Information
-
Patent Grant
-
6336794
-
Patent Number
6,336,794
-
Date Filed
Monday, October 30, 200024 years ago
-
Date Issued
Tuesday, January 8, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Walberg; Teresa
- Patel; Vinod D.
Agents
-
CPC
-
US Classifications
Field of Search
US
- 417 363
- 417 42315
- 417 902
- 248 638
- 248 618
-
International Classifications
-
Abstract
A rotary compressor assembly is provided which effectively reduces the vibration and noise occurring during the operation of the rotary compressor of the assembly. The compressor is fixedly mounted on a supporting plate. Vibration dampening members are received in corresponding supporting holes in the plate and serve to support the plate in spaced relation to an installation surface. The geometric center of the supporting holes is disposed so as to coincide with the center of gravity of the rotary compressor including an associated accumulator. As a result, the load is uniformly applied to each dampening member, and the rotary compressor is supported in a stable manner, thereby effectively reducing the vibration and noise associated with compressor operation.
Description
BACKGROUND OF THE INVENTION
1) Field of the Invention
The present invention relates to rotary compressor assemblies and, more particularly, to a rotary compressor assembly of the type including a supporting plate for supporting a rotary compressor on which an accumulator is mounted.
2) Description of Related Art
Generally speaking, a rotary compressor assembly is used to compress a refrigerant to high temperature and high pressure and to discharge the same, in a cooling cycle of an air conditioner, or the like, in which compression, condensation, expansion and evaporation stages are carried out.
A conventional rotary compressor assembly includes an airtight container including a driving motor and a compressing device or compressor therein, and an accumulator for supplying an evaporated refrigerant to the airtight container. The accumulator is contained in a cylindrical casing and communicates with the airtight container through a refrigerant pipe or conduit. A holder or bracket is used to mount the accumulator vertically on an outer wall of the airtight container, eccentrically with respect to axis of the container.
In order to fixedly mount the rotary compressor including the accumulator, a supporting plate is fixed to the underside of the airtight container by welding. More specifically, the rotary compressor is welded onto a center portion of the supporting plate, and supporting holes, into which rubber vibration isolating elements or dampening members are inserted, are formed at angular points of the supporting plate. Each isolating member has a through-hole extending along the central axis thereof, through which a bolt penetrates. With this arrangement, with the isolating elements inserted into the respective supporting holes of the supporting plate and the bolts fastened to a base plate, or other installation surface, of an air conditioner, or the like, through the vibration isolating members, the rotary compressor is fixed in place on, while being vibration isolated against from, the base plate.
A disadvantage of the above-described conventional rotary compressor assembly is that substantial vibration and noise occur during the operation of the driving motor and the compressing device in the airtight container and such vibration is directly transmitted to the base plate. This has a deleterious affect on other parts, significantly shortening the life of these parts. In addition, although the rubber vibration isolating elements are mounted at angular points of the supporting plate, because the rotary compressor is disposed on the supporting plate without regard to the weight of the accumulator attached eccentrically to the rotary compressor, the load is unevenly applied to the respective vibration isolating members. This limits the vibration and noise suppression provided.
SUMMARY OF THE INVENTION
The present invention is concerned with solving the problems discussed above and, to this end, it is an object of the present invention to provide a rotary compressor assembly in which the center of gravity of a rotary compressor, including an accumulator, is correspondingly disposed at the geometric center of a supporting plate for the compressor and accumulator so as to effectively reduce the vibration and noise occurring during the operation of the rotary compressor.
To achieve the above object, a rotary compressor assembly is provided which includes a rotary compressor, an accumulator mounted on an outer wall surface of the rotary compressor, a supporting plate on which the rotary compressor is fixedly mounted, a plurality of supporting holes which are formed on edge portions of the supporting plate, and a plurality of vibration isolating or dampening members received in the supporting holes so as to support the supporting plate in spaced relation to an installation surface, the center of gravity of the rotary compressor including the accumulator being located on the supporting plate in a predetermined relation to the geometric center of the supporting holes such that a uniform load is exerted on each of the vibration isolating members.
Preferably, the center of gravity of the rotary compressor including the accumulator and the geometric center of the supporting holes are disposed so as to coincide with each other on the supporting plate.
Advantageously, the supporting plate has a polygonal shape, and the supporting holes are formed in the vicinity of the respective apexes of the supporting plate. Preferably, the supporting plate has a triangular shape.
In an advantageous implementation, the accumulator is located on a line which connects the center of gravity of the rotary compressor including the accumulator to the apex of the supporting plate.
Further features and advantages of the present invention will be set forth in, or apparent from, the detailed description of preferred embodiments thereof which follows.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate a preferred embodiment of the invention, and, together with the description, serve to explain the principles of the invention:
FIG. 1
is a perspective view of a rotary compressor assembly according to a preferred embodiment of the present invention; and
FIG. 2
is a plan view of the rotary compressor assembly of
FIG. 1
, as viewed in the direction indicated by arrow A in FIG.
1
.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
A preferred embodiment of the present invention will now be described in detail with reference to the accompanying drawings. Referring to
FIG. 1
, a rotary compressor assembly is shown which comprises a rotary compressor
10
including an accumulator
20
, a supporting plate
30
for supporting the rotary compressor
10
, and a plurality of vibration isolating or dampening members
40
.
The rotary compressor
10
includes a cylindrical airtight container
11
to which a refrigerant supply pipe
13
and a discharge pipe
12
are coupled for providing intake and discharge of the refrigerant. The accumulator
20
is mounted vertically on an outer wall surface of the airtight container
11
. From the upper surface of the airtight container
11
, the discharge pipe
12
extends straight upwardly, as illustrated. An electrical input terminal
14
is installed on this upper surface and is supplied with electric power from an external source. A drive motor (not shown) powered from electrical terminal
14
and a compressing device or compressor (not shown) driven by the motor are provided inside of the airtight container
11
.
The accumulator
20
includes a cylindrical housing or casing
21
, and is fixedly mounted on an outer wall surface of the airtight container
11
by means of a holder or bracket
23
.
With the arrangement illustrated, any refrigerant which is not totally vaporized or evaporated in an evaporator (not shown) during the cooling cycle, flows into the accumulator
20
so as to completely evaporated therein, and the evaporated refrigerant flows into the airtight container
11
of the rotary compressor
10
through the refrigerant supply pipe
13
. To achieve this, the opposite ends of the supply pipe
13
are connected respectively to an outlet in the lower surface of the casing
21
of the accumulator
20
and to an outlet in the lower side-wall of the airtight container
11
. An inlet
22
through which the refrigerant is supplied to the accumulator
20
from the evaporator (not shown) is provided at the upper surface of the casing
21
.
The supporting plate
30
supports the rotary compressor
10
in upwardly spaced relation to an installation surface
50
, e.g., a base plate of an air conditioner, or the like. As shown in
FIGS. 1 and 2
, the supporting plate
30
is of a generally triangular shape. The airtight container
11
of the rotary compressor
10
is mounted on and affixed to a center portion of the supporting plate
30
, preferably by welding. In addition, a plurality of supporting holes
31
a,
31
b and
31
c
are provided which have predetermined diameters for receiving the vibration dampening members
40
and which are located in the vicinity of the three respective apexes
30
a
,
30
b
and
30
c
of the triangular supporting plate
30
. Each vibration dampening member
40
is made from rubber material and includes a central perpendicular through-hole
40
a.
When the vibration dampening members
40
are inserted into the respective supporting holes
31
a
,
31
b
and
31
c
, corresponding mounting bolts
41
, installed on the installation surface
50
and extending upwardly therefrom penetrate through the respective through-holes
40
a
of the members
40
. Nuts
42
are then fastened onto the bolts
41
, thereby mounting the triangular supporting plate
30
and thus the airtight container
11
of the rotary compressor
10
in spaced relation to the installation surface
50
.
In order to effectively reduce the vibration and noise occurring during the operation of the rotary compressor
10
, the geometric center of the supporting holes
31
a
,
31
b
and
31
c
and the center of gravity G of the rotary compressor
10
including the accumulator
20
, are disposed so as to substantially coincide with respect to each other on the triangular supporting plate
30
. More specifically, as shown in
FIG. 2
, the accumulator
20
is located on a line L connecting the center of gravity G of the rotary compressor
10
, including the accumulator
20
, to the apex
30
c
of the triangular supporting plate
30
, and thus the center of gravity G of the rotary compressor
10
, including the accumulator
20
, is identical with the geometric center of the supporting holes
31
a
,
31
b
and
31
c
of the triangular supporting plate
30
. Accordingly, the vibration dampening members
40
have a uniform load exerted thereon and provide uniform support for the rotary compressor
10
.
The operation of the rotary compressor assembly of the present invention will now be described. The rotary compressor
10
begins operation upon being supplied with electric power. The refrigerant vaporized or evaporated in the evaporator (not shown) flows into the airtight container
11
via the accumulator
20
and the refrigerant supply pipe
13
. The refrigerant is then compressed at high temperature and high pressure, and supplied to the cooling cycle through the discharge pipe
12
, in a repeated or cyclic operation. At this time, the accumulator
20
prevents unsaturated refrigerant from flowing directly into the airtight container
11
. In other words, the refrigerant vaporized or evaporated in the evaporator (not shown) is supplied to the accumulator
20
through inlet
22
, and any liquid refrigerant which is not completely vaporized or evaporated is vaporized in the housing or casing
21
and exhausted or discharged into the airtight container
11
through the supply pipe
13
.
It is also noted that because the triangular supporting plate
30
, on which the rotary compressor
10
is mounted, is supported in spaced relation to the installation surface
50
by the three rubber vibration dampening members
40
, vibration occurring during the operation of the compressor
10
is effectively isolated, i.e., is prevented from being transmitted to the surroundings through the installation surface
50
. In addition, because the rotary compressor
10
, including the accumulator
20
, is disposed on the triangular supporting plate
30
with reference to the center of gravity G thereof, each vibration isolating member
40
supports the rotary compressor
10
in a stable manner. As a result, the load exerted by the rotary compressor
10
is uniformly applied to each member
40
, so vibration and noise occurring during the operation of the rotary compressor
10
is effectively further reduced.
It will be appreciated that the supporting plate can be of a different polygonal shape, than that shown, i.e., the supporting plate can be a rectangular plate rather than the triangular supporting plate illustrated.
As described above in some detail, according to a preferred embodiment of the present invention, the geometric center of the plurality of supporting holes formed in the supporting plate (into which the vibration isolating or dampening members are inserted) is disposed so as to coincide with the center of gravity of the compressor unit comprising the rotary compressor including the accumulator. As a result, the load is applied uniformly to each dampening member provided on the supporting plate, and the rotary compressor is supported in a stable manner, thereby effectively reducing vibration and noise associated with the compression operation.
Although the invention has been described above in relation to preferred embodiments thereof, it will be understood by those skilled in the art that variations and modifications can be effected in these preferred embodiments without departing from the scope and spirit of the invention.
Claims
- 1. A rotary compressor assembly including a rotary compressor, an accumulator mounted on an outer wall surface of the rotary compressor, a supporting plate on which the rotary compressor is fixedly mounted, a plurality of supporting holes formed in edge portions of the supporting plate, and a plurality of vibration dampening members received in the supporting holes so as to support the supporting plate in spaced relation to an installation surface, the supporting holes having a geometric center, the rotary compressor including the accumulator having a center of gravity and said center of gravity being located on the supporting plate in a predetermined relation to the geometric center of the supporting holes such that a uniform load is exerted on each of said vibration dampening members.
- 2. A rotary compressor assembly as claimed in claim 1, wherein the center of gravity of the rotary compressor including the accumulator and the geometric center of the supporting holes are disposed so as to substantially coincide with each other on the supporting plate.
- 3. A rotary compressor assembly as claimed in claim 1, wherein the supporting plate has a polygonal shape defining a plurality of apexes, and the supporting holes are each formed in the vicinity of a respective one of the apexes of the supporting plate.
- 4. A rotary compressor assembly as claimed in claim 3, wherein the supporting plate has a triangular shape.
- 5. A rotary compressor assembly as claimed in claim 4, wherein the accumulator is located on a line connecting the center of gravity of the compressor unit to one apex of the supporting plate.
- 6. A rotary compressor assembly as claimed in claim 3, wherein the supporting plate has a triangular shape.
- 7. A rotary compressor assembly as claimed in claim 4, wherein the accumulator is located on a line connecting the center of gravity of the rotary compressor including the accumulator to one apex of the supporting plate.
- 8. A rotary compressor assembly comprising:a compressor unit having a center of gravity and comprising a rotary compressor and an accumulator mounted on the compressor; a supporting plate on which said compressor unit is mounted, said plate being of a polygonal shape including a plurality of apexes formed at the intersection of adjacent sides, said plate including a plurality of supporting holes having a geometric center, and each of said supporting holes being located substantially at a respective apex of the plate; and a plurality of vibration dampening members for supporting said plate in spaced relation to a support surface, each of said vibration dampening members being received in a respective supporting hole and the center of gravity of said compressor unit coinciding with the geometric center of said supporting holes.
Priority Claims (1)
Number |
Date |
Country |
Kind |
00-52495 |
Sep 2000 |
KR |
|
US Referenced Citations (8)