The present disclosure relates generally to encoders and more specifically to magnetic and optical rotary encoders with components attached to shafts. References of interest that describe rotary encoders and attachments to rotating shafts include U.S. Pat. Nos. 4,893,812; 4,338,517; 4,756,654; 6,260,930; US Patent Publication 20050201825; German Patent DE1475035 and European Patent EP0353066.
Rotary encoders are used to track rotation speed and rotation position of various kinds of shafts. There are numerous configurations and technologies used in rotary encoders. In general, a codewheel including a bore and a magnet, coded pattern or other encoding means is installed on the shaft and rotates with the shaft. A sensor assembly is positioned proximate to the codewheel and fixed in place in relation to the rotating shaft. The codewheel and the sensor assembly are coupled and in response to rotation of the shaft and codewheel the sensor assembly generates an encoder signal. Encoders may be used with robots, stepper motors, wheeled vehicles or programmable shop machinery among many other applications.
This disclosure relates to rotary encoders including those that use encoding means such as a magnet or a disk with an encoding pattern. The encoding means may be part of a push on codewheel retained to a shaft without keys or set screws. This disclosure may also describe a rotary encoder with the second encoder component in its assembled position that can be indexed to a specific shaft position without the use of special tools. Push on codewheels may be configured as collets, caps or another component that can be assembled to a shaft and may include elastic, resilient or biased members or portions that hold the component to the shaft.
A rotary encoder assembly to operate with a shaft may be described here comprising a push on codewheel that may include a bore portion for accepting the shaft, retention means that deflect on accepting the shaft to frictionally retain the push on codewheel to the shaft and an encoding means. The assembly may further include a sensor assembly coupled with the encoding means to generate an encoder signal as a function of rotation of the shaft.
A rotary encoder assembly for determining the rotational position of a shaft in a shaft housing may also be described comprising a push on cap including a magnet, the push on cap frictionally retained to the shaft that rotates in relation to the shaft housing. The assembly may also comprise an encoder housing mounted to the shaft housing and including an electronics package functionally associated with the magnet that generates an encoder signal in response to rotation of the magnet and a lock ring for limiting rotation of the encoder housing.
For the purposes of this disclosure, retention means and biasing members will refer to elements with spring like material properties. In the described applications material deflection is substantially in the elastic region of force-deflection diagrams for selected component materials. Any deflection of the material under normal use may induce a bias that tends to return the material to its original position.
Lock ring 44 when partially assembled with fastener 46 not fully engaged may allow housing 42 to rotate about longitudinal axis 48. Fully engaging fastener 46 may cause lock ring 44 to frictionally retain housing 42 so that it cannot rotate and housing 42 is fixed in place. Rotating housing 42 while partially assembled may allow encoder assembly 10 to be indexed so that a specific position of shaft 20 corresponds to a specific output from encoder sensor assembly 40.
Encoder sensor assembly 40 may further include sensor electronics or electronics package 50 comprising an electronics housing 52, first electronic component 54A, second electronic component 54B, third electronic component 54C and a connector 56 operably connected to the electronic components 54A and 54B. When assembled, electronic components 54A and 54B may be in proximity and be coupled to encoding means 18 and may functionally respond to rotational movement of encoding means 18.
For example, encoding means 18 may be a magnetic material that generates a magnetic field with first and second poles. Rotation of shaft 20 may cause the first pole and the second pole of encoding means 18 to alternately be in closest proximity to first electronic component 54A and second electronic component 54B respectively. Electronic components 54A and 54B may include a sensor such as a hall effect sensor, a wire coil or some other responsive element. Third electronic component 54C may be connected to electronic components 54A and 54B and accept signals generated by them. Third electronic component 54C may generate an encoder signal 58 as a function of the input. Additional processing equipment such as an rpm meter, a rotation counter or more complex motion control equipment may connect to electronics package 50 at connector 56 in order to access encoder signal 58 and determine the rotational speed and/or the rotational position of shaft 20.
Still referring to
Mounting base 42A may be at a proximal end of housing 42. Housing 42 may be configured to accept electronics package 50 at a distal end of housing 42 such that it is seated on a shoulder or ring and below a rim section 42B. Rim section 42B may be plastically deformed to retain electronics package 50 within housing 42. Housing 42 may be substantially comprised of a metal that can be crimped or housing 42 may be substantially comprised of a plastic that can be heated and swaged to retain package 50. Other materials and processes may be used that achieve a similar result.
Shaft housing 20A, which is often a motor housing, has been specified here for mounting a sensor assembly, but any proximate surface may be used. Also a different combination of codewheel and sensor than a magnet and hall effect sensor may be used and fall within the scope of this disclosure. These components and configurations have been described here as examples only for clarity.
Push on codewheel disk 104 may incorporate encoding means 110B such as markings or a pattern on a face 110A of disk body 110. Encoding means 110B may be an overlay with an optical encoder or code pattern configured to attach to and rotate with disk 110. Encoding means 110B may operate with and be coupled to sensor assembly 106. Light detector 108B may respond to light reflected from a face 110A of disk 104. Markings on disk face 110A or the overlay with markings incorporated with disk 104 may intermittently interrupt light from source 108A reflected onto detector 108B as disk 104 rotates. This may generate an encoder signal 118 that is associated with the rotation speed and/or rotation position of shaft 102. While a quadrature signal is shown in signal 118 any kind of signal may be generated that may be compatible with processing equipment receiving signal 118 including PWM or analog.
The profile of
The described system and assemblies are examples and are not to be used as limitations. Different numbers of slots or different dimensions and proportions may be used and still fall within the scope of this disclosure. Any suitable configuration or combination of components presented, or equivalents to them that perform a similar function falls within the scope of this disclosure.
This disclosure may include one or more independent or interdependent inventions directed to various combinations of features, functions, elements and/or properties, one or more of which may be defined in the following claims. Other combinations and sub-combinations of features, functions, elements and/or properties may be claimed later in this or a related application. Such variations, whether they are directed to different combinations or directed to the same combinations, whether different, broader, narrower or equal in scope, are also regarded as included within the subject matter of the present disclosure. An appreciation of the availability or significance of claims not presently claimed may not be presently realized. Accordingly, the foregoing embodiments are illustrative, and no single feature or element, or combination thereof, is essential to all possible combinations that may be claimed in this or a later application. Each claim defines an invention disclosed in the foregoing disclosure, but any one claim does not necessarily encompass all features or combinations that may be claimed. Where the claims recite “a” or “a first” element or the equivalent thereof, such claims include one or more such elements, neither requiring nor excluding two or more such elements. Further, ordinal indicators, such as first, second or third, for identified elements are used to distinguish between the elements, and do not indicate a required or limited number of such elements, and do not indicate a particular position or order of such elements unless otherwise specifically stated.
This application claims priority to U.S. patent application Ser. No. 12/060,241 filed Mar. 31, 2008 titled “Encoder Hub to Disc Attachment Method and Apparatus” which is hereby incorporated by reference in its entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
Parent | 12060241 | Mar 2008 | US |
Child | 12607299 | US |