Robust genomic predictor of breast and lung cancer metastasis

Information

  • Patent Grant
  • 12227809
  • Patent Number
    12,227,809
  • Date Filed
    Monday, August 3, 2020
    4 years ago
  • Date Issued
    Tuesday, February 18, 2025
    2 months ago
Abstract
A method of determining the risk of metastasis of breast or lung cancer in a human subject who has or had breast or lung cancer is disclosed herein. The method is based on detecting in a sample from the subject the number of copies per cell of genes and/or genomic regions of a metastatic gene signature set disclosed herein, and determining alternations in the number of copies per cell of the genes and/or genomic regions in the signature set, as compared to the number of copies per cell in non-cancer cells, thereby determining the risk of breast/lung cancer metastasis.
Description
FIELD OF THE DISCLOSURE

This disclosure relates to metastatic gene signatures. More particularly, this disclosure has identified copy number alterations (CNAs) around genes that are over-represented in breast and lung cancer metastases, which serve as the basis for predicting whether a primary tumor will metastasize.


BACKGROUND OF THE DISCLOSURE

Tumor metastasis to distant sites results in 90% of solid tumor cancer deaths (Nguyen, D. X. et al., Nat Rev Genet, 8, 341-52 (2007)). The frequency with which metastasis occurs varies by tumor type and even within a tumor type the time to metastasis can be quite variable from the time at diagnosis to many years in the future. Nonetheless, many of the steps involved in the development of metastasis, invasion beyond the site of origin, escape from apoptosis when detached from the matrix of origin, and colonization of distant sites, are shared across tumor types. These steps are genetically encoded. Metastasis-promoting genes that alter cellular functions in cell lines and in animal models have been identified (Nguyen, D. X. et al., Nat Rev Genet, 8, 341-52 (2007); Vogelstein, B. & Kinzler, K. W., Nat Med, 10, 789-99 (2004); and Hunter, K. W., Br J Cancer, 752-5 (2004)).


Analysis of copy number alterations (CNAs) has proven to be fruitful for identifying recurrent events that are associated with metastasis within specific primary tumor types (Taylor, B. S. et al., Cancer Cell, 18, 11-22 (2010); Pearlman, A. et al., J Probab Stat, 2012, 873570 (2012) and US Patent Publication No. 2014/0221229). CNAs are the genetic changes most commonly observed in human cancers, reflecting the innate chromosomal instability of many tumors (Vogelstein, B. & Kinzler, K. W., Nat Med, 10, 789-99 (2004)). An average one-third of a cancer genome demonstrates CNAs with roughly equal distributions of copy number gains and losses (Beroukhim, R. et al., Nature, 463, 899-905 (2010).). CNAs are accentuated when mutations occur in stability genes that affect the repair of DNA, mitotic recombination or chromosomal segregation (Vogelstein, B. & Kinzler, K. W., Nat Med, 10, 789-99 (2004)). In a previous study, the inventors observed that despite the high frequency of these CNAs throughout the genome, 366 genes within these regions were commonly altered with similar patterns in prostate cancer metastases and primary tumors (Pearlman, A. et al., J Probab Stat, 2012, 873570 (2012)). Sixty-five percent of the genes (241 of 366) were structured on the genome as contiguous gene clumps of two through thirteen genes per clump. The remaining 35% of the genes (125 of 366) were observed as singletons.


Knowledge of these genes and their CNAs could have clinical utility for predicting who might have aggressive disease requiring treatment and whose disease might be indolent. To make such predictions, the inventors developed a metastatic potential score (MPS) that was based on the weighted frequency of specific CNAs overlapping 366 genes observed in prostate cancer metastases (Pearlman, A. et al., J Probab. Stat., 2012, 873570 (2012)). In particular, metastases and metastasis-prone primary tumors all demonstrate enrichment of specific CNAs in one direction. This directionality provided a basis for calculating Zgenes scores for the specific genes within the CNAs that included a penalty when the CNA went against the grain of the directionality. The MPS score represented the sum of the Zgenes scores, divided by the number of genes being summed. When applied to a small cohort of 60 primary prostate tumors, of which 13 had metastasis outcome, MPS was predictive of the endpoint of metastasis-free survival using a Cox proportional hazards model (Pearlman, A. et al., J Probab Stat, 2012, 873570 (2012)).


In this disclosure, the inventors assessed the prevalence of these CNAs among large numbers of primary prostate cancers, triple negative breast cancers, other breast cancers and lung adenocarcinomas with known outcome. The inventors used a subset of the CNA genes to develop a predictive pan-cancer metastatic potential score (panMPS), because the four cohorts were assayed on different array platforms that represented different CNA genes. The panMPS was derived by using 295 of the 366 CNA genes that overlapped across all array platforms. Although 71 CNA genes were not represented in the panMPS, most of these were located in multi-gene clumps, thereby capturing the content of 67 of the 69 clumps, with no loss in the predictive accuracy for the panMPS relative to the MPS using 366 genes (Table 13, except the two pseudogenes (C8orf16 and ERW)). The inventors also observed high frequencies of these alterations in metastatic cell lines for tumors of eight different origins.





BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee



FIG. 1A-1D. Receiver operating characteristic curves estimate the accuracy of the panMPS for predicting metastatic outcome for prostate cancer (A. MSK cohort, B. Duke cohort), triple negative breast cancer (C. Montefiore cohort) and lung adenocarcinoma (D. MSKCC cohort). For prostate cancer, panMPS was predictive of mPT and iPT status in both the MSK and Duke cohorts. In addition, preoperative PSA, biopsy Gleason score, and percent genomic instability were predictive of mPT and iPT status in the MSK cohort, only. The AUC is indicated for each curve.



FIG. 2A-2D. Kaplan Meier analysis shows that MPS is associated with overall survival. A. Metabric breast cancer (N=1980); B. TCGA breast cancer (N=1054); C. TCGA prostate cancer (N=482); D. TCGA lung adenocarcinoma (N=483). Y-axis indicates overall survival probability and X axis indicates survival time. p-value calculated by log-rank test.



FIG. 3. MPS genes show higher functional and biomarker annotations than 100 random sets of 366 genes. Number of genes found to have Pubmed citations for metastasis functions for random sets of genes (grey) and MPS genes (black). There were 2 outliers the exceeded the upper fence, the MPS genes (N=60) and one random set (N=69).



FIG. 4A-4C. Chromosome 8p exhibiting 70 genes predictive of metastatic potential, including genes that occur in clumps (A). Each bar represents a gene as it is located on the chromosome (X-axis) whereas the height of the bar denotes a Zgenes score (Y-axis) that measures the gene CNA profile's ability to predict the metastatic potential of a primary prostate cancer. Arrows on top of some of the bars indicate that the gene has been validated in prior metastasis studies as a biomarker or to have metastatic function. Clump region #26 (nine gene segment) and clump region #30 (seven gene segment) are highlighted in the top panel and zoomed in (B) (Clump region #26) and (C) (Clump region #30).



FIG. 5A-5B. Small sets of high Zgenes score genes predict metastatic outcome and panMPS almost as well as all MPS genes for all four cohorts. ROC-AUCs estimating metastatic outcome and linear regression (r2) estimating panMPS for all four cohorts demonstrate reduction of complexity for high Zgenes score genes. AUC (A) and r2 (B) estimating metastatic outcome and panMPS, respectively, for simplified versions of MPS, including those with high Zgenes scores. Numbers of genes and clumps are indicated for different Zgenes scores. * one gene per clump.



FIG. 6A-6C. Chromosome 8q exhibiting 75 genes predictive of metastatic potential, including genes that occur in clumps (A). Each bar represents a gene as it is located on the chromosome (X-axis) whereas the height of the bar denotes a Zgenes score (Y-axis) that measures the gene CNA profile's ability to predict the metastatic potential of a primary prostate cancer. Arrows on top of some of the bars indicate that the gene has been validated in prior metastasis studies as a biomarker or to have metastatic function. Red colored bars/arrows indicate a singleton gene or one member clump. Clump region #33 (six-gene segment) and clump region #40 (four-gene segment) are highlighted in (A) and zoomed in (B) (Clump region #33) and (C) (Clump region #40).



FIG. 7A-7C. Chromosome 16q exhibiting 74 genes predictive of metastatic potential, including genes that occur in clumps (A). Each bar represents a gene as it is located on the chromosome (X-axis) while the height of the bar denotes a Zgenes score (Y-axis) that measures the gene CNA's ability to predict the metastatic potential of a primary prostate cancer tumor. Arrows on top of some of the bars indicate that the gene has been validated in prior metastasis studies as a biomarker or to have metastatic function. Red colored bars/arrows indicate a singleton gene or one member clump. Clump region #57 (8-gene segment) and clump region #58 (13-gene segment) are highlighted in (A) and zoomed in (B) (Clump region #57) and (C) (Clump region #58).





DETAILED DESCRIPTION

This disclosure provides a risk model that reliably predicts those tumors that are likely to metastasize, while minimizing the false positive rate and increasing the specificity of treatment decisions.


The risk model has been developed through the identification of copy number alterations (CNAs) around genes that were over-represented in metastases and primary tumors that later progressed to metastases. These CNAs are predictive of whether a primary tumor will metastasize. Cross-validation analysis has revealed a predictive accuracy of 80.5% and log rank analysis of the metastatic potential score has been shown to be significantly related to the endpoint of metastasis-free survival (p=0.014). In contrast to other reported risk models, the risk model disclosed herein based on the study of CNAs predicts distant metastasis progression as the clinical endpoint without the use of intermediate endpoints (such as biochemical markers of progression). The hierarchy of the genes and genomic regions that contribute to the prediction of metastatic potential has also been determined.


Accordingly, disclosed herein is a method for determining the risk of metastasis of breast or lung cancer in a human subject who has or had breast or lung cancer. This method is based on determining in a breast or lung sample from the subject, copy number alterations (CNAs) of genes and genomic regions of a metastatic gene signature set, and correlating the CNAs with a risk of breast or lung cancer metastasis.


The present method is useful for diagnosing breast and lung cancer in fluid aspirates or lavage or cell-free DNA in scrum, monitoring therapeutic response in tissue, fluid or blood samples, and monitoring disease recurrence or progression in tissue, fluid or blood samples.


Metastatic Gene Signature


Metastatic gene signatures have been developed by the present inventors as described in detail in U.S. patent application Ser. No. 14/114,057 and hereinbelow. Accordingly, in one embodiment, this disclosure provides a metastatic gene signature set which includes the 366 genes identified herein, set forth in Table 13 (Table 13 has 368 genes, but the two pseudogenes C8orf16 and ERW are excluded from the gene signature set).


As displayed in Table 3, the 366 genes include a number of “clumps”, each clump identified by a “Clump Index Number”. A “clump”, as used herein, refers to a group of genes that are adjacent to one another on the chromosome, and copy number alterations are detected for the genomic region which includes this group of genes in connection with prostate cancer metastasis. A multi-member clump may include both drivers (genes that cause or more directly associate with metastasis) and passengers (genes that indirectly associate with metastasis because of its close proximity of a metastasis driver gene).


The term “genomic region” is used herein interchangeably with the term “clump”, and is typically used herein in conjunction with the name of a member gene within the genomic region or clump. For example, the PPP3CC gene listed in the first row of Table 14 belongs to Clump Index 26, which also includes the genes KIAA1967, BIN3, SORBS3, PDLIM2, RHOBTB2, SLC39A14, EGR3, and C8orf58. Therefore, Clump Index 26 is also referred to herein as “the PPP3CC genomic region”.


While many of the 366 genes belong to clumps, some of the genes do not belong to any clump and copy number alterations have been identified specifically around each of these genes in connection with metastasis of prostate cancer. For example, as shown in Table 14 (with “NA” in the Clump Index column), CDH13, CDH8, CDH2 CTD8, COL19A1, YWHAG, and ENOX1, among many others, are genes which do not belong to any clump.


In other embodiments, this disclosure provides smaller metastatic gene signature sets which include at least 80, at least 40, at least 20, or at least 12, non-overlapping genes and/or genomic regions listed in Table 14.


By “non-overlapping” it is meant that the genes selected to constitute a smaller signature set do not belong to the same genomic region or clump.


Accordingly, in one embodiment, a metastatic gene signature set includes at least the top 80 genes and genomic regions shown in Table 14.


In another embodiment, a metastatic gene signature set includes at least the top 40 genes and genomic regions shown in Table 14.


In still another embodiment, a metastatic gene signature set includes at least the top 20 genes and genomic regions shown in Table 14.


In yet another embodiment, a metastatic gene signature set includes at least the top 12 genes and genomic regions shown in Table 14.


Determination of Copy Number Alterations (CNAs)


A copy number alteration is a variation in the number of copies of a gene or genomic region present in the genome of a cell. A normal diploid cell typically has two copies of each chromosome and the genes contained therein. Copy number alterations may increase the number of copies, or decrease the number of copies.


To determine whether there is any copy number alteration for a given gene or genomic region, a sample is obtained from a subject of interest, wherein the sample can be from lung or breast tissue. A breast sample refers to a cell or tissue sample taken from the breast of a subject of interest which sample contains genomic DNA to be analyzed for CNAs. A lung sample refers to a cell or tissue sample taken from the lung of a subject of interest which sample contains genomic DNA to be analyzed for CNAs. Methods of procuring cell and tissue samples are well known to those skilled in the art, including, for example, tissue sections, needle biopsy, surgical biopsy, and the like. For a cancer patient, cells and tissue can be obtained from a tumor. A cell or tissue sample can be processed to extract, purify or partially purify, or enrich or amplify the nucleic acids in the sample for further analysis.


Nucleic acid probes are designed based on the genes and genomic regions of a metastatic signature gene set which permit detection and quantification of CNAs in the genes and genomic regions.


In one embodiment, the probes are composed of a collection of nucleic acids that specifically hybridize to the full set of 366 genes of the metastatic signature gene set.


In another embodiment, the probes are composed of a collection of nucleic acids that specifically hybridize to the top 80 genes and genomic regions shown in Table 14.


In still another embodiment, the probes are composed of a collection of nucleic acids that specifically hybridize to the top 40 genes and genomic regions shown in Table 14.


In yet another embodiment, the probes are composed of a collection of nucleic acids that specifically hybridize to the top 20 genes and genomic regions shown in Table 14.


In a further embodiment, the probes are composed of a collection of nucleic acids that specifically hybridize to the top 12 genes and genomic regions shown in Table 14.


By “specifically hybridize” it is meant that a nucleic acid probe binds preferentially to a target gene or genomic region under stringent conditions, and to a lesser extent or not at all to other genes or genomic regions.


“Stringent conditions” in the context of nucleic acid hybridization are known in the art, e.g., as described in Sambrook, Molecular Cloning: A Laboratory Manual (2nd ed.) vol. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor Press, New York (1989). Generally, highly stringent hybridization and wash conditions are selected to be about 5° C. lower than the thermal melting point for a specific sequence at a defined ionic strength and pH. An example of highly stringent hybridization conditions is 42° C. in standard hybridization solutions. An example of highly stringent wash conditions include 0.2×SSC at 65° C. for 15 minutes. An example of medium stringent wash conditions is 1×SSC at 45° C. for 15 minutes. An example of a low stringency wash is 4×-6×SSC at room temperature to 40° C. for 15 minutes.


Nucleic acid probes for purposes of this invention should be at least 15 nucleotides in length to permit specific hybridization to a target gene or genomic region, and can be 50, 100, 200, 400, 600, 800, 1000, or more nucleotides in length, or of a length ranging between any of the two above-listed values. A nucleic acid probe designed to specifically hybridize to a target gene can include the full length sequence or a fragment of the gene. A nucleic acid probe designed to specifically hybridize to a specific target genomic region can include at least a fragment of the genomic region, e.g., at least the full length sequence or a fragment of a gene (any gene) within the genomic region. Alternatively, a nucleic acid probe shares at least 80%, 85%, 90%, 95%, 98%, 99% or greater sequence identity with the target gene to permit specific hybridization.


The hybridized nucleic acids can be detected by detecting one or more labels attached to the sample or probe nucleic acids. The labels can be incorporated by a variety of methods known in the art, and include detectable labels such as magnetic beads, a fluorescent compound (e.g., Texas red, rhodamine, green fluorescent protein and the like), radio isotope, enzymes, colorimetric labels (e.g., colloidal gold particles). In other embodiments, the sample or probe nucleic acids can be conjugated with one member of a binding pair, and the other member of the binding pair is conjugated with a detectable label. Binding pairs suitable for use herein include biotin and avidin, and hapten and a hapten-specific antibody.


A number of techniques for analyzing chromosomal alterations are well known in the art. For example, fluorescence in-situ hybridization (FISH) can be used to study copy numbers of individual genetic loci or regions on a chromosome. See, e.g., Pinkel et al., Proc. Natl. Acad. Sci. USA 85: 9138-9142 (1988). Comparative genomic hybridization (CGH) can also be used to detect copy number alterations of chromosomal regions. See, e.g., U.S. Pat. No. 7,638,278.


In some embodiments, hybridization is performed on a solid support. For example, probes that specifically hybridize to signature genes and genomic regions can be spotted or immobilized on a surface, e.g., in an array format, and subsequently samples containing genomic DNA are added to the array to permit specific hybridization.


Immobilization of nucleic acid probes on various solid surfaces and at desired densities (e.g., high densities with each probe concentrated in a small area) can be achieved by using methods and techniques known in the art. See, e.g., U.S. Pat. No. 7,482,123 B2. Examples of solid surfaces include nitrocellulose, nylon, glass, quartz, silicones, polyformaldehyde, cellulose, cellulose acetate; and plastics such as polyethylene, polypropylene, polystyrene, and the like; gelatins, agarose and silicates, among others. High density immobilization of nucleic acid probes are used for high complexity comparative hybridizations which will reduce the total amount of sample nucleic acids required for binding to each immobilized probe.


In some embodiments, the arrays of nucleic acid probes can be hybridized with one population of samples, or can be used with two populations of samples (one test sample and one reference sample). For example, in a comparative genomic hybridization assay, a first collection of nucleic acids (e.g., sample from a possible tumor) is labeled with a first label, while a second collection of nucleic acids (e.g., control from a healthy cell or tissue) is labeled with a second label. The ratio of hybridization of the nucleic acids is determined by the ratio of the two labels binding to each member in the array. Where there are genomic deletions or amplifications, differences in the ratio of the signals from the two labels will be detected and provide a measure of the copy number.


The calculated metastatic potential score is compared to a reference distribution of samples (the metastatic potential score determined from a population of men with prostate cancer with metastasis-free survival clinical outcome information). Such reference distributions can be predetermined or calculated side-by-side in the same experiment as the sample being investigated. Therefore, an increase in the metastatic potential score as compared to the reference distributions is correlated with an increased risk of metastasis of prostate cancer. According to this disclosure, a one-point increase in the metastatic potential score corresponds to an odds ratio of 6.3 for progression to metastasis (p=0.01).


Determination of Risk


Once copy number alterations for each of a metastatic signature gene set have been determined, the risk for metastasis can be correlated with the copy number alterations detected. An increase in the copy number per cell of the sample for one or more of the genes or genomic regions of a metastatic signature gene set disclosed herein, whose amplifications have been associated with metastatic prostate cancer, will indicate a higher risk of metastasis as compared to a control (e.g., a sample obtained from a healthy individual) in which no increase in the copy number occurs. On the other hand, a decrease in the sample in the copy number for one or more of the genes or genomic regions of a metastatic signature gene set disclosed herein, whose deletions have been associated with metastatic prostate cancer, will indicate a higher risk of metastasis as compared to a control in which no decrease in the copy number is observed.


For example, for a metastatic signature gene set composed of the top 20 genes and genomic regions listed in Table 6, an increase in the copy number per cell of the sample for all of the SLCOSA1 genomic region, the KCNB2 genomic region, the KCNH4 genomic region, the JPH1 genomic region, the NCALD genomic region, and the YWHAG gene, and a decrease in the sample in the copy number per cell of the sample for all of the PPP3CC genomic region, the SLC7A5 genomic region, the SLC7A2 genomic region, the CRISPLD2 genomic region, the CDH13 gene, the CDH8 gene, the CDH2 gene, the ASAH1 genomic region, the CTD8 gene, the MEST genomic region, the COL19A1 gene, the MAP3K7 genomic region, the NOL4 genomic region, and the ENOX1 gene, correlate with an increased risk of breast cancer or lung cancer metastasis. However, it is not necessary for all the genes and genomic regions within a signature set to change in the same direction as set forth in Table 6 in order to have a reasonably reliable prediction of the risk. That is, an increased risk can be predicted based on an increase in the copy number per cell of the sample for one or more, preferably a plurality of, the SLCO5A1 genomic region, the KCNB2 genomic region, the KCNH4 genomic region, the JPH1 genomic region, the NCALD genomic region, and the YWHAG gene, and/or a decrease in the sample in the copy number per cell of the sample for one or more, preferably a plurality of, the PPP3CC genomic region, the SLC7A5 genomic region, the SLC7A2 genomic region, the CRISPLD2 genomic region, the CDH13 gene, the CDH8 gene, the CDH2 gene, the ASAH1 genomic region, the CTD8 gene, the MEST genomic region, the COL19A1 gene, the MAP3K7 genomic region, the NOL4 genomic region, or the ENOX1 gene. By “plurality” it is meant at least 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 of the top 20 genes and gene regions listed in Table 14.


This disclosure also provides a quantitative measure of the risk based on the copy number alterations of a signature gene set disclosed herein. More specifically, the risk of metastasis has been found to correlate with a metastatic potential score calculated based on the formula:







M


(
SM
)


=



i
n




Zadjust
i

*


Dir
sig



(
i
)


*


Dir
samp



(
i
)








That is, for a particular gene or genomic region, if the CNA of the signature and the sample are in the same direction (amplified or deleted), the coefficient (coefficient is shown as Dir, wherein Dir (i)=Dirsig (i)*Dirsamp (i) in the formula above) will be 1, the logistic adjusted Z-score (Zadjust) for this gene or genomic region will be added; if in opposing directions, the coefficient will be −1, the logistic adjusted Z-score (Zadjust) for the gene or genomic region will be substracted; and if Dirsamp(i)=0, then the entire term will not count towards the score. Thus, essentially, the logistic adjusted Z-scores from genes (i . . . n) that match the metastasis signature are added, whereas from genes that mismatch the signature are subtracted. The logistic adjusted Z-scores (Zadjust) for each of the 366 genes of the full metastatic signature set are found in Table 14.


The calculated metastatic potential score is compared to a reference distribution of samples (the metastatic potential score determined from a population of patients with breast or lung cancer with metastasis-free survival clinical outcome information, also called herein “the reference metastatic potential score”). Such reference distributions can be predetermined or calculated side-by-side in the same experiment as the sample being investigated. In many of the embodiments, the reference metastatic potential score equals to or is approximately 1.0. Therefore, an increase in the metastatic potential score of a test subject as compared to the control score from the reference distributions is correlated with an increased risk of metastasis of breast or lung cancer. According to this disclosure, a one-point increase in the metastatic potential score corresponds to an odds ratio of 6.3 for progression to metastasis (p=0.01). In some embodiments, an increase in the metastatic potential score as compared to a reference score by at least about 0.5, 0.53, 0.56, 0.58, 0.6, 0.65, 0.7 or greater, is considered to represent a significantly high risk of metastasis.


The disclosed method for predicting the likelihood of distant metastases represents a significant advancement in the diagnosis and treatment of breast and lung cancer. This predictor may be important for correctly categorizing patients at the time of diagnosis and can lead to a choice of therapy that would maximize their chances of survival and minimize adverse side effects if aggressive treatment can be avoided. Thus, both treatment outcomes and quality of life could be improved. In addition, because the proposed tool, tumor genomic analysis, is comprehensive for identifying the genetic changes that are associated with pathogenesis and metastases, there is a greater likelihood of selecting a sufficient number of markers that are both sensitive and specific predictors. Furthermore, because these genomic alterations are themselves susceptible to manipulation with drugs, radiation or other therapies, they could provide a basis for assessing intermediate endpoints, such as androgen sensitivity and response to radiation. Ultimately, copy number alterations could guide the development of individually tailored therapies, including for cancers other than prostate, breast or lung.


Methods for Detecting Copy Number Alterations (CNAs)


The following methods can be utilized in detection of copy number alterations.


Multiplex Ligation-dependent Probe Amplification (MLPA)


Multiplex Ligation-dependent Probe Amplification (MLPA®) is a high-throughput method developed to determine the copy number of up to 50 genomic DNA sequences in a single multiplex PCR-based reaction. MLPA is easy to perform, requires only 20 ng of sample DNA and can distinguish sequences differing in only a single nucleotide. The MLPA reaction results in a mixture of amplification fragments ranging between 100 and 500 nt in length which can be separated and quantified by capillary electrophoresis. The equipment necessary for MLPA is identical to that for performing standard sequencing reactions: a thermocycler and a fluorescent capillary electrophoresis system. Comparison of the peak pattern obtained on a DNA sample to that of a reference sample indicates which sequences show aberrant copy numbers.


Fundamental for the MLPA technique is that it is not the sample DNA that is amplified during the PCR reaction, but MLPA probes that hybridise to the sample DNA. Each MLPA probe consists of two probe oligonucleotides, which should hybridise adjacent to the target DNA for a successful ligation. Only ligated probes can be exponentially amplified by PCR. In contrast to standard multiplex PCR, only one pair of PCR primers is used for the MLPA PCR reaction, resulting in a more robust system. This way, the relative number of fragments present after the PCR reaction depends on the relative amount of the target sequence present in a DNA sample. MLPA protocol is described in detail in Eijk-Van Os PG. et al. (Methods Mol Biol. 2011; 688:97-126).


Quantitative Polymerase Chain Reaction (qPCR)


Quantitative real-time PCR (qPCR) is PCR visualized in real time by the use of fluorescent or intercalating dyes used to measure gene expression or gene quantification including including contiguous gene deletions or duplications. A simple method is described to quantify DNA copy number from human samples in Lijiang et al. (Curr Protoc Hum Genet. 2014 Jan. 21; 80:7.21.1-7.21.8).


PCR-Based Detection of DNA Copy Number Variation (dPCR)


A method for PCR-based detection of copy number of target genes in human genome using TaqMan copy number assay is described in MehrotraM. (Methods Mol Biol. 2016; 1392:27-32. doi: 10.1007/978-1-4939-3360-0_3).


Genomic Sequencing


Whole genome copy number alteration analyses and the computational approaches that can be utilized are discussed in Pirooznia et al. (Front Genet., 2015; 6:138). In some embodiments, the whole genome analysis is a Next Generation (NextGen) sequencing based assay. Next-generation sequencing refers to non-Sanger-based high-throughput DNA sequencing technologies. Millions or billions of DNA strands can be sequenced in parallel, yielding substantially more throughput and minimizing the need for the fragment-cloning methods that are often used in Sanger sequencing of genomes. Next Generation Sequencing is described in Behjati et al. (Arch Dis Child Educ Pract Ed. 2013 December; 98 (6): 236-238).


The present description is further illustrated by the following examples, which should not be construed as limiting in any way. The contents of all cited references (including literature references, issued patents, and published patent applications as cited throughout this application) are hereby expressly incorporated by reference.


EXAMPLES
Example 1: Materials and Methods

Predictive CNAs, MPS and panMPS.


This disclosure provides an in-depth comparison of a set of 366 genes whose CNAs are predictive of breast or lung cancer metastasis. The contributions of these genes to MPS as Zgenes scores were reported previously (Pearlman, A. et al., J Probab Stat, 2012, 873570 (2012) and US Patent Publication No. 2014/0221229). These are calculated by assigning each probe on the array to a gene, provided it falls within 10,000 bp upstream or downstream of the transcription start or stop site.z=(X−μ)/σ as described previously (4). The score for a gene, X, is subtracted by the mean, μ, of the background distribution of selection model scores and divided by the standard deviation, σ, of the background distribution of selection model scores. A conservative background distribution of selection model scores was calculated by sampling the top 5th percentile of amplified or deleted probes from all genes on the array with the same number of probes as the gene in question. The result is a Zgenes score for each gene in the genome that is represented on the array. Alternatively, the complete set of genomic CNAs was used to calculate percent genomic instability. The CNA methodology is assay platform-independent, but requires that genomic DNA signal intensities are measured within the regions of the metastasis signature. In this study, the analysis was conducted on primary data sets reported here utilizing the Affymetrix Oncoscan FFPE V3 array (Foster, J. M. et al., BMC Med Genomics 8, 5 406 (2015)), and on previously generated data sets assayed on Agilent 240K and other arrays (Hieronymus, H. et al., Proc Natl Acad Sci USA 111, 11139-44 (2014)). For comparison of cohorts from different platforms, the corresponding numbers of the MPS genes were reduced to include only those that overlapped (366 to 295 genes), representing the panMPS.


Cohorts, Tissue and Sample Processing


A prostate cancer radical prostatectomy cohort of 37 men that progressed to metastasis (mPTs) and 24 men that were free from biochemical recurrence and metastases (iPTs) after at least five years of follow up was collected at Duke University (Duke cohort-Table 10A). The Duke cohort had a case-control design that matched mPTs and iPTs for age, race, pathological stage, margin status, Gleason score, and surgery year. Tumor regions were microdissected, extracted for DNA, and assayed on the Oncoscan FFPE V3 array (Affymetrix Oncoscan Service, Santa Clara, California).


A second prostate cancer cohort, comprised of 25 mPTs along with 157 iPTs was collected at Memorial Sloan-Kettering Cancer Center (MSK cohort—Table 10A). The collection, extraction and data generation for the second cohort has been described previously (Hieronymus, H. et al., Proc Natl Acad Sci USA 111, 11139-44 (2014)). The MSK cohort represented a consecutive case-cohort design with non-recurrent, non-metastatic outcome samples making up a disproportionate number. Unlike the Duke samples, these samples were not matched on any criteria. The MSK cohort was comprised of fresh frozen radical prostatectomies. The Duke and MSK cohorts differed in their length of follow-up, clinical and pathologic attributes and biochemical recurrence and metastasis outcomes (Table 10A). The Duke cohort was collected for individuals with greater than five years follow-up since the majority of prostate cancers recur or metastasize within this timeframe. To achieve parity for prediction modeling and maximizing the metastasis informativeness of each patient, the MSK cohort was filtered for subjects that had at least five years of follow-up. Also, for both cohorts, metastasis negative subjects treated with radical prostatectomy and adjuvant radiation and/or hormonal therapy were excluded from analysis to provide a more homogeneous iPT group.


A triple negative breast cancer radical surgical cohort of 28 women that progressed to metastasis (mBCs) and 13 women that were free from local recurrence and metastasis (iBCs) after at least five years of follow up was collected at Montefiore Medical Center (Montefiore cohort—Table 10B). The Montefiore cohort had a case-control design that matched mBCs and iBCs for age, race, pathological stage, margin status, and surgery year. The breast cancer tumor blocks from each patient were handled in a fashion similar to the prostate cancer tumor blocks and reviewed by a single pathologist and shown to be negative for expression of the estrogen receptor, progresterone receptor and HER2/NEU protein, as judged by immunohistochemistry. Tumor regions were microdissected, extracted for DNA, and assayed on the Oncoscan FFPE V2 array (Affymetrix Oncoscan Service, Santa Clara, California).


Tumor tissue from 199 primary lung adenocarcinomas was collected at the time of resection between 1996 and 2006 at MSKCC and analyzed for CNAs on Agilent 44K CGH arrays, as described previously (Chitale, D. et al., Oncogene 28, 2773-83 (2009)). From this cohort, all available early stage (1A, B and 2A,B) samples that progressed to mortality (mLA, n=23) and late stage (3B and 4) samples that remained alive for greater than one year of follow up (iLA, n=10) (Table 10C) were selected.


This study was reviewed and approved by the Institutional Review Boards at Albert Einstein College of Medicine, New York University School of Medicine, and Duke University.


The copy number alterations (CNAs) level 3 data from cBioPortal for cancer genomics for 3998 patients with three tumor types (Gao J. et al., Sci Signal 6: pl1, 2013, Cerami E. et al., Cancer Discov, 2:401-4, 2012) were downloaded. Metabric and TCGA provisional study were selected for breast invasive carcinoma, TCGA provisional study was selected for Lung adenocarcinoma and TCGA provisional study was selected for prostate adenocarcinoma (Milioli H H. Et al., PLOS One, 10: e0129711, 2015, Pereira B. et al., Nat Commun, 7:11479, 2016). panMPS score was calculated based on CNAs for these studies. Univariate Cox proportional hazards model was used to examine the association between MPS and survival. Overall survival was used as the endpoint.


Cell Lines.


CNA data from 183 human cell lines of metastatic origin were available from the Cancer Cell Line Encyclopedia (CCLE). These cell lines included breast, lung adeno, pancreas, large intestine, lymphoid, melanoma, lung small cell and stomach cancers. The data were generated using the Affymetrix SNP 6.0 arrays, as described previously (Beroukhim R. et al., Nature, 463:899-905, 2010).


MPS and panMPS


MPS was calculated based on genomic CNAs overlapping 366 genes with a higher score indicating a greater likelihood of metastasis, as described previously (Pearlman, A. et al., J Probab Stat, 2012, 873570 (2012)). The pan cancer MPS or panMPS was derived from the MPS by using a subset of 295 genes from the MPS. Univariate and multivariate logistic regression and Cox proportional hazards survival models for prostate cancer were evaluated for panMPS, pre-surgery predictors (PSA, clinical stage, biopsy Gleason), demographic variables (age at diagnosis and race), and percent genomic instability, as described previously (Hieronymus, H. et al., Proc Natl Acad Sci USA 111, 11139-44 (2014)). The logistic regression and Cox models were also tested for triple negative breast cancer and lung adenocarcinoma. AUC and concordance index were calculated for the logistic and Cox models, respectively.


Functions of MPS Genes in Driving Metastases


To gauge whether the MPS genes played a role in metastasis, we performed in-silico analysis by running three comprehensive queries with the RISmed package from R. First we performed a general Pubmed citation query by searching for the 366 gene IDs and the terms “metastasis”, “metastases” or “metastatic” in the title or abstract of the publication (“metastasis IDs”). Next, we appended this query to capture metastasis functions by adding search terms, “apoptosis assay”, “TUNEL”, “Matrigel”, “invasion assay”, “wound healing assay”, “migration assay”, “MTT”, “BrDU”, “proliferation assay”, “SiRNA” and “xenograft” (“metastasis functions”). Then, the title query was appended to capture predictive biomarkers of metastasis by adding search terms, “Cox”, “Kaplan-Meier” and “hazard ratio” (“metastasis biomarkers”). The MPS gene queries were manually curated and confirmed for accuracy by two reviewers. The annotation frequency was computed for each query type. To assess the significance of these annotations for the MPS genes compared to the remaining, non-overlapping 18,638 protein coding genes an enrichment analysis based on the hypergeometric distribution was performed for the MPS genes versus all 19,004 protein coding genes annotated using the same query search terms to create expanded gene sets for metastasis ID, metastasis functions, metastasis biomarkers and chemokine ID.


Reduction of Complexity


To determine whether the genes with the highest Zgenes score among the clumps could predict outcomes as well as the full set of panMPS genes, we calculated AUC and r2 for simplified MPS versions by using genes with Zgenes score≥3, Zgenes score≥4, or highest Zgenes score within a clump.


Example 2. panMPS Predicts Risk of Metastasis Outcome for Prostate and Triple Negative Breast Cancers and Lung Adenocarcinomas.


The clinical validity of panMPS as a predictor of metastasis outcome was tested in studies of prostate and triple negative breast cancers and lung adenocarcinomas. For the outcome of prostate cancer metastasis, univariate logistic regression of panMPS resulted in significant odds ratios and areas under receiver-operator curves (AUCs) for the MSK (OR 6.01, AUC 0.71, p=0.001) and the Duke cohorts (OR 11.39, AUC 0.72, p=0.004) (Table 1A and FIG. 1). Pre-operative PSA and pathology stage improved the AUC in logistic regression analysis of the MSK cohort, but, because of matching between mPTs and iPTs, did not lead to improvement in the Duke cohort (Table 5). In univariate logistic regression analysis of the MSK cohort, percent genomic instability as a predictor had an OR 1.17, AUC=0.74, p=1.4×10−5; however, this predictor did not reach statistical significance in the Duke cohort (OR 1.04, AUC=0.80, p=0.12) (Table 5). This indicates that percent genomic instability, while useful in the MSK cohort, was not an independent and robust predictor of metastasis. Thus, the subset of genes comprised by panMPS contributes to prostate cancer metastasis formation when copy numbers are altered.


For the outcome of triple negative breast cancer metastasis, univariate logistic regression of panMPS resulted in a significant odds ratio and AUC for the Montefiore cohort (OR 44.74, AUC 0.75, p=0.02) (Table 1B and FIG. 1). Percent genomic instability was not an independent predictor of metastasis. Because matching had been performed for the triple negative breast cancers, stage was also not a predictor of outcome.


For the outcome of lung adenocarcinoma metastasis, univariate logistic regression of panMPS resulted in a significant AUC for the MSKCC cohort (OR 3.45×103, AUC 0.94, p=0.006) (Table 1C and FIG. 1). Because cases with advanced stage were selected for favorable outcome and cases with early stage were selected for unfavorable outcome, stage is thus not a valid predictor of metastasis.


Example 3. panMPS Predicts Metastasis-Free Survival for Prostate Cancer, Triple Negative Breast Cancer and Lung Adenocarcinomas


As a continuous univariate predictor through a Cox model, panMPS was associated with prostate cancer metastasis-free survival in both the MSK (HR=5.4, p=0.0003, concordance index 0.74) and Duke (HR=3.4, p=0.03, concordance index 0.62) cohorts (Table 2A). In univariate Cox analysis of the MSK cohort, percent genomic instability was associated with metastasis-free survival (HR=1.11, p=3.3×10−2, concordance index=0.67), as previously reported for this cohort (Hieronymus, H. et al., Proc Natl Acad Sci USA 111, 11139-44 (2014)); however, this variable did not reach statistical significance in the Duke cohort. Biopsy and pathological Gleason scores, preoperative PSA and pathological stage and combinations of these with panMPS were predictors of metastasis-free survival in Cox analysis of the MSK cohort only (Table 6).


As a continuous univariate predictor in a Cox model, panMPS was associated with triple negative breast cancer metastasis-free survival in the Montefiore cohort (HR=4.1, p=0.05, concordance index 0.60) (Table 2B). Stage was also an independent predictor (HR=3.2, p=0.03), whereas percent genomic instability was not.


As a continuous Cox model univariate predictor, panMPS was associated with lung adenocarcinoma metastasis-free survival in the MSKCC cohort (HR=6.6, p=0.02, concordance index 0.67) (Table 2C). Stage cannot be used as a predictor as explained above.


Example 4. panMPS is Associated with Overall Survival in Breast Cancer, Prostate Cancer and Lung Adenocarcinoma.


Data about CNAs in primary cancers and their survival outcomes are available for a variety of cancer types from publically available datasets, including The Cancer Genome Atlas (TCGA) (Gao J. et al., Sci Signal 6: pl1, 2013, Cerami E. et al., Cancer Discov, 2:401-4, 2012) and Metabric (Milioli H H. Et al., PLOS One, 10: e0129711, 2015). To examine general utility as a predictor of survival outcome, Kaplan Meier analysis of panMPS was applied to the TGCA prostate cancer, breast cancer, and lung adenocarcinoma cohorts and the Metabric breast cancer cohort. panMPS (median cut point) was observed to be significantly associated with overall survival in the Metabric breast cancer cohort (n=1,980, p=4.8×10−08) and in three TCGA cohorts (breast: n=1054, p=0.015, prostate: n=483, p=0.015, and lung adenocarcinoma: n=482, p=0.025; FIG. 2), providing evidence that panMPS is a predictor not only of metastasis, but also survival. Metastasis-free survival data were not available for these cohorts.


Example 5. panMPS is Elevated in Many Metastatic Cancer Cell Lines of Epithelial Origin.


To test applicability in other cancer types, genomic instability and panMPS were evaluated in a set of 133 cell lines of different tissue origins from the Cancer Cell Line Encyclopedia (CCLE). All cell lines were reported to be from metastatic tumors. The median number of protein coding genes demonstrating CNAs ranged from 2091 for lymphoma to 6805 for pancreatic carcinoma and 6916 for stomach carcinoma, thereby confirming the high frequency of CNAs in metastases. By way of reference, the median number of genes demonstrating CNAs in a sample of clinical prostate cancer metastases was 3731. For metastatic cancer cell lines of epithelial origin, including breast, lung adenocarcinoma, pancreas and stomach, the frequency of CNAs was higher than those observed in prostate cancer metastases (p=0.04, 0.002, 3×10−4, 0.005, respectively), whereas for metastatic cell lines of non-epithelial origin, including lymphoid tissue, melanoma, and lung small cell, the frequency of unstable genes was similar to that observed for prostate cancer metastases. Despite the higher frequencies of CNAs among metastatic cells lines of epithelial origin, the MPS of these cell lines, including breast, lung adenocarcinoma, pancreas, large intestine and stomach, was similar to that observed in prostate cancer metastasis. Cell lines of non-epithelial origin had either comparable (melanoma) or lower MPS (lymphoid—p=8×10−4, lung small cell—p=0.01) to those observed in clinical prostate cancer metastases. These findings extend the previous observation that the CNAs of cancer cell lines of a variety of origins display a specific CNA pattern (Pearlman A. et al., J Probab Stat, 2012:873570, 2012), suggesting that panMPS might serve as a predictor of metastatic outcome across multiple cancer types.


Example 6. MPS Genes are More Likely to have Known Roles in Promoting Metastasis or Predicting Metastatic Outcomes than Randomly Selected Genes.


One way of gauging whether the MPS genes played a role in cancer metastasis beyond prostate and triple-negative breast cancers and lung adenocarcinomas was to identify Pubmed citations for these genes (Table 7). Further refinement of this search included metastatic functions such as cell viability, proliferation, invasion, and escape from apoptosis and for biomarker genes predictive of metastasis outcome when their copy number or expression is altered. Following guidelines for the functional interpretation of genes and their variants provided by the American College of Medical Genetics and Genomics (Richards S. et al., Genet Med, 17:405-24, 2015), the Association for Molecular Pathology (Rehm H L. Et al., N Engl J Med, 372:2235-42, 2015), and codified by the NIH-supported, Clinical Genome Resource (Strande N T., Am J Hum Genet, 100:895-906, 2017), each of the 366 MPS genes were annotated for literature reports. Statistical tests were then performed, first to compare MPS genes to random gene sets for metastatic functions and the second of protein coding gene sets that have known associations with metastasis functions, such as invasion, motility and escape from apoptosis when detached from matrix of origin, and chemokine activity, and for biomarker genes predictive of metastasis outcome when their copy number or expression is altered. The frequency of these citations was compared to the frequencies with which citations were observed for 100 random sets of 366 genes from the 18,638 protein coding genes that excluded overlapping MPS genes. Among the 366 MPS genes, 60 were found to have Pubmed citations for the search terms related to metastasis functions and metastasis biomarkers, whereas the range for the random sets was 26 to 69 (FIG. 2). In fact, only one random set had a larger number of genes cited (N=69) than the observed 60, indicating that both represented outliers of non-random gene sets based on current knowledge of annotated metastasis genes. In an alternative approach the 19,004 protein coding genes were annotated for whether they had known metastasis associations (“Metastasis ID,” Table 3, Table 8A), metastasis functions (“Metastasis functions,” Table 3, Table 8B) or whether they have been identified as biomarkers that were predictive of metastasis (“Metastasis biomarkers,” Table 3, Table 8C). Of 2463 metastasis ID genes, 112 overlapped with MPS genes (p=2.42×10−20). Of 929 metastasis function genes, 40 overlapped with MPS genes (p=1.18×10−6). Of the 687 metastasis biomarker genes, 28 overlapped with MPS genes (p=0.0001). Thus, the MPS genes were enriched among gene sets with terms for metastasis function or metastasis biomarkers in the article.


Example 7. Elevated Zgenes Scores Provide Evidence for Potential Metastasis-Driver Genes.


The MPS genes occur as singleton CNAs as well as in clumps that are distributed over 15 chromosomal arms (Table 7). The genes within a clump are likely to include both drivers that are directly associated with metastasis function and passengers that are indirectly associated with metastasis function, because of their proximity to a metastasis driver gene. For example, a clump index 26 on chromosome 8p21.3 includes the nine genes, PPP3CC, KIAA1967, BIN3, SORBS3, PDLIM2, RHOBTB2, SLC39A14, EGR3, and C8orf58 (Table 7). In this clump three of the 9 genes (EGR3, PDILMS, and RHOBTB2) overlapped with the gene sets, metastasis ID, metastasis functions and metastasis biomarkers. In addition to annotations, another way of gauging whether some of the MPS genes play a role as metastasis drivers is to compare the Zgenes scores within clumps (Pearlman, A. et al., J Probab Stat, 2012, 873570 (2012) and US Patent Publication No. 2014/0221229). The clumps of genes vary by breakpoints in individual cancer genomes and the CNAs of some genes in a clump will yield higher Zgenes scores by being overrepresented and in the right direction expected for metastasis, compared to cancer genomes that are not metastasis-prone. The range of Zgenes scores within a clump varied from 1.7 to over 10 with no apparent pattern of decay for the highest Zgenes score gene adjacent to those with the lowest Zgenes score (FIG. 3). Multiple genes within a clump had Pubmed annotations, which were not necessarily those with the highest Zgenes score. Some of the unannotated MPS genes with high Zgenes scores may also act as drivers of metastasis, but may not have been studied yet for functional roles (FIG. 5).


Other genes, including CDH13, CDH8, CDH2, CTD8, COL19A1, YWHAG, and ENOX1, do not belong to any clump. Both the Zgenes scores and the annotations of these genes suggest that they may act as drivers (Table 7). However, the functions of some of these genes may overlap with each other (e.g., the cadherin genes, CDH13, CDH8, CDH2). Thus, there may be some functional redundancy among the MPS genes and, as judged by Zgenes scores, genes are not equally predictive of the predisposition to metastasis. Yet, some of these genes have higher Zgenes scores suggesting that their contributions to metastasis are observed more frequently.


Example 8. High Zgenes Score Genes within Clumps Predict Outcomes.


To test whether a reduced set of clumps could predict outcomes and produce similar values to those observed with panMPS, AUC and r2 were calculated for simplified MPS versions that included genes with Zgenes score≥4 (21 clumps) and Zgenes score≥3 (43 clumps) or the highest Zgenes score gene within a clump. The results were compared to all 295 panMPS genes. The 21 and 43 clumps predicted AUC and r2 almost as well panMPS, whether calculated for all genes exceeding the threshold or for only the gene with the highest Zgenes score (Table 9A and 9B). This result indicated that there was a hierarchy of clumps with 21 clumps (Zgenes score≥4) performing as well as 43 clumps (Zgenes score≥3) capturing almost all of the contribution of the clump to AUC and r2. These result also indicated a lead gene within a clump could capture almost all of the contribution of the clump to AUC and panMPS r2.


CNAs are the result of chromosomal instability and are far more common than mutations in human cancers, including prostate, triple negative breast cancer and lung adenocarcinoma (Vogelstein. B. & Kinzler, K. W., Nat Med, 10, 789-99 (2004), Kandoth et al., Nature, 502:333-9, 2013). CNAs may occur randomly across the genome or may be favored by repeated structural elements, including Alu or LINE sequences (Aguilera et al., Annu Rev Genet., 47:1-32, 2013). Amplifications or deletions of genes may occur repeatedly within the same regions of genomes in populations of cancer cells within a tumor (Pearlman, A. et al., J Probab Stat, 2012, 873570 (2012), Shah et al., Nature, 486:395-9, 2012). This observation of specific CNA pattern enrichment is the basis for calculating Zgenes scores for specific genes within CNAs. In turn, MPS represents the sum of Zgenes scores, divided by the number of genes being summed. CNA burden alone (i.e. the frequency of chromosomal instability) was not an accurate predictor of outcome in most cohorts because it did not consider specific pattern nor functional contributions by specific metastatic genes.


This disclosure provides evidence that panMPS can be used as a predictor of metastasis and metastasis-free survival, not only in prostate cancer, as we have shown before (Pearlman, A. et al., J Probab Stat, 2012, 873570 (2012)), but also for triple negative breast cancer, other breast cancers, and lung adenocarcinoma and 133 CCLE metastasis cell lines of 8 different cancer origins. A panMPS was also able to predict overall survival in Metabric cohort of breast cancer and several large TCGA cohorts of prostate cancer, breast cancer and lung adenocarcinoma.


These observations fit a model of chromosomal rearrangements occurring in early tumorigenesis by punctuated bursts (Gao R. et al., Nat Genet 48:1119-30, 2016). Metastasis is driven by selection for rearrangements that promote invasion, escape from apoptosis and growth at distant sites (Nyugen D X. et al., Nat Rev Genet 8:341-52, 2007 PMID: 17440531). A study of mutated genes in multiple cancer types drew a similar conclusion that genes under positive selection, either in individual or multiple tumor sites, tend to display higher mutation frequencies above background (Kandoth et al., Nature, 502:333-9, 2013). However, large-scale targeted and whole genome sequence efforts have identified single nucleotide variants and short indels in a set of overlapping or related genes that account for carcinogenesis, but have not identified genes involved in metastasis (Kan Z. et al., Nature 466:869-73, 2010).


These CNAs occur on a segmental basis with multiple genes within a segment or clump being amplified or deleted. Within a clump, one or more genes could be drivers of metastasis (Kandoth et al., Nature, 502:333-9, 2013). The drivers showed elevated Zgenes scores and were annotated in the literature as having metastatic functions, including invasion, motility, escape from apoptosis when detached from matrix of origin, and chemokine activity. Other genes with elevated Zgenes scores, but no annotations, may also represent drivers whose functions have not yet been identified. However, the remainder of the genes may be passengers that are carried along with the CNA events. Not all of the drivers are required for predicting risk of metastasis. Testing only genes with the highest Zgenes score within a clump may capture most, if not all of the metastatic risk, reflected by the panMPS. These genes with high Zgenes score may act as proxies for all of the genes within the clump.


Based on the hypergeometric analysis, the MPS genes indeed represent a subset of all metastatic genes, specifically those that can be readily identified by CNA analysis. Other metastatic genes would not be readily detected as they are not subject to CNA events and may need to be detected by other molecular methods, such as sequencing.


Analyzing these genes in patient samples may be required to improve the accuracy of predicting metastasis—although the current study suggests that as few as 33 genes with high Zgenes score may be sufficient for many clinical applications.


The availability of a panMPS-based diagnostic tool may contribute to clinical care. Collectively, lung, breast and prostate cancer account for ˜676,000 or 40% of newly diagnosed cancer cases and ˜226,000 or 39% of cancer deaths in the United States each year (Siegel R L. et al., CA Cancer J Clin, 65:5-29, 2015). Currently, there are no clinical tests in common use for prediction of outcomes in triple negative breast cancer or lung adenocarcinoma. Future studies will assess the accuracy of panMPS derived from surgical specimens and biopsies for predicting outcomes of these diseases.


Having a test that would accurately predict across cancer-types which patients are likely to develop metastases would be extremely useful. For example, panMPS could improve the clinical management of men with prostate cancer. Men with early-stage disease and low-risk profiles would be candidates for active surveillance that might safely preserve quality of life by helping them to avoid erectile dysfunction and urinary incontinence that may occur in up to 50% of treated patients (Cooperberg et al., J Natl Cancer Inst 101:878-87, 2009, Paris P L. et al., Clinical cancer research, 16:195-202, 2010). Men with early-stage disease and high-risk profiles might benefit from aggressive treatment (Pound C R. et al., The Urologic clinics of North America 24:395-406, 1997). Men with higher-risk disease who underwent initial surgery might benefit from adjuvant radiation therapy (Thompson I M., The Journal of urology 181:956-62, 2009). Notably, the accuracy of combined panMPS and pre-operative PSA appears to be similar to the various RNA expression profile tests plus clinical predictors for use as a post-surgical tool (Table10A-10C). These tests, Genomic Prostate Score (GPS) (Cullen J. et al., European Urology, 68:123-31, 2015 PMID: 25465337., Klein E A. et al., European Urology, 66:550-60, 2014), Cell Cycle Progression Score (CCPS) (Cuzick J. et al., The Lancet Oncology 12:245-55, 2011), and Genomic Classifier (GC) (Ross A E et al., Prostate Cancer Prostatic Dis., 17:64-9, 2014; Cooperberg M R et al. European Urology 67:326-33, 2015; Erho N et al., PLOS One, 8: e66855, 2013; Karnes R J. et al., J Urol, 190:2047-53, 2013; 4097302; Den R B et al., Int J Radiat Oncol Biol Phys, 89:1038-46, 2014), measure the altered expression of mostly non-overlapping sets of genes that have not been demonstrated to play a direct role with the biological events of prostate cancer progression and metastasis. As with panMPS, the accuracy of these tests was improved by the addition of clinical and pathological predictors, both as univariate predictors or as captured by the Cancer of the Prostate Risk Assessment (CAPRA-S) score (Cooperberg M R et al., Cancer, 117:5039-46, 2011; 3170662; Greene K L et al., The Journal of Urology 171:2255-9, 2004), and the Stephenson nomogram (Brockman J A. et al., Eur Urol, 67:1160-7, 2015). Although Oncotype DX and Prosigna are two RNA expression profile tests in common use for prognostic prediction of breast cancer, their use is limited to estrogen receptor positive breast cancer (Nielsen T. et al., BMC Cancer, 14:177, 2014; Kaklamani V., Expert Rev Mol Diagn., 6:803-9, 2006).









TABLE 1A







Univariate logistic regression model of panMPS predicts progression to metastasis for prostate cancer









Cohort










MSK prostate cancer (n = 182, mPT = 25, iPT = 157)
Duke prostate cancer (n = 61, mPT = 37, iPT = 24)









Variable
















Odds Ratio
P
95% CI
AUC
Odds Ratio
P
95% CI
AUC



















panMPS
6.01
0.001
2.21 to 17.89
0.71
11.39
0.004
2.39 to 70.36
0.72
















TABLE 1B







Univariate logistic regression model of panMPS predicts


progression to metastasis for triple negative breast cancer


Montefiore triple negative breast cancer cohort


(n = 41, mBC = 28, iBC = 13)













Variable
Odds Ratio
P
95% CI
AUC







panMPS
44.74
0.02
2.91 to 1927.9
0.75

















TABLE 1C







Univariate logistic regression model of panMPS predicts


progression to metastasis for lung adenocarcinoma


MSK lung adenocarcinoma cohort (n = 33, mLA = 23, iLA = 10)











Variable
Odds Ratio
P
95% CI
AUC





panMPS
3.45 × 103
0.006
41.5 to 1.26 × 107
0.94
















TABLE 2A







Univariate Cox proportional hazards model of panMPS predicts metastasis-free survival for prostate cancer









Cohort










MSK prostate cancer (n = 222, mPT = 25, iPT = 197)
Duke prostate cancer (n = 76, mPT = 37, iPT = 39)









Variable
















Hazard Ratio
95% CI
Conc-indx
P
Hazard Ratio
95% CI
Conc-indx
P



















panMPS
5.42
2.18 to 13.49
0.74
0.0003
3.4
1.15 to 10.12
0.62
0.03
















TABLE 2B







Univariate Cox proportional hazards model of panMPS predicts


metastasis-free survival for triple negative breast cancer


Montefiore triple negative breast cancer cohort


(n = 41, mBC = 28, iBC = 13)











Variable
Hazard Ratio
95% CI
Conc-indx
P





panMPS
4.1
1.03 to 16.04
0.60
0.05
















TABLE 2C







Cox proportional hazards model of panMPS predicts


metastasis-free survival for lung adenocarcinoma


MSK lung adenocarcinoma (n = 33, mLA = 23, iLA = 10)











Variable
Hazard Ratio
95% CI
Conc-indx
P





panMPS
6.57
1.31 to 33.04
0.67
0.02
















TABLE 3







Hypergeometric analysis of MPS genes versus in silico


gene sets for metastasis biomarker and metastasis function


reviewed by cellular assays. Metastasis ID and chemokine


ID terms in article title or abstract.











Gene Set
Overlap
Gene set size
Overlap %
P














Metastasis biomarkers
28
687
4.08
0.0001


Metastasis function
40
929
4.31
1.18 × 10−6 


Metasiasis ID
112
2463
4.55
2.42 × 10−20


Chemokine ID
65
3126
2.08
0.04 
















TABLE 4







Left and Center: Logistic regression and Cox proportional hazards models predict progression to metastasis for full set (variable


number by cohort) and panMPS (295) genes. Right: Linear regression model predicting correlation (r2) between MPS and panMPS.













Linear



Logistic Regression
Cox Regression
Regression

















Cohort
Variables
Odds Ratio
P
95% CI
AUC
Hazard Ratio
95% CI
Conc-Index
P
r2




















MSK_Prostate
MPS
5.39
0.001
2.03 to
0.69
4.85
2.00 to
0.72
0.0005
0.97



(320 genes)


15.49


11.77



panMPS
6.01
0.001
2.21 to
0.71
5.42
2.18 to
0.74
0.0003
0.97






17.69


13.49


Duke_Prostate
MPS
10.99
0.004
2.36 to
0.72
3.54
1.20 to
0.62
0.02
0.99



(351 genes)


65.88


10.44



panMPS
11.39
0.004
2.39 to
0.72
3.41
1.15 to
0.62
0.03
0.97






70.36


10.12


Montefiore_TNBC
MPS
44.36
0.02
2.87 to
0.75
4.01
1.04 to
0.59
0.04
0.99



(352 genes)


2005.4


15.44



panMPS
44.74
0.02
2.91 to
0.75
4.06
1.03 to
0.59
0.05
0.96






1927.9


16.04


MSK_Lung
MPS
3.78 × 103
0.006
42.79 to
0.94
4.55
1.04 to
0.65
0.04
0.96



(353 genes)


1.04 × 107


20.63



panMPS
3.45 × 103
0.006
41.5
0.94
6.57
1.31 to
0.67
0.02
0.96






to1.25 × 107


33.04
















TABLE 5







Logistic regression models predicting progression to metastasis


for prostate cancer based on panMPS and clinical variables









Cohort










MSK Prostate CA (n = 182, mPT = 25, iPT = 157)
Duke Prostate CA (n = 61, mPT = 37, iPT = 24)









Variable
















Odds Ratio
P
95% CI
AUC
Odds Ratio
P
95% CI
AUC











Univariate















panMPS
5.98
0.001
2.12 to 18.57
0.7
11.84
0.002
2.78 to 67.71
0.75


Preop PSA
1.06
0.02
1.02 to 1.11
0.66
1.1
0.08
1.01 to 1.21
0.61


Biopsy Gleason
3.82
0.02
1.21 to 11.10
0.59
3.86
0.08
0.89 to 27.84
0.59


Clinical Stage
2.3
0.06
0.98 to 5.59
0.6
4
0.1
0.86 to 28.88
0.61


Path Gleason
68

1.3 × 10−10

20.51 to 280.1
0.81
7.5
0.01
1.83 to 51.3
0.66


Path Stage
5.19
0.001
2.12 to 14.08
0.7
0.47
0.23
0.13 to 1.63
0.57


% Genome Inst.
1.17
1.4 × 10−5
1.09 to 1.26
0.74
1.04
0.12
1.00 to 1.12
0.8







Multivariate















panMPS
4.09
0.01
1.38 to 13.19
0.75
14.32
0.003
2.7 to 103.6
0.78


Preop PSA
1.04
0.05
1.01 to 1.1

1.1
0.06
1.01 to 1.24


panMPS
5.09
0.003
1.6 to 15.54
0.73
6.06
0.06
2.4 to 70.4
0.68


Biopsy Gleason
2.32
0.15
0.69 to 7.17

1.18
0.88
1.03 to 47.04


panMPS
5.51
0.001
1.99 to 16.59
0.73
4.42
0.13
0.71 to 34.06
0.72


Clinical Stage
1.93
0.15
0.79 to 4.83

2.76
0.26
0.52 to 21.2


panMPS
1.5
0.55
0.39 to 5.88
0.86
7.45
0.03
1.4 to 49.38
0.77


Path Gleason
56.8
1.21 × 10−8
15.57 to 263.14

4.83
0.06
1.1 to 34.44


panMPS
3.93
0.01
1.43 to 11.94
0.77
10.59
0.01
2.18 to 65.6
0.73


Path Stage
3.83
0.006
1.49 to 10.74

0.59
0.45
0.15 to 2.32


panMPS
1.79
0.32
0.59 to 5.97
0.75
8.45
0.03
1.41 to 62.2
0.73


% Genome Inst.
1.15
0.001
1.06 to 1.25

1.01
0.53
0.98 to 1.07


panMPS
1.49
0.52
0.45 to 5.39
0.8
9.93
0.02
1.47 to 85.45
0.78


Preop PSA
1.03
0.21
1.00 to 1.09

1.1
0.06
1.01 to 1.24


% Genome Inst.
1.14
0.004
1.05 to 1.25

1.02
0.5
0.98 to 1.08


panMPS
3.7
0.03
1.2 to 11.93
0.76
8.6
0.04
1.25 to 90.53
0.74


Biopsy Gleason
2.2
0.21
0.59 to 7.1

1.35
0.78
0.17 to 13.8


Preop PSA
1.04
0.05
1.01 to 1.09

1.11
0.09
1.01 to 1.28


panMPS
4.71
0.01
1.66 to 14.48
0.75
4.47
0.13
0.70 to 36.93
0.71


Biopsy Gleason
2.24
0.17
0.66 to 6.97

0.93
0.95
0.12 to 8.55


Clinical Stage
1.88
0.17
0.77 to 4.76

2.8
0.26
0.51 to 22.16


panMPS
1.29
0.71
0.34 to 4.99
0.85
6.88
0.03
1.27 to 45.95
0.77


Path Gleason
47.21
8.69 × 10−8
12.71 to 224.2

4.91
0.06
1.08 to 35.13


Path Stage
2.87
0.08
0.87 to 9.88

0.56
0.42
1.13 to 2.31


panMPS
3.56
0.03
1.16 to 11.62
0.78
6.97
0.04
0.94 to 77.9
0.76


Biopsy Gleason
2.15
0.22
0.59 to 6.97

1.07
0.08
0.11 to 11.94


Clinical Stage
1.41
0.48
0.54 to 3.71

2.73
0.46
0.46 to 22.54


Preop PSA
1.04
0.07
1.01 to 1.08

1.11
0.29
1.01 to 1.29


panMPS
3.5
0.03
1.16 to 11.2
0.79
5.68
0.13
0.66 to 68.5
0.76


Biopsy Gleason
2.2
0.22
0.60 to 7.51

1.34
0.82
0.12 to 31.9


Clinical Stage
1.37
0.52
0.52 to 3.61

2.39
0.37
0.38 to 20.3


Preop PSA
1.04
0.06
1.01 to 1.09

1.1
0.13
0.99 to 1.27


Age
0.51
0.35
0.13 to 2.49

7.85 × 105
0.99
3.85 × 10−10.4 to NA










Table 5 Continued









TABLE 6







Cox proportional hazards model of panMPS and its association with metastasis-


free survival for prostate cancer based on panMPS and clinical variables









Cohort










MSK Prostate CA (n = 222, mPT = 25, iPT = 197)
Duke Prostate CA (n = 76, mPT = 37, iPT = 39)









Variables
















Hazard Ratio
95% CI
Conc-indx
P
Hazard Ratio
95% CI
Conc-indx
P











Univariate















panMPS
4.2
1.67 to 10.4
0.7
0.002
3.9
1.48 to 10.4
0.63
0.01


Preop PSA
1.01
1.00 to 1.01
0.63
7.60 × 10−5
1
0.97 to 1.03
0.51
0.96


Biopsy Gleason
3.11
1.24 to 7.83
0.73
0.02
1.63
0.71 to 3.72
0.65
0.25


Clinical Stage
1.75
0.78 to 3.91
0.65
0.17
0.48
0.21 to 1.09
0.64
0.06


Path Gleason
17.34
7.63 to 39.4
0.97

9.90 × 10−12

1.67
0.84 to 3.34
0.71
0.14


Path Stage
3.99
1.67 to 9.58
0.82
0.002
0.61
0.23 to 1.57
0.57
0.3


% Genome Inst.
1.11
1.07 to 1.16
0.67
3.30 × 10−7
1.01
0.99 to 1.02
0.66
0.2







Multivariate















panMPS
4.31
1.72 to 10.8
0.74
0.002
3.52
1.18 to 10.5
0.71
0.02


Preop PSA
1.01
1.00 to 1.01

0.0002
0.99
1.02 to 1.12

0.7


panMPS
3.77
1.49 to 9.51
0.72
0.005
3.13
1.06 to 9.29
0.66
0.04


Biopsy Gleason
2.18
0.83 to 5.69

0.1
1.86
0.88 to 3.93

0.1


panMPS
4.59
1.83 to 11.6
0.71
0.001
2.25
0.62 to 8.17
0.6
0.22


Clinical Stage
1.81
0.81 to 4.03

0.15
1.86
0.79 to 4.34

0.15


panMPS
1.79
0.69 to 4.65
0.86
0.23
2.97
0.94 to 9.41
0.64
0.06


Path Gleason
14.34
5.96 to 34.5

2.74 × 10−9
1.29
0.62 to 2.69

0.5


panMPS
2.96
1.19 to 7.33
0.76
0.02
3.19
1.05 to 9.64
0.62
0.04


Path Stage
3.03
1.22 to 7.55

0.02
0.73
0.27 to 1.91

0.5


panMPS
1.37
0.47 to 3.97
0.71
0.56
3.26
1.08 to 9.8
0.62
0.04


% Genome Inst.
1.1
1.04 to 1.16

0.001
1.01
0.99 to 1.02

0.32


panMPS
1.29
0.44 to 3.85
0.73
0.64
3.35
1.1 to 10.17
0.62
0.03


Preop PSA
1.01
1.00 to 1.01

0.0001
0.99
0.97 to 1.02

0.77


% Genome Inst.
1.09
1.04 to 1.16

0.001
1.01
0.99 to 1.02

0.35


panMPS
3.69
1.44 to 9.47
0.76
0.01
2.75
0.78 to 9.64
0.67
0.11


Biopsy Gleason
2.3
0.86 to 5.94

0.09
1.19
0.49 to 2.92

0.69


Prep PSA
1.01
1.00 to 1.01

0.0001
1.06
1.01 to 1.11

0.03


panMPS
4.07
1.58 to 10.5
0.74
0.01
1.96
0.53 to 7.23
0.6
0.31


Biopsy Gleason
2.09
0.81 to 5.42

0.13
1.69
0.72 to 3.97

0.23


Clinical Stage
1.76
0.78 to 3.94

0.17
2.02
0.84 to 4.85

0.11


panMPS
1.79
0.71 to 4.51
0.86
0.22
2.67
0.56 to 7.6
0.64
0.1


Path Gleason
11.98
4.98 to 28.8

2.91 × 10−8
1.35
0.49 to 3.14

0.44


Path Stage
2.04
0.83 to 5.06

0.12
1.91
0.78 to 4.64

0.46


panMPS
3.95
1.51 to 10.3
0.76
0.01
2.06
0.56 to 7.61
0.65
0.28


Biopsy Gleason
2.19
0.84 to 5.72

0.11
1.25
0.49 to 3.14

0.63


Clinical Stage
1.57
0.68 to 3.58

0.29
1.91
0.78 to 4.64

0.15


Preop PSA
1.01
1.00 to 1.01

0.001
1.05
1.01 to 1.11

0.04


panMPS
3.95
1.49 to 10.5
0.76
0.01
1.73
0.46 to 6.55
0.66
0.42


Biopsy Gleason
2.21
0.84 to 5.76

0.11
1.58
0.59 to 3.92

0.37


Clinical Stage
1.56
0.68 to 3.6

0.29
1.68
0.66 to 4.29

0.27


Preop PSA
1.01
1.00 to 1.01

0.001
1.04
0.99 to 1.11

0.13


Age
0.89
0.26 to 3.09

0.86
8.31 × 107
0 to Inf

0.99










Table 6 Continued









TABLE 7







Clump analysis of genes, including Zgenes score, clump index, number


of genes in clump and PubMed ID for metastasis function annotations,


metastasis predictive biomarkers and metastasis in the article


















Metastasis






No. of
Metastasis
Predictive



Zgenes
clump
genes in
Function
Biomarkers
Metastasis


Gene
score
index
clump
PubMed ID
PubMed ID
PubMed ID
















ACTL8
1.9
1
2


23592437


ARHGEF10L
2.1
1
2


LEPREL1
2.6
2
2
24319452


TP63
3.0
2
2
21760596,
15761962,
19142959,






24488880
23913939
26208975


GLRB
2.7
3
2


GRIA2
2.3
3
2

16953328


CCDC125
2.0
4
7


CDK7
2.7
4
7
23393140,

25117707






25490451,






25820824


CENPH
1.9
4
7

22999412


MARVELD2
3.0
4
7


MRPS36
2.6
4
7


RAD17
2.6
4
7


TAF9
2.6
4
7


EPHA7
1.8
5
2


16007213


MAP3K7
3.2
5
2
23370768,

17785553






25770290


ASCC3
1.8
6
2


SIM1
2.2
6
2


EPM2A
2.4
7
2


18824542


UTRN
2.3
7
2


C6orf118
2.8
8
2


PDE10A
4.7
8
2


CLIP2
3.1
9
4


EIF4H
2.0
9
4


LAT2
2.0
9
4


RFC2
1.8
9
4


MDH2
2.0
10
3


STYXL1
2.3
10
3


TMEM120A
1.7
10
3


PILRA
1.9
11
2


PILRB
2.9
11
2


ACTL6B
1.7
12
9


21136596


AGFG2
2.3
12
9


C7orf51
2.2
12
9


FBXO24
2.5
12
9


LRCH4
2.2
12
9


MOSPD3
2.3
12
9


PCOLCE
1.8
12
9


TFR2
2.6
12
9


TSC22D4
2.1
12
9


COPG2
3.1
13
7


CPA1
2.1
13
7


CPA2
2.1
13
7


CPA4
1.9
13
7


27073726


CPA5
2.8
13
7


MEST
3.2
13
7

23229728


TSGA14
9.4
13
7


CSMD1
4.6
14
2
18614856


MYOM2
2.1
14
2


ERI1
1.9
15
2


MFHAS1
3.3
15
2


MSRA
5.1
16
2


17784942


TNKS
4.0
16
2


C8orf16
2.2
17
2


MTMR9
1.9
17
2


GATA4
3.2
18
2
19509152
20222162
23239811,








24862985


NEIL2
2.7
18
2


C8orf79
2.9
19
2


DLC1
6.5
19
2
11118037


SGCZ
8.2
20
2


TUSC3
3.1
20
2
23404293,
23096450






24096664,






24435307,






25735931


MTMR7
3.7
21
4


MTUS1
3.6
21
4
19794912,

16650523






24299308,






25885343


PDGFRL
4.8
21
4


SLC7A2
4.1
21
4


ASAH1
7.1
22
2
23423838


PCM1
1.7
22
2


NAT2
3.3
23
3


PSD3
7.3
23
3


SH2D4A
2.9
23
3


FAM160B2
4.3
24
5


HR
2.7
24
5


LGI3
2.0
24
5


NUDT18
2.3
24
5


REEP4
2.5
24
5


BMP1
2.2
25
3

19723875
23584484


PHYHIP
2.2
25
3


POLR3D
2.7
25
3


BIN3
4.5
26
9


C8orf58
3.0
26
9


EGR3
2.0
26
9


23342064


KIAA1967
5.9
26
9


PDLIM2
2.9
26
9
23584482

24196835


PPP3CC
5.7
26
9


RHOBTB2
1.7
26
9
20930524,
15922864,






21801820
19173804,







19937980


SLC39A14
4.0
26
9


SORBS3
3.0
26
9


CHMP7
2.4
27
3


TNFRSF10A
2.2
27
3


TNFRSF10D
1.9
27
3


ENTPD4
2.7
28
2


LOXL2
1.9
28
2
25128648,
27008697
23030485






24014025,






24008674,






23971878,






23933800


CDCA2
2.0
29
3
23418564

17611626


EBF2
5.1
29
3


19671856


KCTD9
2.0
29
3


ADRA1A
3.9
30
7

21360568
24607827,








26276037


CHRNA2
3.5
30
7


DPYSL2
3.3
30
7


EPHX2
3.3
30
7


16456776


PTK2B
7.0
30
7


STMN4
3.3
30
7


TRIM35
2.6
30
7


C8orf80
3.6
31
3


ELP3
3.4
31
3

22740850


SCARA5
3.3
31
3
20038795,
22642751






24061576


HMBOX1
1.8
32
2


KIF13B
2.7
32
2


C8orf34
6.0
33
7


CPA6
3.8
33
7


NCOA2
5.6
33
7


25295534


PRDM14
4.7
33
7
21339739,
17942894,






25233927,
23690269






25635424


PREX2
7.5
33
7

22622578,







25151370,







25829446


SLCO5A1
9.1
33
7


SULF1
8.6
33
7

19780053,
19373441







21228115,







22653794


EYA1
3.4
34
6


24729159


KCNB2
6.8
34
6


LACTB2
2.6
34
6


MSC
2.0
34
6


TRPA1
2.3
34
6
24037916


XKR9
2.7
34
6


CRISPLD1
4.9
35
6


GDAP1
2.0
35
6


HNF4G
4.1
35
6


JPH1
6.0
35
6


PI15
3.0
35
6


ZFHX4
4.3
35
6


HEY1
3.0
36
2

23226563


STMN2
2.8
36
2


PAG1
2.0
37
2
21092590,

20388373,






21156787

21388951,








24675741


ZNF704
2.5
37
2


CNBD1
7.6
38
2


CNGB3
1.8
38
2


PTDSS1
2.5
39
2


SDC2
3.4
39
2
20863401,
19288017,






22745764
20683009


GRHL2
2.4
40
4
18752864,
23441166,






20938050,
26355710






23284647,






23814079,






24756056


NCALD
8.4
40
4


27027352


YWHAZ
2.2
40
4
20098429,






22912335


ZNF706
2.8
40
4


DPYS
3.2
41
3


LRP12
2.0
41
3

22138261,







14676824


ZFPM2
10.5
41
3


ANGPT1
2.4
42
2


20651738


RSPO2
1.8
42
2
21732367,
26416247
24476626






25769727


CSMD3
9.1
43
2


TRPS1
5.6
43
2
24709795,
16043716,






26183398
23762646,







26377811


MYC
4.2
44
3
20133671

15810077,








9012485


POU5F1B
2.9
44
3


TMEM75
3.5
44
3


ADCY8
8.5
45
5


19082487,








22419659


ASAP1
3.6
45
5
18519696,
24427349,






20154719
24788532


EFR3A
3.1
45
5


KCNQ3
6.0
45
5


OC90
1.9
45
5


PHF20L1
2.8
46
5


SLA
2.2
46
5


TG
3.8
46
5


TMEM71
2.9
46
5


WISP1
2.2
46
5
19078974,
175787808,






21109017,
20372786






21453685,






12865923


CDC42BPG
2.3
47
2


MEN1
2.1
47
2


ESD
2.6
48
3
21596165


HTR2A
3.3
48
3


LRCH1
2.4
48
3


DACH1
1.9
49
3
16980615


KLHL1
1.9
49
3


PCDH9
4.5
49
3
25172662
22300792,







25869928,







25979483


DDX19A
2.3
50
2


ST3GAL2
2.4
50
2


BCAR1
2.5
51
2
22476538
10539513,
15972849,







15448007,
21765937,







17192874,
22241677







23904007


CFDP1
3.0
51
2


ADAMTS18
3.5
52
4
18449690
25569086
21196270,








21047771,








24896365


CLEC3A
2.3
52
4


19173304


NUDT7
2.2
52
4


WWOX
9.3
52
4
14695174,
15073846,






18487009,
16360296,






23824713
17289881,







21731849


BCMO1
6.5
53
7
23803888


C16orf46
2.2
53
7


GAN
5.1
53
7


GCSH
1.9
53
7


HSD17B2
2.6
53
7

25929810


PKD1L2
6.9
53
7


PLCG2
5.6
53
7


HSDL1
2.0
54
3


LRRC50
2.4
54
3


MBTPS1
2.7
54
3


ATP2C2
3.6
55
3


KIAA1609
1.9
55
3


WFDC1
2.3
55
3
18842679,
10967136,






19468830
12032731,







15305341


CRISPLD2
5.4
56
5


KIAA0513
2.1
56
5


KLHL36
1.8
56
5


USP10
2.3
56
5
24332849,
16773218
24343337






25168367


ZDHHC7
2.5
56
5


C16orf74
2.3
57
8

21203532


COX4I1
2.6
57
8


COX4NB
2.5
57
8


FOXF1
2.2
57
8
24186199
23103611
20145151,








20587515,








23864317


GINS2
2.1
57
8
21082043,
24137407,






24273454
25348432


IRF8
2.5
57
8
23308054
24091328
17409439,








19074829,








24175153


KIAA0182
2.0
57
8


MTHFSD
2.4
57
8


BANP
5.9
58
13
17668048,

20709157,






25086032

18981184,








18822384


C16ORF85
2.1
58
13


CA5A
6.4
58
13


CYBA
2.9
58
13


IL17C
1.8
58
13


JPH3
4.8
58
13


KLHDC4
2.5
58
13
27030985


MVD
2.3
58
13


RNF166
2.2
58
13


SLC7A5
4.7
58
13
21439283
23981989,







26244545


SNAI3
2.4
58
13


ZC3H18
2.1
58
13


ZFPM1
2.5
58
13


CDT1
2.0
59
2

26408331
21159650


FAM38A
2.7
59
2
22792288


CBFA2T3
1.9
60
3
12183414

25749032


GALNS
2.3
60
3


TRAPPC2L
1.9
60
3


ANKRD11
6.7
61
2
18840648

21986947


CDH15
1.9
61
2


9615235


FANCA
1.9
62
4


SPIRE2
1.7
62
4


TCF25
2.1
62
4


TUBB3
2.6
62
4
25414139
24928347
20534991,








24053422


AFG3L1
2.3
63
2


DEF8
1.9
63
2


DHX58
6.9
64
5


HSPB9
2.9
64
5


KAT2A
3.2
64
5


KCNH4
3.8
64
5


RAB5C
3.5
64
5


ASPSCR1
1.8
65
2


NOTUM
2.7
65
2


DUS1L
2.3
66
2


FASN
3.0
66
2
18770866,

17882277






22266115,






22892389


DTNA
2.2
67
2


NOL4
3.9
67
2


C19orf57
2.8
68
2


CC2D1A
4.0
68
2


AR
4.9
69
4

7541709,
7723794,







8604394
11325816,


EDA2R
2.0
69
4


HEPH
1.8
69
4


OPHN1
5.8
69
4


ALCAM
2.5
NA
1
16204050,
15509676,
9502422,






15140234
10702391
15986133,








16024937,








11206637,








18202807


ANXA13
2.1
NA
1

22294041
22559327


ARHGEF10
2.9
NA
1


21412932


ARHGEF5
2.7
NA
1


21525037


ATP6V1C1
2.4
NA
1
24155651,
20404513
15558013,






24454753

19885577,








18638373,








19424568,








17467328


BFSP2
2.4
NA
1


BLK
2.1
NA
1


BOD1L
2.4
NA
1


C13orf23
2.2
NA
1


C16orf80
2.2
NA
1


CCDC25
4.4
NA
1

22202459


CD226
3.3
NA
1
24468679

20008292


CDH13
10.9
NA
1


11389090,








12067979,








16807071,








15245595,








20642860


CDH17
2.8
NA
1
19676131,
23326130,






20568120,
22904132






23298905,






23604127,






23554857


CDH2
3.4
NA
1
19190132

20848731


CDH8
3.7
NA
1


CDYL2
2.5
NA
1


CLCNKB
2.0
NA
1


CLDN3
2.6
NA
1
19208807


CNGB1
1.8
NA
1


CNTNAP4
3.2
NA
1


COL11A1
1.9
NA
1


11375892,








19112599,








21047417


COL12A1
1.8
NA
1
21462330


COL19A1
3.4
NA
1


COL21A1
1.8
NA
1


CTNNA2
1.8
NA
1


24100690


CTSB
2.8
NA
1
16707449,






20133781


CYP7B1
1.7
NA
1

17639508


DCC
6.6
NA
1
26345965

 9387266


DCHS2
2.8
NA
1


24898286


DGKG
1.9
NA
1


DIAPH3
3.3
NA
1
22593025


DLGAP2
2.2
NA
1


DNAH2
1.8
NA
1


DOCK5
5.4
NA
1


DPYD
2.9
NA
1


ENOX1
5.6
NA
1


21055930


EPO
2.0
NA
1


24497137


FBXL18
1.9
NA
1


FBXL4
1.7
NA
1


FSTL5
2.2
NA
1


GABRA2
2.3
NA
1


GAS8
2.9
NA
1


GHDC
1.8
NA
1


GIGYF1
2.7
NA
1


GLG1
2.1
NA
1
25301730
19148506


GPC5
2.1
NA
1
23962560
26631038
24260047,








25093697,








25818666,








26098560


GRID2
5.1
NA
1


GRK5
2.4
NA
1
22099983,






24755472


GRM1
1.9
NA
1
18435704,






23065756,






24491800,






16040064


GYS2
2.8
NA
1


HIP1
4.4
NA
1
12163454
21697888
26595459


IMPA1
1.9
NA
1


IQCE
1.8
NA
1


KALRN
2.4
NA
1


KCNAB1
5.8
NA
1


KCTD8
2.8
NA
1


KIAA0196
2.6
NA
1

16130124


LPHN3
2.5
NA
1

23317273


LZTS1
2.0
NA
1
18559591
18686028,
11410489,







24466374
23695671,








24525428


MACROD1
4.8
NA
1


MDGA2
2.8
NA
1


ME1
2.5
NA
1
25753478


MECOM
2.0
NA
1


MEF2C
2.3
NA
1
19584403


MEIS2
3.9
NA
1


MEPCE
2.1
NA
1


MLYCD
2.4
NA
1


MMP16
3.5
NA
1


21600596


MTDH
1.9
NA
1
19111877,

19723648,






21976539,

22031094,






21371176,

23851509






24099913


MTMR9
1.9
NA
1


MYLK
2.8
NA
1

15970650,







25179839


NALCN
2.2
NA
1


NECAB2
2.0
NA
1


NFAT5
2.3
NA
1


19011242,








22266867,








25152734,








25311085,








26299924


NIPAL2
1.9
NA
1


NKIRAS2
2.0
NA
1


NKX2-6
2.4
NA
1


NLGN4Y
2.4
NA
1


NRXN1
3.2
NA
1


NUS1
2.2
NA
1


PDS5B
2.0
NA
1

23850494


PKIA
3.3
NA
1


PLCB1
1.9
NA
1

26620550


PPM1L
2.0
NA
1


PPP2R5B
1.8
NA
1


PTK2
2.3
NA
1
14578863


RAB9A
3.7
NA
1


RALYL
2.8
NA
1


RCOR2
1.7
NA
1


RFX1
2.2
NA
1


RGS22
2.7
NA
1
21533872

26323264


RIMS2
6.0
NA
1


RNF40
2.1
NA
1

22155569


RPL7
2.3
NA
1


SF1
2.5
NA
1

18824866


SLC26A7
2.2
NA
1


SLC9A9
2.7
NA
1

25835977


SMARCB1
1.8
NA
1

15899790,







16528370,







17040295,







21057957,







24503755


STAG3
2.4
NA
1


STAU2
4.6
NA
1


STIP1
1.8
NA
1

24163084,







24488757


STK3
1.8
NA
1


STX1A
2.2
NA
1


TBC1D10B
1.8
NA
1


TBC1D22A
4.6
NA
1


TCEB1
1.8
NA
1
18844214

25676555


TFDP1
2.3
NA
1
14618416
26684807
19995430


TFE3
2.1
NA
1

11438465,







12459622,







19606011,







20154303,







20871214


TICAM2
1.8
NA
1


TOX
4.3
NA
1


TRDN
3.0
NA
1


UBE2CBP
2.8
NA
1


UBR5
2.2
NA
1


VPS13B
3.9
NA
1


VPS13C
1.8
NA
1


WDR59
2.1
NA
1


WDR7
2.0
NA
1


WWP2
1.8
NA
1
26662306

23938591,








26783238


XPO7
2.3
NA
1


YWHAG
2.7
NA
1


ZBTB20
1.8
NA
1
25311537
21702992


ZFAT
2.5
NA
1


ZFHX3
2.2
NA
1


ZHX2
2.6
NA
1

17447851


ZSWIM4
2.8
NA
1










Table 7 Continued


Table 7 Continued


Table 7 Continued


Table 7 Continued


Table 7 Continued


Table 7 Continued


Table 7 Continued


Table 7 Continued


Table 7 Continued . . .









TABLE 8A





Genes in gene set for Metastasis ID















SEPT9, DEC1, ABAT, ABCA13, ABCA2, ABCA3, ABCB1, ABCB11, ABCB5, ABCC10, ABCC2,


ABCC3, ABCC5, ABCD1, ABCD3, ABCE1, ABCG1, ABCG2, ABCG4, ABHD11, ABHD4, ABI1, ABI2,


ABL1, ABL2, ABR, ACACA, ACCS, ACE, ACE2, ACHE, ACP1, ACP5, ACP6, ACPT, ACR, ACRBP,


ACSS2, ACTB, ACTG2, ACTN4, ADAM10, ADAM19, ADAM29, ADAM33, ADAM7, ADAM8, ADAM9,


ADAMTS1, ADAMTS12, ADAMTS13, ADAMTS18, ADAMTS19, ADAMTS5, ADAMTS8, ADIPOQ,


ADIPOR1, ADIPOR2, ADM, ADO, ADORA2B, ADRA2A, ADRB2, ADRBK2, ADRM1, AES, AFAP1,


AFAP1L1, AFM, AFP, AGA, AGBL2, AGK, AGR2, AGR3, AGXT, AHNAK, AHR, AHSG, AIM1, AIM2,


AKAP12, AKAP13, AKIRIN2, AKR1B10, AKR1C1, AKR1C3, AKT1, AKT2, AKT3, ALDH1A1,


ALDH1A3, ALDH3A1, ALK, ALCAM, ALKBH5, ALOX5, AMN, AMOTL1, AMOTL2, ANG, ANGPT2,


ANGPTL2, ANGPTL3, ANLN, ANKRD11, ANO1, ANO9, ANP32A, ANTXR1, ANXA1, ANXA11,


ANXA2, ANXA5, ANXA7, APAF1, APC, APCS, API5, APLP2, APOA1, APOBEC3G, APOH, APP,


APPL1, AQP1, AQP3, AQP5, AQP6, AQP9, AR, ARAF, AREG, ARF1, ARF6, ARFGAP1, ARG1,


ARHGAP21, ARHGAP5, ARHGAP6, ARHGEF3, ARHGEF5, ARHGEF7, ARID1A, ARID2, ARID3B,


ARID4A, ARID4B, ARL4C, ARMC3, ARNT, ARPC1B, ARRB1, ARRDC3, ASAP1, ASCL2, ASIP, ASL,


ASPM, ASS1, ATAD2, ATF1, ATF3, ATF4, ATF5, ATF6, ATG10, ATG16L1, ATG4A, ATG5, ATIC,


ATM, ATOH1, ATOH8, ATP11A, ATP4A, ATP5J, ATP6AP2, ATP6V1C1, ATP7B, ATR, ATRX, AURKA,


AUTS2, AVEN, AXIN2, AZGP1, B3GALNT1, B3GNT3, B3GNT7, B4GALNT2, BACE1, BACH1, BAD,


BAG1, BAG2, BAG3, BAIAP2L1, BAMBI, BARD1, BARX2, BATF2, BAX, BAZ2A, BCAM, BCAR1,


BCAR3, BCAS2, BCAS3, BCAT1, BCL10, BCL2, BCL2L12, BCL2L2, BCL3, BCL6, BCL9, BCL9L,


BCOR, BCORL1, BCR, BDKRB2, BDNF, BET1, BHMT, BID, BIK, BIN1, BIRC3, BIRC5, BIRC6,


BLCAP, BLID, BMF, BMP1, BMP10, BMP3, BMP4, BMP6, BMP7, BMPER, BMPR1A, BNC1, BNIP3L,


BOLL, BOP1, BPI, BPTF, BRCA1, BRCA2, BRCC3, BRD4, BRD8, BRE, BRF2, BRIP1, BRMS1,


BRMS1L, BRSK2, BST2, BTBD7, BTC, BTG1, BTG2, BTG3, BTK, BTLA, BTRC, BUB1, BUB1B, BVES,


C10orf10, C19orf48, C1orf61, C2orf40, C3, C5, C6, C6orf106, C7, C8orf4, C9, CA2, CA9, CACNA2D3,


CACYBP, CAD, CADM1, CALU, CAMK2N1, CAMP, CAMSAP1, CANT1, CAPZA1, CARD10, CARM1,


CARS, CASK, CASP4, CASP6, CASP8, CASR, CASS4, CAV1, CBL, CBX2, CBX4, CBX5, CBX7,


CBX8, CCDC34, CDC6, CCDC67, CCDC8, CCL1, CCL11, CCL13, CCL14, CCL17, CCL18, CCL19,


CCL2, CCL20, CCL21, CCL22, CCL4, CCL5, CCL7, CCL8, CCNA2, CCNB1, CCNE1, CCNG2,


CCNH, CCNY, CCR1, CCR3, CCR4, CCR6, CCR7, CCR9, CCRL2, CCT2, CD109, CD14, CD163,


CD163L1, CD164, CD1A, CD1C, CD1D, CD2, CD200, CD226, CD244, CD248, CD27, CD274, CD33,


CD36, CD38, CD4, CD40, CD46, CD47, CD48, CD53, CD55, CD58, CD63, CD69, CD70, CD74, CD81,


CD82, CD86, CD9, CD93, CD96, CD99, CDA, CDC14A, CDC20, CDC25A, CDC25B, CDC25C,


CDC37, CDC42, CDC6, CDC7, CDC73, CDCA5, CDCA7L, CDCA8, CDCP1, CDH1, CDH13, CDH17,


CDH2, CDH22, CDK2AP1, CDK3, CDK4, CDK5, CDK5RAP3, CDK6, CDK7, CDK8, CDKN1A,


CDKN1C, CDKN2A, CDKN2B, CDKN3, CDT1, CDX1, CDX2, CEACAM1, CEACAM5, CEP55,


CEP70, CES2, CFL1, CFTR, CGA, CHAD, CHAT, CHD1, CHD1L, CHD5, CHD8, CHEK1, CHEK2,


CHGB, CHI3L1, CHL1, CHML, CHRM3, CHRNA1, CHRNA3, CHST11, CIAPIN1, CIITA, CISD2, CISH,


CITED1, CITED2, CIZ1, CKAP2, CKAP4, CKB, CLC, CLCA1, CLCA2, CLCA4, CLDN10, CLDN11,


CLDN16, CLDN3, CLEC3A, CLEC3B, CLEC5A, CLIC4, CLOCK, CLPTM1L, CLU, CMTM3, CMTM8,


CNN3, CNOT7, CNTF, CNTN1, COIL, COL11A1, COL18A1, COL1A1, COL1A2, COL3A1, COL4A2,


COL5A1, COL5A2, COL6A1, COMMD1, COMT, CORT, COTL1, COX7A2, CP, CPA4, CPE, CPEB4,


CPM, CPNE3, CPOX, CPS1, CPSF2, CPT1A, CPZ, CR1, CRABP1, CRCT1, CREB1, CREB3,


CREB3L1, CREB3L2, CREB5, CREBBP, CREBZF, CRH, CRHR1, CRHR2, CRIM1, CRISP3, CRK,


CRKL, CRNN, CRP, CRTC1, CRTC3, CRX, CS, CSE1L, CSF1, CSF2, CSK, CSMD1, CSNK1A1,


CSPG4, CST6, CST7, CTAG2, CTBP1, CTBP2, CTCF, CTCFL, CTGF, CTHRC1, CTLA4, CTNNA1,


CTNNB1, CTNND1, CTTN, CUEDC2, UL4A, CUX1, CX3CL1, CX3CR1, CXCL1, CXCL10, CXCL11,


CXCL12, CXCL13, CXCL14, CXCL17, CXCL2, CXCL3, CXCL5, CXCL6, CXCL9, CXCR4, CXCR5,


CXCR6, CXXC4, CXXC5, CYB5A, CYB5D2, CYFIP1, CYHR1, CYLD, CYP17A1, CYP19A1, CYP1A1,


CYP1B1, CYP24A1, CYP26A1, CYP27A1, CYP27B1, CYP2A6, CYP2B6, CYP2C8, CYP2E1,


CYP2J2, CYP2R1, CYP39A1, CYP3A4, CYP3A43, CYP3A5, CYP4F8, CYR61, DAB1, DAB2,


DAB2IP, DACH1, DACH2, DACT1, DACT2, DAND5, DAP, DAP3, DBF4, DBN1, DCC, DCK, DCLK1,


DCN, DCT, DCTN1, DCUN1D1, DCX, DCXR, DDB2, DDC, DDIT3, DDR2, DDT, DDX1, DDX11,


DDX20, DDX27, DDX43, DEDD, DEK, DEPDC1B, DES, DFNA5, DGCR6, DGCR6L, DGCR8,


DHCR24, DHFR, DHRS7, DHX32, DIAPH1, DIAPH3, DICER1, DIO3, DIRAS1, DIRAS3, DIS3,


DIXDC1, DKK1, DKK2, DLC1, DLD, DLEC1, DLG5, DLK1, DLK2, DLL4, DLX2, DLX5, DMGDH, DMP1,


DNAJA1, DNAJB1, DNAJC13, DNM3, DNMT1, DNMT3A, DOCK1, DOCK2, DOCK3, DOCK4,


DOCK5, DOCK8, DOT1L, DPF3, DPH3, DPP4, DPPA2, DPYD, DR1, DRD2, DSC1, DSG1, DSG3,


DTX3L, DUOX2, DUSP1, DUSP4, DUSP6, DYRK1B, DYRK2, E2F1, E2F2, E2F3, E2F4, E2F5, E2F6,


EBAG9, EBF2, EBP, ECD, ECH1, ECM1, ECT2, EDIL3, EDNRA, EDNRB, EEF1A2, EFEMP1, EFHD2,


EFNA1, EFNA3, EFNB2, EGF, EGFL7, EGFR, EGR1, EGR3, EHD1, EHMT1, EI24, EIF3A, EIF3E,


EIF3H, EIF3I, EIF4E, EIF5A2, EIF6, ELAC2, ELAVL1, ELF3, ELF5, ELMO2, ELP3, ELOVL6, EMILIN1,


EMP2, EMX2, ENAH, ENG, ENO1, ENPP2, ENTPD5, EP300, EPAS1, EPB41L3, EPC1, EPCAM,


EPHA1, EPHA2, EPHA3, EPHA4, EPHA6, EPHA7, EPHA8, EPHB2, EPHB3, EPHB4, EPHB6, EPHX2,


EPO, EPS15, EPS8, EPSTI1, ERBB3, ERBB4, ERC1, ERCC1, ERCC2, ERCC3, ERCC5, ERG,


ERGIC1, ERGIC3, ERP29, ESD, ESPL1, ESPN, ESR1, ESR2, ESRP1, ETS1, ETV1, ETV4, ETV5,


ETV6, EVI5, EVL, EVX1, EWSR1, EXO1, EXT1, EXTL3, EYA1, EYA2, EYA4, EZH2, EZR, F10, F11, F2,


F5, F8, F9, FABP1, FABP4, FABP5, FABP7, FADD, FAF1, FAIM2, FAM107A, FAM120A, FAM129B,


FAM134B, FAM20C, FAM3B, FAM3C, FAM83D, FANCA, FANCC, FANCD2, FANCF, FAP, FAS,


FASN, FASTKD2, FAT4, FBN1, FBN2, FBXL5, FBXO11, FBXO32, FBXO4, FBXO45, FBXW7, FCN2,


FDPS, FECH, FEM1A, FER, FEV, FEZ1, FEZF1, FGD4, FGF1, FGF10, FGF14, FGF18, FGF2, FGF23,


FGF3, FGF4, FGF5, FGF7, FGF8, FGF9, FGFBP1, FGFR1, FGFR2, FGFR3, FGFR4, FGG, FGR, FH,


FHIT, FHL1, FHL2, FHOD1, FHOD3, FJX1, FKBP14, FKBPL, FLI1, FLNA, FLOT2, FLT1, FLT3, FLT4,


FMNL2, FMNL3, FN1, FNDC3B, FOSB, FOXA1, FOXA2, FOXC1, FOXC2, FOXD3, FOXE1, FOXF1,


FOXF2, FOXG1, FOXH1, FOXJ1, FOXJ3, FOXL1, FOXL2, FOXM1, FOXO1, FOXO3, FOXO4,


FOXP1, FOXP2, FOXP3, FOXQ1, FOXR2, FRAS1, FRAT1, FRMD4A, FRY, FRYL, FSCN1, FSHR,


FST, FSTL1, FURIN, FUS, FUT3, FUT4, FUT5, FUT8, FXYD3, FXYD5, FXYD6, FYN, FZD1, FZD2,


FZD5, FZD8, G3BP1, GAB1, GAB2, GABARAPL1, GABRP, GADD45A, GADD45G, GAK, GAL,


GAL3ST2, GALC, GALNT14, GALNT2, GALNT3, GALNT9, GAN, GAS1, GAS6, GAS8, GAST,


GATA2, GATA4, GATA5, GATA6, GBP1, GBP2, GBX2, GC, GCG, GCKR, GDF15, GDF2, GDF3,


GDNF, GEM, GEMIN5, GFAP, GFI1, GGH, GHRH, GIP, GIPC1, GIT1, GJA3, GJB5, GKN1, GLA, GLB1,


GLE1, GLI1, GLI2, GLIPR1, GLO1, GMDS, GNA13, GNA15, GNAI2, GNAI3, GNAQ, GNAS, GNE,


GNG2, GNRH1, GOLPH3, GP2, GPC5, GPI, GPNMB, GPR171, GPR18, GPR32, GPR34, GPR39,


GPR55, GPR87, GPRC5A, GPX2, GPX3, GRB14, GRB2, GRHL2, GRHL3, GRIN2A, GRK5,


GRK6, GRM1, GRM4, GRM5, GRPR, GSC, GSN, GSPT1, GSTM3, GSTP1, GTSE1, GUCY2C,


GUK1, H3F3A, HABP2, HACE1, HADHA, HAO2, HAPLN3, HAS1, HAS2, HAX1, HBD, HBEGF, HBP1,


HCCS, HDAC1, HDAC2, HDAC4, HDAC6, HDAC7, HDAC8, HDGF, HECTD1, HECTD2, HELLS,


HEPACAM, HERC5, HES1, HES5, HEXA, HEXIM1, HEY1, HFE, HGS, HHIP, HIF1A, HINT1, HIP1,


HIPK1, HIPK2, HIRA, HJURP, HK1, HK3, HLTF, HMGA1, HMGA2, HMGB3, HMGCR, HMGCS2,


HMGN1, HMGN5, HMMR, HN1, HNF1A, HNF4A, HNRNPA2B1, HOMER1, HOOK1, HOPX, HOXA1,


HOXA11, HOXA13, HOXA5, HOXA9, HOXB2, HOXB9, HOXC11, HPD, HPGD, HPR, HPSE, HR,


HRG, HS3ST2, HSD17B2, HSD3B1, HSF1, HSP90B1, HSPA14, HSPA2, HSPA9, HSPB8, HTATIP2,


HTRA1, HTRA2, HTRA3, HTT, HUNK, HUWE1, HYOU1, IAPP, ICMT, ID1, ID2, ID3, ID4, IDH1, IDH2,


IDO1, IER2, IFI27, IFIT2, IFIT3, IFNG, IGF1R, IGF2, IGF2BP1, IGF2BP2, IGF2BP3, IGFBP1, IGFBP2,


IGFBP3, IGFBP5, IGFBP7, IGFBPL1, IKBKB, IKZF1, IL10, IL13, IL17A, IL17F, IL18, IL1A, IL1R1,


IL23R, IL24, IL33, IL4, IL6R, IL7, ILK, IMP3, IMPACT, INA, ING1, ING2, ING3, ING5, INHBA, INSIG2,


INSM1, IQGAP1, IQGAP2, IRAK1, IRF8, IRX2, IRX5, ITGA2, ITGA3, ITGA5, ITGA7, ITGA8, ITGA9,


ITGAV, ITGB1, ITGB3, ITGB4, ITGB8, ITGBL1, ITIH5, JAG1, JAG2, JAK1, JAK2, JAK3, JAZF1,


JMJD6, JUN, KAT2A, KCNJ1, KCNK9, KCNMA1, KCNQ1, KCNRG, KDM1A, KDM2A, KDM3A,


KDM4A, KDM4B, KDM4C, KDM5B, KDM5C, KDM6A, KDR, KEAP1, KIAA0101, KIF11, KIF14, KIF15,


KIF18A, KIF1B, KIF26B, KIF2A, KIF3A, KIF3C, KIF5B, KIFC1, KIN, KIR2DL4, KISS1, KIT, KITLG, KL,


KLB, KLF12, KLF15, KLF17, KLF2, KLF4, KLF5, KLF6, KLHDC4, KLK10, KLK14, KLK15, KLK3, KLK7,


KLK8, KLRG1, KMO, KPNA2, KPNB1, KRAS, KRT19, KRT20, KRT7, KY, LAMA4, LAMA5, LAMB1,


LAMB3, LAMB4, LAMC1, LAMC2, LAMP1, LAMP2, LAMP3, LAP3, LAPTM4B, LARP1, LARP7, LARS,


LASP1, LAT, LATS1, LATS2, LBH, LBX1, LCK, LCT, LDB1, LEMD3, LEP, LEPREL1, LETM1, LFNG,


LGALS3, LGALS3BP, LGALS9, LGI4, LGR5, LHCGR, LIF, LIFR, LIG4, LILRB1, LILRB2, LIMD2,


LIMK2, LIN28B, LMNA, LMO2, LMO4, LMO7, LMX1B, LOX, LOXL2, LPAR1, LPCAT1, LPHN3, LPIN2,


LPP, LRG1, LRP1, LRP1B, LRP5, LRP6, LRP8, LRPPRC, LRRC3B, LRRC4, LRRFIP1, LSAMP,


LSM1, LSP1, LTBP4, LXN, LY75, LYAR, LYN, LZTFL1, LZTS1, MACROD2, MADD, MAGEA1,


MAGEC2, MAGED4B, MAGI1, MAK, MAL, MAL2, MALL, MALT1, MAML1, MAML2, MAOA, MAP1B,


MAP1S, MAP2, MAP2K1, MAP2K4, MAP3K1, MAP3K2, MAP3K7, MAP3K8, MAP3K9, MAP4K3,


MAP4K4, MAPK1, MAPK8, MAPKAPK2, MAPT, MARCKS, MARCO, MARK4, MARVELD3, MAS1,


MAT2A, MAT2B, MAX, MB, MBD1, MBD2, MBD4, MBP, MCC, MCM2, MCM4, MCRS1, MDM4, ME1,


MED1, MED12, MED19, MED27, MEF2C, MEF2D, MEIS1, MEMO1, MEN1, MEST, MET, METTL13,


MFAP3L, MFSD2A, MGA, MGAT1, MGAT3, MGMT, MGST1, MIA, MIB1, MICAL2, MIF, MINA, MIP,


MITF, MKL1, MLF2, MLN, MME, MMP10, MMP11, MMP12, MMP13, MMP14, MMP16, MMP28,


MMP7, MMP9, MNT, MOBP, MOS, MOV10, MPI, MPL, MPO, MPZL1, MRC2, MSC, MSH3, MSH6,


MSMB, MSN, MSRA, MST1R, MSX2, MT3, MT4, MTA1, MTA2, MTA3, MTAP, MTBP, MTDH,


MTHFD2, MTHFR, MTMR3, MTOR, MTRR, MTSS1, MTUS1, MUC13, MUC16, MUC17, MUC2,


MUC20, MUC4, MUC7, MUM1, MUSK, MUT, MUTYH, MVD, MVP, MX1, MX2, MXD1, MXI1, MXRA5,


MYBL2, MYC, MYCN, MYD88, MYEOV, MYH9, MYL9, MYLK, MYO5B, MYO9B, MZF1, NAB2,


NAMPT, NAP1L1, NAT1, NAT2, NAV1, NBN, NCALD, NCK1, NCK2, NCL, NCOA1, NCOA2, NCOA3,


NCOA5, NCOR1, NCOR2, NCSTN, NDC80, NDP, NDRG2, NDRG3, NDRG4, NDUFB6, NDUFB9,


NDUFS6, NEB, NEDD1, NEDD4, NEDD4L, NEDD8, NEFL, NEIL1, NEIL2, NEK2, NEK6, NEK7, NES,


NET1, NETO2, NEU3, NEUROD1, NF1, NFAT5, NFATC2, NFIB, NFKB1, NFKBIA, NGF, NGFR, NHS,


NIPSNAP1, NISCH, NKD1, NKD2, NKTR, NLK, NLRP1, NLRP3, NME1, NME4, NME6, NMI, NMU,


NNAT, NNT, NOB1, NOD1, NOD2, NODAL, NOG, NOP14, NOS1, NOS2, NOS3, NOTCH1, NOTCH3,


NOTCH4, NOV, NOX1, NOX4, NPAS2, NPC1, NPL, NPM1, NPS, NPY, NPY1R, NQO2, NR0B1,


NR1D1, NR1I2, NR1I3, NR2F1, NR2F2, NR3C2, NR4A2, NR4A3, NR5A2, NR6A1, NRAS, NRK, NRL,


NT5E, NTRK1, NTRK3, NTS, NTSR1, NUAK1, NUCB2, NUCKS1, NUMB, NUP88, NUSAP1, OAT,


ODAM, ODF4, OLA1, OLFM4, OLIG1, OLIG2, ONECUT2, ORAI1, ORAOV1, OSM, OSMR, OTC, OTP,


OTUB1, OTUD3, P4HA1, P4HA2, PABPC1, PACRG, PADI4, PAFAH1B1, PAH, PAK2, PAK3, PAK4,


PAK6, PALB2, PAM, PARD3, PARG, PARP1, PARVA, PARVB, PAX3, PAX4, PAX5, PAX6, PAX7,


PAX8, PBK, PBRM1, PBX3, PC, PCBP1, PCBP2, PCDH10, PCDH9, PCK2, PCNA, PDC, PDCD4,


PDCD5, PDCD6, PDCL3, PDF, PDGFB, PDGFRA, PDGFRB, PDIA3, PDK3, PDLIM2, PDLIM5,


PDPN, PDSS2, PDX1, PEBP1, PEG10, PELP1, PER1, PER2, PERP, PFKFB2, PFKFB3, PFN2, PGC,


PGF, PGK1, PGRMC2, PHF10, PHF20, PHF8, PHIP, PHLDA1, PHLPP1, PHLPP2, PHOX2B, PIAS1,


PICK1, PIGF, PIGR, PIGS, PIEZO1, PIK3C2G, PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R1, PIK3R3,


PIKFYVE, PIN1, PINK1, PIP4K2B, PIR, PITPNC1, PITX1, PITX2, PIWIL1, PIWIL2, PIWIL4, PKN1,


PKP1, PKP2, PLA2G16, PLA2G7, PLAC1, PLAG1, PLAGL1, PLAU, PLAUR, PLCE1, PLCG1, PLD2,


PLEKHA5, PLK1, PLOD2, PLS3, PLXDC1, PLXNA2, PMAIP1, PMEPA1, PML, PMP22, PMS2,


PNLIPRP3, POLB, POLE, POLI, POLR2A, POMC, PON1, POSTN, POT1, POU2F1, POU3F2,


POU3F3, PPA1, PPARG, PPM1A, PPM1B, PPM1D, PPM1F, PPM1H, PPP1CA, PPP1R13L,


PPP1R3B, PPP2CA, PPP2R2C, PRAME, PRC1, PRDM10, PRDM14, PRDM5, PRDX1, PRDX4,


PRDX6, PREP, PAG1, PTK2B, PREX2, PRICKLE1, PRKAA1, PRKAR1A, PRKCD, PRKCDBP,


PRKCI, PRKCZ, PRKD1, PRKD2, PRKX, PRL, PRMT1, PRMT2, PRMT5, PRMT6, PRMT7, PRNP,


PROK1, PROM1, PROX1, PRR15, PRSS3, PRUNE, PRUNE2, PRX, PSAT1, PSCA, PTBP2, PTCH1,


PTEN, PTER, PTGIS, PTGS2, PTH, PTH1R, PTHLH, PTK6, PTK7, PTOV1, PTP4A1, PTP4A3,


PTPN12, PTPN13, PTPN14, PTPN4, PTPRF, PTPRG, PTPRT, PTS, PTTG1IP, PTX3, PVR, PYY,


QKI, QRFP, RAB11A, RAB14, RAB17, RAB1A, RAB22A, RAB25, RAB27B, RAB32, RAB3D, RAB40B,


RAB40C, RAB5C, RABL3, RAC1, RAC2, RACGAP1, RAD18, RAD21, RAD50, RAD51, RAD52,


RAD54B, RAF1, RAI2, RALA, RALB, RALBP1, RALY, RAMP3, RAN, RANGAP1, RAP1A, RAP1B,


RAP1GAP, RAP2A, RAP2B, RAPGEF2, RAPH1, RARB, RARRES1, RASA1, RASAL1, RASAL2,


RASGRF1, RASGRF2, RASGRP1, RASGRP3, RASSF1, RASSF3, RASSF7, RASSF8, RB1,


RB1CC1, RBBP4, RBBP6, RBBP8, RBM3, RBM47, RBM5, RBP1, RBP2, RBX1, RCAN3, RD3, REG4,


RELA, REPS2, RERG, RET, REV3L, RFC1, RFX6, RFXAP, RGMB, RGS1, RGS16, RGS17, RGS2,


RGS22, RGS6, RGSL1, RHBDD2, RHO, RHOB, RHOBTB2, RHOC, RHOD, RHOG, RHOJ, RHOT1,


RHOU, RIN1, RIOK3, RIPK1, RIPK2, RIPK3, RLF, RNASEL, RND3, RNF111, RNF13, RNF180, RNF2,


RNF4, RNF40, RNF43, RNH1, ROBO1, ROBO3, ROBO4, ROCK1, ROCK2, ROR1, ROR2, RORA,


RP1, RPA1, RPE, RPL15, RPL26, RPL39, RPL41, RPL7, RPN2, RPS12, RPS3, RPS6KB1, RPSA,


RRBP1, RRM1, RRM2, RRP1B, RSPO2, RTKN, RUFY3, RUNX1, RUNX1T1, RUNX2, RUNX3,


RXFP1, RXRA, RYBP, S100A11, S100A2, S100A6, S100A7, S100A8, S100A9, S100B, S100P,


S100PBP, S100Z, S1PR3, SAA2, SACS, SALL4, SAMD9, SARS, SART1, SART3, SASH1, SATB2,


SCAI, SCAMP1, SCARA5, SCGB2A2, SCN7A, SCRIB, SCUBE2, SCUBE3, SDC1, SDC2, SDC4,


SDCBP, SDHA, SDHC, SDPR, SEC14L2, SEC23A, SEC62, SEL1L, SELP, SEMA3E, SEMA3F, SEMA4C,


SEMA6D, SENP1, SENP2, SENP3, SERPINA1, SERPINA3, SERPINA5, SERPINB13,


SERPINB2, SERPINB3, SERPINB5, SETD2, SETDB1, SF3B1, SFPQ, SFRP1, SFRP2, SFRP4,


SGPP1, SGPP2, SGTA, SH2B1, SH3BGRL, SH3GL2, SH3GLB2, SH3PXD2B, SHB, SHE, SHH,


SHISA3, SHMT1, SHOC2, SHOX2, SI, SIAH2, SIN3A, SIPA1, SIRT1, SIRT2, SIRT3, SIX2, SIX3, SIX4,


SKA3, SKAP2, SKI, SKP1, SKP2, SLC19A1, SLC19A3, SLC22A17, SLC22A18, SLC25A1, SLC28A3,


SLC29A1, SLC29A3, SLC2A1, SLC38A1, SLC39A14, SLC5A8, SLC6A14, SLC7A11, SLC7A5,


SLCO1B1, SLCO1B3, SLIT3, SLITRK3, SLITRK6, SLK, SLN, SMAD1, SMAD2, SMAD3, SMAD4,


SMAD5, SMAD7, SMAP1, SMARCA4, SMARCA5, SMARCB1, SMARCC1, SMARCD1, SMC4, SMO,


SMR3A, SMS, SMURF1, SMURF2, SMYD2, SMYD3, SNAI2, SNAI3, SNAPIN, SND1, SNTB2, SNX6,


SNX9, SOCS1, SOCS2, SOCS3, SOD2, SOD3, SOHLH2, SOS1, SOST, SOX10, SOX11, SOX12,


SOX17, SOX2, SOX3, SOX4, SOX6, SOX7, SOX8, SOX9, SP1, SP100, SP3, SP6, SPAG5, SPAG9,


SPARC, SPARCL1, SPDEF, SPIN1, SPINT2, SPOCK1, SPOP, SPR, SPRED1, SPRR2A, SPRR3,


SPRY1, SPRY2, SPRY4, SPTAN1, SQLE, SQSTM1, SRC, SRD5A1, SRD5A2, SRF, SRPK1, SRRM4,


SSBP1, SSRP1, SST, SSTR2, SSTR3, SSTR5, SSX1, SSX2IP, ST13, SLC9A9, ST3GAL6,


ST6GALNAC2, STAG2, STARD10, STARD13, STAT1, STAT3, STAT4, STAT5B, STAT6, STC2, STEAP1,


STEAP2, STIM2, STIP1, STK33, STK39, STK4, STMN1, STRAP, STRN, STS, STX6, STYK1,


SUDS3, SUFU, SULF1, SULF2, SULT1E1, SUMO1, SUMO3, SUSD2, SUZ12, SVEP1, SYK, TAC1,


TACC2, TACC3, TACSTD2, TAGLN, TAGLN2, TANK, TARBP2, TAT, TBC1D16, TBK1, TBP, TBX2,


TBX21, TBX3, TBX4, TBX5, TBXAS1, TCEB1, TCF12, TCF21, TCF3, TCF4, TCF7, TCF7L2, TDGF1,


TDO2, TDP1, TDRD1, TEAD4, TEC, TEF, TEK, TERT, TES, TET1, TET2, TEX101, TF, TFAP2A,


TFAP2C, TFAP2E, TFCP2, TFEB, TFF1, TFF2, TFF3, TFG, TFPI, TFPI2, TG, TGFA, TGFB1, TGFBI,


TGFBR2, TGFBR3, TGIF1, TGM2, TGM3, THBS1, THBS4, THOC1, THRSP, THY1, TIAF1, TIAM2,


TIMELESS, TIMM17A, TIMP2, TIMP3, TIMP4, TJP1, TKTL1, TLE1, TLE4, TLN1, TLR3, TLR4, TLR5,


TLR7, TLR8, TLR9, TM4SF1, TM4SF5, TM9SF4, TMED3, TMEM100, TMEM127, TMEM14A,


TMEM174, TMEM207, TMEM25, TMEM33, TMEM45B, TMEM97, TMOD1, TMPRSS2, TMPRSS3,


TMPRSS4, TNFAIP1, TNFRSF10A, TNFRSF10B, TNFRSF1B, TNK2, TNS1, TNS3, TNS4, TOB1,


TOB2, TOM1, TOM1L1, TOMM34, TOP1, TOPBP1, TOX, TP53, TP53BP2, TP53INP1, TP63, TP73,


TPD52, TPM3, TPO, TPR, TRAF2, TRAF4, TRAF6, TREM2, TRH, TRIB1, TRIB2, TRIB3, TRIM16,


TRIM31, TRIM33, TRIM37, TRIM44, TRIM59, TRIM66, TRIM9, TRIT1, TRPA1, TRPC1, TRPC6,


TRPM2, TRPM7, TRPM8, TRPV1, TRPV5, TRPV6, TSC1, TSC2, TSG101, TSLP, TSPAN1,


TSPAN12, TSPAN7, TSPAN8, TSPAN9, TSPYL5, TSSC1, TTC4, TTF1, TTK, TTYH2, TUSC1,


TWIST1, TXN, TFE3, TRPS1, TUBB3, TUSC3, TYK2, TYMS, TYR, TYRO3, TYRP1, U2AF2, UBE2C,


UBE2D3, UBE2Q1, UBIAD1, UCHL1, UCN, UGT2B17, ULBP2, UNC5B, UPF1, USF1, USP10,


USP14, USP15, USP18, USP22, USP28, USP37, USP4, USP9X, UVRAG, VANGL2, VAPB, VASP,


VAV2, VAV3, VCAM1, VCP, VDAC1, VDR, VEGFC, VEZT, VGLL2, VHL, VIM, VIP, VPS25, VRK1,


VTCN1, VTI1A, VWF, WASF2, WBSCR22, WDR26, WEE1, WIF1, WIPI1, WIPI2, WISP1, WISP2, WISP3,


WNT10A, WNT10B, WNT11, WNT2, WNT3, WNT3A, WNT4, WNT5B, WNT6, WNT7A, WRN,


WT1, WTAP, WWP1, WWP2, WWTR1, XAF1, XBP1, XCR1, XG, XPA, XPO1, XPO5, XPO6, YBX1,


YTHDC2, YWHAG, YWHAH, YWHAZ, YY1, ZAP70, ZBED3, ZBTB16, ZBTB20, ZBTB7A, ZBTB8A,


ZEB2, ZFX, ZIC1, ZKSCAN3, ZMAT1, ZNF165, ZNF217, ZNF281, ZNF300, ZNF304, ZNF331, ZNF395,


ZNF419, ZNF444, ZNF488, WWOX










Table 8A Continued . . .


Table 8A Continued . . .


Table 8A Continued . . .


Table 8A Continued . . .









TABLE 8B





Genes in gene set for metastasis function















ABCB1, ABCB5, ABCC3, ABCE1, ABCG2, ABL2, ABR, ACE2, ADAM10, ADAM19, ADAM8, ADAM9, ADAMTS1,


ADAMTS5, ADIPOR1, ADIPOR2, ADM, ADO, ADORA2B, ADRB2, AFAP1, AFAP1L1, AFP, AGR2, AHNAK,


AIM1, AKAP12, AKAP13, AKR1C3, AKT2, AKT3, ALDH1A1, ALDH1A3, ALK, AMOTL2, ANG, ANGPTL2,


AKT1ANO1, ANO9, ANXA1, ANXA11, ANXA7, APC, APLP2, AQP3, AQP5, AQP9, ARF6, ARID1A, ARID2, ARID3B,


ARID4A, ARRDC3, ATAD2, ATF3, AIF4, ATG4A, ATG5, ATM, ATOH1, ATOH8, ATP6AP2, ATP6V1C1, ATR,


AURKA, AXIN2, B3GNT7, B4GALNT2, BACE1, BAD, BAG3, BAMBI, BATF2, BAX, BCAR1, BCAS3, BCAT1,


BCL2, BCL2L2, BCL3, BCL6, BCL9, BDNFBIK, BIN1, BIRC5, BIRC6, BMP4, BMP7, BOLL, BPTF, BRCA1,


BRCA2, BRD4, BRD8, BRMS1, BTBD7, BTG1, BTG2, BTG3, BTK, BVES, C3, C5, C6, C8orf4, C9, CA2, CA9,


CACNA2D3, CACBP, CADM1, CALU, CAMP, CASP6, CBL, CBX7, CBX8, CCDC34, CCL17, CCL18, CCL19,


CCL2, CCL20, CCL21, CCL22, CCL5, CCL7, CCNE1, CCNG2, CCR1, CCR4, CCR6, CCR7, CCR9, CD164, CD36,


CD38, CD4, CD40, CD47, CD55, CD63, CD70, CD74, CD81, CD82, CD86, CD9, CD99, CDA, CDC20, CDC25A,


CDC25B, CDC25C, CDC37, C42, CDCP1, CDH1, CDH17, CDH22, CDK4, CDK5, CDK5RAP3, CDK6, CDK8,


CDKN1A, CDKN2A, CDX2, CEACAM1, CEACAM5, CFL1, CHD1L, CHEK1, CHI3L1, CHST11, CIAPIN1, CLCA1,


CLCA2, CLDN10, CLOCK, CLU, CMTM3, CNTN1, COIL, COMMD1, CP, CPE, CPT1A, CRCT1, CRHR2, CRK,


CRKL, CRP, CS, CSE1L, CSF1, CSK, CSPG4, CST6, CTBP1, CTBP2, CTGF, CTHRC1, CTLA4, CTTN, CUL4A,


CUX1, CX3CR1, CXCL1, CXCL10, CXCL12, CXCL13, CXCL14, CXCL17, CXCL3, CXCL5, CXCL6, CXCL9,


CXCR4, CXCR5, CXCR6, CYB5D2, CYLD, CYP1B1, CYP2E1, CYP2J2, CYP3A4, CYR61, DAB2IP, DACT2,


DAND5, DAP, DCC, DCLK1, DDR2, DDX11, DDX20, DEK, DES, DHRS7, DKK1, DKK2, DLL4, DNM3, DNMT1,


DNMT3A, DOCK1, DOT1L, DPH3, DPP4, DUSP1, DUSP6, DYRK1B, DYRK2, E2F1, E2F3, ECD, ECM1, ECT2,


EDIL3, EEF1A2, EFEMP1, EGF, EGFL7, EGFR, EGR1, EIF3I, EIF4E, EIF5A2, EIF6, EMILIN1, EMP2, ENAH,


ENG, ENO1, EPB41L3, EPCAM, EPHA2, EPHB2, EPHB4, EPHB6, ERBB3, ERBB4, ERCC1, ERCC2, ERCC3, ERG,


ERGIC1, ESR1, ETS1, ETV1, EXT1, EYA2, EZH2, F11, F6, F8, FABP7, FADD, FANCA, FANCC, FANCD2,


FAP, FAS, FASTKD2, FAT4, FBXL5, FBXO11, FBXW7, FGF10, FGF18, FGF2, FGFR1, FGFR2, FGFR3, FGFR4,


FH, FHIT, FHL1, FHL2, FJX1, FLI1, FLNA, FLOT2, FLT1, FN1, FOSB, FOXA1, FOXA2, FOXC1, FOXC2, FOXD3,


FOXL1, FOXM1, FOXO1, FOXO3, FOXO4, FOXP1, FOXP2, FOXP3, FOXO1, FRAT1, FSCN1, FSHR, FURIN,


FUS, FUT3, FUT4, FYN, FZD5, FZD8, GAB1, GAB2, GADD45A, GAL, GALNT14, GALNT2, GAS6, GATA6, GC,


GDNF, GEMIN5, GJA3, GKN1, GLB1, GLI1, GLI2, GLIPR1, GLO1, GNA13, GNAQ, GOLPH3, GPC5, GPI,


GPNMB, GPR171, GPR3P, GPR55, GPR87, GPX3, GRB14, GRB2, GRK6, GRM1, HABP2, HAS2, HBD, HBP1,


HDAC1, HDAC2, HDAC4, HDAC6, HES1, HES5, HEXA, HIF1A, HIPK2, HJURP, HMGA1, HMGA2, HMGB3,


HMMR, HNRNPA2B1, HOOK1, HOXA1, HOXA5, HOXA9, HOXB2, HOXB9, HPR, HRG, HS3ST2, HSPA14,


HTATIP2, HTRA1, HYOU1, ICMT, ID1, ID2, ID3, IDH2, IFIT2, IGF1R, IGF2, IGF2BP1, IGFBP1, IGFBP3, IGFBP5,


IGFBP7, IL13, ILK, IMP3, IMPACT, ING1, ING2, ING3, ING5, IQGAP1, IRAK1, IRX2, ITGA2, ITGA3, ITGA5, ITGAV,


ITGB1, ITGB3, JAG1, JAG2, JAK1, JAK2, JAK3, JMJD6, JUN, KCNJ1, KCNMA1, KDM2A, KDM4B, KDM5B, KDR,


KEAP1, KIF11, KIF14, KIF15, KIF2A, KIF3C, KISS1, KIT, KITLG, KL, KLF17, XLF2, KLF4, XLF5, KLF6, KPNA2,


KRAS, KRT19, KRT7, LAMB3, LAMC2, LAMP1, LAMP3, LAP3, LAPTM4B, LASP1, LATS1, LATS2, LIF, LIMK2,


LIN28B, LMX1B, LOX, LOXL2, LRP1, LRP1B, LRP5, LRPPRC, LRRC4, LSM1, LYN, LZTS1, MACROD2, MADD,


MAP2K4, MAP3K2, MAP3K9, MAP4K4, MAPK1, MAPKAPK2, MARCKS, MAX, MB, MBD2, MBP, MCM2, MDM4,


MED1, MED12, MED27, MEF2C, MEIS1, MET, MFAP3L, MGAT1, MGMT, MIA, MIB1, MIF, MIP, MITF, MKL1,


MLF2, MME, MMP10, MMP12, MMP13, MMP14, MMP28, MMP7, MMP9, MSC, MT3, MTA1, MTA2, MTA3, MTBP,


MTDH, MTMR3, MTOR, MTSS1, MTUS1, MUC16, MUC4, MUSK, MVD, MVP, MX1, MYC, MYCN, MYD88, MYH9,


MYD5B, NAP1L1, NAV1, NCK2, NCOA1, NDC80, NDRG2, NEDD1, NEDD4, NEDD4L, NET1, NF1, NFAT5, NGF,


NHS, NKD1, NKD2, NLK, NLRP3, NME1, NOB1, NODAL, NOG, NOTCH1, NOTCH3, NOV, NOX1, NOX4, NPM1,


NPS, NTSR1, NUAK1, NUMB, NUP88, OLA1, ORAI1, OSM, OTUB1, P4HA1, PAK2, PAK4, PALB2, PARP1,


PAX3, PAX7, RAX8, PBK, PC, PCBP1, PCNA, PDC, PDCD4, PDCD5. PDGFRA, PDK3, PDPN, PEG10. PELP1,,


PER2, PFKFB3, PGC, PHF8, PHLDA1, PIAS1, PICK1, PIGS, PIK3CA, PIKFYVE, PIN1, PIP4K2B, PIR, PIWIL1,


PIWIL2, PKN1, PLA2G16, PLAUR, PLD2, PLK1, PMAIP1, PMEPA1, PMP22, POLB, PPARG, PPP1CA, PRAME,


PRC1, PRDM14, PREX2, PRKCZ, PRXD1, PRL, PRMT1, PRMT5, PROK1, PROX1, PRSS3, PRUNE, PSCA,


PTEN, PTER, PTG82, PTH, PTK6, PTK7, PTP4A3, PTPN13, PVR, QKI, RAB17, RAB22A, RAB25, RAB27B,


RAB3D, RAB40B, RAB40C, RABL3, RAC1, RAC2, RACGAP1, RALA, RALB, RAMP3, RAN, RAP1A, RAP1B,


RAP1GAP, RAP2B, RASAL2, RASSF3, RB1, RBP2, RBX1, RCAN3, RET, RGMB, RGS16, RHBDD2, RHO,


RHOB, RHOBTB2, RHOC, RHOJ, RIN1, RIPK1, RIPK3, RNF111, RNF43, ROBO1, ROBO3, ROCK1, ROCK2,


ROR1, ROR2, RPA1, RPL39, RPS12, RPS3, RPS6KB1, RREB1, RRM1, RRM2, RRP1B, RSPO2, RUNX2, RUNX3,


RXFP1, S100A11, S100A2, S100A6, S100A7, S100A8, S100A9, S100B, S100P, S1PR3, SALL4, SART1, SASH1,


SATB2, SCAI, SCAMP1, SCRIB, SDC1, SERPINB2, SETDB1, SFRP1, SFRP2, SH3GL2, SHH, SHMT1, SI, SIAH2,


SIRT1, SIRT2, SKI, SKP2, SLC9A3, SLC38A1, SMAD1, SMAD2, SMAD3, SMAD4, SMAD7, SMO, SMYD3,


SNAI2, SND1, SNTB2, SOCS3, SOD2, SOD3, SOX10, SOX12, SOX17, SOX2, SOX4, SOX6, SOX7, SOX9, SP1,


SP3, SPAG5, SPAG9, SPARC, SPARCL1, SPDEF, SPOCK1, SPOP, SPRY1, SPRY4, SPTAN1, SQLE, SQSTM1,


SRC, SRD5A2, SRF, SRPK1, SRRM4, SSTR2, SSX2IP, STARD13, STAT1, STAT3, STAT5B, STIP1, STMN1,


STS, SULF1, SULF2, SUZ12, SYK, TACC3, TAGLN, TAT, TBK1,TBX2, TCEB1, TCF4, TCF7, TCF7L2, TDGF1,


TEAD4, TERT, TET1, TF, TFF1, TFF3, TFPI, TG, TGFB1, TGFBI, TGIF1, TGM2, THY1, TIMM17A, TIMP2, TKTL1,


TLR3; TLR4, TLR9, TM4SF1, TMED3, TMPRSS2, TMPRSS4, TNFAIP1, TNK2, TOB1, TOP1, TOPBP1, TP53,


TRAF2, TRAF4, TRAF6, TRIB3, TRIM59, TRPA1, TRPM7, TRPM8, TRPV6, TSC2, TSG101, TSPAN12, TSPAN8,


TSPAN9. TTYH2, TWIST1, TXN, TYR, UBE2Q1, UCHL1, UCN, UNC5B, USP10, USP15, USP18, USP22, USP37,


USP9X, UVRAG, VASP, VAV2, VAV3, VCP, VEGFC, VEZT, VHL, VIP, VRK1, VTCN1, WBSCR22, WDR26,


WEE1, WISP1, WNT10A, WNT10B, WNT3A, WNT5B, WT1, WTAP, WWP1, XAF1, XCR1, χPO1, YWHAZ,


YY1, ZBED3, ZBTB7A, ZEB2, ZFX, ZKSCAN3, ZNF217, ZNF300, ZNF304, ZNF488, ALCAM, AR, ASAP1, DACH1,


DLC1, PIEZO1, MMP16, PAG1, TUPS1, TUSC3, WWOX










Table 8B Continued . . .









TABLE 8C





Genes in gene set for biomarker analysis















ABAT, ABCA13, ABCB1, ABCC2, ABCG2, ACE2, ACP1, ACTN4 ADAM10, ADAM8, ADAM9,


ADAMTS1, ADAMTS5, ADO, AFAP1, AFP, AGBL2, AGR2, AIM1, AKR1B10, AKT1, AKT2, ALDH1A1,


ALDH1A3, ALK, ALCAM, ANG, ANLN, ANXA1, ANXA2, APC, APOA1, APOBEC3G, AQP1, AQP3,


AQP5, AR, ARG1, ARHGEF7, ARID1A, ARPC1B, ASAP1, ASCL2, ASPM, ATAD2, ATF3, ATF5, ATM,


ATOH8, BAD, BAMBI, BARX2, BATF2, BAX, BCL10, BCL2, BCL2L12, BCL6, BCOR, BCORL1, BDNF,


BID, BIRC5, BMP4, BMP7, BMPR1A, BRCA1, BRCA2, BRE, BRMS1, BTBD7, BTC, BTG1, BTG3,


BVES, C10orf10, C3, C6orf106, CA9, CACBP, CAD, CADM1, CAMP, CASK, CASP8, CASR, CBX7,


CCL17, CCL19, CCL2, CCL20, CCL21, CCL4, CCL5, CCL7, CCNB1, CCNE1, CCNG2, CCNY, CCR6,,


CCR7, CCT2, CD109, CD14, CD163, CD1A, CD4, CD40, CD47, CD55, CD74, CD82, CD9, CDC20,


CDC25B, CDC25C, CDC42, CDC6, CDCP1, CDH1, CDH13, CDK4, CDK5, CDK8, CDKN2A, CDX2,


CEACAM1, CES2, CFL1, CHD1L, CHEK1, CHEK2, CHRM3, CHRNA3, CIAPIN1, CISH, CLDN16,


CLIC4, CLOCK, CLPTM1L, COIL, COL1A1, COL1A2, COMT, CP, CPE, CRK, CRKL, CRNN, CRP,


CRTC1, CRTC3, CSE1L, CSNK1A1, CSPG4, CTBP2, CTGF, CTHRC1, CTNNB1, CTTN, CX3CL1,


CX3CR1, CXCL1, CXCL10, CXCL12, CXCL14, CXCL5, CXCL9, CXCR4, CXCR6, CYB5A, CYP17A1,


CYP19A1, CYP1A1, CYP24A1, CYP2B6, CYP3A4, CYP3A5, CYR61, DAB2, DACH1, DACH2,


DACT2, DAND5, DAP, DCC, DCX, DDC, DDX1, DEC1, DEX, DES, DICER1, DIXDC1, DLC1, DLG5,


DLK1, DLL4, DLX2, DLX5, DPP4, E2F1, EBP, ECD, ECM1, ECT2, EDIL3, EEF1A2, EFEMP1, EGF,


EGR3, EGFL7, EGFR, EIF3E, EIF3I, EIF4E, EIF5A2, ENO1, EPAS1, EPCAM, EPHA2, EPHA3,


EPHA7, EPHB4, EPHB6, EPO, EPS15, EPS8, ERBB3, ERBB4, ERCC1, ERG, ERP29, ESR1, ESR2,


EVA2, EZH2, F2, FABP1, FABP4, FADD, FAM3C, FANCF, FAP, FAS, FBXO11, FBXW7, FER, FGF14,


FGF2, FGFBP1, FGFR1, FGFR2, FGFR3, FGFR4, FHIT, FHL1, FHL2, FKBPL, FLNA, FLT1, FLT3,


FLT4, FN1, FOXA1, FOXC1, FOXC2, FOXD3, FOXF2, FOXL1, FOXM1, FOXO3, FOXO4, FOXP1,


FOXP3, FOXQ1, FRAT1, FSCN1, FURIN, FZD1, GAB2, GAL, GALNT9, GAS6, GATA2, GATA5,


GATA6, GBP2, GC, GCG, GDF15, GGH, GIP, GIPC1, GLA, GLI1, GNAQ, GOLPH3, GPRC5A, GPX3,


GRB2, GRM4, GSTP1, GTSE1, HAPLN3, HDAC1, HDAC2, HDAC6, HDGF, HES1, HIF1A, HK1,


HMGA1, HMGA2, HMGB3, HNF1A, HOMER1, HOXA13, HOXA9, HOXB9, HPSE, HR, HSD3B1,


HSPA2, HTATIP2, HTR42, HTRA3, HUWE1, HYOU1, ID2, ID3, IGF1R, IGFBP7, IL10, IL13, ILK, IMP3,


IMPACT, ING3, IQGAP1, IQGAP2, IRX5, ITGA3, ITGA8, ITGB1, ITGB3, ITGB4, ITGBL1, JAK2,


JMJD6, JUN, KCNJ1, KDM3A, KDM5C, KDR, KEAP1, KIAA0101, KIF14, KIF18A, KIF26B, KIF2A,


KISS1, KIT, KLF17, KLF4, KLF6, KLK10, KLK3, KPNA2, KRAS, KRT7, LAMP3, LAPTM4B, LAT, LEP,


LETM1, LIFR, LIG4, LIN28B, LMO7, LOX, LOXL2, LRG1, LYN, LZTS1, MAGEC2, MAGI1, MAML2,


MAP4K3, MAP4K4, MARCKS, MAX, MB, MBP, MCM2, MET, MGMT, MGST1, MIA, MIB1, MIF, MIP,


MITF, MMP11, MMP13, MMP16, MMP14, MMP7, MMP9, MMPO, MSX2, MTA1, MTA2, MTA3, MTBP,


MTDH, MTHFD2, MTOR, MTSS1, MTUS1, MUC16, MUC2, MUC4, MVD, MVP, MYC, MYCN, MYD88,


MYH9, MZF1, NAT1, NCK1, NCK2, NCOA2, NCDA5, NCOR1, NCOR2, NCSTN, NDRG2, NDRG3,


NDRG4, NEDD4L, NEK2, NETO2, NEU3, NKD1, NKTR, NLK, NME1, NOB1, NOD2, NODAL,


NOTCH1, NOTCH3, NOTCH4, NOV, NPM1, NQD2, NR2F2, NR4A2, NRAS, NUCB2, NUCKS1, OAT,


OLA1, OLIG1, ORAI1, OTP, OTUB1, P4HA2, PAFAH1B1, PAK4, PARP1, PARVB, PAX3, PAX6,


PAX8, PBK, PBRM1, PBX3, PC, PCDH10, PCDH9, PCNA, PDCD4, PDCD6, PDGFRA, PEG10, PER1,


PER2, PFKPB2, PFN2PHIP, PHLDA1, PHLPP1, PHLPP2, PIGR, PIK3CA, PIK3CB, PIK3R1, PIP4K2B,


PITX2, PIWIL2, PLA2G16, PLAGL1, PLAUR, PML, POLE, POMC, PPARG, PPM1D, PRAME, PRDX1,


PRDX4, PRL, PROK1, PROM1, PROX1, PRSS3, PRUNE, PSCA, PTEN, PTGIS, PTGS2, PTK7,


PTOV1, PTP4A3, RAB25, RAB27B, RAC1, RACGAP1, RAD50, RAD51, RALBP1, RALY, RAN, RASGRP3,


RBM3, RBX1, REG4, RELA, REPS2, RET, RGS1, RGS6, RHO, RHOC, RIPK2, ROBO1, ROCK1,


ROCK2, ROR1, ROR2, RRM1, RUNX2, RUNX3, S100A11, S100A2, S100A6, S100A9, S100B,


S100P, SATB2, SCRIB, SCUBE2, SDC1, SDC2, SDHA, SELP, SEMA3F, SERPINB2, SETDB1,


SF3B1, SFRP1, SGTA, SH2B1, SIAH2, SIPA1, SIRT1, SIX3, SIX4, SKI, SKP2, SLC19A1, SLC9A9,


SLC22A18, SLC25A1, SLC29A3, SLCO1B1, SLCO1B3, SLN, SMAD1, SMAD2, SMAD3, SMAD4,


SMAD7, SMYD2, SMYD3, SNAI2, SOCS3, SOD2, SOX10, SOX11, SOX17, SOX2, SOX4, SOX7,


SOX8, SOX9, SP1, SPAG5, SPARC, SPARCL1, SRC, SRPK1, SST, STAG2, STARD10, STARD13,


STAT1, STAT3, STAT6, STC2, STIP1, ST8, STYK1, SULT1E1, SUZ12, SYK, TACC2, TACSTD2,


TAT, TBX2, TCF3, TEK, TFE3, TERT, TET1, TF, TFF3, TFPI, TGF81, TGFBI, TGM2, TGM3, THY1,


TIMM17A, TKTL1, TLR4, TMPRSS2, TMPRSS3, TMPRSS4, TP53, TPD52, TRAF2, TRAF6, TRPM7,


TRPS1, TSG101, TSPYL5, TUBB3, TWIST1, TYMS, UBE2C, UCN, USP10, USP14, USP22, USP9X,


VAV3, VDAC1, VHL, VIP, WNT10A, WNT10B, WNT11, WNT2, WNT7A, WWOX, WWP1,


XPA, XPO5, YY1, ZEB2, ZFX, ZMAT1, ZNF217










Table 8C Continued . . .









TABLE 9A







ROC-AUC comparisons of panMPS and other MPS versions developed by using subsets


of genes based on Zgenes score thresholds and clump representations.














No. of
No. of






Distribution
genes
clumps
MSK_Prostate
Duke_Prostate
Montefiore_TNBC
MSK_Lung
















*Zgenes score ≥ 4
33
21
0.69
0.70
0.73
0.87


Zgenes score ≥ 4
43
21
0.68
0.73
0.77
0.88


*Zgenes score ≥ 3
68
43
0.71
0.70
0.73
0.93


Zgenes score ≥ 3
100
43
0.70
0.72
0.74
0.94


panMPS
295
67
0.71
0.72
0.75
0.94





*Only highest Zgenes-score gene in clump













TABLE 9B







Linear regression model (r2) between panMPS and other MPS versions developed by using


subsets of genes based on Zgenes score thresholds and clump representations.














No. of
No. of






Distribution
genes
clumps
MSK_Prostate
Duke_Prostate
Montefiore_TNBC
MSK_Lung
















*Zgenes score ≥ 4
33
21
0.89
0.87
0.83
0.83


Zgenes score ≥ 4
43
21
0.93
0.92
0.84
0.86


*Zgenes score ≥ 3
68
43
0.94
0.94
0.93
0.94


Zgenes score ≥ 3
100
43
0.97
0.97
0.94
0.96


panMPS
295
67
1
1
1
1





*Only highest Zgenes score gene in clump













TABLE 10A







Clinical and histological characteristics of samples used to validate


the panMPS model for metastatic outcome for prostate cancer









Cohort











MSK Prostate CA
Duke Prostate CA














mPT
iPT
mPT
iPT
P
















Outcome

















n
25
260
37
39

















Age





















Mean
58.93
58.15
64.19
61.82
0.5 


Median
59.47
58.13
64
62


Standard deviation
7.23
6.82
6.48
8.41












Range
46-71
37-75
47-77
46-77

















Clinical stage











T1C
10
(3.51%)
146
(51.22%)
18
(23.68%)
24
(31.57%)
7.56 × 18−8


T2
11
(3.86%)
106
(37.19%)
9
(11.84%)
4
(5.26%)
3.86 × 10−5


T3
4
(1.40%)
8
(2.81%)
0
(0%)
0
(0%)


Path stage


T2
7
(2.46%)
156
(54.74%)
6
(7.89%)
9
(11.84%)
1.53 × 10−4


T3
13
(4.56%)
92
(32.28%)
24
(31.57%)
26
(34.21%)
3.85 × 10−6


T4
5
(1.75%)
12
(4.21%)
7
(9.21%)
4
(5.26%)
0.12


Biopsy Gleason score


3
0
(0%)
0
(0%)
0
(0%)
1
(1.31%)


4
0
(0%)
0
(0%)
1
(1.31%)
0
(0%)


5
0
(0%)
2
(0.70%)
0
(0%)
4
(5.26%)


6
7
(2.46%)
142
(49.82%)
10
(13.51%)
18
(23.68%)
1.91 × 10−5


7
12
(4.21%)
92
(32.28%)
14
(18.42%)
12
(15.78%)
1.19 × 10−5


8
5
(1.75%)
15
(5.26%)
5
(6.57%)
0
(0%)
0.01


9
0
(0%)
9
(3.16%)
3
(3.94%)
4
(5.26%)
0.06


10
0
(0%)
0
(0%)
1
(1.31%)
0
(0%)


Path Gleason score


6
1
(0.35%)
68
(23.86%)
2
(2.63%)
2
(2.63%)
0.01


7
8
(2.81%)
173
(60.70%)
20
(26.31%)
29
(38.16%)

9.27 × 10−10



8
6
(2.11%)
10
(3.51%)
2
(2.63%)
3
(3.95%)


9
19
(6.66%)
8
(2.81%)
12
(15.785)
5
(6.58%)


10
0
(0%)
0
(0%)
1
(1.31%)
0
(0%)


Preop PSA (ng/mL)












Median
8.49
5.6
7.5
7.3

















<4
4
(1.40%)
46
(16.14%)
4
(5.26%)
4
(5.26%)



4-10
10
(3.51%)
163
(57.19%)
16
(21.05%)
27
(35.52%)


>10
11
(3.86%)
50
(17.54%)
17
(22.36%)
8
(10.52%)





P-values were determined by Wilcoxon Rank Sum Test and Fisher's Exact Test respectively for continuous and categorical variables for inter cohort significance.













TABLE 10B







Clinical and histological characteristics of samples used to


validate the panMPS model for metastasis outcome for TNBC









Cohort



Montefiore TNBC












mBC
iBC

















Outcome















n
28
13













Age















Mean
58.3
53



Median
61.5
49



Standard deviation
11.57
11.7












Range

35-82
34-74













TNM Stage







T1
4
(9.75%)
5
(12.19%)



T2
7
(17.07%)
5
(12.19%)



T3
4
(9.75%)
0
(0%)



T4
2
(4.88%)
0
(0%)

















TABLE 10C







Clinical and histological characteristics of samples used to


validate the panMPS model for metastasis outcome for TNBC









Cohort



MSK Lung Adeno CA












mLA
iLA

















Outcome















n
23
10













Sex







Male
11
(26.83%)
4
(9.76%)



Female
12
(29.27%)
6
(14.63%)



TNM Stage



1B
6
(14.63%)
0
(0%)



2
7
(17.07%)
1
(2.44%)



3
10
(24.39%)
5
(12.20%)



4
2
(4.88%)
4
(9.76%)

















TABLE 11







AUC of Distribution of MPS genes based on lowest Zgenes scores in clumps














No. of
No. of






Distribution
genes
clumps
MSK_Prostate
Duke_Prostate
Montefiore_TNBC
MSK_Lung

















33
21
0.67
0.67
0.78
0.87


Zgenes score ≥ 4
43
21
0.68
0.73
0.77
0.88



68
43
0.69
0.69
0.75
0.93


Zgenes score ≥ 3
100
43
0.7
0.72
0.74
0.94


*panMPS
175
67
0.7
0.72
0.76
0.97


panMPS
295
67
0.71
0.72
0.75
0.94





*Only lowest Zgenes-score gene in clump













TABLE 12







r2 of Distribution of MPS genes based on lowest Zgenes scores in clumps














No. of
No. of






Distribution
genes
clumps
MSK_Prostate
Duke_Prostate
Montefiore_TNBC
MSK_Lung

















33
21
0.75
0.57
0.67
0.59


Zgenes score ≥ 4
43
21
0.93
0.92
0.84
0.86



68
43
0.81
0.64
0.73
0.71


Zgenes score ≥ 3
100
43
0.97
0.97
0.94
0.96


*panMPS
175
67
0.89
0.75
0.84
0.84


panMPS
295
67
1
1
1
1





*Only lowest Zgenes score gene in clump













TABLE 13





MPS Genes






















index
gene
NYU_Z
NYU_dir
MSKs1_Z
MSKs1_dir
MSKs2_Z
MSKs2_dir





1
CLCNKB
NA
NA
NA
NA
2.0
1


2
ARHGEF10L
NA
NA
2.1
−1
NA
NA


3
ACTL8
NA
NA
1.9
−1
NA
NA


4
DPYD
NA
NA
NA
NA
2.9
−1 


5
COL11A1
NA
NA
NA
NA
1.9
−1 


6
NRXN1
NA
NA
NA
NA
3.2
−1 


7
CTNNA2
NA
NA
NA
NA
1.8
−1 


8
ALCAM
NA
NA
NA
NA
2.5
1


9
ZBTB20
NA
NA
1.8
 1
NA
NA


10
MYLK
NA
NA
2.8
 1
NA
NA


11
KALRN
NA
NA
2.4
 1
NA
NA


12
BFSP2
NA
NA
2.4
 1
NA
NA


13
SLC9A9
NA
NA
2.7
 1
NA
NA


14
KCNAB1
NA
NA
5.8
 1
NA
NA


15
PPM1L
NA
NA
2  
 1
NA
NA


16
MECOM
NA
NA
2  
 1
NA
NA


17
DGKG
NA
NA
1.9
 1
NA
NA


18
TP63
NA
NA
3  
 1
NA
NA


19
LEPREL1
NA
NA
2.6
 1
NA
NA


20
BOD1L
NA
NA
NA
NA
2.4
−1 


21
KCTD8
NA
NA
NA
NA
2.8
−1 


22
GABRA2
NA
NA
NA
NA
2.3
−1 


23
LPHN3
NA
NA
NA
NA
2.5
−1 


24
GRID2
NA
NA
NA
NA
5.1
−1 


25
DCHS2
NA
NA
NA
NA
2.6
−1 


26
GLRB
NA
NA
NA
NA
2.7
−1 


27
GRIA2
NA
NA
NA
NA
2.3
−1 


28
FSTL5
NA
NA
NA
NA
2.2
−1 


29
CENPH
NA
NA
1.9
−1
NA
NA


30
MRPS36
NA
NA
2.6
−1
NA
NA


31
CDK7
NA
NA
2.7
−1
NA
NA


32
CCDC125
NA
NA
2  
−1
NA
NA


33
TAF9
NA
NA
2.6
−1
NA
NA


34
RAD17
NA
NA
2.6
−1
NA
NA


35
MARVELD2
NA
NA
3  
−1
NA
NA


36
MEF2C
NA
NA
NA
NA
2.3
−1 


37
TICAM2
NA
NA
NA
NA
1.8
−1 


38
COL21A1
NA
NA
NA
NA
1.8
−1 


39
COL19A1
NA
NA
NA
NA
3.4
−1 


40
COL12A1
NA
NA
NA
NA
1.6
−1 


41
UBE2CBP
2.8
−1
NA
NA
NA
NA


42
ME1
2.5
−1
NA
NA
NA
NA


43
MAP3K7
NA
NA
NA
NA
3.2
−1 


44
EPHA7
NA
NA
NA
NA
1.8
−1 


45
FBXL4
NA
NA
NA
NA
1.7
−1 


46
SIM1
NA
NA
NA
NA
2.2
−1 


47
ASCC3
NA
NA
NA
NA
1.8
−1 


48
NUS1
NA
NA
NA
NA
2.2
−1 


49
TRDN
NA
NA
NA
NA
3.0
−1 


50
UTRN
NA
NA
NA
NA
2.3
−1 


51
EPM2A
NA
NA
NA
NA
2.4
−1 


52
GRM1
NA
NA
NA
NA
1.9
−1 


53
C6orf118
NA
NA
NA
NA
2.8
−1 


54
PDE10A
NA
NA
NA
NA
4.7
−1 


55
IQCE
NA
NA
NA
NA
1.8
1


56
FBXL18
NA
NA
NA
NA
1.9
1


57
STX1A
NA
NA
NA
NA
2.2
1


58
CLDN3
NA
NA
NA
NA
2.6
1


59
EIF4H
NA
NA
NA
NA
2.0
1


60
LAT2
NA
NA
NA
NA
2.0
1


61
RFC2
NA
NA
NA
NA
1.8
1


62
CLIP2
NA
NA
NA
NA
3.1
1


63
HIP1
NA
NA
NA
NA
4.4
1


64
TMEM120A
NA
NA
NA
NA
1.7
1


65
STYXL1
NA
NA
NA
NA
2.3
1


66
MDH2
NA
NA
NA
NA
2.0
1


67
YWHAG
NA
NA
NA
NA
2.7
1


68
STAG3
NA
NA
NA
NA
2.4
1


69
PILRB
NA
NA
NA
NA
2.9
1


70
PILRA
NA
NA
NA
NA
1.9
1


71
MEPCE
NA
NA
NA
NA
2.1
1


72
TSC22D4
NA
NA
NA
NA
2.1
1


73
C7orf51
NA
NA
NA
NA
2.2
1


74
AGFG2
NA
NA
NA
NA
2.3
1


75
LRCH4
NA
NA
NA
NA
2.2
1


76
FBXO24
NA
NA
NA
NA
2.5
1


77
PCOLCE
NA
NA
NA
NA
1.8
1


78
MOSPD3
NA
NA
NA
NA
2.3
1


79
TFR2
NA
NA
NA
NA
2.6
1


80
ACTL6B
NA
NA
NA
NA
1.7
1


81
GIGYF1
NA
NA
NA
NA
2.7
1


82
EPO
NA
NA
NA
NA
2.0
1


83
CPA2
NA
NA
NA
NA
2.1
1


84
CPA4
NA
NA
NA
NA
1.9
1


85
CPA5
NA
NA
NA
NA
2.8
1


86
CPA1
NA
NA
NA
NA
2.1
1


87
TSGA14
NA
NA
NA
NA
9.4
1


88
MEST
NA
NA
NA
NA
3.2
1


89
COPG2
NA
NA
NA
NA
3.1
1


90
ARHGEF5
NA
NA
NA
NA
2.7
1


91
DLGAP2
NA
NA
2.2
−1
NA
NA


92
ARHGEF10
NA
NA
2.9
−1
NA
NA


93
MYOM2
2.1
−1
NA
NA
NA
NA


94
CSMD1
NA
NA
NA
NA
4.6
−1 


95
MFHAS1
3.3
−1
NA
NA
NA
NA


96
ERI1
1.9
−1
NA
NA
NA
NA


97
TNKS
4  
−1
NA
NA
NA
NA


98
MSRA
5.1
−1
NA
NA
NA
NA


99
C8orf16
2.2
−1
NA
NA
NA
NA


100
MTMR9
1.9
−1
NA
NA
NA
NA


101
BLK
2.1
−1
NA
NA
NA
NA


102
GATA4
3.2
−1
NA
NA
NA
NA


103
NEIL2
2.7
−1
NA
NA
NA
NA


104
CTSB
2.8
−1
NA
NA
NA
NA


105
C8orf79
2.9
−1
NA
NA
NA
NA


106
DLC1
6.5
−1
NA
NA
NA
NA


107
SGCZ
4.7
−1
NA
NA
3.5
−1 


108
TUSC3
3.1
−1
NA
NA
NA
NA


109
MTMR7
3.7
−1
NA
NA
NA
NA


110
SLC7A2
4.1
−1
NA
NA
NA
NA


111
PDGFRL
4.8
−1
NA
NA
NA
NA


112
MTUS1
3.6
−1
NA
NA
NA
NA


113
PCM1
1.7
−1
NA
NA
NA
NA


114
ASAH1
7.1
−1
NA
NA
NA
NA


115
NAT2
3.3
−1
NA
NA
NA
NA


116
PSD3
7.3
−1
NA
NA
NA
NA


117
SH2D4A
2.9
−1
NA
NA
NA
NA


118
LZTS1
2  
−1
NA
NA
NA
NA


119
XPO7
2.3
−1
NA
NA
NA
NA


120
FAM160B2
2.5
−1
1.8
−1
NA
NA


121
NUDT18
NA
NA
2.3
−1
NA
NA


122
HR
NA
NA
2.7
−1
NA
NA


123
REEP4
NA
NA
2.5
−1
NA
NA


124
LGI3
NA
NA
2  
−1
NA
NA


125
BMP1
NA
NA
2.2
−1
NA
NA


126
PHYHIP
NA
NA
2.2
−1
NA
NA


127
POLR3D
NA
NA
2.7
−1
NA
NA


128
SLC39A14
1.8
−1
2.2
−1
NA
NA


129
PPP3CC
3.1
−1
2.6
−1
NA
NA


130
SORBS3
NA
NA
3  
−1
NA
NA


131
PDLIM2
NA
NA
2.9
−1
NA
NA


132
C8orf58
NA
NA
3  
−1
NA
NA


133
KIAA1967
2.8
−1
3.1
−1
NA
NA


134
BIN3
1.7
−1
2.8
−1
NA
NA


135
EGR3
NA
NA
2  
−1
NA
NA


136
RHOBTB2
NA
NA
1.7
−1
NA
NA


137
TNFRSF10D
1.9
−1
NA
NA
NA
NA


138
TNFRSF10A
NA
NA
2.2
−1
NA
NA


139
CHMP7
NA
NA
2.4
−1
NA
NA


140
LOXL2
NA
NA
1.9
−1
NA
NA


141
ENTPD4
2.7
−1
NA
NA
NA
NA


142
erw
2.6
−1
NA
NA
NA
NA


143
NKX2-6
2.4
−1
NA
NA
NA
NA


144
DOCK5
5.4
−1
NA
NA
NA
NA


145
KCTD9
2  
−1
NA
NA
NA
NA


146
CDCA2
2  
−1
NA
NA
NA
NA


147
EBF2
5.1
−1
NA
NA
NA
NA


148
DPYSL2
3.3
−1
NA
NA
NA
NA


149
ADRA1A
3.9
−1
NA
NA
NA
NA


150
STMN4
3.3
−1
NA
NA
NA
NA


151
TRIM35
2.6
−1
NA
NA
NA
NA


152
PTK2B
7  
−1
NA
NA
NA
NA


153
CHRNA2
3.5
−1
NA
NA
NA
NA


154
EPHX2
3.3
−1
NA
NA
NA
NA


155
CCDC25
4.4
−1
NA
NA
NA
NA


156
SCARA5
3.3
−1
NA
NA
NA
NA


157
C8orf80
3.6
−1
NA
NA
NA
NA


158
ELP3
3.4
−1
NA
NA
NA
NA


159
HMBOX1
1.8
−1
NA
NA
NA
NA


160
KIF13B
2.7
−1
NA
NA
NA
NA


161
TOX
4.3
1
NA
NA
NA
NA


162
CYP7B1
NA
NA
1.7
 1
NA
NA


163
CPA6
3.8
1
NA
NA
NA
NA


164
PREX2
7.5
1
NA
NA
NA
NA


165
C8orf34
6  
1
NA
NA
NA
NA


166
SULF1
5.2
1
3.4
 1
NA
NA


167
SLCO5A1
4.9
1
4.2
 1
NA
NA


168
PRDM14
4.7
1
NA
NA
NA
NA


169
NCOA2
3.2
1
2.4
 1
NA
NA


170
LACTB2
2.6
1
NA
NA
NA
NA


171
XKR9
2.7
1
NA
NA
NA
NA


172
EYA1
3.4
1
NA
NA
NA
NA


173
MSC
2  
1
NA
NA
NA
NA


174
TRPA1
2.3
1
NA
NA
NA
NA


175
KCNB2
6.8
1
NA
NA
NA
NA


176
RPL7
2.3
1
NA
NA
NA
NA


177
STAU2
4.6
1
NA
NA
NA
NA


178
TCEB1
1.8
1
NA
NA
NA
NA


179
JPH1
6  
1
NA
NA
NA
NA


180
GDAP1
2  
1
NA
NA
NA
NA


181
PI15
3  
1
NA
NA
NA
NA


182
CRISPLD1
4.9
1
NA
NA
NA
NA


183
HNF4G
4.1
1
NA
NA
NA
NA


184
ZFHX4
4.3
1
NA
NA
NA
NA


185
PKIA
3.3
1
NA
NA
NA
NA


186
STMN2
2.8
1
NA
NA
NA
NA


187
HEY1
3  
1
NA
NA
NA
NA


188
ZNF704
NA
NA
2.5
 1
NA
NA


189
PAG1
NA
NA
2  
 1
NA
NA


190
IMPA1
NA
NA
1.9
 1
NA
NA


191
RALYL
2.8
1
NA
NA
NA
NA


192
CNGB3
1.8
1
NA
NA
NA
NA


193
CNBD1
3.8
1
3.8
 1
NA
NA


194
MMP16
NA
NA
3.5
 1
NA
NA


195
SLC26A7
NA
NA
2.2
 1
NA
NA


196
CDH17
2.8
1
NA
NA
NA
NA


197
PTDSS1
2.5
1
NA
NA
NA
NA


198
SDC2
3.4
1
NA
NA
NA
NA


199
MTDH
NA
NA
1.9
 1
NA
NA


200
NIPAL2
1.9
1
NA
NA
NA
NA


201
STK3
1.8
1
NA
NA
NA
NA


202
VPS13B
3.9
1
NA
NA
NA
NA


203
RGS22
2.7
1
NA
NA
NA
NA


204
YWHAZ
NA
NA
2.2
 1
NA
NA


205
ZNF706
NA
NA
2.8
 1
NA
NA


206
GRHL2
NA
NA
2.4
 1
NA
NA


207
NCALD
5.5
1
2.9
 1
NA
NA


208
UBR5
NA
NA
2.2
 1
NA
NA


209
ATP6V1C1
NA
NA
2.4
 1
NA
NA


210
RIMS2
2  
1
4  
 1
NA
NA


211
DPYS
3.2
1
NA
NA
NA
NA


212
LRP12
NA
NA
2  
 1
NA
NA


213
ZFPM2
4.2
1
6.3
 1
NA
NA


214
ANGPT1
2.4
1
NA
NA
NA
NA


215
RSPO2
1.8
1
NA
NA
NA
NA


216
CSMD3
4.9
1
4.2
 1
NA
NA


217
TRPS1
2.9
1
2.7
 1
NA
NA


218
ZHX2
NA
NA
2.6
 1
NA
NA


219
ANXA13
2.1
1
NA
NA
NA
NA


220
KIAA0196
2.6
1
NA
NA
NA
NA


221
POU5F1B
2.9
1
NA
NA
NA
NA


222
MYC
4.2
1
NA
NA
NA
NA


223
TMEM75
3.5
1
NA
NA
NA
NA


224
ASAP1
NA
NA
3.6
 1
NA
NA


225
ADCY8
3.1
1
5.4
 1
NA
NA


226
EFR3A
3.1
1
NA
NA
NA
NA


227
OC90
1.9
1
NA
NA
NA
NA


228
KCNQ3
6  
1
NA
NA
NA
NA


229
TMEM71
2.9
1
NA
NA
NA
NA


230
PHF20L1
2.8
1
NA
NA
NA
NA


231
TG
3.8
1
NA
NA
NA
NA


232
SLA
2.2
1
NA
NA
NA
NA


233
WISP1
2.2
1
NA
NA
NA
NA


234
ZFAT
2.5
1
NA
NA
NA
NA


235
PTK2
NA
NA
2.3
 1
NA
NA


236
GRK5
NA
NA
2.4
−1
NA
NA


237
RCOR2
NA
NA
NA
NA
1.7
1


238
MACROD1
NA
NA
1.9
 1
2.9
1


239
STIP1
NA
NA
NA
NA
1.8
1


240
SF1
NA
NA
NA
NA
2.5
1


241
MEN1
NA
NA
NA
NA
2.1
1


242
CDC42BPG
NA
NA
NA
NA
2.3
1


243
PPP2R5B
NA
NA
NA
NA
1.8
1


244
GYS2
NA
NA
NA
NA
2.8
−1 


245
PDS5B
NA
NA
NA
NA
2.0
−1 


246
C13orf23
NA
NA
NA
NA
2.2
−1 


247
ENOX1
NA
NA
NA
NA
5.6
−1 


248
LRCH1
NA
NA
NA
NA
2.4
−1 


249
ESD
NA
NA
NA
NA
2.6
−1 


250
HTR2A
NA
NA
NA
NA
3.3
−1 


251
DIAPH3
NA
NA
NA
NA
3.3
−1 


252
PCDH9
NA
NA
NA
NA
4.5
−1 


253
KLHL1
NA
NA
NA
NA
1.9
−1 


254
DACH1
NA
NA
NA
NA
1.9
−1 


255
GPC5
NA
NA
NA
NA
2.1
−1 


256
NALCN
NA
NA
NA
NA
2.2
−1 


257
TFDP1
NA
NA
2.3
−1
NA
NA


258
MDGA2
NA
NA
NA
NA
2.8
−1 


259
MEIS2
NA
NA
NA
NA
3.9
−1 


260
VPS13C
NA
NA
NA
NA
1.8
−1 


261
TBC1D10B
NA
NA
NA
NA
1.8
1


262
RNF40
NA
NA
NA
NA
2.1
1


263
CNGB1
1.8
−1
NA
NA
NA
NA


264
C16orf80
2.2
−1
NA
NA
NA
NA


265
CDH8
NA
NA
NA
NA
3.7
−1 


266
NFAT5
2.3
−1
NA
NA
NA
NA


267
WWP2
1.8
−1
NA
NA
NA
NA


268
DDX19A
2.3
−1
NA
NA
NA
NA


269
ST3GAL2
2.4
−1
NA
NA
NA
NA


270
ZFHX3
2.2
−1
NA
NA
NA
NA


271
GLG1
2.1
−1
NA
NA
NA
NA


272
WDR59
2.1
−1
NA
NA
NA
NA


273
BCAR1
2.5
−1
NA
NA
NA
NA


274
CFDP1
3  
−1
NA
NA
NA
NA


275
CNTNAP4
3.2
−1
NA
NA
NA
NA


276
ADAMTS18
3.5
−1
NA
NA
NA
NA


277
NUDT7
2.2
−1
NA
NA
NA
NA


278
CLEC3A
2.3
−1
NA
NA
NA
NA


279
WWOX
9.3
−1
NA
NA
NA
NA


280
CDYL2
2.5
−1
NA
NA
NA
NA


281
C16orf46
NA
NA
2.2
−1
NA
NA


282
GCSH
NA
NA
1.9
−1
NA
NA


283
PKD1L2
4.9
−1
2  
−1
NA
NA


284
BCMO1
2.9
−1
3.6
−1
NA
NA


285
GAN
2.7
−1
2.4
−1
NA
NA


286
PLCG2
2.9
−1
2.7
−1
NA
NA


287
HSD17B2
2.6
−1
NA
NA
NA
NA


288
CDH13
8  
−1
2.9
−1
NA
NA


289
MLYCD
2.4
−1
NA
NA
NA
NA


290
NECAB2
NA
NA
2  
−1
NA
NA


291
MBTPS1
2.7
−1
NA
NA
NA
NA


292
HSDL1
NA
NA
2  
−1
NA
NA


293
LRRC50
2.4
−1
NA
NA
NA
NA


294
WFDC1
2.3
−1
NA
NA
NA
NA


295
ATP2C2
3.6
−1
NA
NA
NA
NA


296
KIAA1609
NA
NA
1.9
−1
NA
NA


297
KLHL36
NA
NA
1.8
−1
NA
NA


298
USP10
2.3
−1
NA
NA
NA
NA


299
CRISPLD2
2.5
−1
2.9
−1
NA
NA


300
ZDHHC7
NA
NA
2.5
−1
NA
NA


301
KIAA0513
NA
NA
2.1
−1
NA
NA


302
KIAA0182
NA
NA
2  
−1
NA
NA


303
GINS2
NA
NA
2.1
−1
NA
NA


304
C16orf74
NA
NA
2.3
−1
NA
NA


305
COX4NB
NA
NA
2.5
−1
NA
NA


306
COX4I1
NA
NA
2.6
−1
NA
NA


307
IRF8
NA
NA
2.5
−1
NA
NA


308
FOXF1
NA
NA
2.2
−1
NA
NA


309
MTHFSD
NA
NA
2.4
−1
NA
NA


310
JPH3
2.4
−1
2.4
−1
NA
NA


311
KLHDC4
NA
NA
2.5
−1
NA
NA


312
SLC7A5
1.7
−1
3  
−1
NA
NA


313
CA5A
2.6
−1
3.8
−1
NA
NA


314
BANP
2.6
−1
3.3
−1
NA
NA


315
ZFPM1
NA
NA
2.5
−1
NA
NA


316
C16orf85
NA
NA
2.1
−1
NA
NA


317
ZC3H18
NA
NA
2.1
−1
NA
NA


318
IL17C
NA
NA
1.8
−1
NA
NA


319
CYBA
NA
NA
2.9
−1
NA
NA


320
MVD
NA
NA
2.3
−1
NA
NA


321
SNAI3
NA
NA
2.4
−1
NA
NA


322
RNF166
NA
NA
2.2
−1
NA
NA


323
FAM38A
NA
NA
2.7
−1
NA
NA


324
CDT1
NA
NA
2  
−1
NA
NA


325
GALNS
NA
NA
2.3
−1
NA
NA


326
TRAPPC2L
NA
NA
1.9
−1
NA
NA


327
CBFA2T3
NA
NA
1.9
−1
NA
NA


328
CDH15
NA
NA
1.9
−1
NA
NA


329
ANKRD11
3  
−1
3.7
−1
NA
NA


330
FANCA
NA
NA
1.9
−1
NA
NA


331
SPIRE2
NA
NA
1.7
−1
NA
NA


332
TCF25
NA
NA
2.1
−1
NA
NA


333
TUBB3
NA
NA
2.6
−1
NA
NA


334
DEF8
NA
NA
1.9
−1
NA
NA


335
AFG3L1
NA
NA
2.3
−1
NA
NA


336
GAS8
NA
NA
2.9
−1
NA
NA


337
DNAH2
1.8
−1
NA
NA
NA
NA


338
NKIRAS2
NA
NA
NA
NA
2.0
1


339
DHX58
NA
NA
NA
NA
8.9
1


340
KAT2A
NA
NA
NA
NA
3.2
1


341
HSPB9
NA
NA
NA
NA
2.9
1


342
RAB5C
NA
NA
NA
NA
3.5
1


343
KCNH4
NA
NA
NA
NA
3.8
1


344
GHDC
NA
NA
NA
NA
1.8
1


345
NOTUM
NA
NA
NA
NA
2.7
1


346
ASPSCR1
NA
NA
NA
NA
1.8
1


347
DUS1L
NA
NA
NA
NA
2.3
1


348
FASN
NA
NA
NA
NA
3.0
1


349
CDH2
NA
NA
NA
NA
3.4
−1 


350
NOL4
NA
NA
NA
NA
3.9
−1 


351
DTNA
NA
NA
NA
NA
2.2
−1 


352
DCC
NA
NA
NA
NA
6.6
−1 


353
WDR7
NA
NA
NA
NA
2.0
−1 


354
CD226
NA
NA
NA
NA
3.3
−1 


355
ZSWIM4
NA
NA
NA
NA
2.8
1


356
C19orf57
NA
NA
NA
NA
2.8
1


357
CC2D1A
NA
NA
NA
NA
4.0
1


358
RFX1
NA
NA
NA
NA
2.2
1


359
PLCB1
NA
NA
NA
NA
1.9
−1 


360
SMARCB1
NA
NA
1.8
−1
NA
NA


361
TBC1D22A
NA
NA
4.6
−1
NA
NA


362
RAB9A
NA
NA
3.7
 1
NA
NA


363
TFE3
NA
NA
2.1
 1
NA
NA


364
HEPH
1.8
1
NA
NA
NA
NA


365
EDA2R
2  
1
NA
NA
NA
NA


366
AR
2.3
1
2.6
 1
NA
NA


367
OPHN1
5.8
1
NA
NA
NA
NA


368
NLGN4Y
NA
NA
NA
NA
2.4
−1 

















index
gene
gene_Chr
gene_Cytoband
gene_start
gene_end







1
CLCNKB
1
p36.13
16242834
16256390



2
ARHGEF10L
1
p36.13
17738917
17896956



3
ACTL8
1
p36.13
17954395
18026145



4
DPYD
1
p21.3
97315890
98159203



5
COL11A1
1
p21.1
1.03E+08
1.03E+08



6
NRXN1
2
p16.3
49999148
51113178



7
CTNNA2
2
p12
79732191
80729415



8
ALCAM
3
q13.11
1.07E+08



9
ZBTB20
3
q13.31
1.18E+08



10
MYLK
3
q21.1
124811586
125085868



11
KALRN
3
q21.1
125296275
125922726



12
BFSP2
3
q22.1
134601480
134676746



13
SLC9A9
3
q24
144466755
145049979



14
KCNAB1
3
q25.31
157321095
157739621



15
PPM1L
3
q26.1
161956791
162271511



16
MECOM
3
q26.2
170283981
170347054



17
DGKG
3
q27.3
187347686
187562717



18
TP63
3
q28
190831910
191107935



19
LEPREL1
3
q28
191157213
191321407



20
BOD1L
4
p15.33
13179464
13238426



21
KCTD8
4
p13
43870683
44145581



22
GABRA2
4
p12
45946341
46086561



23
LPHN3
4
q13.1
62045434
62620762



24
GRID2
4
q22.1
93444831
94914730



25
DCHS2
4
q32.1
155375138
155632318



26
GLRB
4
q32.1
158216788
158312299



27
GRIA2
4
q32.1
158361186
158506677



28
FSTL5
4
q32.2
162524501
163304636



29
CENPH
5
q13.2
68521131
68541939



30
MRPS36
5
q13.2
68549329
68577710



31
CDK7
5
q13.2
68566471
68609004



32
CCDC125
5
q13.2
68612278
68664392



33
TAF9
5
q13.2
68696327
68701596



34
RAD17
5
q13.2
68700880
68746384



35
MARVELD2
5
q13.2
68746699
68773646



36
MEF2C
5
q14.3
88051922
88214780



37
TICAM2
5
q22.3
114942247
114989610



38
COL21A1
6
p12.1
56029347
56366851



39
COL19A1
6
q13
70633169
70978878



40
COL12A1
6
q14.1
75850762
75972343



41
UBE2CBP
6
q14.1
83658836
83832269



42
ME1
6
q14.2
83976827
84197498



43
MAP3K7
6
q15
91282074
91353628



44
EPHA7
6
q16.1
94007864
94185993



45
FBXL4
6
q16.2
99428055
99502570



46
SIM1
6
q16.3
100939606
101019494



47
ASCC3
6
q16.3
101062791
101435961



48
NUS1
6
q22.2
118103310
118138577



49
TRDN
6
q22.31
123579182
123999937



50
UTRN
6
q24.2
144654566
145215859



51
EPM2A
6
q24.3
145988141
146098684



52
GRM1
6
q24.3
146390611
146800427



53
C6orf118
6
q27
165613148
165643101



54
PDE10A
6
q27
165660766
165995578



55
IQCE
7
p22.2
2565158
2620893



56
FBXL18
7
p22.1
5481955
5523646



57
STX1A
7
q11.23
72751472
72771925



58
CLDN3
7
q11.23
72821263
72822536



59
EIF4H
7
q11.23
73226625
73249358



60
LAT2
7
q11.23
73261662
73282099



61
RFC2
7
q11.23
73283770
73306674



62
CLIP2
7
q11.23
73341739
73458196



63
HIP1
7
q11.23
75001345
75206215



64
TMEM120A
7
q11.23
75454238
75461913



65
STYXL1
7
q11.23
75463592
75515257



66
MDH2
7
q11.23
75515329
75533864



67
YWHAG
7
q11.23
75794053
75826252



68
STAG3
7
q22.1
99613474
99659778



69
PILRB
7
q22.1
99771673
99803388



70
PILRA
7
q22.1
99809004
99835650



71
MEPCE
7
q22.1
99865190
99869676



72
TSC22D4
7
q22.1
99902080
99914838



73
C7orf51
7
q22.1
99919486
99930358



74
AGFG2
7
q22.1
99974770
100003778



75
LRCH4
7
q22.1
100009570
100021712



76
FBXO24
7
q22.1
100021892
100036674



77
PCOLCE
7
q22.1
100037818
100043732



78
MOSPD3
7
q22.1
100047661
100050932



79
TFR2
7
q22.1
100055975
100077109



80
ACTL6B
7
q22.1
100078678
100092007



81
GIGYF1
7
q22.1
100115066
100124806



82
EPO
7
q22.1
100156359
100159257



83
CPA2
7
q32.2
129693939
129716870



84
CPA4
7
q32.2
129720230
129751249



85
CPA5
7
q32.2
129771892
129795807



86
CPA1
7
q32.2
129807468
129815165



87
TSGA14
7
q32.2
129823611
129868133



88
MEST
7
q32.2
129913282
129933363



89
COPG2
7
q32.2
129933404
129935887



90
ARHGEF5
7
q35
143683366
143708657



91
DLGAP2
8
p23.3
1436939
1644048



92
ARHGEF10
8
p23.3
1759549
1894206



93
MYOM2
8
p23.3
1980565
2080779



94
CSMD1
8
p23.2
2780282
3258996



95
MFHAS1
8
p23.1
8679409
8788541



96
ERI1
8
p23.1
8897856
8928139



97
TNKS
8
p23.1
9450855
9677266



98
MSRA
8
p23.1
9949189
10323803



99
C8orf16
8
p23.1
11021390
11025155



100
MTMR9
8
p23.1
11179410
11223062



101
BLK
8
p23.1
11388930
11459516



102
GATA4
8
p23.1
11599162
11654918



103
NEIL2
8
p23.1
11664627
11682263



104
CTSB
8
p23.1
11737442
11763055



105
C8orf79
8
p22
12847554
12931653



106
DLC1
8
p22
12985243
13416766



107
SGCZ
8
p22
13991744
15140219



108
TUSC3
8
p22
15442101
15666366



109
MTMR7
8
p22
17199923
17315207



110
SLC7A2
8
p22
17398975
17472357



111
PDGFRL
8
p22
17478443
17545655



112
MTUS1
8
p22
17545584
17702666



113
PCM1
8
p22
17824646
17935562



114
ASAH1
8
p22
17958214
17986787



115
NAT2
8
p22
18293035
18303003



116
PSD3
8
p22
18429093
18915476



117
SH2D4A
8
p21.3
19215483
19297594



118
LZTS1
8
p21.3
20147956
20205754



119
XPO7
8
p21.3
21833126
21920041



120
FAM160B2
8
p21.3
22002660
22017835



121
NUDT18
8
p21.3
22020328
22023403



122
HR
8
p21.3
22027877
22045326



123
REEP4
8
p21.3
22051478
22055393



124
LGI3
8
p21.3
22060290
22070290



125
BMP1
8
p21.3
22078645
22125782



126
PHYHIP
8
p21.3
22133162
22145796



127
POLR3D
8
p21.3
22158564
22164624



128
SLC39A14
8
p21.3
22280737
22347462



129
PPP3CC
8
p21.3
22354541
22454580



130
SORBS3
8
p21.3
22465196
22488952



131
PDLIM2
8
p21.3
22492199
22511483



132
C8orf58
8
p21.3
22513067
22517605



133
KIAA1967
8
p21.3
22518202
22533920



134
BIN3
8
p21.3
22533906
22582553



135
EGR3
8
p21.3
22601119
22606760



136
RHOBTB2
8
p21.3
22913059
22933655



137
TNFRSF10D
8
p21.3
23049051
23077485



138
TNFRSF10A
8
p21.3
23104916
23138584



139
CHMP7
8
p21.3
23157095
23175450



140
LOXL2
8
p21.3
23210097
23317667



141
ENTPD4
8
p21.3
23299386
23371081



142
erw
8
p21.2
23442308
23486008



143
NKX2-6
8
p21.2
23615909
23620056



144
DOCK5
8
p21.2
25098204
25326536



145
KCTD9
8
p21.2
25341283
25371837



146
CDCA2
8
p21.2
25372428
25421353



147
EBF2
8
p21.2
25758042
25958292



148
DPYSL2
8
p21.2
26491327
26571607



149
ADRA1A
8
p21.2
26661584
26778839



150
STMN4
8
p21.2
27149738
27171843



151
TRIM35
8
p21.2
27198321
27224751



152
PTK2B
8
p21.2
27224916
27372820



153
CHRNA2
8
p21.2
27373196
27392730



154
EPHX2
8
p21.1
27404562
27458403



155
CCDC25
8
p21.1
27646756
27686089



156
SCARA5
8
p21.1
27783672
27906117



157
C8orf80
8
p21.1
27935607
27997307



158
ELP3
8
p21.1
27999759
28104584



159
HMBOX1
8
p21.1
28803830
28966706



160
KIF13B
8
p21.1
28980715
29176529



161
TOX
8
q12.1
59880531
60194321



162
CYP7B1
8
q12.3
65671246
65873902



163
CPA6
8
q13.2
68496963
68821134



164
PREX2
8
q13.2
69026907
69306451



165
C8orf34
8
q13.2
69405511
69893810



166
SULF1
8
q13.2
70541427
70735701



167
SLCO5A1
8
q13.3
70747129
70909762



168
PRDM14
8
q13.3
71126574
71146116



169
NCOA2
8
q13.3
71178380
71478574



170
LACTB2
8
q13.3
71712045
71743946



171
XKR9
8
q13.3
71755848
71809213



172
EYA1
8
q13.3
72272222
72437021



173
MSC
8
q13.3
72916332
72919285



174
TRPA1
8
q13.3
73096040
73150373



175
KCNB2
8
q13.3
73642524
74012880



176
RPL7
8
q21.11
74365073
74375857



177
STAU2
8
q21.11
74495160
74821629



178
TCEB1
8
q21.11
75021184
75046959



179
JPH1
8
q21.11
75309493
75396117



180
GDAP1
8
q21.11
75425173
75441888



181
PI15
8
q21.11
75899327
75929819



182
CRISPLD1
8
q21.11
76059531
76109346



183
HNF4G
8
q21.11
76482732
76641600



184
ZFHX4
8
q21.11
77756078
77942076



185
PKIA
8
q21.12
79590891
79678040



186
STMN2
8
q21.13
80685916
80740868



187
HEY1
8
q21.13
80838801
80842653



188
ZNF704
8
q21.13
81713324
81949571



189
PAG1
8
q21.13
82042605
82186858



190
IMPA1
8
q21.13
82732751
82761115



191
RALYL
8
q21.2
85604112
85963979



192
CNGB3
8
q21.3
87655277
87825017



193
CNBD1
8
q21.3
87947840
88435220



194
MMP16
8
q21.3
89118580
89408833



195
SLC26A7
8
q21.3
92330692
92479554



196
CDH17
8
q22.1
95208566
95289986



197
PTDSS1
8
q22.1
97343340
97415950



198
SDC2
8
q22.1
97575058
97693213



199
MTDH
8
q22.1
98725583
98807711



200
NIPAL2
8
q22.2
99273563
99375797



201
STK3
8
q22.2
99536037
99907074



202
VPS13B
8
q22.2
100094670
100958983



203
RGS22
8
q22.2
101042452
101187520



204
YWHAZ
8
q22.3
101999980
102034745



205
ZNF706
8
q22.3
102278444
102287136



206
GRHL2
8
q22.3
102574162
102750995



207
NCALD
8
q22.3
102767947
103206311



208
UBR5
8
q22.3
103334748
103493671



209
ATP6V1C1
8
q22.3
104102424
104154461



210
RIMS2
8
q22.3
104582291
105333263



211
DPYS
8
q22.3
105460829
105548453



212
LRP12
8
q22.3
105570643
105670344



213
ZFPM2
8
q23.1
106400323
106885939



214
ANGPT1
8
q23.1
108330899
108579459



215
RSPO2
8
q23.1
108980721
109165052



216
CSMD3
8
q23.3
113304337
114518418



217
TRPS1
8
q23.3
116489900
116750429



218
ZHX2
8
q24.13
123863082
124055936



219
ANXA13
8
q24.13
124762216
124818828



220
KIAA0196
8
q24.13
126105691
126173191



221
POU5F1B
8
q24.21
128497039
128498621



222
MYC
8
q24.21
128816862
128822853



223
TMEM75
8
q24.21
129029046
129029462



224
ASAP1
8
q24.21
131133535
131483399



225
ADCY8
8
q24.22
131861736
132123854



226
EFR3A
8
q24.22
132985517
133095071



227
OC90
8
q24.22
133105667
133167084



228
KCNQ3
8
q24.22
133210438
133561961



229
TMEM71
8
q24.22
133779633
133842010



230
PHF20L1
8
q24.22
133856786
133930234



231
TG
8
q24.22
133948387
134216325



232
SLA
8
q24.22
134118155
134184479



233
WISP1
8
q24.22
134272494
134310751



234
ZFAT
8
q24.22
135559215
135794463



235
PTK2
8
q24.3
141737683
142080514



236
GRK5
10
q26.11
120957091
121205118



237
RCOR2
11
q13.1
63435303
63440892



238
MACROD1
11
q13.1
63522607
63690109



239
STIP1
11
q13.1
63709873
63728596



240
SF1
11
q13.1
64288654
64302817



241
MEN1
11
q13.1
64327564
64335342



242
CDC42BPG
11
q13.1
64348240
64368617



243
PPP2R5B
11
q13.1
64448756
64458523



244
GYS2
12
p12.1
21580390
21649048



245
PDS5B
13
q13.1
32058564
32250157



246
C13orf23
13
q13.3
38482003
38510252



247
ENOX1
13
q14.11
42685704
43259044



248
LRCH1
13
q14.13
46025304
46222786



249
ESD
13
q14.2
46243393
46269368



250
HTR2A
13
q14.2
46305514
46368176



251
DIAPH3
13
q21.2
59137718
59636120



252
PCDH9
13
q21.32
65774970
66702578



253
KLHL1
13
q21.33
69172727
69580592



254
DACH1
13
q21.33
70910099
71339331



255
GPC5
13
q31.3
90848919
92316693



256
NALCN
13
q33.1
100504131
100866814



257
TFDP1
13
q34
113287057
113343500



258
MDGA2
14
q21.3
46379045
47213703



259
MEIS2
15
q14
34970519
35189740



260
VPS13C
15
q22.2
59931884
60139939



261
TBC1D10B
16
p11.2
30275925
30288587



262
RNF40
16
p11.2
30681100
30695129



263
CNGB1
16
q13
56475004
56562513



264
C16orf80
16
q21
56705000
56720797



265
CDH8
16
q21
60244866
60628240



266
NFAT5
16
q22.1
68156498
68296054



267
WWP2
16
q22.1
68353710
68533145



268
DDX19A
16
q22.1
68938322
68964780



269
ST3GAL2
16
q22.1
68970839
69030492



270
ZFHX3
16
q22.3
71374285
71639775



271
GLG1
16
q22.3
73043357
73198518



272
WDR59
16
q23.1
73464975
73576518



273
BCAR1
16
q23.1
73820429
73859452



274
CFDP1
16
q23.1
73885109
74024888



275
CNTNAP4
16
q23.1
74868677
75150636



276
ADAMTS18
16
q23.1
75873527
76026512



277
NUDT7
16
q23.1
76313912
76333652



278
CLEC3A
16
q23.1
76613944
76623495



279
WWOX
16
q23.1
76691052
77803532



280
CDYL2
16
q23.2
79195176
79395680



281
C16orf46
16
q23.2
79644603
79668373



282
GCSH
16
q23.2
79673430
79687481



283
PKD1L2
16
q23.2
79691985
79811477



284
BCMO1
16
q23.2
79829797
79882248



285
GAN
16
q23.2
79906076
79971441



286
PLCG2
16
q23.2
80370408
80549399



287
HSD17B2
16
q23.3
80626364
80689638



288
CDH13
16
q23.3
81439761
82387705



289
MLYCD
16
q23.3
82490231
82507286



290
NECAB2
16
q23.3
82559738
82593878



291
MBTPS1
16
q24.1
82644872
82708018



292
HSDL1
16
q24.1
82713389
82736265



293
LRRC50
16
q24.1
82736366
82769024



294
WFDC1
16
q24.1
82885822
82920888



295
ATP2C2
16
q24.1
82959634
83055293



296
KIAA1609
16
q24.1
83068608
83095794



297
KLHL36
16
q24.1
83239632
83253416



298
USP10
16
q24.1
83291050
83371026



299
CRISPLD2
16
q24.1
83411113
83500614



300
ZDHHC7
16
q24.1
83565573
83602642



301
KIAA0513
16
q24.1
83618911
83685327



302
KIAA0182
16
q24.1
84202524
84267311



303
GINS2
16
q24.1
84268782
84280089



304
C16orf74
16
q24.1
84298624
84342190



305
COX4NB
16
q24.1
84369737
84390601



306
COX4I1
16
q24.1
84390697
84398109



307
IRF8
16
q24.1
84490275
84513710



308
FOXF1
16
q24.1
85101634
85105570



309
MTHFSD
16
q24.1
85121284
85157509



310
JPH3
16
q24.2
86194000
86289263



311
KLHDC4
16
q24.2
86298920
86357056



312
SLC7A5
16
q24.2
86421131
86460615



313
CA5A
16
q24.2
86479126
86527613



314
BANP
16
q24.2
86542539
86668425



315
ZFPM1
16
q24.2
87047226
87128890



316
C16orf85
16
q24.2
87147613
87164049



317
ZC3H18
16
q24.2
87164343
87225756



318
IL17C
16
q24.3
87232502
87234385



319
CYBA
16
q24.3
87237199
87244958



320
MVD
16
q24.3
87245849
87257019



321
SNAI3
16
q24.3
87271591
87280383



322
RNF166
16
q24.3
87290411
87300312



323
FAM38A
16
q24.3
87302916
87330317



324
CDT1
16
q24.3
87397687
87403166



325
GALNS
16
q24.3
87407644
87450885



326
TRAPPC2L
16
q24.3
87451007
87455020



327
CBFA2T3
16
q24.3
87468768
87570902



328
CDH15
16
q24.3
87765664
87789400



329
ANKRD11
16
q24.3
87861536
88084470



330
FANCA
16
q24.3
88331460
88410566



331
SPIRE2
16
q24.3
88422408
88465228



332
TCF25
16
q24.3
88467520
88505287



333
TUBB3
16
q24.3
88513168
88530006



334
DEF8
16
q24.3
88542684
88561968



335
AFG3L1
16
q24.3
88566489
88594696



336
GAS8
16
q24.3
88616509
88638880



337
DNAH2
17
p13.1
7562746
7677783



338
NKIRAS2
17
q21.2
37422564
37431180



339
DHX58
17
q21.2
37506979
37518277



340
KAT2A
17
q21.2
37518657
37526872



341
HSPB9
17
q21.2
37528361
37528897



342
RAB5C
17
q21.2
37530524
37560548



343
KCNH4
17
q21.2
37562439
37586822



344
GHDC
17
q21.2
37594632
37599722



345
NOTUM
17
q25.3
77503689
77512353



346
ASPSCR1
17
q25.3
77528715
77568569



347
DUS1L
17
q25.3
77609043
77629242



348
FASN
17
q25.3
77629504
77649395



349
CDH2
18
q12.1
23784934
24011189



350
NOL4
18
q12.1
29685062
30057513



351
DTNA
18
q12.1
30327279
30725806



352
DCC
18
q21.2
48121156
49311780



353
WDR7
18
q21.31
52469614
52848040



354
CD226
18
q22.2
65681175
65775140



355
ZSWIM4
19
p13.13
13767274
13804044



356
C19orf57
19
p13.12
13854168
13877909



357
CC2D1A
19
p13.12
13878014
13902691



358
RFX1
19
p13.12
13933353
13978097



359
PLCB1
20
p12.3
8061296
8813547



360
SMARCB1
22
q11.23
22459150
22506703



361
TBC1D22A
22
q13.31
45537193
45948399



362
RAB9A
23
p22.2
13617262
13637681



363
TFE3
23
p11.23
48772613
48787722



364
HEPH
23
q12
65299388
65403956



365
EDA2R
23
q12
65732204
65775608



366
AR
23
q12
66680599
66860844



367
OPHN1
23
q12
67179440
67570372



368
NLGN4Y
24
q11.221
15144026
15466924











Table 13 Cont'd . . .


Table 13 Cont'd . . .


Table 13 Cont'd . . .


Table 13 Cont'd . . .


Table 13 Cont'd . . .


Table 13 Cont'd . . .









TABLE 14







Table14-1a























Final-




NYU-
MSKs1-
MSKs1-
MSKs2-

MSKs2-
MSKs2
logrank-
logank-
logrank-
gene-
gene-


RANK
gene
index
NYU-2
NYU-dir
count
Z
dir
count
MSKs2-Z
dir
count
n52random
n271random
composite
Chr
Cytoband





1
PPP3CC
129
3.1
−1
958
2.6
−1
965
NA
NA
NA
48
41
45
8
p21.3


2
SLCO5A1
167
4.9
1
1000
4.2
1
982
NA
NA
NA
31
13
19
8
q13.3


5
SLC7A5
312
1.7
−1
508
3
−1
980
NA
NA
NA
43
37
40
18
q24.2


4
SLC7A2
110
4.1
−1
1000
NA
NA
NA
NA
NA
NA
44
43
44
8
p22


5
CRISPLD2
299
2.5
−1
735
2.9
−1
939
NA
NA
NA
54
67
61
16
q24.1


6
CDH13
288
8
−1
984
2.9
−1
767
NA
NA
NA
46
86
63
16
q23.3


7
CDH8
265
NA
NA
NA
NA
NA
NA
3.7344
−1
989
15
10
11
16
q21


8
CDH2
348
NA
NA
NA
NA
NA
NA
3.4486
−1
967
16
15
17
18
q12.1


9
ASAH1
114
7.1
−1
1000
NA
NA
NA
NA
NA
NA
105
64
80
8
p22


10
KCNB2
175
8.8
1
1000
NA
NA
NA
NA
NA
NA
59
74
66
8
q13.3


11
KCNH4
343
NA
NA
NA
NA
NA
NA
3.7501
1
983
1
1
1
17
q21.2


12
KCTD8
21
NA
NA
NA
NA
NA
NA
2.8192
−1
921
30
24
29
4
p13


13
JPH1
179
6.8
1
1000
NA
NA
NA
NA
NA
NA
29
35
31
8
q21.11


14
MEST
88
NA
NA
NA
NA
NA
NA
3.2232
1
940
32
32
32
7
q32.2


15
NCALD
200
5.5
1
1000
2.9
1
953
NA
NA
NA
13
12
13
8
q22.3


16
COL19A1
39
NA
NA
NA
NA
NA
NA
3.4333
−1
936
27
20
21.5
6
q13


17
MAP3K7
43
NA
NA
NA
NA
NA
NA
3.1873
−1
929
47
54
49
6
q15


18
YWHAG
67
NA
NA
NA
NA
NA
NA
2.7386
1
951
40
62
47
7
q11.23


19
NOL4
350
NA
NA
NA
NA
NA
NA
3.9113
−1
993
4
2
2
18
q12.1


20
ENOX1
247
NA
NA
NA
NA
NA
NA
5.6235
−1
1000
2
8
4
13
q14.11


21
CSMD1
94
NA
NA
NA
NA
NA
NA
4.6280
−1
971
7
6
6
8
p23.2


22
SGCZ
107
4.7
−1
926
NA
NA
NA
3.5107
−1
861
9
5
7
8
p22


23
PDE10A
54
NA
NA
NA
NA
NA
NA
4.5945
−1
999
8
7
8
5
q27


24
PCDH9
252
NA
NA
NA
NA
NA
NA
4.5416
−1
962
5
19
9
13
q21.32


25
HTR2A
250
NA
NA
NA
NA
NA
NA
3.2974
−1
966
10
11
10
13
q14.2


26
HIP1
63
NA
NA
NA
NA
NA
NA
4.4416
1
1000
11
14
12
7
q11.23


27
CD226
354
NA
NA
NA
NA
NA
NA
3.3032
−1
1000
18
9
14
18
q22.2


28
DCC
352
NA
NA
NA
NA
NA
NA
6.6211
−1
1000
12
17
15
18
q21.2


29
CC2D1A
357
NA
NA
NA
NA
NA
NA
3.9705
1
996
17
18
18
19
p1312


30
PT K2B
152
7
−1
1000
NA
NA
NA
NA
NA
NA
20
27
21.5
8
p21.2


31
BCMO1
284
2.9
−1
943
3.6
−1
957
NA
NA
NA
26
21
23
16
q23.2


32
MACROD1
233
NA
NA
NA
1.9
1
533
2.8909
1
973
25
22
24
11
q13.1


33
GRID2
24
NA
NA
NA
NA
NA
NA
5.1108
−1
983
22
25
25
4
q22.1


34
DIAPH3
251
NA
NA
NA
NA
NA
NA
3.2653
−1
982
24
29
27
13
q21.2


35
PILRB
69
NA
NA
NA
NA
NA
NA
2.9352
1
996
25
25
28
7
q22.1


36
MEIS2
259
NA
NA
NA
NA
NA
NA
3.9428
−1
999
19
39
30
15
q14


37
MSRA
98
5.1
−1
999
NA
NA
NA
NA
NA
NA
34
31
33
8
p23.1


38
DPYD
4
NA
NA
NA
NA
NA
NA
2.8861
−1
847
33
34
34
1
p21.3










Table 14-1b




















Final-





clump-


min-
IndexO-
NYU-
MSKs1-



RANK
gene
gene-start
gene-end
genesBtwn
contg
index
dstprev
dstnext
disto-ROL
Proxy1
Zadjust
Zadust
MSKS2-Zadjust





1
PPP3CC
22354541
22454580
0
1
26
10616
−7079
−7079
1
0.52
0.29
NA


2
SLCO5A1
70747129
70909762
0
1
33
216812
−11428
−11428
1
1.63
1.16
NA


3
SLC7A5
86421131
86460815
0
1
58
18511
−84075
18511
1
0.00
0.47
NA


4
SLC7A2
17398975
17472357
0
1
21
6086
−83768
6086
1
1.10
NA
NA


5
CRISPLD2
83411113
83500814
0
1
56
64959
−40087
−40087
1
0.25
0.42
NA


6
CDH13
81439751
82387705
1
0
NA
102526
−750123
102526
1
3.67
0.42
NA


7
CDH8
60244866
60626240
82
0
NA
7528258
−3524069
−3524069
1
NA
NA
0.87


8
CDH2
23784934
24011189
19
0
NA
5673873
NA
5673873
1
NA
NA
0.70


9
ASAH1
17958214
17986787
1
1
22
306248
−22652
−22652
1
3.10
NA
NA


10
KCNB2
73642524
74012880
1
1
34
352193
492151
352193
1
2.91
NA
NA


11
KCNH4
37582439
37586822
1
1
6.4
7810
−1891
−1891
1
NA
NA
0.88


12
KCTD8
43870883
44145681
3
0
NA
1800760
−30632257
1800760
1
NA
NA
0.38


13
JPH1
75308493
75396117
0
1
35
29056
−262534
29058
1
227
NA
NA


14
MEST
129913282
129933363
0
1
13
41
−45149
41
1
NA
NA
0.56


15
NCALD
102767947
103206311
1
1
40
128437
−16952
−16962
1
2.03
0.42
NA


16
COL19A1
70833169
70978878
20
0
NA
4871884
NA
4871884
1
NA
NA
0.70


17
MAP3K7
91282074
91353828
0
1
5
2654236
−7084576
2654236
1
NA
NA
0.58


18
YWHAG
75794053
75828252
126
0
NA
23787222
−260189
−260189
1
NA
NA
0.34


19
NOL4
29686062
30057513
0
1
67
269766
−5673873
269766
1
NA
NA
0.98


20
ENOX1
42886704
43259044
18
0
NA
2766260
−4175452
2766260
1
NA
NA
2.12


21
CSMD1
2780262
3258996
46
1
14
5420413
699503
−699503
1
NA
NA
1.44


22
SGCZ
13991744
15140219
0
1
20
301882
−574978
301882
1
1.49
NA
0.74


23
PDE10A
165560755
166995578
NA
1
8
NA
−17665
−17655
1
NA
NA
1.49


24
PCDH9
65774970
66702579
0
1
49
2470149
−6138850
2470149
1
NA
NA
1.38


25
HTR2A
46305514
46368175
44
1
48
12769542
−36146
−36145
1
NA
NA
0.62


26
HIP1
75001345
75206215
5
0
NA
248023
−1543149
248023
1
NA
NA
1.32


25
CD226
65881175
65775140
NA
0
NA
NA
−12833135
−12033135
1
NA
NA
0.63


26
DCC
48121155
49311780
10
0
NA
3157834
−17395350
3157834
1
NA
NA
2.79


29
CC2D1A
13878014
13902691
1
1
68
30662
−105
−105
1
NA
NA
1.02


30
PT K2B
27224915
27372820
0
1
30
376
−165
−165
1
3.04
NA
NA


31
BCMO1
79829797
79882248
0
1
53
23828
−18320
−18320
1
0.42
0.80
NA


32
MACROD1
63522607
63690109
1
0
NA
19764
−81715
19784
1
NA
0.05
0.41


33
GRID2
93444831
94914730
186
0
NA
60460408
−3624009
−30824089
1
NA
NA
1.77


34
DIAPH3
59137718
59636120
2
0
NA
6138850
−12769542
6138850
1
NA
NA
0.60


35
PILRB
99771673
99803388
0
1
11
5616
−111895
5615
1
NA
NA
0.44


36
MEIS2
34970519
35189740
193
0
NA
24742144
NA
24742144
1
NA
NA
1.00


37
MSRA
9949189
10323803
4
1
16
897587
−271923
−271923
1
1.76
NA
NA


38
DPYD
97315890
98159203
19
0
NA
4955408
−79289745
4955408
1
NA
NA
0.41










Table 14-2a























Final-




NYU-
MSKs1-
MSKs1-
MSKs2-

MSKs2-
MSKs2
logrank-
logank-
logrank-
gene-
gene-


RANK
gene
index
NYU-2
NYU-dir
count
Z
dir
count
MSKs2-Z
dir
count
n52random
n271random
composite
Chr
Cytoband





39
ANKRD11
329
3
−1
948
3.7
−1
988
NA
NA
NA
37
33
35
18
q24.3


40
NRXN1
6
NA
NA
NA
NA
NA
NA
3.2327
−1
840
39
38
38
2
p16.3


41
ADCY8
225
3.1
1
980
5.4
1
1000
NA
NA
NA
52
30
39
8
q24.22


42
TRDN
49
NA
NA
NA
NA
NA
NA
3.0342
−1
898
38
44
41
6
q22.31


43
STAU2
177
4.6
1
1000
NA
NA
NA
NA
NA
NA
45
42
43
8
q21.11


44
SF1
240
NA
NA
NA
NA
NA
NA
2.4710
1
888
56
48
48
11
q13.1


45
CLIP2
62
NA
NA
NA
NA
NA
NA
3.0945
1
998
57
47
50
7
q11.23


46
CLDN3
58
NA
NA
NA
NA
NA
NA
2.6179
1
984
51
53
51
7
q11.23


47
ZSWIM4
355
NA
NA
NA
NA
NA
NA
2.8120
1
975
60
51
57
19
p13.13


48
GLRB
26
NA
NA
NA
NA
NA
NA
2.6600
−1
963
64
48
58
4
q32.1


49
DCHS2
25
NA
NA
NA
NA
NA
NA
2.7883
−1
954
68
80
84
4
q32.1


50
TRPS1
217
2.9
1
814
2.7
1
751
NA
NA
NA
63
65
65
8
q23.3


51
MDGA2
258
NA
NA
NA
NA
NA
NA
2.8345
−1
823
69
66
68
14
q21.3


52
CNBD1
193
38
1
999
3.8
1
940
NA
NA
NA
57
70
69
8
q21.3


53
STAG3
68
NA
NA
NA
NA
NA
NA
2.416
1
967
78
68
71
7
q22.1


54
GATA4
102
3.2
1
979
NA
NA
NA

NA
NA
72
77
72
8
p23.1


55
VPS13B
202
3.9
1
999
NA
NA
NA
NA
NA
NA
85
69
74
8
q22.2


56
DOCK5
144
5.4
−1
1000
NA
NA
NA
NA
NA
NA
81
78
76
8
p21.2


57
ZHX2
218
NA
NA
NA
2.6
1
771
NA
NA
NA
82
80
78
8
q24.13


58
ARHGEF5
90
NA
NA
NA
NA
NA
NA
2.7472
1
760
66
102
81
7
q35


59
SDC2
198
3.4
1
991
NA
NA
NA
NA
NA
NA
75
90
82
8
q22.1


60
MYLK
10
NA
NA
NA
2.8
1
842
NA
NA
NA
93
75
83
3
q21.1


61
LPHN3
23
NA
NA
NA
NA
NA
NA
2.4808
1
794
80
92
85
4
q13.1


62
MOSPD3
78
NA
NA
NA
NA
NA
NA
2.3144
1
904
90
82
86
7
q22.1


63
GYS2
244
NA
NA
NA
NA
NA
NA
2.7616
−1
884
99
83
92
12
p12.1


64
GAS8
336
NA
NA
NA
2.9
−1
999
NA
NA
NA
84
103
95
16
q24.3


65
RAB9A
382
NA
NA
NA
3.7
1
870
NA
NA
NA
98
97
97
23
p22.2


66
POLA3D
127
NA
NA
NA
2.7
−1
955
NA
NA
NA
91
109
98
8
p21.3


67
PSD3
116
7.3
−1
1000
NA
NA
NA
NA
NA
NA
97
104
100
8
p22


68
ZFPM2
213
4.2
1
991
6.3
1
996
NA
NA
NA
149
71
101
8
q23.1


69
ATP6V1C1
309
NA
NA
NA
2.4
1
858
NA
NA
NA
114
93
102
8
q22.3


70
MEF2C
36
NA
NA
NA
NA
NA
NA
2.2584
−1
839
109
98
103
5
q14.3


71
PKIA
185
3.3
1
999
NA
NA
NA
NA
NA
NA
115
99
104
8
q21.12


72
ADAMTS18
276
3.5
−1
902
NA
NA
NA
NA
NA
NA
100
114
105
16
q23.1


73
STYXL1
65
NA
NA
NA
NA
NA
NA
2.3049
1
883
104
110
106
7
q11.23


74
EPM2A
51
NA
NA
NA
NA
NA
NA
2.3972
−1
920
113
105
108
6
q24.3


75
LEPREL1
19
NA
NA
NA
2.6
1
755
NA
NA
NA
106
119
110
3
q28


76
GABRA2
22
NA
NA
NA
NA
NA
NA
2.2755
−1
876
119
107
111
4
p12


77
RCOR2
230
NA
NA
NA
NA
NA
NA
1.7131
−1
514
108
120
114
11
q13.1


78
MFHAS1
95
3.3
−1
958
NA
NA
NA
NA
NA
NA
121
108
115
8
p23.1










Table 14-2b




















Final-





clump-


min-
IndexO-
NYU-
MSKs1-



RANK
gene
gene-start
gene-end
genesBtwn
contg
index
dstprev
dstnext
disto-ROL
Proxy1
Zadjust
Zadust
MSKS2-Zadjust





39
ANKRD11
87881536
88084470
11
1
61
246990
−72136
−72136
1
0.47
0.85
NA


40
NRXN1
49999148
51113178
155
0
NA
28619013
NA
28619013
1
NA
NA
0.59


41
ADCY8
131861736
132123654
0
1
45
861663
−378337
−378337
1
0.52
1.97
NA


42
TRDN
123579182
123999937
96
0
NA
20654529
−5440605
−5440605
1
NA
NA
0.48


43
STAU2
74495160
74821629
1
0
NA
199555
−119303
−119303
1
1.43
NA
NA


44
SF1
84288654
64302817
1
0
NA
24747
−560058
24747
1
NA
NA
0.23


45
CLIP2
73341739
73458196
15
1
9
1543149
−35065
−35055
1
NA
NA
0.52


46
CLDN3
72821283
72822536
5
0
NA
404089
−49338
−49338
1
NA
NA
0.29


47
ZSWIM4
13767274
13804044
1
0
NA
50124
NA
50124
1
NA
NA
0.38


48
GLRB
158216788
158312299
0
1
3
48887
−2584470
48887
1
NA
NA
0.31


49
DCHS2
155375138
155832318
14
0
NA
2584470
−60480408
2584470
1
NA
NA
0.37


50
TRPS1
116489900
116750429
20
1
43
7112653
−1971482
−1971482
1
0.42
0.33
NA


51
MDGA2
46379045
47213703
NA
NA
NA
NA
NA
NA
1
NA
NA
0.39


52
CNBD1
87947840
88435220
1
1
38
683350
−122823
−122823
1
0.91
0.91
NA


53
STAG3
99613474
99659778
2
0
NA
111895
−23787222
111895
1
NA
NA
0.21


54
GATA4
11599162
11854918
0
1
18
9709
−139646
9709
1
0.57
NA
NA


55
VPS13B
100094670
100958983
1
0
NA
83469
−187596
83469
1
0.98
NA
NA


56
DOCK5
25098204
25326636
2
0
NA
14747
−1478148
14747
1
1.97
NA
NA


57
ZHX2
123863082
124055936
9
0
NA
706230
−7112553
706280
1
NA
0.29
NA


58
ARHGEF5
143683366
143708657
NA
0
NA
NA
−13747479
−13747479
1
NA
NA
0.35


59
SDC2
97575058
97693213
1
1
39
1032370
−159108
−159108
1
0.68
NA
NA


60
MYLK
124811586
125065868
2
0
NA
210407
−8482769
210407
1
NA
0.38
NA


61
LPHN3
62045434
62620762
157
0
NA
30824069
NA
30824089
1
NA
NA
0.24


62
MOSPD3
100047651
100050932
0
1
12
5043
−3929
3929
1
NA
NA
0.17


63
GYS2
21580390
21849048
NA
NA
NA
NA
NA
NA
1
NA
NA
0.38


64
GAS8
88616509
88638880
NA
0
NA
NA
−21813
−21813
1
NA
0.42
NA


65
RAB9A
13617262
13637681
191
0
NA
35134932
NA
35134932
1
NA
0.85
NA


66
POLA3D
22158584
22184824
1
1
25
116113
−12768
−12768
1
NA
0.33
NA


67
PSD3
18429093
18915476
0
1
23
300007
−126090
−128090
1
3.23
NA
NA


68
ZFPM2
108400323
108885939
2
1
41
1444960
−729979
−729979
1
1.16
2.58
NA


69
ATP6V1C1
104102424
104154451
5
0
NA
427830
608753
427830
1
NA
0.21
NA


70
MEF2C
88051922
88214780
63
0
NA
26727467
−19278276
−19278276
1
NA
NA
0.15


71
PKIA
79590891
79678040
2
0
NA
1007876
−1648815
1007878
1
0.63
NA
NA


72
ADAMTS18
75873527
76026512
0
1
52
287400
−72291
287400
1
0.74
NA
NA


73
STYXL1
75463592
75615257
0
1
10
72
−1679
72
1
NA
NA
0.17


74
EPM2A
145988141
145088884
2
1
7
291927
−772282
291927
1
NA
NA
0.20


75
LEPREL1
191157213
191321407
NA
1
2
NA
−49278
−49278
1
NA
0.29
NA


76
GABRA2
45945341
46086561
NA
0
NA
NA
−1800760
−18007760
1
NA
NA
0.16


77
RCOR2
63435303
63440892
3
0
NA
81715
NA
81715
1
NA
NA
0.00


78
MFHAS1
8879409
888541
0
1
15
109315
−5420413
109315
1
0.63
NA
NA










Table 14-3a























Final-




NYU-
MSKs1-
MSKs1-
MSKs2-

MSKs2-
MSKs2
logrank-
logank-
logrank-
gene-
gene-


RANK
gene
index
NYU-2
NYU-dir
count
Z
dir
count
MSKs2-Z
dir
count
n52random
n271random
composite
Chr
Cytoband





79
SCARA5
158
3.3
−1
925
NA
NA
NA
NA
NA
NA
130
101
116
8
p21.1


80
CCDC25
155
4.4
−1
995
NA
NA
NA
NA
NA
NA
132
100
117
8
p21.1


81
FAM3RA
323
NA
NA
NA
2.7
−1
885
NA
NA
NA
110
130
119
16
q24.3


82
CTSB
104
2.8
−1
941
NA
NA
NA
NA
NA
NA
111
135
122
8
p23.1


83
PTK2
235
NA
NA
NA
2.3
1
654
NA
NA
NA
107
144
123
8
q24.3


84
SPIRE2
331
NA
NA
NA
1.7
−1
508
NA
NA
NA
124
128
124
16
q24.3


85
C13or123
246
NA
NA
NA
NA
NA
NA
2.2139
−1
748
141
113
125
13
q13.3


86
BOD1L
20
NA
NA
NA
NA
NA
NA
2.3508
−1
884
129
127
126
4
p15.33


87
FAM16OB2
120
2.5
−1
899
1.8
−1
567
NA
NA
NA
127
133
129
8
p21.3


88
NUS1
46
NA
NA
NA
NA
NA
NA
2.2269
−1
859
123
139
130
6
q22.2


89
MTHFSD
309
NA
NA
NA
2.4
−1
824
NA
NA
NA
112
153
131
16
q24.1


90
UBA5
208
NA
NA
NA
2.2
1
733
NA
NA
NA
122
155
135.5
8
q22.3


91
GALNS
325
NA
NA
NA
2.3
−1
856
NA
NA
NA
131
147
137
16
q24.3


92
FSTL5
28
NA
NA
NA
NA
NA
NA
2.2407
−1
541
133
143
140
4
q32.2


93
SIM1
46
NA
NA
NA
NA
NA
NA
2.1943
1
833
120
165
141
6
q16.3


94
TG
231
3.8
1
997
NA
NA
NA
NA
NA
NA
136
149
144
8
q24.22


95
BFSP2
12
NA
NA
NA
2.4
1
678
NA
NA
NA
139
154
148
3
q22.1


96
MMP16
194
NA
NA
NA
3.5
1
931
NA
NA
NA
158
139
149
8
q21.3


97
RIMS2
210
2
1
692
4
1
939
NA
NA
NA
161
141
150
8
q22.3


98
PDS5B
245
NA
NA
NA
NA
NA
NA
2.0408
−1
661
145
159
151
13
q13.1


99
CDK7
31
NA
NA
NA
2.7
−1
988
NA
NA
NA
156
148
153
5
913.2


100
CNTNAP4
275
3.2
−1
825
NA
NA
NA
NA
NA
NA
196
126
156
16
q23.1


101
CFDP1
274
3
−1
925
NA
NA
NA
NA
NA
NA
137
187
157
16
q23.1


102
FBXL4
45
NA
NA
NA
NA
NA
NA
1.7473
−1
537
154
167
158
6
q16.2


103
RFX1
358
NA
NA
NA
NA
NA
NA
2.1724
1
861
134
201
163
19
p13.12


104
NALCN
256
NA
NA
NA
NA
NA
NA
2.1845
−1
731
182
152
165
13
q33.1


105
S1X1A
57
NA
NA
NA
NA
NA
NA
2.1787
1
835
177
161
167
7
q11.23


106
CYP7B1
162
NA
NA
NA
1.7
1
508
NA
NA
NA
147
204
168
8
q12.3


107
ARHGEF10
92
NA
NA
NA
2.9
−1
923
NA
NA
NA
215
145
171
8
p23.3


108
ENIPD4
141
2.7
−1
875
NA
NA
NA
NA
NA
NA
230
137
173
8
p21.3


109
ZNF704
188
NA
NA
NA
2.5
1
815
NA
NA
NA
211
151
174
8
q21.13


110
C8or179
105
2.9
−1
93
NA
NA
NA
NA
NA
NA
163
197
176
8
p22


111
SLC9A9
13
NA
NA
NA
2.7
1
746
NA
NA
NA
170
189
177
3
q24


112
CHMP7
139
NA
NA
NA
2.4
−1
925
NA
NA
NA
185
176
178
8
p21.3


113
GPC5
255
NA
NA
NA
NA
NA
NA
2.1374
−1
610
171
193
180
13
q31.3


114
MYC
222
4.2
1
972
NA
NA
NA
NA
NA
NA
218
157
184
8
q24.21


115
STIP1
239
NA
NA
NA
NA
NA
NA
1.7766
1
613
164
209
185
11
q13.1


116
ZBTB20
9
NA
NA
NA
1.8
1
513
NA
NA
NA
187
188
188
3
q13.31


117
MEN1
241
NA
NA
NA
NA
NA
NA
2.0513
1
730
176
203
188
11
q13.1


118
SLC26A7
195
NA
NA
NA
2.2
1
747
NA
NA
NA
213
188
189
8
q21.3










Table 14-3b




















Final-





clump-


min-
IndexO-
NYU-
MSKs1-



RANK
gene
gene-start
gene-end
genesBtwn
contg
index
dstprev
dstnext
disto-ROL
Proxy1
Zadjust
Zadust
MSKS2-Zadjust





79
SCARA5
27783672
27906117
0
1
31
29490
−97583
29490
1
0.63
NA
NA


80
CCDC25
27646756
27686089
2
0
NA
97583
−188353
97583
1
1.29
NA
NA


81
FAM3RA
87302916
67330317
0
1
58
67370
−2604
−2604
1
NA
0.33
NA


82
CTSB
11737442
11763055
7
0
NA
1084499
−55179
−55179
1
0.38
NA
NA


83
PTK2
141737883
142080514
NA
0
NA
NA
−5943220
−5943220
1
NA
0.17
NA


84
SPIRE2
88422408
88485228
0
1
62
2292
−11842
2292
1
NA
0.00
NA


85
C13or123
38482003
38510252
21
0
NA
4175452
−6231846
4175452
1
NA
NA
0.14


86
BOD1L
13179484
13238426
76
0
NA
30632257
NA
30632257
1
NA
NA
0.19


87
FAM16OB2
22002660
22017835
0
1
24
2493
−82519
2493
1
0.25
0.02
NA


88
NUS1
118103310
118138577
15
0
NA
5440605
−16667349
5440605
1
NA
NA
0.14


89
MTHFSD
85121284
85157509
5
1
57
1036491
−15714
−15714
1
NA
0.21
NA


90
UBA5
103334748
103493671
3
0
NA
606753
−128437
−128437
1
NA
0.14
NA


91
GALNS
87407644
87450885
0
1
60
122
−4478
122
1
NA
0.17
NA


92
FSTL5
162524501
183304836
NA
0
NA
NA
4017824
−4017824
1
NA
NA
0.15


93
SIM1
100939606
101019494
0
1
6
43297
−1437036
43297
1
NA
NA
0.13


94
TG
133948387
134216325
0
1
48
−98170
−18153
−18153
1
0.91
NA
NA


95
BFSP2
134601480
134676746
58
0
NA
9790009
−8678754
−8678754
1
NA
0.21
NA


96
MMP16
89118580
89408833
9
0
NA
2921859
−683360
−683360
1
NA
0.74
NA


97
RIMS2
104582291
106333263
1
0
NA
127586
427830
127566
1
0.07
1.04
NA


98
PDS5B
32058564
32250157
21
0
NA
6231846
NA
6231846
1
NA
NA
0.08


99
CDK7
68566471
68609004
0
1
4
3274
11239
3274
1
NA
0.33
NA


100
CNTNAP4
74868677
75150636
1
0
NA
722891
−843789
722891
1
0.57
NA
NA


101
CFDP1
73885109
74024888
7
1
51
843789
−25857
−25657
1
0.47
NA
NA


102
FBXL4
99428055
99502570
7
0
NA
1437036
−5242052
1437036
1
NA
NA
0.01


103
RFX1
13933353
13978097
NA
0
NA
NA
−30862
−30682
1
NA
NA
0.13


104
NALCN
100504131
100866814
42
0
NA
12420243
−8187438
−8187438
1
NA
NA
0.13


105
S1X1A
72751472
72771925
1
0
NA
49338
NA
49338
1
NA
NA
0.13


108
CYP7B1
65671248
65873902
21
0
NA
2823061
−5476925
2623061
1
NA
0.00
NA


107
ARHGEF10
1759549
1894208
1
0
NA
86359
−115501
86359
1
NA
0.42
NA


108
ENIPD4
23299386
23371081
0
1
28
71227
18281
18281
1
0.33
NA
NA


109
ZNF704
81713324
81949571
0
1
37
93034
870671
98034
1
NA
0.25
NA


110
C8or179
12847554
12931653
0
1
19
53590
−1084499
53590
1
0.42
NA
NA


111
SLC9A9
144466755
145049979
50
0
NA
12271116
−9790009
−9790009
1
NA
0.33
NA


112
CHMP7
23157095
23175450
1
1
27
34647
−18511
−18511
1
NA
0.21
NA


113
GPC5
90848919
92316693
29
0
NA
8187438
−19509588
8187438
1
NA
NA
0.11


114
MYC
128816862
128822853
0
1
44
205193
318241
206193
1
1.16
NA
NA


115
STIP1
63709873
63726596
20
0
NA
560068
−19764
−19764
1
NA
NA
0.01


116
ZBTB20
115540230
116348817
51
0
NA
8462769
−8761797
8452769
1
NA
0.02
NA


117
MEN1
64327564
64335342
0
1
47
12898
−24747
12898
1
NA
NA
0.09


118
SLC26A7
92330692
92479654
5
0
NA
2729012
−2921859
2729012
1
NA
0.14
NA










Table 14-4a























Final-




NYU-
MSKs1-
MSKs1-
MSKs2-

MSKs2-
MSKs2
logrank-
logank-
logrank-
gene-
gene-


RANK
gene
index
NYU-2
NYU-dir
count
Z
dir
count
MSKs2-Z
dir
count
n52random
n271random
composite
Chr
Cytoband





119
ALCAM
8
NA
NA
NA
NA
NA
NA
2.4802
1
586
194
188
191
3
q13.11


120
KIF13B
160
2.7
−1
854
NA
NA
NA
NA
NA
NA
188
194
192
8
p21.1


121
MBTPS1
291
2.7
−1
906
NA
NA
NA
NA
NA
NA
183
192
193
16
q24.1


122
PPP2R5B
243
NA
NA
NA
NA
NA
NA
1.8055
1
580
189
202
195
11
q13.1


123
VPS13C
260
NA
NA
NA
NA
NA
NA
1.7860
−1
550
201
180
197
15
q22.2


124
ASPSCR1
346
NA
NA
NA
NA
NA
NA
1.7635
1
549
219
178
198
17
q25.3


125
EPO
82
NA
NA
NA
NA
NA
NA
1.9843
1
735
169
235
201
7
q22.1


126
HEY1
187
3
1
988
NA
NA
NA
NA
NA
NA
206
195
203
8
q21.13


127
KALRN
11
NA
NA
NA
2.4
1
674
NA
NA
NA
197
205
204
3
q21.1


128
RGS22
203
2.7
1
956
NA
NA
NA
NA
NA
NA
191
215
205
8
q22.2


129
WDH7
353
NA
NA
NA
NA
NA
NA
1.9953
−1
653
200
217
210
18
q21.31


130
COL11A1
5
NA
NA
NA
NA
NA
NA
1.8924
−1
591
233
206
213
1
p21.1


131
CHDC
344
NA
NA
NA
NA
NA
NA
1.7523
1
523
221
218
215
17
q21.2


132
ATP2C2
296
3.6
−1
943
NA
NA
NA
NA
NA
NA
216
236
216
16
q24.1


133
CDH17
196
2.8
1
976
NA
NA
NA
NA
NA
NA
227
216
217
8
q22.1


134
CGKG
17
NA
NA
NA
1.9
1
568
NA
NA
NA
192
258
219
3
q27.3


135
GAK5
236
NA
NA
NA
2.4
−1
831
NA
NA
NA
210
237
220
10
q26.11


136
GAM1
52
NA
NA
NA
NA
NA
NA
1.8983
−1
58
179
283
223
6
q24.3


137
IMPA1
190
NA
NA
NA
1.9
1
647
NA
NA
NA
243
210
224
8
q21.13


138
RPL7
176
2.3
1
813
NA
NA
NA
NA
NA
NA
261
211
229
8
q21.11


139
COL21A1
38
NA
NA
NA
NA
NA
NA
1.8391
−1
595
235
245
232
6
p12.1


140
COL12A1
40
NA
NA
NA
NA
NA
NA
1.8241
−1
59
241
240
233
6
q14.1


141
MLYCD
289
2.4
−1
819
NA
NA
NA
NA
NA
NA
234
248
234
16
q23.3


142
AR
366
2.3
1
690
2.5
1
805
NA
NA
NA
256
221
235
23
q12


143
PLCB1
359
NA
NA
NA
NA
NA
NA
1.9352
−1
579
181
330
240
20
p12.3


144
ACTL8
3
NA
NA
NA
1.9
−1
582
NA
NA
NA
264
229
242
1
p36.13


145
IFDPI
257
NA
NA
NA
2.3
−1
729
NA
NA
NA
205
304
248
13
q34


146
IOCE
55
NA
NA
NA
NA
NA
NA
1.8487
1
580
250
260
255
7
p22.2


147
SMARCB1
380
NA
NA
NA
1.8
−1
523
NA
NA
NA
239
275
256
22
q11.23


148
MIDH
199
NA
NA
NA
1.9
1
584
NA
NA
NA
225
301
259
8
q22.1


149
NECAB2
290
NA
NA
NA
2
−1
688
NA
NA
NA
255
271
262
16
q23.3


150
DEF8
334
NA
NA
NA
1.9
−1
678
NA
NA
NA
214
335
266
16
q24.3


151
RNF40
262
NA
NA
NA
NA
NA
NA
2.0578
1
774
320
227
270
16
q11.2


152
TICAM2
37
NA
NA
NA
NA
NA
NA
1.8257
−1
589
303
241
271
5
q22.3


153
GLG1
271
2.1
−1
64
NA
NA
NA
NA
NA
NA
327
225
273
18
q22.3


154
MECOM
16
NA
NA
NA
2
1
587
NA
NA
NA
279
283
277
3
q26.2


155
TCEB1
178
1.8
1
590
NA
NA
NA
NA
NA
NA
275
277
278
8
q21.11


156
CTNNA2
7
NA
NA
NA
NA
NA
NA
1.8228
−1
533
331
231
280
2
p12


157
NIPAL2
200
1.9
1
654
NA
NA
NA
NA
NA
NA
289
265
282
8
q22.2


158
CDCA2
148
2
1
88
NA
NA
NA
NA
NA
NA
301
255
283
8
p21.2










Table 14-4b




















Final-





clump-


min-
IndexO-
NYU-
MSKs1-



RANK
gene
gene-start
gene-end
genesBtwn
contg
index
dstprev
dstnext
disto-ROL
Proxy1
Zadjust
Zadust
MSKS2-Zadjust





119
ALCAM
106568403
106778433
49
0
NA
8761797
NA
8761797
1
NA
NA
0.23


120
KIF13B
28980715
29176629
NA
1
32
NA
−14009
−14009
1
0.33
NA
NA


121
MBTPS1
82644872
82708018
0
1
54
5371
−50994
5371
1
0.33
NA
NA


122
PPP2R5B
64448756
64458523
NA
0
NA
NA
−80139
−80139
1
NA
NA
0.02


123
VPS13C
59931884
60138939
NA
0
NA
NA
−24742144
−24742144
1
NA
NA
0.02


124
ASPSCR1
77528715
77568569
6
1
85
40474
−16362
−18382
1
NA
NA
0.01


125
EPO
100156359
100159257
146
0
NA
29534582
−31553
−31553
1
NA
NA
0.07


126
HEY1
80838801
80842653
3
1
38
87061
−97933
−97833
1
0.47
NA
NA


127
KALRN
125296275
125922726
76
0
NA
8678754
−210407
−210407
1
NA
0.21
NA


128
RGS22
101042452
101187520
7
0
NA
812460
−83469
−83469
1
0.33
NA
NA


129
WDH7
52489614
52848040
45
0
NA
12833135
−3157834
−3157834
1
NA
NA
0.07


130
COL11A1
103114611
103346640
NA
0
NA
NA
−4955408
−4955408
1
NA
NA
0.04


131
CHDC
37594632
37599722
482
0
NA
39903967
−7810
−7810
1
NA
NA
0.01


132
ATP2C2
82959534
83055293
0
1
55
13315
−38746
13315
1
0.80
NA
NA


133
CDH17
95206566
95289986
14
0
NA
2053354
−2729012
2053354
1
0.38
NA
NA


134
CGKG
18347686
18562717
23
0
NA
3269193
−17000632
3269193
1
NA
0.05
NA


135
GAK5
120957091
121205118
NA
NA
NA
NA
NA
NA
1
NA
0.21
NA


136
GAM1
148390611
148800427
83
0
NA
1881221
−291927
−291927
1
NA
NA
0.04


137
IMPA1
82732751
82751115
4
0
NA
2842997
−545893
−545893
1
NA
0.05
NA


138
RPL7
74365073
74375857
1
0
NA
119303
−352193
119303
1
0.17
NA
NA


139
COL21A1
56029347
56368851
NA
NA
NA
NA
NA
NA
1
NA
NA
0.03


140
COL12A1
75850762
75972343
18
0
NA
7686493
−4871884
−4871884
1
NA
NA
0.03


141
MLYCD
82490231
82507286
1
0
NA
52452
−102526
52452
1
0.21
NA
NA


142
AR
66680599
65860344
0
1
69
318585
904991
318585
1
0.17
0.29
NA


143
PLCB1
8061296
8813547
NA
NA
NA
NA
NA
NA
1
NA
NA
0.05


144
ACTL8
17954395
18026145
662
1
1
79289745
−57439
−57439
1
NA
0.05
NA


145
IFDPI
113287057
113343500
NA
0
NA
NA
−12420243
−12420243
1
NA
0.17
NA


146
IOCE
2565158
2820893
13
0
NA
2861082
NA
2881062
1
NA
NA
0.03


147
SMARCB1
22459150
22506703
290
0
NA
23030490
NA
23030490
1
NA
0.02
NA


148
MIDH
98725583
98807711
7
0
NA
465852
−1032370
465852
1
NA
0.05
NA


149
NECAB2
82559738
82593878
1
0
NA
50994
−52452
50994
1
NA
0.07
NA


150
DEF8
88542684
88561968
0
1
63
4521
−12678
4521
1
NA
0.05
NA


151
RNF40
30681100
30695129
NA
0
NA
NA
−392513
−392513
1
NA
NA
0.09


152
TICAM2
114942247
114989610
NA
0
NA
NA
−26727467
−26727467
1
NA
NA
0.03


153
GLG1
73043357
73198518
3
0
NA
288457
−1403582
286457
1
0.10
NA
NA


154
MECOM
170283981
170347054
89
0
NA
17000632
−8012470
−8012470
1
NA
0.07
NA


155
TCEB1
75021184
75046959
2
0
NA
262534
−199555
−199555
1
0.02
NA
NA


156
CTNNA2
79732191
80729415
NA
0
NA
NA
−28619013
−28619013
1
NA
NA
0.03


157
NIPAL2
99273563
99375797
1
0
NA
160240
465852
160240
1
0.05
NA
NA


158
CDCA2
25372428
25421353
0
1
29
336689
−591
−591
1
0.07
NA
NA










Table 14-5a























Final-




NYU-
MSKs1-
MSKs1-
MSKs2-

MSKs2-
MSKs2
logrank-
logank-
logrank-
gene-
gene-


RANK
gene
index
NYU-2
NYU-dir
count
Z
dir
count
MSKs2-Z
dir
count
n52random
n271random
composite
Chr
Cytoband





159
WWP2
267
1.8
−1
527
NA
NA
NA
NA
NA
NA
251
315
284
16
q22.1


160
DDX19A
268
2.3
−1
755
NA
NA
NA
NA
NA
NA
220
383
285
16
q22.1


161
STK3
201
1.8
1
614
NA
NA
NA
NA
NA
NA
265
309
287
8
q22.2


162
DNAH2
337
1.8
−1
541
NA
NA
NA
NA
NA
NA
247
332
288
17
p13.1


163
NFAT5
266
2.3
−1
760
NA
NA
NA
NA
NA
NA
326
254
291
16
q22.1


164
CNGB1
283
1.8
−1
524
NA
NA
NA
NA
NA
NA
297
280
292
16
q13


165
UBE2CBP
41
2.8
−1
891
NA
NA
NA
NA
NA
NA
256
325
293
6
q14.1


186
C8or116
99
2.2
−1
725
NA
NA
NA
NA
NA
NA
285
293
294
8
p23.1


167
KIAA0196
270
2.6
1
819
NA
NA
NA
NA
NA
NA
253
334
295
8
q24.13


168
CLCNKB
1
NA
NA
NA
NA
NA
NA
2.0014
1
746
276
30
297
1
p36.13


169
C16or1180
264
2.2
−1
677
NA
NA
NA
NA
NA
NA
281
302
298
16
q21


170
ZFHX3
270
2.2
−1
656
NA
NA
NA
NA
NA
NA
313
273
299
16
q22.3


171
PPM1L
15
NA
NA
NA
2
1
628
NA
NA
NA
270
329
303
3
q26.1


172
NKIRAS2
338
NA
NA
NA
NA
NA
NA
1.9834
1
679
298
290
304
17
q21.2


173
RSPO2
215
1.8
1
550
NA
NA
NA
NA
NA
NA
306
292
305
8
q23.1


174
XPO7
119
2.3
−1
735
NA
NA
NA
NA
NA
NA
329
272
306
8
p21.3


175
ME1
42
2.5
−1
728
NA
NA
NA
NA
NA
NA
282
321
307
6
q14.2


176
NLGN4Y
363
NA
NA
NA
NA
NA
NA
2.4183
−1
734
339
275
312
24
q11.221


177
LZTS1
118
2
−1
645
NA
NA
NA
NA
NA
NA
300
316
316
8
p21.3


178
FBXL18
56
NA
NA
NA
NA
NA
NA
1.8646
1
652
323
294
317
7
p22.1


179
TBC1D108
251
NA
NA
NA
NA
NA
NA
1.8243
1
573
278
347
321
16
p11.2


180
WDR59
272
2.1
−1
653
NA
NA
NA
NA
NA
NA
304
320
322
16
q23.1


181
BLK
101
2.1
−1
671
NA
NA
NA
NA
NA
NA
315
314
325
8
p23.1


182
MEPCE
71
NA
NA
NA
NA
NA
NA
2.1134
1
782
350
285
327
7
q22.1


183
DLGAP2
91
NA
NA
NA
2.2
−1
882
NA
NA
NA
358
288
330
8
p23.3


184
ZFAT
234
2.5
1
796
NA
NA
NA
NA
NA
NA
325
317
331
8
q24.22


185
FASN
348
NA
NA
NA
NA
NA
NA
3.0027
1
963
296
350
332
17
q25.3


186
GIGYF1
81
NA
NA
NA
NA
NA
NA
2.7127
1
957
335
311
335
7
q22.1


187
ANXA13
219
2.1
1
692
NA
NA
NA
NA
NA
NA
310
345
336
8
q24.13


188
CDYL2
280
2.5
−1
899
NA
NA
NA
NA
NA
NA
316
351
339
16
q23.2


189
TOX
161
4.3
1
993
NA
NA
NA
NA
NA
NA
338
342
349
8
q12.1


190
NKX2-6
143
2.4
−1
870
NA
NA
NA
NA
NA
NA
340
366
357
8
p21.2


191
RALYL
191
2.8
1
985
NA
NA
NA
NA
NA
NA
345
362
359
2
q21.2


192
TBC1D22A
361
NA
NA
NA
4.6
−1
999
NA
NA
NA
367
346
363
22
q13.31


193
TFE3
383
NA
NA
NA
2.1
1
591
NA
NA
NA
362
350
364
23
p11.23


194
KCNAB1
14
NA
NA
NA
5.8
1
996
NA
NA
NA
363
367
367
3
q25.31


195
SULF1
166
5.2
1
1000
3.4
1
994
NA
NA
NA
3
4
3
8
q13.2


198
RAB6C
342
NA
NA
NA
NA
NA
NA
3.5399
1
998
6
3
5
17
q21.2


197
DHX58
339
NA
NA
NA
NA
NA
NA
8.9116
1
952
14
16
16
17
q21.2


198
ASAP1
224
NA
NA
NA
3.6
1
974
NA
NA
NA
21
23
20
8
q24.21










Table 14-5b




















Final-





clump-


min-
IndexO-
NYU-
MSKs1-



RANK
gene
gene-start
gene-end
genesBtwn
contg
index
dstprev
dstnext
disto-ROL
Proxy1
Zadjust
Zadust
MSKS2-Zadjust





159
WWP2
88353710
68533145
5
0
NA
405177
−57856
−57658
1
0.02
NA
NA


160
DDX19A
68938322
68984780
0
1
50
6059
405177
6059
1
0.17
NA
NA


161
STK3
99536037
99907074
1
0
NA
187596
−160240
−160240
1
0.02
NA
NA


162
DNAH2
7562745
7577783
NA
NA
NA
NA
NA
NA
1
0.02
NA
NA


163
NFAT5
68156498
68296054
2
0
NA
57656
−7528258
57656
1
0.17
NA
NA


164
CNGB1
56475004
58582513
3
0
NA
142487
NA
142487
1
0.02
NA
NA


165
UBE2CBP
83658836
83832269
3
0
NA
144558
−7685493
144558
1
0.38
NA
NA


166
C8or116
11021390
11025155
0
1
17
154255
−697587
154255
1
0.14
NA
NA


167
KIAA0196
125105691
125173191
3
0
NA
2323848
−1286853
−1286863
1
0.29
NA
NA


168
CLCNKB
16242834
16256390
29
0
NA
1482527
NA
1482527
1
NA
NA
0.07


169
C16or1180
56706000
56720'97
10
0
NA
3524069
−142487
−142487
1
0.14
NA
NA


170
ZFHX3
71374285
7163975
2
0
NA
1403582
−2343793
1403582
1
0.14
NA
NA


171
PPM1L
161956791
162271511
13
0
NA
8012470
−4217170
−4217170
1
NA
0.07
NA


172
NKIRAS2
37422564
37431180
1
0
NA
75799
NA
75799
1
NA
NA
0.06


173
RSPO2
108980721
109165062
9
1
42
4139285
401262
−401262
1
0.02
NA
NA


174
XPO7
21833126
21920041
3
0
NA
82619
−1627372
82619
1
0.17
NA
NA


175
ME1
83976827
84197498
41
0
NA
7084576
−144558
−144558
1
0.25
NA
NA


176
NLGN4Y
15144026
15466924
NA
NA
NA
NA
NA
NA
1
NA
NA
0.21


177
LZTS1
20147956
20205754
2
0
NA
1627372
850362
−850362
1
0.07
NA
NA


178
FBXL18
5481955
5523646
NA
0
NA
NA
−2861062
−2861062
1
NA
NA
0.04


179
TBC1D108
30275925
30288587
14
0
NA
392513
NA
392513
1
NA
NA
0.00


180
WDR59
73464975
73576518
5
0
NA
243911
−266457
243911
1
0.10
NA
NA


181
BLK
11388930
11459518
1
0
NA
139848
−185868
139646
1
0.10
NA
NA


182
MEPCE
99865190
99869676
2
0
NA
32404
−29640
−29540
1
NA
NA
0.11


183
DLGAP2
1436939
1644048
1
0
NA
115501
NA
115501
1
NA
0.14
NA


184
ZFAT
135559215
135794453
8
0
NA
5943220
−1248464
−1248464
1
0.25
NA
NA


185
FASN
77629504
77649395
NA
1
66
NA
−262
−262
1
NA
NA
0.47


186
GIGYF1
100115066
100124806
1
0
NA
31553
−23059
−23069
1
NA
NA
0.33


187
ANXA13
124762216
124818828
11
0
NA
1286863
−706280
−706280
1
0.10
NA
NA


188
CDYL2
79195176
79395680
3
0
NA
248923
−1391844
248823
1
0.25
NA
NA


189
TOX
59880531
60194321
10
0
NA
5476925
NA
5476925
1
1.23
NA
NA


190
NICX2-6
23615909
23620056
6
0
NA
1478148
−129901
−129901
1
0.21
NA
NA


191
RALYL
85601112
85963979
12
0
NA
1691298
−2842997
1691298
1
0.38
NA
NA


192
TBC1D22A
45537193
45948399
NA
0
NA
NA
−28030490
−23030490
1
NA
1.43
NA


193
TFE3
48772813
48787722
NA
0
NA
NA
−35134932
−35134932
1
NA
0.10
NA


194
KCNAB1
157321095
157739821
22
0
NA
4217170
−12271116
4217170
1
NA
2.24
NA


195
SULF1
70541427
70735701
0
1
33
11428
647617
11428
0
1.83
0.68
NA


195
RAB6C
37530524
37560548
0
1
64
1891
−1627
−1627
0
NA
NA
0.76


197
DHX58
37506979
37518277
0
1
64
380
−75799
380
0
NA
NA
4.22


198
ASAP1
131133535
131483399
0
1
45
378337
−2104073
378337
0
NA
0.80
NA










Table 14-6a























Final-




NYU-
MSKs1-
MSKs1-
MSKs2-

MSKs2-
MSKs2
logrank-
logank-
logrank-
gene-
gene-


RANK
gene
index
NYU-2
NYU-dir
count
Z
dir
count
MSKs2-Z
dir
count
n52random
n271random
composite
Chr
Cytoband





199
CA5A
313
2.6
1
832
3.8
−1
955
NA
NA
NA
23
28
26
16
q24.2


200
C6or1118
53
NA
NA
NA
NA
NA
NA
2.7921
−1
976
35
36
36
6
q27


201
NCOA2
169
3.2
1
997
2.4
1
806
NA
NA
NA
35
40
37
8
q13.3


202
PKD1L2
283
4.9
−1
999
2
−1
715
NA
NA
NA
41
45
42
15
q23.2


203
BANP
314
2.6
−1
901
3.3
−1
957
NA
NA
NA
43
49
46
16
q24.2


204
KIAA1967
133
2.8
−1
925
3.1
−1
989
NA
NA
NA
50
57
52
8
p21.3


205
COPG2
89
NA
NA
NA
NA
NA
NA
3.1195
1
935
56
52
53
7
q32.2


206
ZNF706
205
NA
NA
NA
2.8
1
889
NA
NA
NA
53
56
54
8
q22.3


207
GAN
285
2.7
−1
889
2.4
−1
902
NA
NA
NA
54
61
55
16
q23.2


208
PLCG2
286
2.9
−1
833
2.7
−1
913
NA
NA
NA
61
50
56
16
q23.2


209
C19or157
358
NA
NA
NA
NA
NA
NA
2.7945
1
992
59
58
59
19
p1312


210
PDGFRL
111
4.8
−1
998
NA
NA
NA
NA
NA
NA
60
55
60
8
p22


211
ESD
249
NA
NA
NA
NA
NA
NA
2.5793
−1
973
65
59
62
13
q14.2


212
CPA5
85
NA
NA
NA
NA
NA
NA
2.7623
1
924
70
63
67
7
q32.2


213
BIN3
131
1.7
−1
507
2.8
1
995
NA
NA
NA
71
73
70
8
p21.3


214
ZFHX4
181
4.3
1
1000
NA
NA
NA
NA
NA
NA
74
76
73
8
q21.11


215
CPA6
163
3.8
1
1000
NA
NA
NA
NA
NA
NA
77
81
75
8
q13.2


216
EYA1
172
3.4
1
997
NA
NA
NA
NA
NA
NA
73
89
77
8
q13.3


217
CHRNA2
153
3.5
−1
999
NA
NA
NA
NA
NA
NA
76
87
79
8
p21.2


218
TNKS
97
4
1
1000
NA
NA
NA
NA
NA
NA
77
84
84
8
p23.1


219
HNF4O
183
4.1
1
1000
NA
NA
NA
NA
NA
NA
103
72
87
8
q21.11


220
LHCH1
248
NA
NA
NA
NA
NA
NA
2.3847
−1
NA
79
94
88
13
q14.13


221
ADHA1A
149
3.9
−1
991
NA
NA
NA
NA
NA
NA
98
79
89
8
p21.2


222
EPHX2
154
3.3
−1
997
NA
NA
NA
NA
NA
NA
89
88
90
8
p21.1


223
SORBS3
130
NA
NA
NA
3
−1
957
NA
NA
NA
83
95
91
8
p21.3


224
GRIA2
27
NA
NA
NA
NA
NA
NA
2.2933
−1
843
94
95
93
4
q32.1


225
POLIM2
131
NA
NA
NA
2.9
−1
993
NA
NA
NA
91
91
94
8
p21.3


226
MTMR7
109
3.7
−1
971
NA
NA
NA
NA
NA
NA
86
108
96
8
p22


227
FBXO24
76
NA
NA
NA
NA
NA
NA
2.4831
1
817
118
85
99
7
q22.1


228
CRISPLD1
182
4.9
1
1000
NA
NA
NA
NA
NA
NA
95
124
107
8
q21.11


229
DPYS
211
3.2
1
975
NA
NA
NA
NA
NA
NA
92
129
109
8
q22.3


230
DTNA
351
NA
NA
NA
NA
NA
NA
2.2378
−1
734
102
125
112
18
q12.1


231
KLHDC4
311
NA
NA
NA
2.5
−1
987
NA
NA
NA
116
111
113
16
q24.2


232
CYBA
319
NA
NA
NA
2.9
−1
941
NA
NA
NA
117
121
118
16
q24.3


233
JPH3
310
2.4
−1
788
2.4
−1
908
NA
NA
NA
101
142
120
16
q24.2


234
TMEM120A
64
NA
NA
NA
NA
NA
NA
1.7093
1
511
128
115
121
7
q11.23


235
MTUS1
112
3.6
−1
976
NA
NA
NA
NA
NA
NA
143
116
127
8
p22


236
C8or134
165
6
1
1000
NA
NA
NA
NA
NA
NA
126
132
128
8
q13.2


237
GRHL2
206
NA
NA
NA
2.4
1
790
NA
NA
NA
125
140
132
8
q22.3


238
CPA2
83
NA
NA
NA
NA
NA
NA
2.1399
1
717
153
117
133
7
q32.2










Table 14-6b




















Final-





clump-


min-
IndexO-
NYU-
MSKs1-



RANK
gene
gene-start
gene-end
genesBtwn
contg
index
dstprev
dstnext
disto-ROL
Proxy1
Zadjust
Zadust
MSKS2-Zadjust





199
CA5A
88479126
88527813
0
1
58
14926
−18511
14928
0
0.29
0.91
NA


200
C6or1118
165613148
165643101
0
1
8
17665
−18812721
17665
0
NA
NA
0.37


201
NCOA2
71178380
71478574
1
1
33
233471
−32264
−32264
C
0.57
0.21
NA


202
PKD1L2
79591985
79811477
0
1
53
18320
−4504
4504
0
1.63
0.07
NA


203
BANP
86542539
86666425
0
1
58
378801
−14926
−14926
0
0.29
0.63
NA


204
KIAA1967
22518202
22533920
0
1
28
−14
−597
−14
0
0.38
0.52
NA


205
COPG2
129933404
129935887
106
1
13
13747479
−41
−41
0
NA
NA
0.53


206
ZNF706
102278444
102287136
0
1
40
287028
−243699
−243699
0
NA
0.38
NA


207
GAN
79906076
79971441
0
1
53
398967
−23828
−23828
0
0.33
0.21
NA


208
PLCG2
80370408
80549399
0
1
53
76965
−398967
76965
0
0.42
0.33
NA


209
C19or157
13854168
13877909
0
1
68
105
−50124
105
0
NA
NA
0.37


210
PDGFRL
17478443
17545655
0
1
21
−71
−6086
−71
0
1.56
NA
NA


211
ESD
48243393
46269368
0
1
48
36148
20807
−20607
0
NA
NA
0.28


212
CPA5
129771892
129795807
0
1
13
11551
−20643
11651
0
NA
NA
0.36


213
BIN3
22533906
22582553
0
1
26
18566
14
14
0
0.00
0.38
NA


214
ZFHX4
77756078
77942076
1
1
35
1648815
−1114478
−1114478
0
1.23
NA
NA


215
CPA6
68496963
68821134
0
1
33
205773
−2623061
205773
0
0.91
NA
NA


216
EYA1
72272222
72437021
0
1
34
479311
463009
−463009
0
0.68
NA
NA


217
CHRNA2
27373195
27392730
0
1
30
11832
−376
−375
0
0.74
NA
NA


218
TNKS
9450855
9677266
0
1
16
271923
−522716
271923
0
1.04
NA
NA


219
HNF4O
76482732
76641600
0
1
35
1114478
373386
−373386
0
1.10
NA
NA


220
LHCH1
46025304
46222786
0
1
48
20607
−2766260
20607
0
NA
NA
0.20


221
ADHA1A
26661584
26778839
0
1
30
370899
−89977
−89977
0
0.98
NA
NA


222
EPHX2
27404552
27458403
2
1
30
188353
−11832
−11832
0
0.53
NA
NA


223
SORBS3
22465196
22488852
0
1
28
3247
−10816
324
0
NA
0.47
NA


224
GRIA2
158361186
158506577
9
1
3
4017824
−48887
−48887
0
NA
NA
0.17


225
POLIM2
22492199
22511483
0
1
26
1584
−3247
1584
0
NA
0.42
NA


226
MTMR7
17199923
17315207
0
1
21
83768
−1533557
83768
0
0.85
NA
NA


227
FBXO24
100021892
100006574
0
1
12
1144
−180
−180
0
NA
NA
0.24


228
CRISPLD1
76059531
76109346
0
1
35
373386
−129712
−129712
0
1.63
NA
NA


229
DPYS
106460029
105548453
0
1
41
22190
−127565
22190
0
0.57
NA
NA


230
DTNA
30327279
30725806
62
1
67
17395350
−269766
−269766
0
NA
NA
0.15


231
KLHDC4
86298920
86357056
0
1
58
64075
−9657
−9657
0
NA
0.25
NA


232
CYBA
87237199
67244958
0
1
58
891
−2814
891
0
NA
0.42
NA


233
JPH3
86194000
86289263
0
1
58
9657
−1036491
9657
0
0.21
0.21
NA


234
TMEM120A
75454238
75461913
0
1
10
1679
−248023
1679
0
NA
NA
0.00


235
MTUS1
17545584
17702666
1
1
21
121980
71
71
0
0.80
NA
NA


236
C8or134
69406511
69893810
0
1
33
647617
−99060
−99060
0
2.37
NA
NA


237
GRHL2
102574162
102750995
0
1
40
16952
−287026
16952
0
NA
0.21
NA


238
CPA2
129693939
129716870
0
1
13
3360
−29534682
3360
0
NA
NA
0.11










Table 14-7a























Final-




NYU-
MSKs1-
MSKs1-
MSKs2-

MSKs2-
MSKs2
logrank-
logank-
logrank-
gene-
gene-


RANK
gene
index
NYU-2
NYU-dir
count
Z
dir
count
MSKs2-Z
dir
count
n52random
n271random
composite
Chr
Cytoband





239
NAT2
115
3.3
−1
993
NA
NA
NA
NA
NA
NA
140
134
134
8
p22


240
DPYSL2
148
3.3
−1
967
NA
NA
NA
NA
NA
NA
155
122
135.5
8
p21.2


241
ZDHHC7
300
NA
NA
NA
2.5
−1
839
NA
NA
NA
159
123
138
16
q24.1


242
ELP3
153
3.4
−1
939
NA
NA
NA
NA
NA
NA
165
118
139
8
p21.1


243
RHOBTB2
136
NA
NA
NA
1.7
−1
501
NA
NA
NA
133
150
142
8
p21.3


244
NEIL2
103
2.7
−1
921
NA
NA
NA
NA
NA
NA
150
135
143
8
p23.1


245
HR
122
NA
NA
NA
2.7
−1
895
NA
NA
NA
186
112
145
8
p21.3


246
EFA3A
226
3.1
1
985
NA
NA
NA
NA
NA
NA
144
148
146
8
q24.22


247
STMN4
150
3.3
−1
994
NA
NA
NA
NA
NA
NA
162
131
147
8
p21.2


248
PRDM14
168
4.7
1
996
NA
NA
NA
NA
NA
NA
135
171
152
8
q13.3


249
MARVELD2
35
NA
NA
NA
3
−1
988
NA
NA
NA
142
184
154
5
q13.2


250
SLC39A14
128
1.8
−1
560
2.2
−1
791
NA
NA
NA
152
160
155
8
p21.3


251
ACTL6B
80
NA
NA
NA
NA
NA
NA
1.7362
1
538
188
158
159
7
q22.1


252
TUSC3
108
3.1
−1
945
NA
NA
NA
NA
NA
NA
157
170
180
8
p22


253
COX4NB
305
NA
NA
NA
2.5
−1
938
NA
NA
NA
148
172
161
16
q24.1


254
XKR9
171
2.7
1
929
NA
NA
NA
NA
NA
NA
165
183
162
8
q13.3


255
C16or146
281
NA
NA
NA
2.2
−1
768
NA
NA
NA
151
183
164
16
q23.2


256
TAF9
33
NA
NA
NA
2.8
−1
983
NA
NA
NA
175
162
166
5
q13.2


257
KCNO3
228
5
1
1000
NA
NA
NA
NA
NA
NA
167
180
169
8
q24.22


258
UTRN
50
NA
NA
NA
NA
NA
NA
2.3296
−1
766
174
174
170
6
q24.2


259
RAD17
34
NA
NA
NA
2.6
−1
959
NA
NA
NA
172
182
172
5
q13.2


260
ZFPM1
315
NA
NA
NA
2.5
−1
924
NA
NA
NA
146
219
175
16
q24.2


261
PTDSS1
197
2.5
1
874
NA
NA
NA
NA
NA
NA
184
177
179
8
q22.1


262
IRF8
300
NA
NA
NA
2.5
−1
976
NA
NA
NA
199
169
181
16
q24.1


263
YWHAZ
204
NA
NA
NA
2.2
1
722
NA
NA
NA
204
168
182
8
q22.3


264
MRPS36
30
NA
NA
NA
2.6
−1
952
NA
NA
NA
195
175
183
5
q13.2


265
LACTB2
170
2.6
1
932
NA
NA
NA
NA
NA
NA
160
223
187
8
q13.3


268
SNAI3
321
NA
NA
NA
2.4
−1
914
NA
NA
NA
231
156
190
16
q24.3


267
TMEM71
229
2.9
1
983
NA
NA
NA
NA
NA
NA
180
207
194
8
q24.22


268
PREX2
184
7.5
1
1000
NA
NA
NA
NA
NA
NA
190
199
195
8
913.2


269
CPA1
86
NA
NA
NA
NA
NA
NA
2.0683
1
716
228
173
199
7
q32.2


270
PHF20L1
230
2.8
1
901
NA
NA
NA
NA
NA
NA
198
200
200
8
q24.22


271
KIAA0513
301
NA
NA
NA
2.1
−1
816
NA
NA
NA
212
188
202
16
q24.1


272
PI15
181
3
1
991
NA
NA
NA
NA
NA
NA
238
179
206
8
q21.11


273
PCM1
113
1.7
−1
529
NA
NA
NA
NA
NA
NA
183
234
207
8
p22


274
SH204A
117
2.9
−1
908
NA
NA
NA
NA
NA
NA
249
172
208
8
p21.3


275
C16or174
304
NA
NA
NA
2.3
−1
939
NA
NA
NA
202
214
209
16
q24.1


278
TP63
18
NA
NA
NA
3
1
822
NA
NA
NA
203
223
211
3
q28


277
DACH1
254
NA
NA
NA
NA
NA
NA
1.8675
−1
570
252
185
212
13
q21.33


278
TNFRSF10A
130
NA
NA
NA
2.2
−1
774
NA
NA
NA
245
196
214
8
p21.3










Table 14-7b




















Final-





clump-


min-
IndexO-
NYU-
MSKs1-



RANK
gene
gene-start
gene-end
genesBtwn
contg
index
dstprev
dstnext
disto-ROL
Proxy1
Zadjust
Zadust
MSKS2-Zadjust





239
NAT2
18283035
18303003
0
1
23
126090
−306248
126090
0
0.63
NA
NA


240
DPYSL2
26491327
26571607
0
1
30
89977
−533035
89977
0
0.63
NA
NA


241
ZDHHC7
83565573
83602642
0
1
56
16269
−64959
16269
0
NA
0.25
NA


242
ELP3
27999759
28104584
6
1
31
899246
−2452
−2452
0
0.68
NA
NA


243
RHOBTB2
22913059
22933655
2
1
26
115396
−306299
115396
0
NA
0.00
NA


244
NEIL2
11664827
11882283
1
1
18
55179
−9709
−9709
0
0.33
NA
NA


245
HR
22027877
22045325
0
1
24
6152
−4474
4474
0
NA
0.33
NA


246
EFA3A
132985517
133095071
0
1
45
10596
−861863
10596
0
0.52
NA
NA


247
STMN4
27148738
27171843
0
1
30
26478
370899
25478
0
0.63
NA
NA


248
PRDM14
71126574
71146116
0
1
33
32264
−216812
32264
0
1.49
NA
NA


249
MARVELD2
68746699
88773646
82
1
4
19278276
−315
−315
0
NA
0.47
NA


250
SLC39A14
22280737
22347462
0
1
26
7079
−116113
7079
0
0.02
0.14
NA


251
ACTL6B
10007868
100092007
1
1
12
23059
−1569
−1569
0
NA
NA
0.01


252
TUSC3
15442101
15688368
6
1
20
1533557
301882
−301882
0
0.52
NA
NA


253
COX4NB
24369737
84390601
0
1
57
96
27547
96
0
NA
0.25
NA


254
XKR9
7175584a
71809213
0
1
34
483009
−11902
−11902
0
0.33
NA
NA


255
C16or146
79644603
79668373
0
1
53
5057
−248923
5057
0
NA
0.14
NA


256
TAF9
68696327
68701596
0
1
4
−716
−31935
−716
0
NA
0.29
NA


257
KCNO3
133210438
133551961
1
1
45
217672
−43354
−43354
0
2.37
NA
NA


258
UTRN
144654566
145215859
0
1
7
772282
−20654629
772282
0
NA
NA
0.18


259
RAD17
68700880
68746384
0
1
4
315
716
315
0
NA
0.29
NA


260
ZFPM1
87047226
87126890
0
1
58
18723
−378801
16723
0
NA
0.25
NA


261
PTDSS1
97343340
97415950
0
1
39
159108
−2053354
159108
0
0.25
NA
NA


262
IRF8
84490275
84513710
0
1
57
587924
−92165
−92166
0
NA
0.25
NA


263
YWHAZ
101999980
102034745
0
1
40
243699
−812460
243699
0
NA
0.14
NA


264
MRPS36
68548329
68577710
0
1
4
−11239
−7390
−7390
0
NA
0.29
NA


265
LACTB2
71712045
71743946
0
1
34
11902
−233471
11902
0
0.29
NA
NA


266
SNAI3
87271591
87280383
0
1
58
10028
−14572
10028
0
NA
0.21
NA


267
TMEM71
133779833
133842010
0
1
46
14776
−217672
14776
0
0.42
NA
NA


268
PREX2
69028907
69308451
0
1
33
99060
−205773
99060
0
3.36
NA
NA


269
CPA1
129807458
129815165
0
1
13
8445
−11661
8445
0
NA
NA
0.09


270
PHF20L1
133856786
133930234
0
1
46
18153
−14776
−14776
0
0.38
NA
NA


271
KIAA0513
83618911
83685327
2
1
56
517197
−16289
−18289
0
NA
0.10
NA


272
PI15
75899327
75929819
0
1
35
129712
−457439
129712
0
0.47
NA
NA


273
PCM1
17824646
17935562
0
1
22
22652
−121980
22852
0
0.00
NA
NA


274
SH204A
19215483
19297594
5
1
23
850362
300007
−300007
0
0.42
NA
NA


275
C16or174
84298624
84342190
0
1
57
27547
−16535
−18535
0
NA
0.17
NA


276
TP63
190831910
191107935
0
1
2
49278
−3269193
49278
0
NA
0.47
NA


277
DACH1
70910099
71339331
28
1
49
19509588
−1329507
−1329507
0
NA
NA
0.04


278
TNFRSF10A
23104916
23138584
0
1
27
18511
−27431
18511
0
NA
0.14
NA










Table 14-8a























Final-




NYU-
MSKs1-
MSKs1-
MSKs2-

MSKs2-
MSKs2
logrank-
logank-
logrank-
gene-
gene-


RANK
gene
index
NYU-2
NYU-dir
count
Z
dir
count
MSKs2-Z
dir
count
n52random
n271random
composite
Chr
Cytoband





279
MDH2
66
NA
NA
NA
NA
NA
NA
1.9653
1
728
236
208
218
7
q11.23


280
PAG1
189
NA
NA
NA
2
1
776
NA
NA
NA
173
290
221
8
q21.13


281
SLC25A37
142
2.6
−1
845
NA
NA
NA
NA
NA
NA
226
222
222
8
p21.2


282
BCAR1
273
2.5
−1
846
NA
NA
NA
NA
NA
NA
240
213
225
16
q23.1


283
COX4I1
306
NA
NA
NA
2.6
−1
911
NA
NA
NA
178
269
226
16
q24.1


284
EIF4H
59
NA
NA
NA
NA
NA
NA
2.0065
1
775
224
236
227
7
q11.23


285
ZC3H18
317
NA
NA
NA
2.1
−1
878
NA
NA
NA
217
244
228
16
q24.2


286
STMN2
188
2.8
1
982
NA
NA
NA
NA
NA
NA
284
198
230
8
q21.13


287
AFG3L1
335
NA
NA
NA
2.3
−1
947
NA
NA
NA
254
224
231
16
q24.3


288
HSD17B2
287
2.6
−1
791
NA
NA
NA
NA
NA
NA
229
250
236
16
q23.3


289
MVD
320
NA
NA
NA
2.3
−1
901
NA
NA
NA
223
268
237
16
q24.3


290
DLC1
106
6.5
−1
1000
NA
NA
NA
NA
NA
NA
207
288
238
8
p22


291
EPHA7
44
NA
NA
NA
NA
NA
NA
1.7755
−1
529
237
252
239
6
q16.1


292
TRIM35
151
2.6
−1
936
NA
NA
NA
NA
NA
NA
209
287
241
8
p21.2


293
LHRC50
290
2.4
1
830
NA
NA
NA
NA
NA
NA
232
262
243
16
q24.1


294
CNOB3
192
1.8
1
534
NA
NA
NA
NA
NA
NA
319
191
244
8
q21.3


295
ASCC3
47
NA
NA
NA
NA
NA
NA
1.7954
−1
535
246
249
245
6
q16.3


296
AFC2
61
NA
NA
NA
NA
NA
NA
1.8399
1
625
208
296
246
7
q11.23


297
CLEC3A
278
2.3
−1
781
NA
NA
NA
NA
NA
NA
257
232
247
16
q23.1


298
IL17C
318
NA
NA
NA
1.8
−1
639
NA
NA
NA
244
256
249
16
q24.3


299
BMP1
125
NA
NA
NA
2.2
−1
819
NA
NA
NA
259
242
250
8
p21.3


300
CPA4
84
NA
NA
NA
NA
NA
NA
1.9432
1
632
242
261
251
7
q32.2


301
OC90
227
1.9
1
640
NA
NA
NA
NA
NA
NA
262
243
252
8
q24.22


302
HEPH
364
1.8
1
537
NA
NA
NA
NA
NA
NA
292
220
253
23
q12


303
LAP12
212
NA
NA
NA
2
1
635
NA
NA
NA
277
233
254
8
q22.3


304
AGFQ2
74
NA
NA
NA
NA
NA
NA
2.2839
1
749
317
212
257
7
q22.1


305
TAPA1
174
2.3
1
803
NA
NA
NA
NA
NA
NA
257
263
258
8
q13.3


306
GINS2
303
NA
NA
NA
2.1
−1
861
NA
NA
NA
268
253
260
16
q24.1


307
CENPH
29
NA
NA
NA
1.9
−1
693
NA
NA
NA
286
233
261
5
q13.2


308
KLHL36
297
NA
NA
NA
1.8
−1
606
NA
NA
NA
222
312
263
16
q24.1


309
ARHGEF1OL
2
NA
NA
NA
2.1
−1
730
NA
NA
NA
258
289
264
1
p36.13


310
TRAPPC2L
326
NA
NA
NA
1.9
−1
670
NA
NA
NA
302
230
265
16
q24.3


311
TCF25
332
NA
NA
NA
2.1
−1
821
NA
NA
NA
272
264
267
18
q24.3


312
TNFRSF10D
137
1.9
−1
603
NA
NA
NA
NA
NA
NA
288
250
268
8
p21.3


313
MYCM2
93
2.1
−1
705
NA
NA
NA
NA
NA
NA
295
245
269
8
p23.3


314
GCSH
282
NA
NA
NA
1.9
−1
673
NA
NA
NA
248
295
272
16
q23.2


315
KIAA1609
296
NA
NA
NA
1.9
−1
641
NA
NA
NA
260
284
274
16
q24.1


316
FANCA
330
NA
NA
NA
1.9
−1
612
NA
NA
NA
299
247
275
16
q24.3


317
ERI1
96
1.9
−1
600
NA
NA
NA
NA
NA
NA
312
239
276
8
q23.1


318
HSDL1
292
NA
NA
NA
2
−1
885
NA
NA
NA
273
278
278
16
q24.1










Table 14-8b




















Final-





clump-


min-
IndexO-
NYU-
MSKs1-



RANK
gene
gene-start
gene-end
genesBtwn
contg
index
dstprev
dstnext
disto-ROL
Proxy1
Zadjust
Zadust
MSKS2-Zadjust





279
MDH2
75515329
75533864
2
1
10
260189
−72
−72
0
NA
NA
0.06


280
PAG1
82042605
82186858
8
1
37
545883
−93034
−930334
0
NA
0.07
NA


281
SLC25A37
23442308
23486008
1
1
28
129901
−71227
−71227
0
0.29
NA
NA


282
BCAR1
73820429
73859452
0
1
51
25657
−243911
25657
0
0.25
NA
NA


283
COX4I1
84390697
84396109
0
1
57
92166
−96
−96
0
NA
0.29
NA


284
EIF4H
73226625
73249358
0
1
9
12304
−404089
12304
0
NA
NA
0.07


285
ZC3H18
87164343
87225755
0
1
58
6745
−294
−294
0
NA
0.10
NA


286
STMN2
80685916
80740888
0
1
36
97933
−1007876
9933
0
0.38
NA
NA


287
AFG3L1
88566489
88594595
1
1
63
21813
−4521
4521
0
NA
0.17
NA


288
HSD17B2
80626364
80689638
1
1
53
750123
−76965
−76965
0
0.29
NA
NA


289
MVD
87245849
87257019
0
1
58
14572
−891
−891
0
NA
0.17
NA


290
DLC1
12985243
13416766
1
1
19
574978
−53590
−53590
0
2.71
NA
NA


291
EPHA7
94007864
94185993
9
1
5
5242062
−2654236
−2654238
0
NA
NA
0.01


292
TRIM35
27198321
27224751
0
1
30
155
26478
165
0
0.29
NA
NA


293
LHRC50
82736366
82769024
3
1
54
116798
−101
−101
0
0.21
NA
NA


294
CNOB3
87656277
87825017
0
1
38
122823
−1691298
122823
0
0.02
NA
NA


295
ASCC3
101062791
101435961
79
1
6
16667349
−43297
−43297
0
NA
NA
0.02


296
AFC2
73283770
73306674
0
1
9
35065
−1671
−1871
0
NA
NA
0.03


297
CLEC3A
76613944
76623495
0
1
52
67557
−280292
67557
0
0.17
NA
NA


298
IL17C
87232502
87234385
0
1
56
2814
−6746
2814
0
NA
0.02
NA


299
BMP1
22078645
22125782
0
1
25
7380
−8355
7380
0
NA
0.14
NA


300
CPA4
129720230
129751249
0
1
13
20643
−3360
−3360
0
NA
NA
0.06


301
OC90
133105687
133167084
0
1
45
43354
−10596
−10596
0
0.05
NA
NA


302
HEPH
65298388
65403955
0
1
69
328248
NA
328848
0
0.02
NA
NA


303
LAP12
105570643
105670344
0
1
41
72999
−22190
−22190
0
NA
0.07
NA


304
AGFQ2
99974770
100003778
0
1
12
5792
−44412
5792
0
NA
NA
0.16


305
TAPA1
73086040
73150373
0
1
34
492151
−176755
−176755
0
0.17
NA
NA


306
GINS2
84268782
84280089
0
1
57
18535
−1471
−1471
0
NA
0.10
NA


307
CENPH
68521131
68541939
0
1
4
7390
NA
7390
0
NA
0.05
NA


308
KLHL36
83239632
83253416
0
1
56
37634
−143838
37634
0
NA
0.02
NA


309
ARHGEF1OL
17738917
17898956
0
1
1
57439
−1482527
57439
0
NA
0.10
NA


310
TRAPPC2L
87451007
87455020
0
1
60
13748
−122
−122
0
NA
0.05
NA


311
TCF25
88467520
88505287
0
1
82
7881
−2292
−2292
0
NA
0.10
NA


312
TNFRSF10D
23049051
23077485
0
1
27
27431
−115396
27431
0
0.05
NA
NA


313
MYCM2
1980566
2080779
0
1
14
699503
−86359
−86369
0
0.10
NA
NA


314
GCSH
79673430
79587481
0
1
53
4504
−5057
4504
0
NA
0.05
NA


315
KIAA1609
83068608
83095794
1
1
55
143838
−13315
−13315
0
NA
0.05
NA


316
FANCA
88331460
88410565
0
1
62
11842
−246990
11842
0
NA
0.05
NA


317
ERI1
8897856
8928139
1
1
15
522716
−109315
−109315
0
0.05
NA
NA


318
HSDL1
82713389
82736285
0
1
54
101
−5371
101
0
NA
0.07
NA










Table 14-9a























Final-




NYU-
MSKs1-
MSKs1-
MSKs2-

MSKs2-
MSKs2
logrank-
logank-
logrank-
gene-
gene-


RANK
gene
index
NYU-2
NYU-dir
count
Z
dir
count
MSKs2-Z
dir
count
n52random
n271random
composite
Chr
Cytoband





319
KIAA0182
302
NA
NA
NA
2
−1
781
NA
NA
NA
305
251
281
16
q24.1


320
CBFA2T3
327
NA
NA
NA
1.9
−1
698
NA
NA
NA
274
297
286
16
q24.3


321
EGR3
135
NA
NA
NA
2
−1
751
NA
NA
NA
308
267
289
8
p21.3


322
PCOLCE
77
NA
NA
NA
NA
NA
NA
1.8050
1
608
294
281
290
7
q22.1


323
C16or1B5
316
NA
NA
NA
2.1
−1
801
NA
NA
NA
290
291
295
16
q24.2


324
HMBOX1
159
1.8
−1
553
NA
NA
NA
NA
NA
NA
287
306
300
8
p21.1


325
MTMR9
100
1.9
−1
674
NA
NA
NA
NA
NA
NA
343
257
301
8
p23.1


326
MSC
173
2
1
675
NA
NA
NA
NA
NA
NA
291
305
302
8
q13.3


327
ST3GAL2
289
2.4
−1
774
NA
NA
NA
NA
NA
NA
259
340
308
16
q22.1


328
FOXF1
308
NA
NA
NA
2.2
−1
894
NA
NA
NA
344
270
309
16
q24.1


329
C8or158
132
NA
NA
NA
3
−1
999
NA
NA
NA
334
279
310
8
p21.3


330
KCTD9
145
2
−1
663
NA
NA
NA
NA
NA
NA
271
344
311
8
p21.2


331
ANGPT1
214
2.4
1
818
NA
NA
NA
NA
NA
NA
333
282
313
8
q23.1


332
GDAP1
180
2
1
683
NA
NA
NA
NA
NA
NA
283
333
314
8
q21.11


333
HNF166
322
NA
NA
NA
2.2

877
NA
NA
NA
263
360
315
16
q24.3


334
KLHL1
253
NA
NA
NA
NA
NA
NA
1.8630
−1
568
293
325
318
13
q21.33


335
LOXL2
140
NA
NA
NA
1.9
−1
675
NA
NA
NA
322
298
319
8
p21.3


336
WISP1
233
2.2
1
777
NA
NA
NA
NA
NA
NA
280
343
320
8
q24.22


337
C8or180
157
3.6
−1
957
NA
NA
NA
NA
NA
NA
357
274
323
8
p21.1


338
LA12
60
NA
NA
NA
NA
NA
NA
1.9646
1
697
328
300
324
7
q11.23


339
USP10
298
2.3
−1
691
NA
NA
NA
NA
NA
NA
321
310
326
16
q24.1


340
CDH15
328
NA
NA
NA
1.9
−1
673
NA
NA
NA
330
303
328
16
q24.3


341
WFCC1
294
2.3
−1
713
NA
NA
NA
NA
NA
NA
311
327
329
16
q24.1


342
C7or151
73
NA
NA
NA
NA
NA
NA
2.1914
1
773
307
339
333
7
q22.1


343
EBF2
14
5.1
−1
999
NA
NA
NA
NA
NA
NA
309
337
334
8
p21.2


344
CCCC125
32
NA
NA
NA
2
−1
721
NA
NA
NA
336
319
337
5
q13.2


345
LGI3
124
NA
NA
NA
2
−1
678
NA
NA
NA
332
323
338
8
p21.3


346
NUDT18
121
NA
NA
NA
2.3
−1
786
NA
NA
NA
314
354
340
8
p21.3


347
PHYHIP
125
NA
NA
NA
2.2
−1
860
NA
NA
NA
351
308
341
8
p21.3


348
PILRA
70
NA
NA
NA
NA
NA
NA
1.8998
1
701
353
318
342
7
q22.1


349
KATZA
340
NA
NA
NA
NA
NA
NA
3.1978
1
993
318
357
343
17
q921.2


350
CSMD3
216
4.9
1
998
4.2
1
809
NA
NA
NA
351
324
344
8
q23.3


351
REEP4
123
NA
NA
NA
2.5
−1
847
NA
NA
NA
324
352
345
8
p21.3


352
TUBB3
333
NA
NA
NA
2.6
−1
843
NA
NA
NA
348
328
346
16
q24.3


353
CDT1
324
NA
NA
NA
2
−1
745
NA
NA
NA
365
313
347
16
q24.3


354
EDA2R
365
2
1
629
NA
NA
NA
NA
NA
NA
349
331
348
23
q12


355
DUS1L
34
NA
NA
NA
NA
NA
NA
2.2705
1
904
364
322
350
17
q25.3


358
LACH4
75
NA
NA
NA
NA
NA
NA
2.2304
1
831
342
349
351
7
q22.1


357
TMEM75
223
3.5
1
992
NA
NA
NA
NA
NA
NA
337
356
352
8
q24.21


358
NUDT7
277
2.2
−1
730
NA
NA
NA
NA
NA
NA
355
338
353
16
q23.1










Table 14-9b




















Final-





clump-


min-
IndexO-
NYU-
MSKs1-



RANK
gene
gene-start
gene-end
genesBtwn
contg
index
dstprev
dstnext
disto-ROL
Proxy1
Zadjust
Zadust
MSKS2-Zadjust





319
KIAA0182
84202524
84267311
0
1
57
1471
−517197
1471
0
NA
0.07
NA


320
CBFA2T3
87463768
87570902
2
1
60
194752
−13748
−13748
0
NA
0.05
NA


321
EGR3
22601119
22606760
0
1
26
306299
−18566
−18566
0
NA
0.07
NA


322
PCOLCE
100037818
100043732
0
1
12
3929
−1144
−1144
0
NA
NA
0.02


323
C16or1B5
87147613
87164049
0
1
58
294
−18723
294
0
NA
0.10
NA


324
HMBOX1
28803830
28988706
0
1
32
14009
899246
14009
0
0.02
NA
NA


325
MTMR9
11179410
11223062
6
1
17
165868
−154255
−154255
0
0.05
NA
NA


326
MSC
72916332
72919285
0
1
34
176755
−479311
176755
0
0.07
NA
NA


327
ST3GAL2
68970839
69000492
28
1
50
2343793
−6059
6059
0
0.21
NA
NA


328
FOXF1
85101634
85105570
0
1
57
15714
−587924
15714
0
NA
0.14
NA


329
C8or158
22513067
22517605
0
1
26
597
−1584
597
0
NA
0.47
NA


330
KCTD9
25341283
25371837
0
1
29
591
−14747
591
0
0.07
NA
NA


331
ANGPT1
108330899
108579459
0
1
42
401282
−1444960
401262
0
0.21
NA
NA


332
GDAP1
75425173
75441888
0
1
35
457439
−23056
−22066
0
0.07
NA
NA


333
HNF166
87290411
87300312
1
1
58
2604
−10028
2601
0
NA
0.14
NA


334
KLHL1
69172727
69580592
0
1
49
1329507
−2470149
1329507
0
NA
NA
0.04


335
LOXL2
23210097
23317667
0
1
28
−18281
−34647
−18281
0
NA
0.05
NA


336
WISP1
134272494
134310751
2
1
46
1248464
−88015
−88015
0
0.14
NA
NA


337
C8or180
27936607
27997307
0
1
31
2452
−29490
2452
0
0.80
NA
NA


338
LA12
73261662
73282099
0
1
9
1671
−12304
1671
0
NA
NA
0.06


339
USP10
83291050
83371026
0
1
56
40087
−37634
−37634
0
0.17
NA
NA


340
COH15
87765664
87789400
0
1
61
72136
−194762
72136
0
NA
0.05
NA


341
WFCC1
82885822
82920888
0
1
55
38748
−116798
38746
0
0.17
NA
NA


342
C7or151
99919485
99900358
0
1
12
44412
−4648
4648
0
NA
NA
0.13


343
EBF2
25758042
25958292
2
1
29
533035
−336689
−336689
0
1.78
NA
NA


344
CCCC125
68612278
68664392
0
1
4
31935
−3274
3274
0
NA
0.07
NA


345
LGI3
22060290
22070290
1
1
24
8355
−4897
−4897
0
NA
0.07
NA


346
NUDT18
22020328
22023403
0
1
24
4474
−2493
−2493
0
NA
0.17
NA


347
PHYHIP
22133162
22145796
0
1
25
12768
−7380
−7380
0
NA
0.14
NA


348
PILRA
99808004
99835850
1
1
11
29540
−5616
−5616
0
NA
NA
0.05


349
KATZA
37518657
37526872
0
1
64
1489
−380
−380
0
NA
NA
0.57


350
CSMD3
113304337
114518418
0
1
43
1971482
−4139285
1971482
0
1.63
1.16
NA


351
REEP4
22051478
22055393
0
1
24
4897
−8152
489
0
NA
0.25
NA


352
TUBB3
88513168
88530006
1
1
62
12678
−7881
−7881
0
NA
0.29
NA


353
CDT1
87397687
87403186
1
1
59
4478
−67370
4478
0
NA
0.07
NA


354
EDA2R
65732204
65775508
0
1
69
904991
328248
−328248
0
0.07
NA
NA


355
DUS1L
77609043
77629242
0
1
66
262
−40474
262
0
NA
NA
0.16


355
LACH4
100009570
100021712
0
1
12
180
−5792
180
0
NA
NA
0.14


357
TMEM75
129029046
129029462
2
1
44
2104073
−206193
−206193
0
0.74
NA
NA


358
NUDT7
76313912
76333852
0
1
52
280292
−287400
280292
0
0.14
NA
NA










Table 14-10a























Final-




NYU-
MSKs1-
MSKs1-
MSKs2-

MSKs2-
MSKs2
logrank-
logank-
logrank-
gene-
gene-


RANK
gene
index
NYU-2
NYU-dir
count
Z
dir
count
MSKs2-Z
dir
count
n52random
n271random
composite
Chr
Cytoband





359
TSGA14
87
NA
NA
NA
NA
NA
NA
9.3754
1
968
354
341
354
7
q32.2


360
CDC428PG
242
NA
NA
NA
NA
NA
NA
2.3279
1
813
360
335
355
11
q13.1


361
TSC22D4
72
NA
NA
NA
NA
NA
NA
2.1304
1
867
341
359
356
7
q22.1


362
NOTUM
345
NA
NA
NA
NA
NA
NA
2.6756
1
983
358
348
358
17
q25.3


363
HSPB9
341
NA
NA
NA
NA
NA
NA
2.9366
1
987
346
361
360
17
q21.2


364
TFA2
79
NA
NA
NA
NA
NA
NA
2.6230
1
950
352
355
361
7
q22.1


365
SLA
232
2.2
1
786
NA
NA
NA
NA
NA
NA
347
365
362
8
q24.22


366
WWOX
279
9.3
−1
1000
NA
NA
NA
NA
NA
NA
359
364
365
16
q23.1


367
POUSF1B
221
2.9
1
989
NA
NA
NA
NA
NA
NA
366
358
366
8
q24.21


368
CPHN1
367
5.8
1
999
NA
NA
NA
NA
NA
NA
368
368
368
23
q12










Table 14-10b




















Final-





clump-


min-
IndexO-
NYU-
MSKs1-



RANK
gene
gene-start
gene-end
genesBtwn
contg
index
dstprev
dstnext
disto-ROL
Proxy1
Zadjust
Zadust
MSKS2-Zadjust





359
TSGA14
129823611
129868133
0
1
13
45149
−8446
−8446
0
NA
NA
4.49


360
CDC42BPG
64348240
64368517
2
1
47
80139
−12898
−12888
0
NA
NA
0.18


361
TSC22D4
99902080
99914838
0
1
12
4648
−32404
4648
0
NA
NA
0.11


362
NOTUM
77503689
77512353
0
1
65
16362
−39903857
16352
0
NA
NA
0.32


363
HSPB9
37528361
37526897
0
1
64
1627
−1489
−1489
0
NA
NA
0.44


364
TFA2
100055975
100077109
0
1
12
1589
−5043
1589
0
NA
NA
0.29


365
SLA
134118155
134184479
0
1
46
88015
98170
88015
0
0.14
NA
NA


366
WWOX
76891052
77803532
2
1
52
1391644
−67557
−67557
0
4.45
NA
NA


367
POUSF1B
128497039
128498621
0
1
44
318241
−23233848
318241
0
0.42
NA
NA


368
OPHN1
67179440
67570372
NA
1
69
NA
−318596
−318596
0
2.24
NA
NA








Claims
  • 1. A method of diagnosing and treating a human subject who has or had breast or lung cancer, the method comprising (a) obtaining a tissue or DNA sample from the subject,(b) determining in the sample the number of copies per cell of at least 12 genes and/or genomic regions of a metastatic gene signature set, wherein the metastatic gene signature set consists of the PPP3CC genomic region, the SLCO5A1 genomic region, the SLC7A5 genomic region, the SLC7A2 genomic region, the CRISPLD2 genomic region, the CDH13 gene, the CDH8 gene, the CDH2 gene, the ASAH1 genomic region, the KCNB2 genomic region, the KCNH4 genomic region, the CTD8 gene, the JPH1 genomic region, the MEST genomic region, the NCALD genomic region, the COL19A1 gene, the MAP3K7 genomic region, the YWHAG gene, the NOLA genomic region, and the ENOX1 gene, wherein said detecting comprises performing nucleic acid hybridization, and whereinthe PPP3CC genomic region consists of the genes PPP3CC, KIAA1967, BIN3, SORBS3, PDLIM2, RHOBTB2, SLC39A14, EGR3, and C8orf58,the SLCO5A1 genomic region consists of the genes SLCOSA1, SULF1, NCOA2, CPA6, C8orf34, PRDM14, and PREX2,the SLC7A5 genomic region consists of the genes SLC7A5, CASA, BANP, KLHDC4, CYBA, JPH3, ZFPM1, SNAI3, ZC3H18, MVD, IL17C, C16orf85, and RNF166,the SLC7A2 genomic region consists of the genes SLC7A2, MTMR7 and MTUS1,the CRISPLD2 genomic region consists of the genes CRISPLD2, ZDHHC7, KIAA0513, KLHL36, and USP10,the ASAH1 genomic region consists of the genes ASAH1 and PCM1,the KCNB2 genomic region consists of the genes KCNB2, EYA1, XKR9, and TRPA1,the KCNH4 genomic region consists of the genes KCNH4, RAB5C, DHX58, KAT2A, and HSPB9,the JPH1 genomic region consists of the genes JPH1, HNF4G, CRISPLD1, PI15, and GDAP1,the MEST genomic region consists of the genes MEST, COPG2, CPA5, CPA2, CPA1, CPA4, and TSGA14,the NCALD genomic region consists of the genes NCALD, ZNF706, GRHL2, and YWHAZ,the MAP3K7 genomic region consists of the genes MAP3K7 and EPHA7, andthe NOL4 genomic region consists of the genes NOLA and DTNA,(c) determining an aggregate score for the at least 12 members as compared to the number of copies per cell in non-cancer cells,(d) based on the determination in step (c), diagnosing that the subject has risk of metastasis,(e) developing a pan-cancer metastatic potential score (panMPS) based on CNA (copy number alternation) genes,(f) predicting a metastasis-free survival for breast or lung cancer based on the panMPS in step (e), and(g) treating the subject with at least one therapy selected from the group consisting of surgery, radiation therapy, chemotherapy or biologically targeted therapy.
  • 2. The method of claim 1, wherein the at least 12 genes and/or genomic regions include the PPP3CC genomic region, the SLCOSA1 genomic region, the SLC7A5 genomic region, the SLC7A2 genomic region, the CRISPLD2 genomic region, the CDH13 gene, the CDH8 gene, the CDH2 gene, the ASAH1 genomic region, the KCNB2 genomic region, the KCNH4 genomic region, and the CTD8 gene.
  • 3. The method of claim 1, wherein the at least 12 genes and/or genomic regions include all of the genes and genomic regions in said metastatic gene signature set.
  • 4. The method of claim 3, further comprising determining the number of copies per cell of at least one additional gene or genomic region selected from the group consisting of PPP3CC, SLCO5A1, SLC7A5, SLC7A2, CRISPLD2, CDH13, CDH8, CDH2, ASAH1, KCNB2, KCNH4, KCTD8, JPH1, MEST, NCALD, COL19A1, MAP3K7, YWAHG, NOLA, ENOX1, CSMD1, SGCZ, PDE10A, PCDH9, HTR2A, HIP1, CD226, DCC, CC2D1A, PTK2B, BCMO1, MACRDO1, GRID2, DIAPH3, PILRB, MEIS2, MSRA, DPYD, ANKRD11, NRXN1, ADCY8, TRDN, STAU2, SF1, CLIP2, CLDN3, ZSWIM4, GLRB, DCHS2, TRPS1, MDGA2, CNBD1, STAG3, GATA4, VPS13B, DOCK5, ZHX2, ARHGEF5, SDC2, MYLK, LPHN3, MOSPD3, GYS2, GAS8, RAB9A, POLR3D, PSD3, ZFPM2, ATP6V1C1, MEF2C, PKIA, ADAMTS18, STYXL1, EPM2A, LEPREL1, GABRA2, RCOR2, MFHAS1, SCARA5, CCDC25, FAM38A, CTSB, PTK2, SPIRE2, C13orf23, BOD1L, FAM160B2, NUS1, MTHFSD, UBR5, GALNS, FSTL5, SIM1, TG, BFSP2, MMP16, RIMS2, PDS5B, CDK7, CNTNAP4, CFDP1, FBXL4, RFX1, NALCN, STX1A, CYP7B1, ARHGEF10, ENTPD4, ZNF704, C8orf79, SLC9A9, CHMP7, GPC5, MYC, STIP1, ZBTB20, MEN1, SLC26A7, ALCAM, KIF13B, MBTPS1, PPP2R5B, VPS13C, ASPRSCR1, EPO, HEY1, KALRN, RGS22, WDR7, COL11A1, GHDC, ATP2C2, CDH17, DGKG, GRK5, GRM1, IMPA1, RPL7, COL21A1, COL12A1, MLYCD, AR, PLCB1, ACTL8, TFDP1, IQCE, SMARCB1, MTDH, NECAB2, DEF8, RNF40, TICAM2, GLG1, MECOM, TCEB1, CTNNA2, NIPAL2, CDCA2, WWP2, DDX19A, STK3, DNAH2, NFAT5, CNGB1, UBE2CBP, C8orf16, KIAA0196, CLCNKB, C16orf80, ZFHX3, PPM1L, NKIRAS2, RSPO2, XPO7, ME1, NLGN4Y, LZTS1, FBXL18, TBC1D10B, WDR59, BLK, MEPCE, DLGAP2, ZFAT, FASN, GIGYF1, ANXA13, CDYL2, TOX, NKX2-6, RALYL, TBC1D22A, TFE3, KCNAB1, SULF1, RAB5C, DHX58, ASAP1, CASA, C6orf118, NCOA2, PKD1L2, BANP, KIAA1967, COPG2, ZNF706, GAN, PLCG2, C19orf57, PDGFRL, ESD, CPA5, BIN3, ZFHX4, CPA6, EYA1, CHRNA2, TNKS, HNF4G, LRCH1, ADRA1A, EPHX2, SORBS3, GRIA2, PDLIM2, MTMR7, FBXO24, CRISPLD1, DPYS, DTNA, KLHDC4, CYBA, JPH3, TMEM120A, MTUS1, C8orf34, GRHL2, CPA2, NAT2, DPYSL2, ZDHHC7, ELP3, RHOBTB2, NEIL2, HR, EFR3A, STMN4, PRDM14, MARVELD2, SLC39A14, ACTL6B, TUSC3, COX4NB, XKR9, C16orf46, TAF9, KCNQ3, UTRN, RAD17, ZFPM1, PTDSS1, IRF8, YWHAZ, MRPS36, LACTB2, SNAI3, TMEM71, PREX2, CPA1, PHF20L1, KIAA0513, PI15, PCM1, SH2D4A, C16orf74, TP63, DACH1, TNFRSF10A, MDH2, PAG1, SLC25A37, BCAR1, COX411, EIF4H, ZC3H18, STMN2, AFG3L1, HSD17B2, MVD, DLC1, EPHA7, TRIM35, LRRC50, CNGB3, ASCC3, RFC2, CLEC3A, IL17C, BMP1, CPA4, OC90, HEPH, LRP12, AGFG2, TRPA1, GINS2, CENPH, KLHL36, ARHGEF10L, TRAPPC2L, TCF25, TNFRSF10D, MYOM2, GCSH, KIAA1609, FANCA, ERI1, HSDL1, KIAA0182, CBFA2T3, EGR3, PCOLCE, C16orf85, HMBOX1, MTMR9, MSC, ST3GAL2, FOXF1, C8orf58, KCTD9, ANGPT1, GDAP1, RNF166, KLHL1, LOXL2, WISP1, C8orf80, LAT2, USP10, CDH15, WFDC1, C7orf51, EBF2, CCDC125, LGI3, NUDT18, PHYHIP, PILRA, KAT2A, CSMD3, REEP4, TUBB3, CDT1, EDA2R, DUS1L, LRCH4, TMEM75, NUDT7, TSGA14, CDC42BPG, TSC22D4, NOTUM, HSPB9, TFR2, SLA, WWOX, POU5F1B, and OPHN1.
  • 5. The method of claim 4, wherein said at least one additional gene or genomic region comprises 20 genes and/or genomic regions selected from the group consisting of PPP3CC, SLCOSA1, SLC7A5, SLC7A2, CRISPLD2, CDH13, CDH8, CDH2, ASAH1, KCNB2, KCNH4, KCTD8, JPH1, MEST, NCALD, COL19A1, MAP3K7, YWAHG, NOL4, ENOX1, CSMD1, SGCZ, PDE10A, PCDH9, HTR2A, HIP1, CD226, DCC, CC2D1A, PTK2B, BCMO1, MACRDO1, GRID2, DIAPH3, PILRB, MEIS2, MSRA, DPYD, ANKRD11, NRXN1, ADCY8, TRDN, STAU2, SF1, CLIP2, CLDN3, ZSWIM4, GLRB, DCHS2, TRPS1, MDGA2, CNBD1, STAG3, GATA4, VPS13B, DOCK5, ZHX2, ARHGEF5, SDC2, MYLK, LPHN3, MOSPD3, GYS2, GAS8, RAB9A, POLR3D, PSD3, ZFPM2, ATP6V1C1, MEF2C, PKIA, ADAMTS18, STYXL1, EPM2A, LEPREL1, GABRA2, RCOR2, MFHAS1, SCARA5, CCDC25, FAM38A, CTSB, PTK2, SPIRE2, C13orf23, BOD1L, FAM160B2, NUS1, MTHFSD, UBR5, GALNS, FSTL5, SIM1, TG, BFSP2, MMP16, RIMS2, PDS5B, CDK7, CNTNAP4, CFDP1, FBXL4, RFX1, NALCN, STX1A, CYP7B1, ARHGEF10, ENTPD4, ZNF704, C8orf79, SLC9A9, CHMP7, GPC5, MYC, STIP1, ZBTB20, MEN1, SLC26A7, ALCAM, KIF13B, MBTPS1, PPP2R5B, VPS13C, ASPRSCR1, EPO, HEY1, KALRN, RGS22, WDR7, COL11A1, GHDC, ATP2C2, CDH17, DGKG, GRK5, GRM1, IMPA1, RPL7, COL21A1, COL12A1, MLYCD, AR, PLCB1, ACTL8, TFDP1, IQCE, SMARCB1, MTDH, NECAB2, DEF8, RNF40, TICAM2, GLG1, MECOM, TCEB1, CTNNA2, NIPAL2, CDCA2, WWP2, DDX19A, STK3, DNAH2, NFAT5, CNGB1, UBE2CBP, C8orf16, KIAA0196, CLCNKB, C16orf80, ZFHX3, PPM1L, NKIRAS2, RSPO2, XPO7, ME1, NLGN4Y, LZTS1, FBXL18, TBC1D10B, WDR59, BLK, MEPCE, DLGAP2, ZFAT, FASN, GIGYF1, ANXA13, CDYL2, TOX, NKX2-6, RALYL, TBC1D22A, TFE3, KCNAB1, SULF1, RAB5C, DHX58, ASAP1, CA5A, C6orf118, NCOA2, PKD1L2, BANP, KIAA1967, COPG2, ZNF706, GAN, PLCG2, C19orf57, PDGFRL, ESD, CPA5, BIN3, ZFHX4, CPA6, EYA1, CHRNA2, TNKS, HNF4G, LRCH1, ADRA1A, EPHX2, SORBS3, GRIA2, PDLIM2, MTMR7, FBXO24, CRISPLD1, DPYS, DTNA, KLHDC4, CYBA, JPH3, TMEM120A, MTUS1, C8orf34, GRHL2, CPA2, NAT2, DPYSL2, ZDHHC7, ELP3, RHOBTB2, NEIL2, HR, EFR3A, STMN4, PRDM14, MARVELD2, SLC39A14, ACTL6B, TUSC3, COX4NB, XKR9, C16orf46, TAF9, KCNQ3, UTRN, RAD17, ZFPM1, PTDSS1, IRF8, YWHAZ, MRPS36, LACTB2, SNAI3, TMEM71, PREX2, CPA1, PHF20L1, KIAA0513, PI15, PCM1, SH2D4A, C16orf74, TP63, DACH1, TNFRSF10A, MDH2, PAG1, SLC25A37, BCAR1, COX411, EIF4H, ZC3H18, STMN2, AFG3L1, HSD17B2, MVD, DLC1, EPHA7, TRIM35, LRRC50, CNGB3, ASCC3, RFC2, CLEC3A, IL17C, BMP1, CPA4, OC90, HEPH, LRP12, AGFG2, TRPA1, GINS2, CENPH, KLHL36, ARHGEF10L, TRAPPC2L, TCF25, TNFRSF10D, MYOM2, GCSH, KIAA1609, FANCA, ERI1, HSDL1, KIAA0182, CBFA2T3, EGR3, PCOLCE, C16orf85, HMBOX1, MTMR9, MSC, ST3GAL2, FOXF1, C8orf58, KCTD9, ANGPT1, GDAP1, RNF166, KLHL1, LOXL2, WISP1, C8orf80, LAT2, USP10, CDH15, WFDC1, C7orf51, EBF2, CCDC125, LGI3, NUDT18, PHYHIP, PILRA, KAT2A, CSMD3, REEP4, TUBB3, CDT1, EDA2R, DUS1L, LRCH4, TMEM75, NUDT7, TSGA14, CDC42BPG, TSC22D4, NOTUM, HSPB9, TFR2, SLA, WWOX, POU5F1B, and OPHN1.
  • 6. The method of claim 5, wherein said 20 genes and/or genomic regions consist of CSMD1, SGCZ, PDE10A, PCDH9, HTR2A, HIP1, CD226, DCC, CC2D1A, PTK2B, BCMO1, MACRDO1, GRID2, DIAPH3, PILRB, MEIS2, MSRA, DPYD, ANKRD11, and NRXN1.
CROSS REFERENCE TO RELATED APPLICATION

This application is the continuation of PCT/US2019/016268 which claims the benefit of priority from U.S. Provisional Application No. 62/625,553, filed Feb. 2, 2018, the entire contents of which are incorporated herein by reference.

US Referenced Citations (8)
Number Name Date Kind
7482123 Paris et al. Jan 2009 B2
7638278 Pollack et al. Dec 2009 B2
10519505 Ostrer Dec 2019 B2
20090155805 Zhang et al. Jun 2009 A1
20130231259 Hoon et al. Sep 2013 A1
20140221229 Ostrer Aug 2014 A1
20150031744 Loh et al. Jan 2015 A1
20150152506 Gomis et al. Jun 2015 A1
Foreign Referenced Citations (1)
Number Date Country
WO 2012145607 Oct 2012 WO
Non-Patent Literature Citations (2)
Entry
International Search Report dated Apr. 15, 2019 issued in PCT/US2019/016268.
Moelans et al., “Genomic evolution from primary breast carcinoma to distant metastasis: Few copy number changes of breast cancer related genes,” Cancer Letters (Oct. 30, 2013), vol. 344, pp. 138-146.
Related Publications (1)
Number Date Country
20200370132 A1 Nov 2020 US
Provisional Applications (1)
Number Date Country
62625553 Feb 2018 US
Continuations (1)
Number Date Country
Parent PCT/US2019/016268 Feb 2019 WO
Child 16983235 US