1. Field of the Invention
The present invention relates to a roller burnishing apparatus, and particularly to an apparatus for burnishing an object by biasing and pressing a burnishing roller against the object.
2. Description of Related Art
As disclosed in JP-A-2000-52244, for instance, a burnishing roller is biased by a biasing force of a plurality of disc springs and pressed against a workpiece or an object to be burnished. That is, in a roller burnishing apparatus disclosed in the above-mentioned publication, a shaft portion of a roller holder is fitted in a fitting hole formed in a mainbody of a roller burnishing tool such that the shaft portion is axially movable relative to the mainbody, and the burnishing roller is rotatably held by the roller holder. The disc springs are arranged in a row along an axis of the shaft portion, between the shaft portion and a spring retainer (or a spring bearing) that is fitted in the fitting hole such that the spring retainer is axially movable relative to the mainbody. The spring retainer is held in contact with an adjust screw engaged with a portion of the mainbody constituting a bottom portion of the fitting hole. An initial load of the disc springs is adjusted by changing an amount of engagement of the adjust screw with the bottom portion of the fitting hole, so as to adjust a pressing force with which the burnishing roller is pressed against the object, which force is based on the biasing force of the disc springs.
However, after the pressing force with which the burnishing roller is pressed against the object is adjusted, and as burnishing of the object progresses, the pressing force may decrease because of deterioration of the disc springs. The decrease in the pressing force may result in a product of poor quality.
This invention has been developed in view of the above-described situations, and it is an object of the invention, therefore, to provide a roller burnishing apparatus that can burnish an object by pressing a burnishing roller against the object with a pressing force that is based on a biasing force of a biasing device and kept at an appropriate level during burnishing.
To attain the above object, the invention provides a roller burnishing apparatus including (a) a first member that is moved relative to an object to be burnished, (b) a second member that is movable relative to the first member in a relative movement direction, (c) a burnishing roller that is held by the second member such that the burnishing roller is rotatable, (d) a biasing device that biases with a biasing force the second member relative to the first member in one of two opposite directions along the relative movement direction, and (e) a pressing-force detecting device which detects a pressing force with which the burnishing roller is pressed against the object and which is based on the biasing force of the biasing device.
For instance, the pressing-force detecting device may be (1) a load cell or (2) a strain gauge disposed on a member disposed in a path along which the pressing force is transmitted from the burnishing roller to the first member, and which includes the burnishing roller and the first member, in order that the strain gauge detects a distortion of the member.
The burnishing roller is pressed against the object by being biased by the biasing device, in order to burnish the object to smoothen a surface of the object as well as generate a compressive residual stress in the object to increase a fatigue strength of the object. According to the apparatus where the pressing-force detecting device detects the pressing force with which the burnishing roller is pressed against the object, it is possible to immediately find that the roller burnishing apparatus cannot achieve a pressing force appropriate for a burnishing operation because of a problem such as that the pressing force is decreased as a result of deterioration of an elastic member, or that a defect occurs at a constituent member of the apparatus, e.g., the biasing device. Further, where a surface of the object to be burnished has a dimensional error because of some abnormality occurring in a process implemented before burnishing, it is impossible to achieve a desirable pressing force in the burnishing. From the fact that a desirable pressing force cannot be achieved in the burnishing, the occurrence of some abnormality in the previous process is detectable. Hence, based on the pressing force detected by the pressing-force detecting device, it is possible to deal with, or eliminate, a cause of an abnormality occurring during the burnishing, for instance by adjusting the pressing force, by repairing the roller burnishing apparatus, or by eliminating the abnormality in the previous process.
There will be described by way of examples modes of inventions recognized to be claimable by the present applicant. The inventions may be hereinafter referred to as “claimable inventions”, and include at least the invention as defined in the appended claims, which may be referred to as “the invention” or “the invention of the present application”. However, the inventions may further include an invention of a concept subordinate or superordinate to the concept of the invention of the present application, and/or an invention of a concept different from the concept of the invention of the present application. The modes are numbered like the appended claims and depend from another mode or modes, where appropriate, for easy understanding of the claimable inventions. It is to be understood that combinations of features of the claimable inventions are not limited to those of the following modes. That is, the claimable inventions are to be construed by taking account of the description following each mode, the description of the embodiments, the related art, and others, and as long as the claimable inventions are constructed in this way, any one of the following modes may be implemented with one or more features added, or one or more of a plurality of features included in any one of the following modes are not necessarily provided all together.
Among the following modes, the mode (1) corresponds to claim 1, a combination of the modes (2) and (3) corresponds to claim 2, a part of the mode (4) corresponds to claim 3, a part of the mode (5) corresponds to claim 4, a part of the mode (6) corresponds to claim 5, a part of the mode (10) corresponds to claim 6, a part of the mode (11) corresponds to claim 7, a part of the mode (12) corresponds to claim 8, a part of the mode (13) corresponds to claim 9, a part of each of the modes (7) and (15) corresponds to claim 10, and each of a part of a combination of the modes (8) and (9) and a part of a combination of the modes (16) and (17) corresponds to claim 11.
(1) A roller burnishing apparatus including:
(2) The roller burnishing apparatus according to the mode (1), further including a relative-movement-direction defining mechanism which defines the relative movement direction in which the second member is movable relative to the first member.
By defining the relative movement direction in which the second member is moved relative to the first member, the biasing force of the biasing device efficiently acts on the burnishing roller.
(3) The roller burnishing apparatus according to the mode (1) or (2), wherein the pressing-force detecting device includes a detecting portion disposed in series with the biasing device and between the first member and the second member.
For instance, a solid-state load cell including an elastic member and a strain gauge that detects a distortion of the elastic member, or a hydraulic load cell that includes a hermetic container in which a liquid is sealed and a pressure sensor that detects the pressure of the liquid in the container, is suitably used as the detecting portion.
Where the pressing-force detecting device includes a processing portion and the pressing force is detected such that the processing portion processes a detection signal sent from the detecting portion, the processing portion may be disposed along with the detecting portion, or separately from the detecting portion. Where the processing portion is disposed separately from the detecting portion, the processing portion may be disposed in a computer of a controller that controls burnishing performed by the roller burnishing apparatus, for instance.
In the roller burnishing apparatus of the mode (3) according to the mode (2), the relative-movement-direction defining mechanism can also be used as portions of the biasing device and the pressing-force detecting device respectively. Thus, the structure of the roller burnishing apparatus is simplified
(4) The roller burnishing apparatus according to any one of the modes (1)-(3), wherein one of the first member and the second member includes a fitting hole, the other of the first member and the second member includes a fitted shaft portion which is fitted in the fitting hole such that the fitted shaft portion is slidable, and the relative movement direction in which the second member is moved relative to the first member is defined to be an axial direction of the fitted shaft portion by fitting of the fitted shaft portion in the fitting hole.
In the roller burnishing apparatus of the mode (4) according to the mode (2), the fitting hole and the fitted shaft portion cooperate to constitute a relative-movement-direction defining mechanism that defines the relative movement direction to be the axial direction of the fitted shaft portion. Thus, the structure of the roller burnishing apparatus is simple.
(5) The roller burnishing apparatus according to any one of the modes (1)-(3), wherein the second member is held by the first member such that the second member is rotatable around a rotation axis.
In the roller burnishing apparatus of the mode (5) according to the mode (2), a connecting device that connects the second member with the first member such that the second member is rotatable around the rotation axis constitutes a relative-movement-direction defining mechanism that defines the relative movement direction to be a circumferential direction around the rotation axis.
According to the roller burnishing apparatus of the mode (5), it is easy to lightly or smoothly move the first member relative to the second member.
(6) The roller burnishing apparatus according to any one of the modes (1)-(5), wherein the first member is a tool mainbody which is detachably held by a tool holding portion of a processing machine, and the second member is a movable member which is held by the tool mainbody such that the movable member is movable relative to the tool mainbody.
The roller burnishing apparatus of the mode (6) is a roller burnishing tool device incorporating at least a detecting portion of the pressing-force detecting device and the biasing device.
The processing machine may be for use exclusively with the roller burnishing apparatus, or may be for general purpose and can be used with any one of a plurality of working tools including the roller burnishing apparatus. In the case where the processing machine is a general-purpose machine, the cost of burnishing is reduced, and the processing machine may have a single tool holding portion that selectively holds one of the working tools including the roller burnishing apparatus, or alternatively may have a plurality of tool holding portions one of which holds the roller burnishing apparatus.
(7) The roller burnishing apparatus according to any one of the modes (1)-(6), further including a movement-limit defining device which defines a limit of the movement of the second member relative to the first member based on the biasing force of the biasing device.
For instance, the movement-limit defining device prevents detachment of the second member off the first member, thereby facilitating handling of the roller burnishing apparatus. Further, the movement-limit defining device positions the burnishing roller relative to the first member before and after burnishing or while burnishing is not performed, and facilitates positioning of the burnishing roller relative to the object at initiation of burnishing. Where the biasing force of the biasing device is constituted by an elastic force of an elastic member to which an initial load is applied, the movement-limit defining device reduces an amount by which the first member moves during a period of time beginning when the burnishing roller comes into contact with the object, and ending when the pressing force reaches a predetermined level.
(8) The roller burnishing apparatus according to any one of the modes (1)-(7), wherein the biasing device includes an elastic member.
According to the apparatus of the mode (8), it is easy to simplify the structure of the biasing device.
(9) The roller burnishing apparatus according to the mode (8), further including an adjusting device which adjusts an initial load of the elastic member.
A predetermined initial load can be secured or maintained even by replacement of the elastic member with another that provides the predetermined initial load, for instance. However, inclusion of the adjusting device for adjusting the initial load advantageously makes it unnecessary to replace the elastic member with another, or decreases the frequency of the replacement of the elastic member, thereby enabling to obtain the predetermined initial load with the cost of the apparatus kept low. The adjusting device enables to adjust the initial load without changing the positions of the burnishing roller and the object with respect to a direction in which the burnishing roller is pressed against the object, thereby making it unnecessary to vary a manner in which the positions of the burnishing roller and the object are controlled in burnishing.
According to the roller burnishing apparatus of the mode (9), a result of the detection by the pressing-force detecting device may be used in the adjustment of the initial load of the elastic member by the adjusting device. Where the roller burnishing apparatus does not include the adjusting device, the result of the detection by the pressing-force detecting device is used in checking or verifying whether the initial load of the elastic member is held within a predetermined range, for instance.
(10) The roller burnishing apparatus according to any one of the modes (1)-(5) and (7)-(9), wherein the first member is a movable member which is moved by a moving device of a processing machine, and the second member is a tool mainbody detachably held by a tool holding portion which is moved by the movable member.
The roller burnishing apparatus of the mode (10) is a roller burnishing machine including a processing machine and a roller burnishing tool that is attached to the processing machine in use. For instance, the biasing device is disposed between the movable member of the processing machine and the tool holding portion. For instance, the detecting portion of the pressing-force detecting device is disposed in one of the roller burnishing tool and the processing machine. In the case where the detecting portion is disposed in the processing machine, the position where the detecting portion is disposed may be in any one of the following portions of the processing machine: the tool holding portion, an object holding portion, and a relative movement device that moves the tool holding portion and the object holding portion relative to each other.
(11) The roller burnishing apparatus according to any one of the modes (1)-(10), further including:
The tool holding portion may be configured to hold a roller burnishing tool simply constituted by the burnishing roller and the second member holding the burnishing roller such that the burnishing roller is rotatable. Alternatively, the tool holding portion may be configured to hold a roller burnishing tool device including the burnishing roller, the second member, the first member, the biasing device, and at least the detecting portion of the pressing-force detecting device.
In the roller burnishing apparatus of the mode (11) according to the mode (8), it is desirable that a maximum amount of elastic deformation of the elastic member is relatively large and the modulus of elasticity of the elastic member is relatively small in order that an amount by which the elastic member is required to be resiliently or elastically deformed to obtain a desired initial load of the elastic member is relatively large, since in this desirable arrangement the pressing force with which the burnishing roller is pressed against the object almost corresponds to the initial load and thus the variation in the pressing force is relatively small even when the precision of control of the relative movement between the tool holding portion and the object holding portion by the relative movement device is relatively low and the amount of elastic deformation of the elastic member therefore varies somewhat.
Instead, there may be employed another arrangement where the modulus of elasticity of the elastic member is relatively high and the relative movement device is controlled to move the tool holding portion and the object holding portion relative to each other such that the burnishing roller is pressed against the object with a desired pressing force based on the elastic force of the elastic member. Where such an arrangement is employed, it is desirable to control the relative movement device on the basis of a result of the detection by the pressing-force detecting device, and in this case the movement-limit defining device and the adjusting device are unessential.
According to the roller burnishing apparatus of the mode (11), at least one of an inner circumferential surface and an outer circumferential surface of the object is burnished by the relative movement and rotation between the tool holding portion and the object.
(12) The roller burnishing apparatus according to the mode (1) or (2), wherein the first member also holds a burnishing roller such that the burnishing roller is rotatable, the apparatus further includes a holding member which holds the first member and the second member such that the two burnishing rollers respectively held by the first member and the second member are movable relative to each other and toward and away from each other, and the biasing device biases the first member and the second member in respective directions to move the two burnishing rollers in respective directions opposite to each other.
By moving the holding member and the object relative to each other by the relative movement device, the burnishing rollers and the object are moved relative to each other.
The holding member may be a tool mainbody detachably held by a tool holding portion of a processing machine, or may be a constituent element of a processing machine. Where the holding member is a tool mainbody detachably held by a tool holding portion of a processing machine, the roller burnishing apparatus of the mode (12) is a roller burnishing tool device. On the other hand, where the holding member is a constituent element of a processing machine, the roller burnishing apparatus of the mode (12) is a roller burnishing machine.
The directions in which the two burnishing rollers held by the first and second members are respectively biased by the biasing device may be either toward or away from each other. Where the directions in which the burnishing rollers are respectively biased are toward each other, the roller burnishing apparatus is suitable for simultaneously burnishing (i) two places on an outer circumferential surface of the object that are diametrically opposite to each other, or (ii) an outer circumferential surface and an inner surface of the object, where the object is annular or cylindrical. On the other hand, where the directions in which the burnishing rollers are respectively biased are away from each other, the roller burnishing apparatus is suitable for burnishing two places on an inner circumferential surface of the object that are diametrically opposite to each other.
(13) The roller burnishing apparatus according to the mode (12), wherein the holding member holds the first member and the second member such that the first member and the second member are rotatable around respective rotation axes that are parallel to each other.
(14) The roller burnishing apparatus according to the mode (12), wherein the holding member holds the first member and the second member such that the first member and the second member are movable relative to each other and toward and away from each other along a straight line.
(15) The roller burnishing apparatus according to any one of the modes (12)-(14), further including a movement-limit defining device which defines a limit of the movement of the second member relative to the first member based on the biasing force of the biasing device.
According to the roller burnishing apparatus of the mode (15), the two burnishing rollers can be spaced from each other by a distance appropriate for holding the object therebetween, at initiation of burnishing.
(16) The roller burnishing apparatus according to any one of the modes (12)-(15), wherein the biasing device includes an elastic member.
The description provided above with respect to the mode (8) applies to the mode (16).
(17) The roller burnishing apparatus according to the mode (16), further including an adjusting device which adjusts an initial load of the elastic member.
The description provided above with respect to the mode (9) applies to the mode (17).
(18) The roller burnishing apparatus according to any one of the modes (12)-(17), further including:
The description provided above with respect to the mode (11) applies to the mode (18).
The above and other objects, features, advantages and technical and industrial significance of the present invention will be better understood by reading the following detailed description of preferred embodiments of the invention, when considered in connection with the accompanying drawings, in which:
Hereinafter, there will be described several presently preferred embodiments of the invention, by referring to the accompanying drawings. It is noted that the claimable inventions can be embodied in various other forms than the embodiments described below, including the modes described in the part of “SUMMARY OF THE INVENTION”, and may be embodied with various modifications that may occur to those skilled in the art.
Referring to
As shown in
As shown in
The turret 40 is regular polygonal in cross section. On an outer circumferential surface at one of two axial end portions of the turret 40, a plurality of tool holding portions 50 (only one of which is shown in
As shown in
Each of the fitting hole 76 and the fitted shaft portion 82 is foursquare in cross section. The shaft portion 82 is fitted in the fitting hole 76 such that the shaft portion 82 is axially slidable but is not rotatable relative to the fitting hole 76 or the second arm portion 74, whereby a direction (which may be referred to as “the relative movement direction”) in which the tool mainbody 54 and the roller holder 78 are movable relative to each other is defined to be, or limited to, an axial direction of the shaft portion 82. The fitting hole 76 and the shaft portion 82 cooperate to constitute a relative-movement-direction defining mechanism. As shown in
The spring 100 is such that a maximum amount of compression thereof is relatively large and the spring constant thereof is relatively small. Hence, the spring 100 is compressed by a relatively large amount to obtain a desired initial load, and there occurs almost no change to the elastic force of the spring 100 when the amount of compression of the spring 100 somewhat changes. An adjust screw or bolt 110 is screwed into a portion of the roller holding portion 80 between the support walls 84, and the initial load applied to the spring 100 is adjusted by contacting the adjust screw 110 with the spring retainer 96 and changing an amount of the screwing of the adjust screw 110 into the roller holding portion 80. A setscrew 112 is also screwed into the roller holding portion 80, and the adjust screw 110 is prevented from rotating relative to the roller holding portion 80 by engagement between an end of the setscrew 112 and the adjust screw 110. In this roller burnishing apparatus, the adjust screw 110 constitutes an adjusting device, by means of which the initial load is adjusted in advance so as to obtain a predetermined pressing force during burnishing.
As shown in
There will be described an operation of the roller burnishing apparatus.
When a burnishing operation is to be performed on the sheave surface 12 of the pulley 10, the pulley 10 is held in an orientation such that the axis of the pulley 10 horizontally extends, as shown in
In operation, the main spindle 26 is rotated, whereby the pulley 10 is rotated around its rotation axis that coincides with that of the main spindle 26. The turret moving device 42 is numerically controlled by the controller 130, so as to move the turret 40 in a direction parallel to the line of intersection between the vertical plane including the rotation axis of the main spindle 26 and the sheave surface 12, and toward the axis of the pulley 10, i.e., the rotation axis of the main spindle 26. Hereinafter, the direction in which the turret 40 is moved, which is indicated by arrow P in
When the burnishing roller 86 reaches or gets on the sheave surface 12, the spring 100 is compressed and the stopper surface 104 separates from the stopper 102. On the other hand, the burnishing roller 86 is pressed onto the sheave surface 12 of the pulley 10 by the elastic force of the spring 100, and thereby rotated with the pulley 10, while displaced by the turret moving device 42 so as to burnish an entirety of the sheave surface 12. Since the spring constant of the spring 100 is relatively small the elastic force of the spring 100 does not change much even when the spring 100 is somewhat compressed. Hence, when the turret 40 is moved or displaced according to a preset program, the burnishing roller 86 is pressed against the sheave surface 12 with a pressing force that is almost equal to the initial load. In this way, the pressing force with which the burnishing roller 86 is pressed against the sheave surface 12 is easily managed. As indicated by solid line in
The computer of the controller 130 keeps determining whether the current value of the pressing force, which is obtained on the basis of the detection signal from the load cell 120, falls within a predetermined range, irrespective of whether burnishing is being performed or not. Since the elastic force of the spring 100 is almost equal to the initial load even when the spring 100 is somewhat compressed, there is almost no difference between the value of the elastic force obtained during a burnishing operation is performed and that obtained not during a burnishing operation, and normally the value of the pressing force obtained not during a burnishing operation does not fall out of the predetermined range.
However, in a case where the value of the pressing force is smaller than the range, the annunciator 132 informs the operator of this fact. In response thereto, the operator detaches the burnishing roller 86 from the roller holder 78, loosens the setscrew 112, and tightens the adjust screw 110 so as to increase the amount of compression of the spring 100 to increase the initial load. Since the pressing force is adjusted by adjusting the initial load of the spring 100, each burnishing operation can be performed with a desired pressing force, without requiring change to the position of the burnishing roller 86 relative to the sheave surface 12 at which the burnishing roller 86 performs burnishing. On the other hand, when the value of the pressing force is larger than the range, the annunciator 132 informs the operator of this fact, and in response to the annunciation the operator decreases the initial load, for instance by loosening the adjust screw 110, or reducing the degree of tightening of the adjust screw 110. In this way, the pressing force of the burnishing roller 86 is easily manageable.
It is noted that the value of the pressing force may be detected only during a burnishing operation.
Strictly, the pressing force of the burnishing roller 86 against the sheave surface 12 is larger than the initial load by an amount corresponding to a product of the spring constant of the spring 100 and the amount by which the spring 100 is compressed upon the burnishing roller 86 getting on the sheave surface 12. Hence, in a case where the amount by which the spring 100 is compressed upon getting on the sheave surface 12 is set to be relatively large, the increase in the pressing force, or the amount corresponding to the product, is innegligible, and thus the initial load should be set at an accordingly smaller value. In this case, however, since an error in the pressing force changes in proportion to an error in the amount of compression of the spring 100 upon the burnishing roller 86 getting on the sheave surface 12, and it is relatively easy to control the movement of the burnishing roller 86 in order that the error in the amount of compression of the spring 100 decreases, it is still easy to manage the pressing force.
Referring to
There will be described a roller burnishing apparatus with a pressing-force detecting device, according to a second embodiment of the claimable inventions, with reference to
The present roller burnishing apparatus includes a roller burnishing tool device 210 held by a turret lathe. The roller burnishing tool device 210 has a tool mainbody 212 as a first member. At the tool mainbody 212, the roller burnishing tool device 210 is detachably held by a tool holding portion 50 of a turret 40. The tool mainbody 212 is block-shaped as shown in
The tool mainbody 212 has a bottomed fitting hole 218 that extends along a longitudinal direction of the tool mainbody 212 and opens at a side of an outer circumferential surface of the turret 40. A roller holder 220 as a movable member constituting a second member is fitted in the fitting hole 218 such that the roller holder 220 is axially slidable. The roller holder 220 includes a fitted shaft portion 222 and a roller holding portion 224 disposed at an axial end of the shaft portion 222. The roller holding portion 224 has a pair of support walls 228 and a burnishing roller 230 held on a shaft 232 such that the burnishing roller 230 is rotatable around an axis parallel to a rotation axis of a main spindle 26. The burnishing roller 230 is configured similar to the burnishing roller 86 of the first embodiment, and includes a burnishing portion 233.
The shaft portion 222 is fitted in the fitting hole 218 such that the shaft portion 222 is axially slidable and irrotatable relative to the tool mainbody 212, whereby a direction in which the tool mainbody 212 and the roller holder 220 are movable relative to each other is defined to be the axial direction of the shaft portion 222. The fitting hole 218 and the shaft portion 222 cooperate to constitute a relative-movement-direction defining mechanism. The shaft portion 222 has a spring accommodating bore 234 that is bottomed and extends in the axial direction of the shaft portion 222 to open in an end surface of the shaft portion 222 remote from the roller holding portion 224. A compression coil spring 236 as an elastic member, which is a kind of biasing device, is accommodated in the spring accommodating bore 234. One of two opposite ends of the spring 236 is received by the shaft portion 222, and the other end of the spring 236 is received by a spring retainer 238 accommodated in the spring accommodating bore 234 such that the spring retainer 238 is movable in a direction parallel to a center line of the spring accommodating bore 234. The spring 236 biases the roller holder 220 in a direction to protrude the roller holder 220 from the fitting hole 218. As shown in
As shown in
In operation, the object 200 is held in an orientation such that an axis of the object 200 horizontally extends, with one of two axial end portions of the object 200 being held by a chuck 28 of a headstock 20 and the other axial end portion thereof being engaged with a center 36 of a tailstock 22, as shown in
With the object 200 and the roller burnishing tool device 210 being in the above-described state, the main spindle 26 is rotated to rotate the object 200, and the roller burnishing tool device 210 is moved by displacing the turret 40 initially vertically and toward the rotation axis of the main spindle 26 in order to contact the burnishing portion 233 of the burnishing roller 230 with the intermediate part of the guiding portion 204, as indicated by two-dot chain line in
When the pressing force increases to the predetermined level, the turret 40 is displaced in the X-axis direction by the turret moving device 42, and the burnishing roller 230 is moved along the axis of the object 200 toward the headstock 20, as indicated by white arrow in
Since the burnishing operation is initiated in the state where the burnishing roller 230 is pressed against the guiding portion 204 with the predetermined pressing force, it is enabled to ensure that in the burnishing operation the burnishing roller 230 is pressed against the object 200 with the desired pressing force. For instance, even when the spring 236 is worn, the amount of compression of the spring 236 is accordingly increased to press the burnishing roller 230 against the guiding portion 204 with the predetermined pressing force. During the burnishing operation, too, the value of the pressing force is kept detected on the basis of the detection signal from the load cell 250 indicative of the value of the pressing force, and when the detected value of the pressing force falls out of a predetermined range, the turret 40 is displaced toward or away from the rotation axis of the main spindle 26 to move the tool mainbody 212 relative to the roller holder 220, in order to change the amount of compression of the spring 236 to thereby adjust the pressing force.
There will be described a roller burnishing apparatus with a pressing-force detecting device according to a third embodiment of the claimable inventions, with reference to
Similar to the roller burnishing apparatus shown in
The tool mainbody 302 has an elongate shape. On a side surface at one of two longitudinal end portions of the tool mainbody 302, which end portion protrudes from an outer surface of the turret 40, a narrow attaching portion 310 is disposed to protrude from the tool mainbody 302 in a direction parallel to the longitudinal direction of the tool mainbody 302. The swing arm 306 has a generally L-like shape having first and second arm portions 312, 318. A pair of support walls 314 are disposed in the first arm portion 312. The attaching portion 310 is sandwiched between the support walls 314. The swing arm 306 is attached by means of a shaft 316 such that the swing arm 306 is rotatable around a rotation axis parallel to a rotation axis of a main spindle 26. The shaft 316 constitutes a connecting device as well as a relative-movement-direction defining mechanism which defines a direction in which the swing arm 306 moves relative to the tool mainbody 302 to be a circumferential direction around the rotation axis of the swing arm 306. The second arm portion 318 of the swing arm 306 is opposed to a surface of the tool mainbody 302 at a longitudinal end thereof, and has a recess 320 open on the side opposite to the tool mainbody 302. In the recess 320, the burnishing roller 304 is accommodated and held by a shaft 322 such that the burnishing roller 304 is rotatable around a rotation axis parallel to the rotation axis of the main spindle 26, and a part of a peripheral portion of the burnishing roller 304 protrudes from the recess 320.
In the tool mainbody 302, a spring accommodating bore 330 is formed. The spring accommodating bore 330 is bottomed, extends in the longitudinal direction of the tool mainbody 302, and opens in an end surface of the tool mainbody 302 that is opposed to the second arm portion 318 of the swing arm 306. In the spring accommodating bore 330, a spring retainer 332 is fitted such that the spring retainer 332 is axially movable, and a compression coil spring 334 as an elastic member is disposed between the spring retainer 332 and the second arm portion 318 so as to bias the swing arm 306 in a direction to separate the burnishing roller 304 away from the tool mainbody 302. A limit of a range within which the swing arm 306 is rotatable by being biased by the spring 334 is defined by contact of a contact portion 336 disposed at protruding ends of the support walls 314 that are remote from the shaft 316, with a stopper portion 338 (shown in
In the tool mainbody 302, an adjust screw 354 is screwed in a portion defining the bottom of the spring accommodating bore 330, in a direction parallel to a direction in which the spring 334 is compressed, such that an end of the adjust screw 354 is held in contact with the load cell 350. By adjusting an amount of screwing, or a degree of tightening, of the adjust screw 354 in the tool mainbody 302, an amount of compression of the spring 334 is changeable. By thus changing the amount of compression of the spring 334, the initial load of the spring 334 is adjusted. The screwing or tightening of the adjust screw 354 is manually implemented by an operator. In this embodiment, the adjust screw 354 constitutes an adjusting device. The adjust screw 354 is in perpendicular engagement with a setscrew 356, whereby the adjust screw 354 is fixed to the tool mainbody 302.
The object surface burnished by this roller burnishing apparatus may be an outer circumferential surface 202 of an object 200 as shown in
The value of the pressing force with which the burnishing roller 304 is pressed against the object 200 is kept detected on the basis of a detection signal indicative of a load acting on the load cell 350. When the detected value of the pressing force falls out of a predetermined range, an annunciator 132 informs the operator of the fact. For instance, when the detected value of the pressing force is smaller than the range, the operator detaches the roller burnishing tool device 300 from the turret 40, and loosens the setscrew 356 and tightens or screws the adjust screw 354 into the tool mainbody 302, so as to increase the initial load of the spring 334. After the initial load is thus adjusted, the operator attaches the roller burnishing tool device 300 to the turret 40.
There will be described a roller burnishing apparatus with a pressing-force detecting device according to a fourth embodiment of the claimable inventions, with reference to
The roller burnishing apparatus of the fourth embodiment includes a roller burnishing tool 400 and a processing machine 402. The processing machine 402 includes a movable member 410 as a first member, and a moving device 412. The moving device 412 is similar to the turret moving device 42 described above with respect to the first to third embodiments, and is controlled by a controller 414 to move the movable member 410 in X- and Z-axis directions to a desired position.
At an end surface of the movable member 410, a pair of guide rails 420 as a guiding member extend vertically and parallel to each other. A tool holder 422 is fitted on a guide block 424 as a guided member, to be movable with the guide block 424. The tool holder 422 constitutes a tool holding portion. The guide block 424 holds a plurality of balls (not shown) and is fitted on the guide rails 420 to be movable relative to the guide rails 420 via the balls. Thus, the guide rails 420 and the guide block 424 cooperate to constitute a linear guide, which guides a movement of the tool holder 422 with high precision.
The tool holder 422 is biased by a plurality of disc springs 430 disposed between the tool holder 422 and the movable member 410 in a direction to downward protrude from the movable member 410. As shown in
The roller burnishing tool 400 includes a burnishing roller 450 and a tool mainbody 452 as a second member. The tool mainbody 452 holds the burnishing roller 450 such that the burnishing roller 450 is rotatable. The tool mainbody 452 has an elongate shape including a first engaging portion 454 and a second engaging portion 456 (shown in
This roller burnishing apparatus burnishes an outer circumferential surface 202 of an object 200 as shown in
Based on the value of the pressing force with which the burnishing roller 450 is pressed against the outer circumferential surface 202 and which is obtained on the basis of the load detected by the load cell 442, the position of the movable member 410 with respect to the Z-axis direction is controlled such that the movable member 410 is moved relative to the roller burnishing tool 400 to change an amount of compression of the disc springs 430 in order that the burnishing roller 450 is pressed against the outer circumferential surface 202 with the desired or predetermined pressing force. The value of the pressing force is kept detected, and even when the pressing force decreases because of deterioration of the disc springs 430 or for other reasons, the position of the movable member 410 is controlled to achieve the desired pressing force. The value of the pressing force is detected even while burnishing is performed, and the amount of compression of the disc springs 430 is changed on the basis of the detected value of the pressing force, in order to prevent the value of the pressing force from falling out of a predetermined range.
There will be described a roller burnishing apparatus with a pressing-force detecting device according to a fifth embodiment of the claimable inventions, with reference to
The roller burnishing apparatus of the fifth embodiment includes a roller burnishing tool device 502 having two burnishing rollers 500, 500 and held by a processing machine 504. The roller burnishing apparatus performs burnishing on a straight cylindrical or circumferential outer surface 202 of an object 200. The processing machine 504 includes a movable member 510 and a moving device 512 moving the movable member 510 in X- and Y-axis directions. The roller burnishing tool device 502 is detachably held by a tool holding portion 514 of the movable member 510. The moving device 512 is controlled by a controller 516 which controls an annunciator 517, too.
The roller burnishing tool device 502 includes a tool mainbody 518 as a holding member. The tool mainbody 518 is positioned with respect to X-, Y- and Z-axis directions by wedge effect between a wedge portion and a wedge member and by other means in the same way as the tool mainbody 54 of the first embodiment, and fixed on the tool holding portion 514. To the tool mainbody 518, a first arm 520 as a first member and a second arm 522 as a second member are attached with a hinge pin 524 such that the first and second arms 520, 522 are rotatable around a common rotation axis parallel to a rotation axis of a main spindle 26. At a first one of two opposite end portions of each of the first and second arms 520, 522 that protrudes from the hinge pin 524, a burnishing roller 500 is held by a shaft 526 such that the burnishing roller 500 is rotatable around an axis parallel to the rotation axis of the main spindle 26. A burnishing portion 528 of each of the two burnishing rollers 500 partially protrudes from the arm 520, 522 toward the other burnishing roller 500 opposed thereto.
Between second end portions of the first and second arms 520, 522 that protrude from the hinge pin 524 to the side opposite to the burnishing rollers 500, a compression coil spring 530 as an elastic member is disposed. The compression coil spring 530 biases the first and second arms 520, 522 in respective directions such that the first and second arms 520, 522 are rotated to move the burnishing rollers 500 held by the first and second arms 520, 522 in opposite directions and toward each other. A limit of a range within which each of the first and second arms 520, 522 is rotatable by being biased by the spring 530 is defined by contact between a stopper 532, 534 disposed in the tool mainbody 518 and a contact portion 536, 538 disposed at the second end portion of the corresponding one of the first and second arms 520, 522. The stoppers 532, 534 constitute a movement-limit defining device. In the second end portion of the second arm 522, a load cell 540 is disposed One of two opposite ends of the spring 530 is received by a spring retainer 542, and a biasing force of the spring 530 acts on the load cell 540 via the spring retainer 542. In the second end portion of the first arm 520, an adjust screw 544 is screwed to contact a spring retainer 546 receiving the other end of the spring 530. The adjust screw 544 constitutes an adjusting device. A rotation of the adjust screw 544 relative to the first arm 520 is prevented by engagement between the adjust screw 544 and a setscrew 548 engaged with the first arm 520 perpendicularly to an axis of the adjust screw 544.
As shown in
Similar to the second embodiment shown in
The value of the pressing force with which the burnishing rollers 500 are pressed against the object 200 is kept detected by a pressing-force detecting device including a load cell 540. For instance, when the value of the pressing force is smaller than a predetermined range, the annunciator 517 informs an operator of this fact, and the operator loosens the setscrew 548 and tightens or screws the adjust screw 544 into the first arm 520 so as to increase the initial load of the spring 530.
Although there have been described several embodiments of the claimable inventions, it is to be understood that the claimable inventions are not limited to the details of the embodiments, but may be otherwise embodied with various modifications and improvements that may occur to those skilled in the art, without departing from the scope and spirit of the claimable inventions.
Each of the above-described embodiments may be modified such that the outer circumferential surface of the burnishing roller is constituted by a straight cylindrical or circumferential surface. For instance, as disclosed in Japanese Patent No. 2559722, the burnishing roller may have an elongate shape with a straight cylindrical or circumferential outer surface. Where the burnishing roller has such a shape, the burnishing roller and an object to be burnished are disposed such that their longitudinal directions obliquely intersect with each other, and the burnishing roller and the object are moved toward each other in a processing direction that is perpendicular to a plane parallel to axes of the burnishing roller and the object, so as to have the burnishing roller pressed against the object. Burnishing is performed on the object with the burnishing roller and the object moved relative to each other in a direction intersecting with the axes thereof in the plane.
Further, in the first, third and fifth embodiments, the initial load of the elastic member may be adjusted automatically on the basis of the detected value of the pressing force. For instance, an electric motor as a drive source, and a device for driving the adjust screw are included in the roller burnishing apparatus, and the adjust screw is rotated or screwed in to change the amount or degree of tightening or screwing of the adjust screw, in order to achieve the desired pressing force.
Still further, an adjusting device may be included in the roller burnishing apparatus with the pressing-force detecting device according to each of the second and fourth embodiments, which are shown in
Number | Date | Country | Kind |
---|---|---|---|
2007-137100 | May 2007 | JP | national |
The present application is based on Japanese Patent Application No. 2007-137100, which was filed on May 23, 2007, the disclosure of which is herein incorporated by reference in its entirety.