NONE
The present invention generally relates to a rolled food product comprising multiple strands and a method for making the same. More specifically, the present invention relates to a starch-based confectionary formulation used to make the rolled food product, a method for making the rolled food product, and an appealing and aesthetically pleasing shape of the rolled food product including multiple strands
In recent years, food manufacturers have increased the play value and visual attractiveness of their food products in hopes of obtaining or maintaining market share, particularly with young consumers. For instance, manufacturers often create food products that assume appealing shapes such as fish or animals. Manufacturers also produce food products that comprise multiple pieces that can be separated before consumption. Typically, multi-piece food products having multiple pieces are intended to provide amusement to young consumers and aesthetic appeal to older consumers.
In addition to increasing the play value and aesthetic appeal of their products, food manufacturers have also been trying to develop fruit-based confection products, which provide additional nutritional value for young consumers. Such confectionary fruit snacks are well known. For instance, U.S. Pat. No. 4,117,176 to Taylor et al. discloses a taffy-like confection made with real fruit pieces. Similarly, U.S. Pat. No. 5,554,410 to Bell et al. discloses a hard confection product made with fruit juice and U.S. Pat. No. 6,548,090 to Dwivedi discloses an extrudable confection made with fruit concentrate.
However, the prior art listed does not disclose a starch-based confectionary food product with high levels of fruit, particularly, such a food product that is rolled and has multiple strands that can be individually pulled off the roll to increase the play value and appeal of the food product. As a result, there is a need in the food industry for a rolled multiple stranded food product having high levels of fruit wherein the strands can be individually removed to increase the play value and appeal of the product.
In general terms, this invention provides a rolled food product comprising a plurality of individual strands that are joined along their length. The strip of multiple strands is then rolled on itself to form a rolled food product. The individual strands are peelable from the rolled food product for long lengths, and preferably for their entire length. The rolled food product has great play value and appeal to consumers. The unique design and formulation permits the food product to maintain its rolled shape and yet remain peelable.
These and other features and advantages of this invention will become more apparent to those skilled in the art from the detailed description of a preferred embodiment. The drawings that accompany the detailed description are described below.
Formation of the present rolled food product begins with formation of an initial slurry as shown at 10 in
Sweetener provides the confectionary aspect of the formulation. The sweetener comprises 20 to 70% by weight of the mixture, more preferably 50 to 70% by weight, and most preferably 60 to 65% by weight of the mixture. The sweetener can be in the form of sugar, sucrose, dextrose, fructose, crystalline fructose, lactose, malt syrup, malt syrup solids, rice syrup solids, rice syrup, sorghum syrup, invert sugar, refiners syrup, corn syrup, corn syrup solids, maltose, high fructose corn syrup, honey, molasses, sugar alcohols, maltodextrin, or combinations thereof. It should be appreciated that a “no sugar added” product could also be formulated using sorbitol and other sugar alcohols.
The formulation also includes high levels of fruit from fruit powder, drum-dried fruit solids, freeze-dried fruit solids, evaporated fruit puree or fruit juice concentrate with at least 40% fruit solids. It should be noted that fruits such as cleaned, de-capped, fresh strawberries contain only 6 to 9.5 lbs. of solids per hundred-weight, i.e., 6 to 9.5% solids. Hence, the formulation provided herein uses a concentrated source of fruit. Preferably, the amount of fruit ranges from 1 to 25% by weight, more preferably from 1 to 10% by weight, and most preferably from 1 to 8% by weight.
The formulation preferably has from 0 to 5% of an edible oil or shortening. Examples of edible oils or shortenings that could be used include partially hydrogenated vegetable oils such as natural or hydrogenated soybean, cottonseed, canola, peanut, safflower, sunflower, coconut, palm, palm kernel, olive, butterfat, cocoa butter, tallow, lard, corn oil, or combinations thereof.
The formulation may have a humectant such as glycerin for moisture retention. The humectant is present in the mixture in a preferred amount of from 0 to 2%. Other examples of humectants that could be used include sorbitol solution, a mixture of glycerin and sorbitol, fructose, propylene glycol, or combinations thereof.
The formulation may include a food grade acid such as citric acid for modifying the pH of the slurry formed from the mixture. The food grade acid is present in the mixture in a preferred amount of from 0 to 3%. Other food grade acids that could be used include malic acid, tartaric acid, ascorbic acid, phosphoric acid, lactic acid, acetic acid, adipic acid, glucono delta lactone acid, fumaric acid, succinic acid, tarenic acid, or combinations thereof.
The formulation may include a buffer such as sodium citrate for controlling the pH. The buffer is present in the mixture in a preferred amount of from 0 to 1%.
Salt may be added to the formulation in a preferred amount of from 0 to 2% to provide flavor enhancement. The salt is chosen from, but is not limited to, sodium chloride, potassium chloride, calcium chloride, or combinations thereof.
The formulation may include an emulsifier such as glyceryl monostearate for maintaining the product softness over time. The emulsifier is present in the mixture in a preferred amount of from 0 to 3%. Other emulsifiers could also be used such as glycerol esters, diacetyl tartaric acids, esters of monoglycerides, mono and di-glycerides, polyglycerol esters, polysorbate, propylene glycol esters, rice extract esters, sodium stearoyl-2-lactylate, sorbitan esters, sugar esters, acetylated monoglycerides, lecithin, or combinations thereof.
A preservative such as potassium sorbate may also be present in the formulation in a preferred amount of from 0 to 1%. Other preservatives such as sodium propionate or potassium benzoate could be used as well.
It should be appreciated that the edible oil, humectant, food grade acid, buffer, salt, emulsifier, and preservative are optional ingredients.
The ranges that can be used for each of the ingredients in the initial food mass slurry are listed in TABLE 1 below with a preferred range, a more preferred range, and a most preferred range. For instance, referring to TABLE 1, the amount of starchy material, e.g., wheat flour, used to prepare the slurry preferably ranges from approximately 15 to 40%, more preferably from 20 to 35%, and most preferably from 25 to 30% based on a total dry weight of the mixture used to form the rolled food product. Water is also added to the initial slurry as required to achieve the desired final Brix of 74 to 79, more preferably from 75 to 78.
The initial food mass slurry is formed in a batch tank 20 with mixing and kept at about 170° F. to dissolve the components and to make them pumpable. One formulation for making an initial food mass slurry is presented in Table 2 below formed in the manner described below.
In the batch tank 20 the corn syrup, wheat flour, sugar, and corn starch are mixed. Then the oil, glycerol, and potassium sorbate, which is dissolved in some of the water, are added to the tank 20. Next the salt, glycerol monostearate, citric acid and another portion of the water are added to the tank 20. The mixing is continued for 15 minutes or until all of the lumps are gone. Then the fruit juice concentrate and the rest of the water are added to the tank 20. The slurry is heated to 170° F. and mixed for an additional 30 minutes. It is then pumped via a pump 22 to a slurry holding tank 24. Preferably the slurry has a Brix of from 74 to 79, more preferably Brix of from 75 to 78.
The formed slurry is optionally pumped from the holding tank 24 through a heat exchanger 26 to heat the mass up to about 200° F. This adds in increasing the throughput of the system, but is not necessary. In addition, during this pumping additional ascorbic acid 23 preferably at a level of 0.072% by weight based on the final weight can be added to raise the vitamin C level of the rolled food product as shown in
The food mass slurry from the holding tank 24 at a temperature of from about 160 to 200° F. is pumped into a twin screw cooker extruder 28, preferably a Krupp Werner & Pfleiderer™ W-P120 cooker/extruder. There are numerous possible extruder conditions, two possible extruder setups are disclosed below. In one embodiment, the extruder 28 has 9 zones and in the other it has 8 as described in Table 3 below. Preferably, each extruder 28 has a length to diameter ratio L/D of 33 to 32. The extruder barrels are surrounded by jackets 27 that receive either hot oil or chiller fluid. In the vent port portion of each extruder setup a vacuum 29 is pulled to further reduce the moisture level of the food mass.
The cooked food mass passes from the extruder 28 into a Diemix® unit 30 where it is split into a number of food streams. Such units are available from Extrufoods B.V., The Netherlands. The number of food streams depends on the desired final product configuration. For example, in one embodiment the final rolled food product comprises a product having 12 strands, divided into 6 pairs, with each pair having a different color to produce a 12 strand six color rolled configuration. In other embodiments, the rolled food item may have 3, 4 5, or more colors and or flavors. In the discussion below it will be assumed that the desired configuration is for a six colored roll having 12 strands, however other forms are possible. In the Diemix® unit 30 the food mass is split into 6 food streams each of which gets an injection of one of the specific colors. It is also possible to inject the flavor 25 and ascorbic acid 23 at this time if not done previously as described above. Three examples of six color combinations are given in Table 4 below in terms of % of final food weight, the remainder comprises the initial food mass slurry.
The injected and split food masses are then directed to a die face 32 and extruded through the die face 32, a portion of which is shown in
Preferably, the extruded strips of food product have a final moisture content of about 14 to 16% with a water activity level of 0.66 to 0.68. The strips of food product are extruded onto an infeed conveyor 38 and are conveyed through a cooling tunnel 40 to cool the strips to a temperature of preferably about 70° F. Preferably the strips of food product are approximately 0.9 to 1.1 inch wide. The cooled strips of food product are then cut by a cutter unit 42 into lengths of approximately 15 inches, with a desired final weight of approximately 22 to 25 grams.
The cut strips of food product are then split off to a series of winding mechanisms 50 to be rolled into the final rolled food product.
Referring to
The rolls 90 are periodically taken from the chute 88 and transferred to a packaging conveyor. There the rolls are separated and then packaged using standard flow wrapper technology. The wrapper material is a metalized polyester fin sealed pouch that is cold sealed. The wrapper material is Milseal™ from Milprint, Inc. a Bemis company. The layers are as follows: oriented polypropylene, ink, adhesive, aluminum metallization, oriented polyester, and then the cold seal.
A rolled food product 90 according to the present invention is shown in
The foregoing invention has been described in accordance with the relevant legal standards, thus the description is exemplary rather than limiting in nature. Variations and modifications to the disclosed embodiment may become apparent to those skilled in the art and do come within the scope of the invention. Accordingly, the scope of legal protection afforded this invention can only be determined by studying the following claims.
This application claims the benefit of U.S. Provisional application No. 60/664,345, filed on Mar. 23, 2005.
Number | Date | Country | |
---|---|---|---|
60664345 | Mar 2005 | US |