The invention is further illustrated, with reference to an exemplifying embodiment, in the drawings, in which:
Rotary cutting unit 1 depicted in
Rotary cutting device 4 comprises a guide bar 6 extending parallel to the longitudinal side of support plate 2 and parallel to sheet support surface 3; wrapping around both sides of said bar from the top is a knife carriage 7 that is displaceable along guide bar 6.
Knife carriage 7 is divided into an internally located guidance part (which is therefore not visible here) that fits positively around guide bar 6, and an external knife part 8 that is movable out of the raised position shown, against the action of a spring that is not visible here, vertically downward into a cutting position. Knife carriage 7 has at the top, for handling thereof, a hand grip 9 that is intended as a hand support and with which knife carriage 7 can be displaced along guide bar 6 and simultaneously lowered downward. Knife part 8 has a rotary knife concealed by a knife cover 10, which knife protrudes at the bottom slightly beyond knife cover 10 and sits in freely rotatable fashion on a knife axis extending horizontally and transversely to the longitudinal axis of guide bar 6.
Guide bar 6 projects at both ends into guide blocks 11, 12, in which guide bar 6 is laterally guided and is at the same time vertically movable. Guide blocks 11, 12 are joined rigidly to support plate 2. Actuation members 13, 14 are guided, once again laterally and vertically movably, in guide blocks 11, 12. Said members grip the ends of guide bar 6 on the upper side, at the end face, and on both vertical sides. At the top, actuation members 13, 14 comprise flat actuation flanges 15, 16 with which pressure can be exerted manually in the direction of sheet support surface 3.
A respective latching member 17, 18 is arranged behind each actuation member 13, 14. Latching members 17, 18 are mounted in guide blocks 11, 12, horizontally displaceably parallel to guide bar 6. They can therefore each be displaced outward, out of the latched position shown, into an unlatched position.
Actuation member 18 is partially visible in
Guide bar 6 is made up substantially of an aluminum profile. It comprises at the bottom a clamping strip 24, made of elastomeric plastic, that extends over the width of sheet support surface 3. The underside of clamping strip 24 forms a clamping surface 25.
Guide bar 6 is acted upon on the underside at each end, in the region of guide blocks 11, 12, by a respective compression spring 27. The two compression springs 27 are each braced against support plate 2 in a mirror-symmetrical arrangement.
A respective second compression spring 28 is arranged between the upper side of guide bar 6 and the underside of actuation flanges 15, 16. Guide bar 6 is therefore not joined rigidly at both ends to actuation members 13, 14, but instead is clamped in by compression springs 27, 28 acting respectively in opposite directions, and is therefore guided movably with respect to both support plate 2 and actuation members 13, 14.
Before a cutting operation, guide bar 6 is in a raised initial position. This is visible in
When sheet material 5 is to be trimmed, it is placed onto sheet support surface 3 (as is shown in particular in
In order to lower guide bar 6, the two actuation members 13, 14 are pushed downward by impinging upon actuation flanges 15, 16. Because second compression springs 28 have a higher spring constant than first compression springs 27, this compresses first compression springs 27 for the most part, and second compression springs 28 only very slightly. This continues until clamping surface 25 comes into contact with sheet material 5. Because of the resistance, guide bar 6 cannot be moved farther, i.e. it has reached its clamping position. Latching members 17, 18, however, have not yet reached their final position, i.e. they are moved even farther downward against the resistance of second compression springs 28, until latching flanges 22 of latching depressions 21 end up underneath latching lugs 23. This produces a clearly audible click. Latching lugs 23 now block the ability of actuation members 13, 14 to move upward. The clamping force exerted by guide bar 6 on sheet material 5 is determined substantially by second compression springs 28. In order to distribute the pressure uniformly over the length of the guide bar, compression springs 28 are embodied identically and are arranged at identical distances from the center of guide bar 6. At the same time, second compression springs 28 press latching flanges 22 with their upper sides against the lower sides of latching lugs 23.
The clamping of a thicker sheet material stack 29, as shown in
In order for actuation members 13, 14 to reach their above-described final position, they must be pushed down just as far as in the case of trimming a single sheet. Second compression springs 28, however, are compressed substantially more strongly, as is likewise shown by a comparison between
For the cutting operation itself, after the clamping of sheet material 5 or sheet material stack 29, knife part 8 is pushed downward by manual impingement upon handle 9 so that the downwardly protruding rotary knife pushes into sheet material 5 or sheet material stack 29. The cutting operation is carried out by displacing knife carriage 7 along guide bar 6 over the entire width of sheet material 5 or sheet material stack 9.
After completion of the cutting operation, the now-trimmed sheet material 5 or sheet material stack 29 is still clamped between guide bar 6 and sheet material support 3. To release the clamping, latching members 17, 18 are displaced outward by the exertion of pressure in the direction away from guide bar 6, against the action of the latter's spring elements, until latching lugs 23 come out of engagement with latching flanges 22. Actuation members 13, 14 can now be moved upward back into their initial position (
| Number | Date | Country | Kind |
|---|---|---|---|
| 202006009493.8 | Aug 2006 | DE | national |