This application corresponds to Japanese Patent Application No. 2005-281111 filed on Sep. 28, 2005 and published on Apr. 12, 2007 as JP 2007-092827 A, the entire contents of which are incorporated herein by reference.
The present invention relates to a rotary clamp cylinder.
In a typical rotary clamp cylinder, a cylinder body incorporates a piston therein, and a piston rod connected with the piston projects out from one end of the cylinder body. In the rotary clamp cylinder of this type, a plurality of guide members provided to the cylinder body are respectively engaged with a plurality of turning guide grooves provided in the piston rod, such that the piston rod is turned as well as moved in the axial direction, due to movement of the piston, so as to clamp a work by using a clamper provided to the piston rod. In the past, the guide members have been known as engaging balls (steel balls), as described in JP 3621082 B (Patent Document 1), or known as pins each having a distal end oriented in the direction toward the axis of the piston rod, as described in JP 2000-87909 A (Patent Document 2).
In the rotary clamp cylinder described above, the moment of inertia to be applied to the piston rod is increased, when increasing the transfer speed of the piston in order to raise the operation speed of clamping and/or unclamping a work, or when attaching a longer clamper to the piston rod. In the case where the moment of inertia applied to the piston rod is increased in such a manner, excessively large load and/or impact will be applied to the guide members and the turning guide grooves. If the rotary clamp cylinder is of a type that the engaging balls are respectively fitted in the circular turning guide grooves, as described in the Patent Document 1, when the engaging balls could not be rotated, significantly large frictional force tends to be caused between the engaging balls and the turning guide grooves. Alternatively, if the rotary clamp cylinder is of a type that the pins are engaged with the turning guide grooves, as described in the Patent Document 2, the distal end of each pin projecting through each groove tends to absorb excessively large load and/or impact, as such damaging the pin earlier than expected. Therefore, in the conventional art, the increase of the operation speed of clamping and/or unclamping a work or the attachment of a longer clamper to the piston rod could not be achieved with ease.
The present invention has been made to solve the problems described above, and therefore, it is an object of this invention to provide a rotary clamp cylinder which can readily achieve the increase of the operation speed of clamping and/or unclamping a work and/or the attachment of a longer clamper to the piston rod.
The present invention is characterized by a rotary clamp cylinder configured such that a piston rod connected with a piston projects out from one end of a cylinder body incorporating the piston therein, and such that a plurality of guide members provided to the cylinder body are engaged with a plurality of turning guide grooves provided in the piston rod, so that the piston rod can be rotated as well as moved in the axial direction, due to movement of the piston, whereby a clamper provided to the piston rod can clamp a work, wherein the guide members are composed of pin members, wherein a plurality of attachment holes are formed in the cylinder body such that axes of the holes do not intersect the axis of the piston rod, and wherein the pin members are rotatably fitted respectively in the plurality of attachment holes.
The present invention is characterized by the rotary clamp cylinder described above, wherein one of hole axes of at least two of the plurality of attachment holes extends toward the piston rod and passes through the right side of the axis of the piston rod, while the other hole axis passes through the left side of the axis of the piston rod, and wherein in the at least two attachment holes, an amount of engagement between the pin member fitted in each attachment hole and the corresponding turning guide groove becomes greater on the reverse side of each pin member relative to each other with respect to the rotational direction about the axis of the piston rod.
The present invention is characterized by the rotary clamp cylinder described above, wherein two pairs of attachment holes are provided to be symmetrical about the cylinder central axis in the cylinder body, and wherein the one pair of attachment holes extend toward the piston rod and pass through the right side of the axis of the piston rod, while the other pair pass through the left side of the axis of the piston rod, respectively.
The present invention is characterized by the rotary clamp cylinder described above, wherein an end portion on the side of the piston rod of each pin member fitted in each attachment hole includes two side edges, wherein one of the side edges opposite to the other edge located on the side of the axis of the piston rod is positioned adjacent to an inner opening of the attachment hole, wherein the other edge located on the side of the axis of the piston is provided to project toward the piston rod from the inner opening of the attachment hole, whereby an outer circumferential face of the pin member, which is opposite to the axis of the piton rod, can be supported by the inner face of the attachment hole, over substantially the entire length thereof.
In the present invention, the guide members of the rotary clamp cylinder are composed of the pin members, and the pin members are rotatably fitted respectively in the plurality of attachment holes provided in the cylinder body such that their hole axes do not intersect the axis of the piston rod. Thus, the amount of engagement between each pin member and each turning guide groove becomes greater, on the side of the axis of the piston rod in the pin member than on the side opposite to the side of the axis of the piston rod, and the outer circumferential face of each pin member on the side opposite to the side of the axis of the piston rod can be supported by the inner face of each attachment hole, over substantially the entire length thereof. Accordingly, excessively large load and/or impact could be received by the pin members, as such increase of the transfer speed upon clamping or unclamping, and/or attachment of a longer clamper to the piston rod can be further secured and facilitated.
In addition, in the present invention, at least two of the attachment holes are configured such that the hole axis of one of these holes extends toward the piston rod to pass through the right side of the axis of the piston rod, and the other passes through the left side of the axis of the piston rod. As such, in the at least two attachment holes, the amount of engagement between the pin member fitted in each attachment hole and the corresponding turning guide groove becomes greater, on the reverse side of the pin member, with respect to the rotational direction about the axis of the piston rod, relative to each other. Therefore, excessively large load and/or impact to be applied in either of the rotation directions of the piston rod can be securely received by at least one of the pin members.
In the present invention, since two pairs of attachment holes are provided to be symmetrical about the cylinder central axis in the cylinder body, wherein the one pair of attachment holes extend toward the piston rod and pass through the right side of the axis of the piston rod, while the other pair pass through the left side of the axis of the piston rod, respectively, excessively large load and/or impact to be applied in either of the rotational directions of the piston rod can be received stably by two pairs of pin members.
Furthermore, in the present invention, since an end portion on the side of the piston rod of each pin member fitted in each attachment hole includes two side edges, wherein one of the side edges opposite to the other edge located on the side of the axis of the piston rod is positioned adjacent to an inner opening of the attachment hole, wherein the other edge located on the side of the axis of the piston is provided to project toward the piston rod from the inner opening of the attachment hole, whereby an outer circumferential face of the pin member, which is opposite to the axis of the piton rod, can be supported by the inner wall of the attachment hole, over substantially the entire length thereof, breakage or damage of each pin member can be prevented even in the case where excessively large load/or impact is exerted on the pin member.
A cylinder body 2 of a rotary clamp cylinder 1 shown in
The rod cover 5 is of a substantially rectangular shape extending more outward in the radial direction than the outer shape of the cylinder tube 3. An annular shaft 17 fitted in the cylinder hole 3a projects outward from a bottom face 5a of the rod cover 5. The shaft 17 includes a plurality of (in this embodiment, four) attachment holes 18 such that each hole axis HL of the attachment holes does not intersect an axis CL (in the longitudinal direction) of the piston rod 11. In the attachment holes 18, pin members 19 constituting the guide members are rotatably fitted, respectively. In
An end portion 20 on the side of the piston rod 11 of each pin member 19 fitted in each attachment hole 18 includes two side edges 20a and 20b. The side edge 20b opposite to the other edge 20a on the side of the axis CL of the piston rod 11 is positioned in the vicinity of an inner opening of the attachment hole 18. The other edge 20a on the side of the axis CL of the piston 11 is provided to project toward the piston rod 11 from the inner opening of the attachment hole 18. As such, an outer circumferential face 21 of the pin member 19, which is opposite to the axis CL of the piton rod 11, is supported by an inner face of the attachment hole 18, over substantially the entire length thereof. It should be noted that at least two of the attachment holes 18 are configured such that the hole axis HL of one of these holes extends toward the piston rod 11 to pass through the right side of the axis CL of the piston rod 11, and the other one passes through the left side of the axis CL of the piston rod 11. As such, in the at least two holes 18, the amount L of engagement between each pin member 19 fitted in each attachment hole 18 and each corresponding turning guide groove 14 is designed to be greater, on the reverse side of each pin member 19, with respect to the turning direction about the axis CL of the piston rod 11, relative to each other.
The arrangement of the pin members 19 may be those as shown in
Next, the operation of the rotary clamp cylinder 1 will be described. When a pressurized fluid is supplied into the rod-side cylinder 9 via the fluid passage 25 from the other supply and discharge port 22b while the clamper 12 is in an unclamping position B as shown in
In the rotary clamp cylinder 1, if the moment of inertia to be applied to the piston rod 11 would be increased, due to increase of the transfer speed of the piston 7 in order to raise the operation speed of clamping and/or unclamping the work W, or due to attachment of a longer clamper 12 to the piston rod 11, excessively large load and/or impact would be applied to the pin members 19 and the turning guide grooves 14. However, in the rod cover 5 of the embodiment according to the present invention, the pin members 19 are each rotatably fitted in the plurality of attachment holes 18 each provided not to intersect the axis CL of the piston rod 11. Therefore, the amount L of engagement between each pin member 19 and each turning guide groove 14 becomes greater, on the side of the axis CL of the piston rod 11 in the pin member 19, than on the side opposite to the side of the axis CL of the piston rod 11, and the outer circumferential face 21 of each pin member 19 on the side opposite to the side of the axis CL of the piston rod 11 can be supported by the inner face of each attachment hole 18, over substantially the entire length thereof. Accordingly, the excessively large load and/or impact can be received by the pin members 19, as such the increase of the transfer speed upon clamping or unclamping, and/or the attachment of a longer clamper 12 to the piston rod 11 can be further facilitated. Since each pin member 19 is in linear contact with each corresponding turning guide groove 14, not so great frictional force as in the conventional art described above would be caused between the pin member 19 and the turning guide groove 14, even in the case where the pin member 19 engaged with the turning guide groove 14 could not be rotated.
Since the at least two of the attachment holes 18 are configured such that the hole axis HL of one of these holes extends toward the piston rod 11 to pass through the right side of the axis CL of the piston rod 11, and the other one passes through the left side of the axis CL of the piston rod 11, and the amount L of engagement between each pin member 19 fitted in each attachment hole 18 and each corresponding turning guide groove 14 is designed to be greater, on the reverse side of each pin member 19, with respect to the turning direction about the axis CL of the piston rod 11, relative to each other, excessively large load and/or impact to be applied in both of the turning directions of the piston rod 11 can be securely received by at least one of the pin members 19. In addition, since the two pairs of attachment holes 18 are provided symmetrically about the cylinder central axis (the axis CL of the piston rod 11), in the rod cover 5, such that the axes of the one pair of attachment holes 18 are each arranged so as to extend toward the piston rod 11 and pass through the right side of the axis CL of the piston rod 11, while the other pair of attachment holes 18 pass through the left side of the axis CL of the piston rod 11, excessively large load and/or impact to be applied in both of the turning directions of the piston rod 11 can be securely received by the two corresponding sets of pairs of pin members 19. Furthermore, since the end portion 20 on the side of the piston rod 11 of each pin member 19 fitted in each attachment hole 18 includes two side edges 20a and 20b, such that the side edge 20b opposite to the other edge 20a on the side of the axis CL of the piston rod 11 is positioned in the vicinity of the inner opening of the attachment hole 18, while the other edge 20a on the side of the axis CL of the piston 11 is provided to project toward the piston rod 11 from the inner opening of the attachment hole 18, the outer circumferential face 21 opposite to the side of the axis CL of the piston rod 11 in the pin member 19 can be supported by the inner face of the attachment hole 18, over the entire length thereof. Therefore, damage or breakage of each pin member 19 can be prevented even in the case where excessively large load or impact would be applied to the pin member 19.
While preferred examples of the present invention have been described specifically to some extent, it is apparent to those skilled in art that various modifications can be made to them. Accordingly, it should be understood that the present invention can be carried out, in other aspects than those specifically shown and described herein, without departing from the scope and sprit of this invention.
Number | Name | Date | Kind |
---|---|---|---|
4620695 | Vanistendael | Nov 1986 | A |
6412763 | Noda et al. | Jul 2002 | B1 |
Number | Date | Country |
---|---|---|
1298066 | Jun 2001 | CN |
2000-087909 | Mar 2000 | JP |
2004-003589 | Jan 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20090038471 A1 | Feb 2009 | US |