The technical field relates to a compressor, and more particularly to a rotary screw compressor.
In general, a conventional rotary screw compressor comprises a compression chamber, a male rotor, a female rotor and a drive motor, and the male rotor and the female rotor are installed in the compression chamber and engaged with each other, and the drive motor comprises a motor housing and a drive shaft rotatably installed to the motor housing, and a bearing driving part is installed between the drive shaft and the male rotor for connecting their connection, so that the drive shaft can drive the male rotor to rotate through the bearing driving part, and the male rotor further drives the female rotor to rotate and jointly performing a compression operation.
However, it is necessary to connect the bearing driving part to the male rotor at the front end of the aforementioned drive shaft and have a bearing position between the rear end of the drive shaft and the motor housing, and the bearing driving part is a complicated component, so that the motor housing requires sufficient space to accommodate these components, and the volume of the rotary screw compressor cannot be reduced. In addition, it is necessary to lubricate the bearing at the rear end of the drive shaft, so that the coolant will flow through the bearing at the rear end of the drive shaft first and then into the compression chamber, but the coolant may permeate from the bearing at the rear end of the drive shaft into the motor housing and may cause an overheat or damage of the drive motor. Furthermore, the drive shaft drives the male rotate to rotate through the bearing driving part, and thus there is a transmission loss.
In view of the aforementioned drawbacks of the prior art, the discloser of this disclosure based on years of experience in the related industry to conduct extensive research and experiment, and finally provided a feasible solution as disclosed in this disclosure to overcome the drawback of the prior art.
Therefore, it is a primary object of this disclosure to provide a rotary screw compressor, wherein a centering bushing is passed and coupled into a motor rotor and an end of the centering bushing is sheathed on the first screw rotor to achieve the effects of reducing the volume and simplifying the structure of the rotary screw compressor, extending the service life of the drive motor assembly, and reducing the transmission loss.
In an embodiment of this disclosure, a rotary screw compressor comprises: a compressor assembly, further comprising a compressor housing, a first screw rotor and a second screw rotor installed in the compressor housing and engaged with each other, and an end of the first screw rotor having an engaging end; and a drive motor assembly, further comprising a motor housing and a motor rotor, a motor stator and a centering bushing installed in the motor housing, and the motor stator being installed to an outer side of the motor rotor and capable of driving the motor rotor to rotate, and the centering bushing being coupled into the motor rotor and having an end for accommodating the engaging end, so that the motor rotor can drive the first screw rotor to rotate through the centering bushing and the engaging end.
Based on the aforementioned structure, the centering bushing is used to substitute the conventional drive shaft. Since the centering bushing no longer require bearings or bearing driving parts, therefore the space for accommodating such bearings or bearing driving parts can be saved, the overall volume of the rotary screw compressor can be decreased, the structure can be simplified, and the transmission loss can be reduced.
Since both ends of the centering bushing require no lubrication of coolant, therefore the coolant can flow through the motor housing to cool the drive motor assembly without passing through both ends of the centering bushing. As a result, the coolant is prevented from permeating from both ends of the centering bushing into the motor housing, and the service life of the drive motor assembly can be extended.
The technical contents of this disclosure will become apparent with the detailed description of preferred embodiments accompanied with the illustration of related drawings as follows. It is intended that the embodiments and drawings disclosed herein are to be considered illustrative rather than restrictive.
With reference to
As shown in
Referring to
Further, the first screw rotor 12 and the second screw rotor 13 has a first spiral groove 17 and a second spiral groove 18 counting from the air suction end 14, and the initial compression area is substantially disposed between the air suction end 14 and the second spiral groove 18.
As shown in
In the aforementioned tight fit method, the centering bushing 24 is passed and installed into the thermally expanded motor rotor 22, and the motor rotor 22 will be bounded tightly and naturally with the centering bushing 24 after cooling, and the engaging end 121 is passed and installed into the thermally expanded centering bushing 24, and the centering bushing 24 will be bounded tightly and naturally with the engaging end 121 after cooling. In
Further referring to
Referring to
Furthermore, the storage tank 62 is a high-pressure tank, and the air pressure within the storage tank 62 is greater than the air pressure between the first spiral groove 17 and the second spiral groove 18 of any one of the first screw rotor 12 and the second screw rotor 13. In other words, the air pressure within the storage tank 62 is greater than the air pressure of the aforementioned initial compression operation area, so that the high-pressure coolant can be delivered sequentially from the storage tank 62, the filling tube 61, the cooling passage 213, the guide tube 7, and the first opening 112 to the compression chamber 111 by pressure difference, and finally the coolant within the compression chamber 111 will be circulated to the storage tank 62 through the tubes, so that the process of pumping the coolant and the pump component are omitted, and the structure and the volume of the rotary screw compressor 10 is simplified as well. Referring to
As to the transition-fit manner mentioned previously, the tolerance between the annular positioning plate 8, the bearing seat 16, and the connection port 214 is small, and if a force greater than a predetermined external force is exerted onto the annular positioning plate 8, the annular positioning plate 8 will be sheathed on the bearing seat 16 tightly and fixed into the connection port 214 securely.
In
In
As shown in
In addition, the centering bushing 24 require no bearing or bearing driving part, so that it is not necessary to lubricate the coolant at both ends of the centering bushing 24, and the filling tube 61 just communicates to the cooling passage 213 only, and the guide tube 7 has an end just communicating to the cooling passage 213 only and the other end just communicating to the compression chamber 111 only, so that the coolant can flow through the motor housing 21 in order to cool the drive motor assembly 2, and the coolant does not need to flow through both ends of the centering bushing 24, so as to prevent the coolant from permeating from both ends of the centering bushing 24 into the motor housing 21, and prevent the motor rotor 22 and the motor stator 23 from being overheated or damaged, and the dirt in the motor housing 21 will not enter into the compression chamber 111, so as to extend the service life of the drive motor assembly 1.
In addition, the conventional drive shaft drives the spiral rotor to rotate by the bearing driving part, so that there will be a transmission loss. On the other hand, the motor rotor 22 of this disclosure directly connects the centering bushing 24 with the engaging end 121 of the first screw rotor 12 to reduce the transmission loss.
Further, the annular positioning plate 8 is installed between the compressor housing 11 and the motor housing 21. In other words, the annular positioning plate 8 is provided to integrate two independent assemblies (which are the compressor assembly 1 and the drive motor assembly 2) into a whole compressor assembly, so as to further reduce the volume of the rotary screw compressor 10.
In addition, the compressor assembly 1 and the drive motor assembly 2 of this embodiment are disposed in upright fashion with respect to each other, but this disclosure is not limited to such design only, and the compressor assembly 1 and the drive motor assembly 2 can also be disposed in horizontal fashion with respect to each other.
When the compressor assembly 1 and the drive motor assembly 2 are configured to be implemented in upright fashion with respect to each other, the engaging end 121 has a length ranging from one-third to half of the centering bushing 24, so that the mass of the centering bushing 24 is reduced and the center of gravity of the whole motor rotor 22 is lowered to prevent resonance occurred during the rotation of the motor rotor 22.
With reference to
Specifically, the cooling passage 213 comprises two circular flow channels 2132 and a plurality of straight flow channels 2133 coupled between the two circular flow channels 2132, and the plurality of straight flow channels 2133 is configured to be parallel to the axial direction of the motor housing 21, and the motor housing 21 has a second opening 215′ and a third opening 216′ arranged sequentially in a direction away from the compressor assembly 1. In other words, the position of the third opening 216′ is higher than the position of the second opening 215′, and the second opening 215′ is coupled between one of the circular flow channels 2132 and the filling tube 61, and the third opening 216′ is coupled between the other circular flow channel 2132 and the guide tube 7, so that the coolant at the cooling passage 213 flows upwardly from the bottom to achieve the same effects and functions as those of the previous embodiment illustrated in
While this disclosure has been described by means of specific embodiments, numerous modifications and variations could be made thereto by those skilled in the art without departing from the scope and spirit of this disclosure set forth in the claims.
Number | Date | Country | Kind |
---|---|---|---|
201910421109.5 | May 2019 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
20020150484 | Rival | Oct 2002 | A1 |
20030035731 | Kim | Feb 2003 | A1 |
20040086396 | De Smedt | May 2004 | A1 |
20070241627 | Kharsa | Oct 2007 | A1 |
20190063738 | Hamada et al. | Feb 2019 | A1 |
Number | Date | Country |
---|---|---|
1366297 | Dec 2003 | EP |
2376505 | Dec 2002 | GB |
WO020700900 | Sep 2002 | WO |
Entry |
---|
Search Report dated Jul. 10, 2020 of the corresponding European patent application No. EP20168553.4. |
Number | Date | Country | |
---|---|---|---|
20200370554 A1 | Nov 2020 | US |