Feb 2013 | B2 |
8386081 | Landry | Feb 2013 | B2 |
8387193 | Ziegler | Mar 2013 | B2 |
8390251 | Cohen | Mar 2013 | B2 |
8392021 | Konandreas | Mar 2013 | B2 |
8396592 | Jones | Mar 2013 | B2 |
8396611 | Phillips | Mar 2013 | B2 |
8402586 | Lavabre | Mar 2013 | B2 |
8408956 | Vosburgh | Apr 2013 | B1 |
8412377 | Casey | Apr 2013 | B2 |
8413752 | Page | Apr 2013 | B2 |
8417188 | Vosburgh | Apr 2013 | B1 |
8417383 | Ozick | Apr 2013 | B2 |
8418303 | Kapoor | Apr 2013 | B2 |
8418642 | Vosburgh | Apr 2013 | B2 |
8428778 | Landry | Apr 2013 | B2 |
8433442 | Friedman | Apr 2013 | B2 |
D682362 | Mozeika | May 2013 | S |
8438694 | Kim | May 2013 | B2 |
8438695 | Gilbert, Jr. | May 2013 | B2 |
8438698 | Kim | May 2013 | B2 |
8447440 | Phillips | May 2013 | B2 |
8447613 | Hussey | May 2013 | B2 |
8452448 | Pack | May 2013 | B2 |
8453289 | Lynch | Jun 2013 | B2 |
8456125 | Landry | Jun 2013 | B2 |
8461803 | Cohen | Jun 2013 | B2 |
8463438 | Jones | Jun 2013 | B2 |
8473140 | Norris | Jun 2013 | B2 |
8474090 | Jones | Jul 2013 | B2 |
8478442 | Casey | Jul 2013 | B2 |
8485330 | Pack | Jul 2013 | B2 |
8505158 | Han | Aug 2013 | B2 |
8508388 | Karlsson | Aug 2013 | B2 |
8515578 | Chiappetta | Aug 2013 | B2 |
8516651 | Jones | Aug 2013 | B2 |
8525995 | Jones | Sep 2013 | B2 |
8527113 | Yamauchi | Sep 2013 | B2 |
8528157 | Schnittman | Sep 2013 | B2 |
8528162 | Tang | Sep 2013 | B2 |
8528673 | More | Sep 2013 | B2 |
8532822 | Abramson | Sep 2013 | B2 |
8533144 | Reeser | Sep 2013 | B1 |
8534983 | Schoenfeld | Sep 2013 | B2 |
8543562 | Mule | Sep 2013 | B2 |
8548626 | Steltz | Oct 2013 | B2 |
8551254 | Dayton | Oct 2013 | B2 |
8551421 | Luchinger | Oct 2013 | B2 |
8565920 | Casey | Oct 2013 | B2 |
8572799 | Won | Nov 2013 | B2 |
8584305 | Won | Nov 2013 | B2 |
8584306 | Chung | Nov 2013 | B2 |
8584307 | Won | Nov 2013 | B2 |
8594840 | Chiappetta | Nov 2013 | B1 |
8598829 | Landry | Dec 2013 | B2 |
8599645 | Chiappetta | Dec 2013 | B2 |
8600553 | Svendsen | Dec 2013 | B2 |
8606401 | Ozick | Dec 2013 | B2 |
8634956 | Chiappetta | Jan 2014 | B1 |
8634958 | Chiappetta | Jan 2014 | B1 |
8666523 | Kim | Mar 2014 | B2 |
8671513 | Yoo et al. | Mar 2014 | B2 |
8732895 | Cunningham | May 2014 | B2 |
8741013 | Swett et al. | Jun 2014 | B2 |
8743286 | Hasegawa | Jun 2014 | B2 |
8745194 | Uribe-Etxebarria Jimenez | Jun 2014 | B2 |
8755936 | Friedman | Jun 2014 | B2 |
8761931 | Halloran | Jun 2014 | B2 |
8763200 | Kim | Jul 2014 | B2 |
8774970 | Knopow | Jul 2014 | B2 |
8798791 | Li | Aug 2014 | B2 |
8798792 | Park | Aug 2014 | B2 |
8799258 | Mule | Aug 2014 | B2 |
8838274 | Jones | Sep 2014 | B2 |
8839477 | Schnittman | Sep 2014 | B2 |
8843245 | Choe | Sep 2014 | B2 |
8855914 | Alexander | Oct 2014 | B1 |
8874264 | Chiappetta | Oct 2014 | B1 |
8881339 | Gilbert, Jr. et al. | Nov 2014 | B2 |
8924042 | Kim | Dec 2014 | B2 |
8961695 | Romanov | Feb 2015 | B2 |
8985127 | Konandreas | Mar 2015 | B2 |
8996172 | Shah et al. | Mar 2015 | B2 |
9033079 | Shin | May 2015 | B2 |
9037396 | Pack | May 2015 | B2 |
9144361 | Landry | Sep 2015 | B2 |
9360300 | DiBernado | Jun 2016 | B2 |
10045675 | Haegermarck | Aug 2018 | B2 |
20010004719 | Sommer | Jun 2001 | A1 |
20010037163 | Allard | Nov 2001 | A1 |
20020016649 | Jones | Feb 2002 | A1 |
20020091466 | Song | Jul 2002 | A1 |
20020108635 | Marrero | Aug 2002 | A1 |
20020121288 | Marrero | Sep 2002 | A1 |
20020121561 | Marrero | Sep 2002 | A1 |
20020164932 | Kamimura | Nov 2002 | A1 |
20020174506 | Wallach | Nov 2002 | A1 |
20020185071 | Guo | Dec 2002 | A1 |
20020189871 | Won | Dec 2002 | A1 |
20030000034 | Welsh | Jan 2003 | A1 |
20030025472 | Jones | Feb 2003 | A1 |
20030030398 | Jacobs | Feb 2003 | A1 |
20030120972 | Matsushima | Jun 2003 | A1 |
20030159223 | Plankenhorn | Aug 2003 | A1 |
20030167000 | Mullick | Sep 2003 | A1 |
20030229421 | Chmura | Dec 2003 | A1 |
20040020000 | Jones | Feb 2004 | A1 |
20040031111 | Porchia | Feb 2004 | A1 |
20040031121 | Martin | Feb 2004 | A1 |
20040034952 | Ho | Feb 2004 | A1 |
20040049877 | Jones | Mar 2004 | A1 |
20040049878 | Thomas | Mar 2004 | A1 |
20040074038 | Im | Apr 2004 | A1 |
20040074039 | Kim | Apr 2004 | A1 |
20040098167 | Yi | May 2004 | A1 |
20040111184 | Chiappetta | Jun 2004 | A1 |
20040111827 | Im | Jun 2004 | A1 |
20040167667 | Goncalves | Aug 2004 | A1 |
20040181896 | Egawa | Sep 2004 | A1 |
20040182839 | Denney | Sep 2004 | A1 |
20040182840 | Denney | Sep 2004 | A1 |
20040185011 | Alexander | Sep 2004 | A1 |
20040187249 | Jones | Sep 2004 | A1 |
20040207355 | Jones | Oct 2004 | A1 |
20040208212 | Denney | Oct 2004 | A1 |
20040210343 | Kim | Oct 2004 | A1 |
20040220707 | Pallister | Nov 2004 | A1 |
20050010331 | Taylor | Jan 2005 | A1 |
20050015912 | Kim | Jan 2005 | A1 |
20050015915 | Thomas | Jan 2005 | A1 |
20050028315 | Thomas | Feb 2005 | A1 |
20050028316 | Thomas | Feb 2005 | A1 |
20050042151 | Alward | Feb 2005 | A1 |
20050065662 | Reindle | Mar 2005 | A1 |
20050085947 | Aldred | Apr 2005 | A1 |
20050088643 | Anderson | Apr 2005 | A1 |
20050156562 | Cohen | Jul 2005 | A1 |
20050166354 | Uehigashi | Aug 2005 | A1 |
20050191949 | Kamimura | Sep 2005 | A1 |
20050217061 | Reindle | Oct 2005 | A1 |
20050223514 | Stuchlik | Oct 2005 | A1 |
20050229340 | Sawalski | Oct 2005 | A1 |
20050230166 | Petersson | Oct 2005 | A1 |
20050234611 | Uehigashi | Oct 2005 | A1 |
20050251292 | Casey | Nov 2005 | A1 |
20050251457 | Kashiwagi | Nov 2005 | A1 |
20050251947 | Lee | Nov 2005 | A1 |
20050267629 | Petersson | Dec 2005 | A1 |
20050278888 | Reindle | Dec 2005 | A1 |
20050287038 | Dubrovsky | Dec 2005 | A1 |
20060009879 | Lynch | Jan 2006 | A1 |
20060010799 | Bohm | Jan 2006 | A1 |
20060020369 | Taylor | Jan 2006 | A1 |
20060028306 | Hukuba | Feb 2006 | A1 |
20060032013 | Kim | Feb 2006 | A1 |
20060045981 | Tsushi | Mar 2006 | A1 |
20060095158 | Lee | May 2006 | A1 |
20060136096 | Chiappetta | Jun 2006 | A1 |
20060144834 | Denney | Jul 2006 | A1 |
20060178777 | Park | Aug 2006 | A1 |
20060190133 | Konandreas | Aug 2006 | A1 |
20060190134 | Ziegler | Aug 2006 | A1 |
20060190146 | Morse | Aug 2006 | A1 |
20060195015 | Mullick | Aug 2006 | A1 |
20060200281 | Ziegler | Sep 2006 | A1 |
20060213025 | Sawalski | Sep 2006 | A1 |
20060235570 | Jung | Oct 2006 | A1 |
20060235585 | Tanaka | Oct 2006 | A1 |
20060236492 | Sudo | Oct 2006 | A1 |
20060288519 | Jaworski | Dec 2006 | A1 |
20060293788 | Pogodin | Dec 2006 | A1 |
20070016328 | Ziegler | Jan 2007 | A1 |
20070021867 | Woo | Jan 2007 | A1 |
20070059441 | Greer | Mar 2007 | A1 |
20070061040 | Augenbraun et al. | Mar 2007 | A1 |
20070114975 | Cohen | May 2007 | A1 |
20070118248 | Lee et al. | May 2007 | A1 |
20070124890 | Erko | Jun 2007 | A1 |
20070143950 | Lin | Jun 2007 | A1 |
20070156286 | Yamauchi | Jul 2007 | A1 |
20070179670 | Chiappetta | Aug 2007 | A1 |
20070189347 | Denney | Aug 2007 | A1 |
20070204426 | Nakagawa | Sep 2007 | A1 |
20070213892 | Jones | Sep 2007 | A1 |
20070214601 | Chung | Sep 2007 | A1 |
20070234492 | Svendsen | Oct 2007 | A1 |
20070244610 | Ozick | Oct 2007 | A1 |
20070266508 | Jones | Nov 2007 | A1 |
20070267230 | Won | Nov 2007 | A1 |
20070267570 | Park | Nov 2007 | A1 |
20070267998 | Cohen | Nov 2007 | A1 |
20070273864 | Cho | Nov 2007 | A1 |
20070276541 | Sawasaki | Nov 2007 | A1 |
20070285041 | Jones | Dec 2007 | A1 |
20070289267 | Makarov | Dec 2007 | A1 |
20070290649 | Jones | Dec 2007 | A1 |
20080000041 | Jones | Jan 2008 | A1 |
20080000042 | Jones | Jan 2008 | A1 |
20080001566 | Jones | Jan 2008 | A1 |
20080007203 | Cohen | Jan 2008 | A1 |
20080009964 | Bruemmer et al. | Jan 2008 | A1 |
20080015738 | Casey | Jan 2008 | A1 |
20080016631 | Casey | Jan 2008 | A1 |
20080037170 | Saliba | Feb 2008 | A1 |
20080039974 | Sandin | Feb 2008 | A1 |
20080047092 | Schnittman | Feb 2008 | A1 |
20080051953 | Jones | Feb 2008 | A1 |
20080007193 | Bow | Mar 2008 | A1 |
20080052846 | Kapoor | Mar 2008 | A1 |
20080058987 | Ozick | Mar 2008 | A1 |
20080063400 | Hudson | Mar 2008 | A1 |
20080065265 | Ozick | Mar 2008 | A1 |
20080077278 | Park | Mar 2008 | A1 |
20080084174 | Jones | Apr 2008 | A1 |
20080086241 | Phillips | Apr 2008 | A1 |
20080091304 | Ozick | Apr 2008 | A1 |
20080091305 | Svendsen | Apr 2008 | A1 |
20080093131 | Couture | Apr 2008 | A1 |
20080098553 | Dayton | May 2008 | A1 |
20080105445 | Dayton | May 2008 | A1 |
20080109126 | Sandin | May 2008 | A1 |
20080121097 | Rudakevych | May 2008 | A1 |
20080127445 | Konandreas | Jun 2008 | A1 |
20080127446 | Ziegler | Jun 2008 | A1 |
20080133052 | Jones | Jun 2008 | A1 |
20080134457 | Morse | Jun 2008 | A1 |
20080134458 | Ziegler | Jun 2008 | A1 |
20080140255 | Ziegler | Jun 2008 | A1 |
20080143063 | Won | Jun 2008 | A1 |
20080143064 | Won | Jun 2008 | A1 |
20080143065 | DeFazio | Jun 2008 | A1 |
20080152871 | Greer | Jun 2008 | A1 |
20080155768 | Ziegler | Jul 2008 | A1 |
20080179115 | Ohm | Jul 2008 | A1 |
20080183332 | Ohm | Jul 2008 | A1 |
20080184518 | Taylor | Aug 2008 | A1 |
20080196946 | Filippov | Aug 2008 | A1 |
20080205194 | Chiappetta | Aug 2008 | A1 |
20080209665 | Mangiardi | Sep 2008 | A1 |
20080221729 | Lavarec | Sep 2008 | A1 |
20080223630 | Couture | Sep 2008 | A1 |
20080235897 | Kim | Oct 2008 | A1 |
20080236907 | Won | Oct 2008 | A1 |
20080264456 | Lynch | Oct 2008 | A1 |
20080266254 | Robbins | Oct 2008 | A1 |
20080276407 | Schnittman | Nov 2008 | A1 |
20080276408 | Gilbert | Nov 2008 | A1 |
20080281470 | Gilbert | Nov 2008 | A1 |
20080282494 | Won | Nov 2008 | A1 |
20080294288 | Yamauchi | Nov 2008 | A1 |
20080307590 | Jones | Dec 2008 | A1 |
20090007366 | Svendsen | Jan 2009 | A1 |
20090025155 | Nishiyama | Jan 2009 | A1 |
20090030551 | Hein et al. | Jan 2009 | A1 |
20090037024 | Jamieson | Feb 2009 | A1 |
20090038089 | Landry | Feb 2009 | A1 |
20090044370 | Won | Feb 2009 | A1 |
20090045766 | Casey | Feb 2009 | A1 |
20090055022 | Casey | Feb 2009 | A1 |
20090065271 | Won | Mar 2009 | A1 |
20090070946 | Tamada | Mar 2009 | A1 |
20090078035 | Mecca | Mar 2009 | A1 |
20090107738 | Won | Apr 2009 | A1 |
20090125175 | Park | May 2009 | A1 |
20090126143 | Haegermarck | May 2009 | A1 |
20090133720 | Vandenbogert | May 2009 | A1 |
20090145671 | Filippov | Jun 2009 | A1 |
20090173553 | Won | Jul 2009 | A1 |
20090180668 | Jones | Jul 2009 | A1 |
20090226113 | Matsumoto et al. | Sep 2009 | A1 |
20090232506 | Hudson | Sep 2009 | A1 |
20090241826 | Vosburgh | Oct 2009 | A1 |
20090254217 | Pack | Oct 2009 | A1 |
20090254218 | Sandin | Oct 2009 | A1 |
20090265036 | Jamieson | Oct 2009 | A1 |
20090270015 | DAmbra | Oct 2009 | A1 |
20090274602 | Alward | Nov 2009 | A1 |
20090281661 | Dooley et al. | Nov 2009 | A1 |
20090292393 | Casey | Nov 2009 | A1 |
20090292884 | Wang | Nov 2009 | A1 |
20090314318 | Chang | Dec 2009 | A1 |
20090314554 | Couture | Dec 2009 | A1 |
20090319083 | Jones | Dec 2009 | A1 |
20100001478 | DeFazio | Jan 2010 | A1 |
20100011529 | Won | Jan 2010 | A1 |
20100037418 | Hussey | Feb 2010 | A1 |
20100049364 | Landry | Feb 2010 | A1 |
20100049365 | Jones | Feb 2010 | A1 |
20100049391 | Nakano | Feb 2010 | A1 |
20100063628 | Landry | Mar 2010 | A1 |
20100075054 | Kaneyama | Mar 2010 | A1 |
20100076600 | Cross | Mar 2010 | A1 |
20100078415 | Denney | Apr 2010 | A1 |
20100082193 | Chiappetta | Apr 2010 | A1 |
20100107355 | Won | May 2010 | A1 |
20100108098 | Splinter | May 2010 | A1 |
20100115716 | Landry | May 2010 | A1 |
20100116566 | Ohm | May 2010 | A1 |
20100125968 | Ho | May 2010 | A1 |
20100139029 | Kim | Jun 2010 | A1 |
20100139995 | Rudakevych | Jun 2010 | A1 |
20100161225 | Hyung et al. | Jun 2010 | A1 |
20100173070 | Niu | Jul 2010 | A1 |
20100206336 | Souid | Aug 2010 | A1 |
20100217436 | Jones | Aug 2010 | A1 |
20100257690 | Jones | Oct 2010 | A1 |
20100257691 | Jones | Oct 2010 | A1 |
20100263142 | Jones | Oct 2010 | A1 |
20100263158 | Jones | Oct 2010 | A1 |
20100268384 | Jones | Oct 2010 | A1 |
20100275405 | Morse | Nov 2010 | A1 |
20100286791 | Goldsmith | Nov 2010 | A1 |
20100305752 | Abramson | Dec 2010 | A1 |
20100312429 | Jones | Dec 2010 | A1 |
20100313910 | Lee | Dec 2010 | A1 |
20100313912 | Han | Dec 2010 | A1 |
20110000363 | More | Jan 2011 | A1 |
20110004339 | Ozick | Jan 2011 | A1 |
20110010873 | Kim | Jan 2011 | A1 |
20110077802 | Halloran | Mar 2011 | A1 |
20110082668 | Escrig | Apr 2011 | A1 |
20110088609 | Vosburgh | Apr 2011 | A1 |
20110109549 | Robbins | May 2011 | A1 |
20110125323 | Gutmann et al. | May 2011 | A1 |
20110131741 | Jones | Jun 2011 | A1 |
20110154589 | Reindle | Jun 2011 | A1 |
20110202175 | Romanov | Aug 2011 | A1 |
20110209726 | Dayton | Sep 2011 | A1 |
20110252594 | Blouin | Oct 2011 | A1 |
20110258789 | Lavabre | Oct 2011 | A1 |
20110271469 | Ziegler | Nov 2011 | A1 |
20110277269 | Kim | Nov 2011 | A1 |
20110286886 | Luchinger | Nov 2011 | A1 |
20110288684 | Farlow | Nov 2011 | A1 |
20120011668 | Schnittman | Jan 2012 | A1 |
20120011669 | Schnittman | Jan 2012 | A1 |
20120011676 | Jung | Jan 2012 | A1 |
20120011677 | Jung | Jan 2012 | A1 |
20120011992 | Rudakevych | Jan 2012 | A1 |
20120036659 | Ziegler | Feb 2012 | A1 |
20120047676 | Jung | Mar 2012 | A1 |
20120049798 | Cohen | Mar 2012 | A1 |
20120079670 | Yoon | Apr 2012 | A1 |
20120083924 | Jones | Apr 2012 | A1 |
20120084934 | Li | Apr 2012 | A1 |
20120084937 | Won | Apr 2012 | A1 |
20120084938 | Fu | Apr 2012 | A1 |
20120085368 | Landry | Apr 2012 | A1 |
20120090133 | Kim | Apr 2012 | A1 |
20120095619 | Pack | Apr 2012 | A1 |
20120096656 | Jung | Apr 2012 | A1 |
20120097783 | Pack | Apr 2012 | A1 |
20120101661 | Phillips | Apr 2012 | A1 |
20120102670 | Jang | May 2012 | A1 |
20120109423 | Pack | May 2012 | A1 |
20120110755 | Liu | May 2012 | A1 |
20120118216 | Vosburgh | May 2012 | A1 |
20120125363 | Kim | May 2012 | A1 |
20120137464 | Thatcher | Jun 2012 | A1 |
20120137949 | Vosburgh | Jun 2012 | A1 |
20120151709 | Tang | Jun 2012 | A1 |
20120152280 | Bosses | Jun 2012 | A1 |
20120152877 | Tadayon | Jun 2012 | A1 |
20120159725 | Kapoor | Jun 2012 | A1 |
20120166024 | Phillips | Jun 2012 | A1 |
20120167917 | Gilbert | Jul 2012 | A1 |
20120169497 | Schnittman | Jul 2012 | A1 |
20120173018 | Allen | Jul 2012 | A1 |
20120173070 | Schnittman | Jul 2012 | A1 |
20120180254 | Morse | Jul 2012 | A1 |
20120180712 | Vosburgh | Jul 2012 | A1 |
20120181099 | Moon | Jul 2012 | A1 |
20120182392 | Kearns | Jul 2012 | A1 |
20120183382 | Couture | Jul 2012 | A1 |
20120185091 | Field | Jul 2012 | A1 |
20120185094 | Rosenstein | Jul 2012 | A1 |
20120185095 | Rosenstein | Jul 2012 | A1 |
20120185096 | Rosenstein | Jul 2012 | A1 |
20120192898 | Lynch | Aug 2012 | A1 |
20120194395 | Williams | Aug 2012 | A1 |
20120197439 | Wang | Aug 2012 | A1 |
20120197464 | Wang | Aug 2012 | A1 |
20120199006 | Swett | Aug 2012 | A1 |
20120199407 | Morey | Aug 2012 | A1 |
20120200149 | Rudakevych | Aug 2012 | A1 |
20120222224 | Yoon | Sep 2012 | A1 |
20120246862 | Landry | Oct 2012 | A1 |
20120260443 | Lindgren | Oct 2012 | A1 |
20120260861 | Lindgren | Oct 2012 | A1 |
20120261204 | Won | Oct 2012 | A1 |
20120265346 | Gilbert | Oct 2012 | A1 |
20120265391 | Letsky | Oct 2012 | A1 |
20120268587 | Robbins | Oct 2012 | A1 |
20120281829 | Rudakevych | Nov 2012 | A1 |
20120298029 | Vosburgh | Nov 2012 | A1 |
20120303160 | Ziegler | Nov 2012 | A1 |
20120311810 | Gilbert | Dec 2012 | A1 |
20120312221 | Vosburgh | Dec 2012 | A1 |
20120317745 | Jung | Dec 2012 | A1 |
20120322349 | Josi | Dec 2012 | A1 |
20130015596 | Mozeika | Jan 2013 | A1 |
20130025085 | Kim | Jan 2013 | A1 |
20130031734 | Porat | Feb 2013 | A1 |
20130032078 | Yahnker | Feb 2013 | A1 |
20130035793 | Neumann | Feb 2013 | A1 |
20130047368 | Tran | Feb 2013 | A1 |
20130054029 | Huang | Feb 2013 | A1 |
20130054129 | Wong | Feb 2013 | A1 |
20130060357 | Li | Mar 2013 | A1 |
20130060379 | Choe | Mar 2013 | A1 |
20130070563 | Chiappetta | Mar 2013 | A1 |
20130081218 | Kim | Apr 2013 | A1 |
20130085603 | Chiappetta | Apr 2013 | A1 |
20130086760 | Han | Apr 2013 | A1 |
20130092190 | Yoon | Apr 2013 | A1 |
20130098402 | Yoon et al. | Apr 2013 | A1 |
20130103194 | Jones | Apr 2013 | A1 |
20130105233 | Couture | May 2013 | A1 |
20130117952 | Schnittman | May 2013 | A1 |
20130118524 | Konandreas | May 2013 | A1 |
20130138337 | Pack | May 2013 | A1 |
20130145572 | Schregardus | Jun 2013 | A1 |
20130152724 | Mozeika | Jun 2013 | A1 |
20130160226 | Lee | Jun 2013 | A1 |
20130166107 | Robbins | Jun 2013 | A1 |
20130174371 | Jones | Jul 2013 | A1 |
20130204463 | Chiappetta | Aug 2013 | A1 |
20130204465 | Phillips | Aug 2013 | A1 |
20130204483 | Sung | Aug 2013 | A1 |
20130205520 | Kapoor | Aug 2013 | A1 |
20130206170 | Svendsen | Aug 2013 | A1 |
20130206177 | Burlutskiy | Aug 2013 | A1 |
20130211589 | Landry | Aug 2013 | A1 |
20130214498 | DeFazio | Aug 2013 | A1 |
20130226344 | Wong | Aug 2013 | A1 |
20130227801 | Kim | Sep 2013 | A1 |
20130227812 | Kim | Sep 2013 | A1 |
20130228198 | Hung et al. | Sep 2013 | A1 |
20130228199 | Hung | Sep 2013 | A1 |
20130231779 | Purkayastha | Sep 2013 | A1 |
20130231819 | Hung | Sep 2013 | A1 |
20130232702 | Baek | Sep 2013 | A1 |
20130239870 | Hudson | Sep 2013 | A1 |
20130241217 | Hickey | Sep 2013 | A1 |
20130253701 | Halloran | Sep 2013 | A1 |
20130256042 | Rudakevych | Oct 2013 | A1 |
20130268118 | Grinstead | Oct 2013 | A1 |
20130269148 | Chiu | Oct 2013 | A1 |
20130273252 | Miyamoto | Oct 2013 | A1 |
20130298350 | Schnittman | Nov 2013 | A1 |
20130310978 | Ozick | Nov 2013 | A1 |
20130325178 | Jones | Dec 2013 | A1 |
20130331987 | Karlsson | Dec 2013 | A1 |
20130338525 | Allen | Dec 2013 | A1 |
20130338828 | Chiappetta | Dec 2013 | A1 |
20130338831 | Noh et al. | Dec 2013 | A1 |
20130340201 | Jang et al. | Dec 2013 | A1 |
20140016469 | Ho | Jan 2014 | A1 |
20140026339 | Konandreas | Jan 2014 | A1 |
20140053351 | Kapoor | Feb 2014 | A1 |
20140109339 | Won | Apr 2014 | A1 |
20140123325 | Jung | May 2014 | A1 |
20140130272 | Won | May 2014 | A1 |
20140142757 | Ziegler | May 2014 | A1 |
20140167931 | Lee | Jun 2014 | A1 |
20140180968 | Song | Jun 2014 | A1 |
20140207280 | Duffley | Jul 2014 | A1 |
20140207281 | Angle | Jul 2014 | A1 |
20140207282 | Angle | Jul 2014 | A1 |
20140238440 | Dayton | Aug 2014 | A1 |
20140249671 | Halloran | Sep 2014 | A1 |
20140283326 | Song | Sep 2014 | A1 |
20150005937 | Ponulak | Jan 2015 | A1 |
20150032259 | Kim et al. | Jan 2015 | A1 |
20150039127 | Matsumoto | Feb 2015 | A1 |
20150057800 | Cohen | Feb 2015 | A1 |
20150197012 | Schnittman | Jul 2015 | A1 |
20150206015 | Ramalingam et al. | Jul 2015 | A1 |
20150265122 | Han et al. | Sep 2015 | A1 |
20160306359 | Lindhe et al. | Oct 2016 | A1 |
20160316982 | Kim et al. | Nov 2016 | A1 |
20170273521 | Klintemyr et al. | Sep 2017 | A1 |
20170273524 | Klintemyr et al. | Sep 2017 | A1 |
20180103812 | Lee et al. | Apr 2018 | A1 |
Number | Date | Country |
---|---|---|
2154758 | Jun 1995 | CA |
1116818 | Feb 1996 | CN |
1668238 | Sep 2005 | CN |
101161174 | Apr 2008 | CN |
101297267 | Oct 2008 | CN |
102083352 | Jun 2011 | CN |
103027634 | Apr 2013 | CN |
103054516 | Apr 2013 | CN |
103491838 | Jan 2014 | CN |
103565373 | Feb 2014 | CN |
0142594 | May 1985 | DE |
3536907 | Apr 1986 | DE |
9307500 | Jul 1993 | DE |
4211789 | Oct 1993 | DE |
4340367 | Jun 1995 | DE |
4439427 | May 1996 | DE |
19849978 | May 2000 | DE |
102010000174 | Jul 2011 | DE |
102010000573 | Sep 2011 | DE |
102010037672 | Mar 2012 | DE |
0358628 | Mar 1990 | EP |
0474542 | Mar 1992 | EP |
0569984 | Nov 1993 | EP |
0606173 | Jul 1994 | EP |
1099143 | Nov 2003 | EP |
1360922 | Nov 2003 | EP |
1441271 | Jul 2004 | EP |
1331537 | Aug 2005 | EP |
2050380 | Apr 2009 | EP |
1969438 | Sep 2009 | EP |
1395888 | May 2011 | EP |
2316322 | May 2011 | EP |
2296005 | Jun 2011 | EP |
2251757 | Nov 2011 | EP |
2417894 | Feb 2012 | EP |
2438843 | Apr 2012 | EP |
2466411 | Jun 2012 | EP |
2561787 | Feb 2013 | EP |
2578125 | Apr 2013 | EP |
2583609 | Apr 2013 | EP |
2604163 | Jun 2013 | EP |
2447800 | Apr 2014 | EP |
2741483 | Jun 2014 | EP |
2772815 | Sep 2014 | EP |
2884364 | Jun 2015 | EP |
2999416 | Jun 2014 | FR |
2355523 | Apr 2001 | GB |
2 382 251 | May 2003 | GB |
2494446 | Mar 2013 | GB |
1447943 | Oct 2013 | GB |
5540959 | Mar 1980 | JP |
6286414 | Apr 1987 | JP |
62109528 | May 1987 | JP |
62120510 | Jun 1987 | JP |
62152421 | Jul 1987 | JP |
62152424 | Jul 1987 | JP |
63127310 | May 1988 | JP |
63181727 | Jul 1988 | JP |
63241610 | Oct 1988 | JP |
03162814 | Jul 1991 | JP |
03166074 | Jul 1991 | JP |
04260905 | Sep 1992 | JP |
0584200 | Apr 1993 | JP |
0584210 | Apr 1993 | JP |
05084200 | Apr 1993 | JP |
05189041 | Jul 1993 | JP |
05224745 | Sep 1993 | JP |
05228090 | Sep 1993 | JP |
064133 | Jan 1994 | JP |
0683442 | Mar 1994 | JP |
06125861 | May 1994 | JP |
06144215 | May 1994 | JP |
06179145 | Jun 1994 | JP |
075922 | Jan 1995 | JP |
0759695 | Mar 1995 | JP |
0732752 | Apr 1995 | JP |
07129239 | May 1995 | JP |
07281742 | Oct 1995 | JP |
08089455 | Apr 1996 | JP |
08326025 | Dec 1996 | JP |
0944240 | Feb 1997 | JP |
09150741 | Jun 1997 | JP |
09185410 | Jul 1997 | JP |
11267074 | Oct 1999 | JP |
2001022443 | Jan 2001 | JP |
2001187009 | Jul 2001 | JP |
2002182742 | Jun 2002 | JP |
2002287824 | Oct 2002 | JP |
2002355204 | Dec 2002 | JP |
2002366228 | Dec 2002 | JP |
2003280740 | Oct 2003 | JP |
2004096253 | Mar 2004 | JP |
2004166968 | Jun 2004 | JP |
2004198212 | Jul 2004 | JP |
2004303134 | Oct 2004 | JP |
2005040597 | Feb 2005 | JP |
2005124753 | May 2005 | JP |
2005141636 | Jun 2005 | JP |
2005314116 | Nov 2005 | JP |
2006015113 | Jan 2006 | JP |
2006087507 | Apr 2006 | JP |
2006185438 | Jul 2006 | JP |
2006231477 | Sep 2006 | JP |
2006314669 | Nov 2006 | JP |
2007014369 | Jan 2007 | JP |
2007070658 | Mar 2007 | JP |
2007143645 | Jun 2007 | JP |
2007213236 | Aug 2007 | JP |
2007226322 | Sep 2007 | JP |
2007272665 | Oct 2007 | JP |
2008132299 | Jun 2008 | JP |
2008146617 | Jun 2008 | JP |
2008290184 | Dec 2008 | JP |
2008543394 | Dec 2008 | JP |
2009509220 | Mar 2009 | JP |
2009193240 | Aug 2009 | JP |
2010507169 | Mar 2010 | JP |
2010079869 | Apr 2010 | JP |
2010526594 | Aug 2010 | JP |
2010534825 | Nov 2010 | JP |
2011045694 | Mar 2011 | JP |
2011253361 | Dec 2011 | JP |
2012216051 | Nov 2012 | JP |
2013041506 | Feb 2013 | JP |
2013089256 | May 2013 | JP |
2013247986 | Dec 2013 | JP |
2014023930 | Feb 2014 | JP |
20040096253 | Nov 2004 | KR |
20050003112 | Jan 2005 | KR |
20070070658 | Jul 2007 | KR |
20090028359 | Mar 2009 | KR |
101231932 | Mar 2013 | KR |
7408667 | Jan 1975 | NL |
8804081 | Jun 1988 | WO |
9303399 | Feb 1993 | WO |
9638770 | Dec 1996 | WO |
0036961 | Jun 2000 | WO |
0036970 | Jun 2000 | WO |
0038025 | Jun 2000 | WO |
0182766 | Nov 2001 | WO |
03022120 | Mar 2003 | WO |
03024292 | Mar 2003 | WO |
03026474 | Apr 2003 | WO |
2004006034 | Jan 2004 | WO |
2004082899 | Sep 2004 | WO |
2007008148 | Jan 2007 | WO |
2007028049 | Mar 2007 | WO |
WO 2007051972 | May 2007 | WO |
2007065034 | Jun 2007 | WO |
2008048260 | Apr 2008 | WO |
2009132317 | Oct 2009 | WO |
2013105431 | Jul 2013 | WO |
2013157324 | Oct 2013 | WO |
2014033055 | Mar 2014 | WO |
2015016580 | Feb 2015 | WO |
Entry |
---|
International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/EP2014/069073, dated May 12, 2015, 10 pages. |
International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/EP2014/069074, dated May 11, 2015, 10 pages. |
Non Final Office Action for U.S. Appl. No. 14/409,291, dated Dec. 28, 2016,, 61 pages. |
Non Final Office Action for U.S. Appl. No. 15/101,257, dated Feb. 10, 2017, 10 pages. |
“SM51 Series Opposed Mode Sensors, DC sensors with metal housings: SM51EB/RB, SM51EB6/RB6”, Banner Engineering Corporation, pp. 1-24. |
Andersson, et al., “ISR: An Intelligent Service Robot”, Centre for Autonomous Systems, Royal Institute of Technology, S-100 44 Stockholm, Sweden, pp. 1-24. |
Berlin, et al. “Development of a Multipurpose Mobile Robot for Concrete Surface Processing”, A Status Report, Feb. 1992, Sweden, pp. 1-10. |
Borenstein, et al. “Real-Time Obstacle Avoidance for Fast Mobile Robots”, IEEE, Jan. 6, 1996, pp. 1-18. |
Braunstingl, et al., “Fuzzy Logic Wall Following of a Mobile Robot Based on the Concept of General Perception”, ICAR '95, 7th International Conference on Advanced Robotics, Sant Feliu De Guixols, Spain pp. 367-376., Sep. 1995, pp. 1-9. |
Caselli, et al. “Mobile Robot Navigation in Enclosed Large-Scale Space”, Italy and U.S.A., pp. 1-5. |
Cassens, et al. “Finishing and Maintaining Wood Floors”, Wood Finishing, North Central Regional Extension Publication #136, pp. 1-8. |
Collins, et al. “Cerebellar Control of a Line Following Robot”, Computer Science and Electrical Engineering Department, University of Queensland, St.Lucia, Queensland, 4072 A, pp. 1-6. |
Doty, et al. “Sweep Strategies for a Sensory-Driven, Behavior-Based Vacuum Cleaning Agent”, 1993, Machine Intelligence Laboratory—Gainesville Florida, AAAI 1993 Fall Symposium Series—Research Triangle Park—Raleigh, NC, Oct. 22-24, 1993, pp. 1-6. |
Everett, Sensors for Mobile Robots Theory and Application, A.K. Peters, 1995, Chapters 1 and 3, 70 pages. |
Everett, Sensors for Mobile Robots Theory and Application, A.K. Peters, Ltd., 1995, Chapters 6, 7 and 10, 79 pages. |
Everett, Sensors for Mobile Robots Theory and Application, A.K. Peters, Ltd., 1995, Chapters, 4 and 5, 68 pages. |
Everett, Sensors for Mobile Robots Theory and Application, A.K. Peters, Ltd., 1995, Chapters 15 and 16, 59 pages. |
Everett, et al. “Survey of Collision Avoidance and Ranging Sensors for Mobile Robots”, Revision 1, Technical Report 1194, Dec. 1992, pp. 1-154. |
Gavrilut, et al. “Wall-Following Method for an Autonomous Mobile Robot using Two IR Sensors”, 12th WSEAS International Conference on SYSTEMS, Heraklion, Greece, Jul. 22-24, 2008, ISBN: 978-960-6766-83-1, ISSN: 1790-2769, pp. 205-209. |
Herbst, et al., “Micromouse Design Specifications”, Jun. 2, 1998, pp. 1-22. |
International Preliminary Report on Patentability for International Application No. PCT/EP2013/077377, dated Jun. 21, 2016, 12 pages. |
International Preliminary Report on Patentability for International Application No. PCT/EP2013/077378, dated Jun. 21, 2016, 7 pages. |
International Preliminary Report on Patentability for International Application No. PCT/EP2013/077384, dated Jun. 21, 2016, 6 pages. |
International Preliminary Report on Patentability for International Application No. PCT/EP2013/077385, dated Jun. 21, 2016, 7 pages. |
International Preliminary Report on Patentability for International Application No. PCT/EP2013/077386, dated Jun. 21, 2016, 6 pages. |
International Preliminary Report on Patentability for International Application No. PCT/EP2013/077387, dated Jun. 21, 2016, 9 pages. |
International Preliminary Report on Patentability for International Application No. PCT/EP2013/077657, dated Jun. 21, 2016, 7 pages. |
International Preliminary Report on Patentability for International Application No. PCT/EP2013/077661, dated Jun. 21, 2016, 11 pages. |
International Preliminary Report on Patentability for International Application No. PCT/EP203/077380, dated Jun. 21, 2016, 6 pages. |
International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/Ep2012/077377, dated Nov. 6, 2014, 18 pages. |
International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/EP2013/077378, dated Apr. 9, 2014, 9 pages. |
International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/EP2013/077380, dated Jul. 28, 2014, 8 pages. |
International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/EP2013/077384, dated Aug. 14, 2016, 9 pages. |
International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/EP2013/077385, dated May 27, 2015, 9 pages. |
International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/EP2013/077386, dated Sep. 17, 2014, 9 pages. |
International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/EP2013/077387, dated Sep. 30, 2014, 12 pages. |
International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/EP2013/077661, dated Jun. 10, 2014, 15 pages. |
International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/EP32013/077657, dated Aug. 18, 2014, 10 pages. |
International Search Report for International Application No. PCT/EP2013/057814 dated Dec. 20, 2013, 5 pages. |
International Search Report for International Application No. PCT/EP2013/057815 dated Apr. 2, 2014, 4 pages. |
International Search Report for International Application No. PCT/EP2013/067500 dated Dec. 10, 2013, 4 pages. |
Jenkins, “Practical Requirements for a Domestic Vacuum-Cleaning Robot”, From: AAAI Technical Report FS-93-03., JRL Consulting, Menlo Park, California, pp. 85-90. |
Jones et al., Mobile Robots Inspiration to Implementation, Second Edition, A.K. Peters, Ltd., 1999, Chapters 6 and 9, 56 pages. |
Jones et al. Mobile Robots Inspiration to Implementation, Second Edition, A.K. Peters, Ltd., 1999, Chapters 1 and 5, 72 pages. |
Jones et al., Mobile Robots Inspiration to Implementation, Second Edition, A.K. Peters, Ltd., 1999, Chapters 10 and 11, 45 pages. |
Jung, et al. “Whisker Based Mobile Robot Navigation”, Wollongong, NSW 2500, Australia, pp. 1-8. |
Krishna, et al., “Solving the Local Minima Problem for a Mobile Robot by Classification of Spatio-Temporal Sensory Sequences”, Journal of Robotic Systems 17 (10), 2000, pp. 549-564. |
Kube, “A Minimal Infrared Obstacle Detection Scheme”, Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada, The Robotics Practitioner, 2(2): 15-20, 1996, Oct. 23, 1998, pp. 1-8. |
Larson, “RoboKent—A case study in man-machine interfaces” Industrial Robot, vol. 25 No. 2, 1998, pp. 95-100. |
LeBouthillier, “W. Grey Walter and his Turtle Robots”, The Robot Builder, vol. Eleven No. Five, May 1999, RSSC POB 26044, Santa Ana,CA, pp. 1-8. |
Maaref, et al. “Sensor-based navigation of a mobile robot in an indoor environment”, Robotics and Autonomous Systems, 2002, Elsevier, 18 pages. |
Michael Carsten Bosse, “Atlas: A Framework for Large Scale Automated Mapping and Localization”, Massachusetts Institute of Technology, Feb. 2004, Part 2, 67 pages. |
Michael Carsten Bosse, “Atlas: A Framework for Large Scale Automated Mapping and Localization”, Massachusetts Institute of Technology, Feb. 2004, Part 1, 140 pages. |
Notice of Allowance for U.S. Appl. No. 14/409,291, dated Jun. 16, 2016, 13 pages. |
Oren, Reply to Office Action dated Jun. 23, 2014, U.S. Appl. No. 13/757,985, pp. 1-10. |
Pack, et al., “Constructing a Wall-Follower Robot for a Senior Design Project”, 1996 ASEE Annual Conference Proceedings, Session 1532, pp. 1-7. |
Saffiotti, “Fuzzy logic in Autonomous Robot Navigation”, a case study, Nov. 1995 Revised: Aug. 1997, IRIDIA, Universite Libre de Bruxelles, Belgium, Technical Report TR/IRIDIA/ 95 25, Cover page + pp. 1-14. |
Written Opinion for International Application No. PCT/EP2013/067500 dated Dec. 10, 2013, 7 pages. |
Yamamoto, “Sozzy: A Hormone-Driven Autonomous Vacuum Cleaner”, From: AAAI Technical Report FS-93-03, Matasushita Research Institute, Tokyo, and MIT Artificial Intelligence laboratory, Massachusetts, pp. 116-124 + Figure 9 and Figure 11. |
International Search Report and Writtent Opinion of the International Searching Authority for International Application No. PCT/EP2014/078144, 7 pages. |
Extended European Search Report for European Application No. 16176479.0, dated Nov. 11, 2016, 9 pages. |
International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/EP2014/069074, dated May 11, 2015, 9 pages. |
Notice of Allowance for U.S. Appl. No. 14/409,291, dated Sep. 18, 2017, 8 pages. |
Notice of Reasons for Rejection for Japanese Application No. 2016-526764, dated Aug. 25, 2017 with translation, 6 paes. |
Notification of Reasons for Rejection for Japanese Application No. 2016-526765, dated Aug. 25, 2017 with translation, 7 pages. |
Notifcation of Reasons for Refusal for Japanese Application No. 2016-526756, dated Aug. 10, 2017 with translation, 6 pages. |
Notification of Reasons for Refusal for Japanese Application No. 2016-526759, dated Aug. 24, 2017 with translation, 9 pages. |
Non Final Office Action for U.S. Appl. No. 15/101,212, dated May 17, 2017, 8 pages. |
Final Office Action for U.S. Appl. No. 14/409,291, dated Jun. 6, 2017, 21 pages. |
Non Final Office Action for U.S. Appl. No. 15/101,235 dated Apr. 21, 2017, 10 pages. |
Japanese Office Action forApplication for Japanese Application No. 2015-528969, dated Apr. 7, 2017 with translation, 4 pages. |
Notice of Allowance for U.S. Appl. No. 15/101,257, dated Jul. 6, 2017, 9 pages. |
International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/EP2015/058377, dated Aug. 10, 2016, 15 pages. |
Non Final Office Action for Application No. 15/102,015, dated Aug. 17, 2017, 13 pages. |
Chinese Office Action for Chinese Application No. 201380075503.9, dated Nov. 8, 2017 with translation, 16 pages. |
European Communication Pursuant to Article 94(3) for European Application No, 16176479.0, dated Nov. 27, 2017, 6 pages. |
International Search Report and Written Opinion for International Application No. PCT/EP2015/070140, dated May 27, 2016, 11 pages. |
Non Final Office Action for U.S. Appl. No. 15/102,017, dated Feb. 16, 2018, 12 pages. |
Chinese Office Action for Chinese Application No. 201380075510.9, dated Oct. 27, 2017 with translation, 13 pages. |
Notification of Reasons for Refusal for Japanese Application No. 2016-526945, dated Oct. 31, 2017 with translation, 8 pages. |
Notification of Reasons for Refusal for Japanese Application No. 2016-526875, dated Oct. 31, 2017 with translation, 10 pages. |
Notification of Reasons for Rejection for Japanese Application No. 2016-526947, dated Sep. 21, 2017 with translation, 8 pages. |
European Communication Pursuant to Article 94(3) for European Application No. 13817911.4, dated Jan. 15, 2018, 8 pages. |
Notice of Allowance for U.S. Appl. No. 15/102,015, dated Dec. 11, 2017, 8 pages. |
Non Final Office Action for U.S. Appl. No. 15/101,235, dated Nov. 1, 2017, 11 pages. |
Non Final Office Action for U.S. Appl. No. 14/784,106, dated Oct. 19, 2017, 11 pages. |
Final Office Action for U.S. Appl. No. 15/101,212, dated Oct. 11, 2017, 7 pages. |
Notification of Reasons for Refusal for Japanese Application No. 2017-501374, dated Mar. 6, 2018 with translation, 8 pages. |
Chinese Office Action for Chinese Application No. 201380081535.X, dated Mar. 26, 2018 with translation, 18 pages. |
Chinese Office Action for Chinese Application No. 201380081103.9, dated Feb. 27, 2018 with translation, 19 pages. |
Non Final Office Action for U.S. Appl. No. 15/101,515, dated Apr. 18, 2018, 14 pages. |
Notice of Allowance for U.S. Appl. No. 15/101,212, dated Apr. 11, 2018, 9 pages. |
Final Office Action for U.S. Appl. No. 14/784,106, dated Mar. 28, 2018, 8 pages. |
Chinese Office Action for Chinese Application No. 201380081331.6, dated Mar. 26, 2018 with translation, 27 pages. |
Decision of Refusal for Japanese Application No. 2016-526945, dated May 15, 2018 with translation, 5 pages. |
Decision of Refusal for Japanese Application No. 2016-526875, dated May 15, 2018 with translation, 6 pages. |
Notification of Reasons for Refusal for Japanese Application No. 2016-526765, dated May 15, 2018 with translation, 6 pages. |
Final Office Action for U.S. Appl. No. 15/102,107, dated Jun. 14, 2018, 12 pages. |
Non Final Office Action for U.S. Appl. No. 15/101,235, dated Jun. 14, 2018, 11 pages. |
Japanese Office Action for Japanese Application No. 2016-506795, dated Feb. 7, 2017 with translation, 6 pages. |
Chinese Office Action for Chinese Application No. 20130075510.9, dated Feb. 6, 2017 with translation, 14 pages. |
Japanese Office Action for Japanese Application No. 2016-506794, dated Feb. 7, 2017 with translation, 10 pages. |
Chinese Office Action for Chinese Application No. 201380075503.9, dated Febraury 13, 2017 with translation, 18 pages. |
Interational Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/EP2014/077549, dated Jul. 27, 2015, 9 pages. |
International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/EP2014/077947, dated Jul. 11, 2016, 14 pages. |
International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/EP2014/077954, dated Oct. 12, 2015, 19 pages. |
International Search Report and Written Opinion of the International Searching Authority for Internatonal Applicaion No. PCT/EP2014/0077142, dated Sep. 11, 2015, 8 pages. |
Chung et al., “Path Planning for a Mobile Robot With Grid Type World Model”, Proceedings of the 1992 IEEE/RSJ International Conference on Intelligent Robots and Systems, Jul. 7-10, 1992, pp. 439-444. |
Non Final Office Action for U.S. Appl. No. 15/101,510, dated Jul. 27, 2018, 17 pages. |
Non Final Office Action for U.S. Appl. No. 14/784,110, dated Aug. 16, 2018, 13 pages. |
Chinese Office Action for Chinese Application No. 201380081537.9, dated Jun. 4, 2018 with translation, 15 pages. |
Notice of Allowance for U.S. Appl. No. 15/102,295, dated Sep. 24, 2018, 9 pages. |
Notice of Allowance for U.S. Appl. No. 15/101,515, dated Aug. 28, 2018, 11 pages. |
Notice of Allowance for U.S. Appl. No. 14/784,106, dated Oct. 11, 2018, 7 pages. |
Notification of Reasons for Refusal of Japanese Application No. 2016-568949, dated Oct. 9, 2018 with translation, 6 pages. |
Non Final Office Action for U.S. Appl. No. 15/321,333, dated Oct. 24, 2018, 10 pages. |
Position_Definition of Position by Merriam-Webster.pdf (Position | Definition of Position by Merriam-Webster, Oct. 16, 2018, Merriam_webster, http://www.webster.com/dictionary/position, pp. 1-15. |
Gutman et al., AMOS: Comparison of Scan Matching Approaches for Self-Localization in Indoor Environments, 1996, IEEE, pp. 61-67. |
Non Final Office Action for U.S. Appl. No. 15/504,071, dated Nov. 2, 2018, 17 pages. |
Non Final Office Action for U.S. Appl. No. 15/504,066, dated Nov. 5, 2018, 18 pages. |
Entended European Search Report for Application No. 18157403.9-1018/3357393 dated Nov. 14, 2018, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20160298970 A1 | Oct 2016 | US |