Rotary valve actuator with high-low-high torque linkage

Information

  • Patent Grant
  • 5975487
  • Patent Number
    5,975,487
  • Date Filed
    Friday, April 25, 1997
    27 years ago
  • Date Issued
    Tuesday, November 2, 1999
    24 years ago
Abstract
A rotary valve actuator for fluid control valves having improved actuator linkage matching the torque requirements of most rotary shaft valves. A link member is pivotally interconnected to a linear movable actuating member and to a rotatable lever. The link member enables a high actuator torque to be developed and provided during the times when the valve requires a high torque, and a low actuator torque during other times when the valve only requires a lower torque. A high-low-high actuator torque is provided matching the high-low-high torque requirements of most rotary valves.
Description

BACKGROUND OF THE INVENTION
A variety of fluid flow control valves and corresponding valve actuators are utilized for on/off control or throttling the flow of fluid, such as in a gas or oil pipeline system, or in other process fluid systems. The fluid flow control valves are typically sliding stem control valves or rotary action control valves and are operated by a valve actuator such as a pneumatic piston or diaphragm actuator responding to the output of a valve positioner or valve controller instrument for accurate throttling control of the valve.
In the case of rotary action control valves, these units typically employ a flow control member in the form of a rotatable ball, rotatable ball segment, or a rotatable butterfly element. The rotation of the flow control element opens and closes the valve gate or plug.
Valve actuators for controlling such rotary action control valves typically employ a linearly movable member, such as a movable diaphragm connected to a rod at the diaphragm center. Moving the diaphragm displaces the rod linearly and thus requires a linear to rotary action translation. A rotational lever arm of a rotatable lever has one end fixed to the valve rotary shaft and the other lever arm end is coupled to the diaphragm rod. Linear movement of the diaphragm rod moves the lever arm, rotates the lever and thereby actuates a rotational movement in the valve shaft which is ultimately connected to the rotatable flow control element in the fluid control valve.
As noted previously, rotary actuators typically change linear motion to rotary motion using a ridged connection from the moving diaphragm rod to a rotational lever. Referring to FIG. 1(a) there is illustrated existing linkage in a rotary valve actuator wherein the lever arm 200 defined between the center of the rotatable lever 202 and the linkage point 204 with the actuator diaphragm rod 206 is at 45.degree. to the centerline of the actuator diaphragm rod 206. The resultant torque lever arm (shown as 0.7071 reference length) is defined between the center of the lever 202 and the centerline of the actuator diaphragm rod.
As the diaphragm rod 206 pushes on the lever arm 200 in response to linear actuating movement of a movable actuator member 208, the lever arm rotates the lever 202 through 90.degree. rotation. When the lever arm is again at 45.degree. to the linkage centerline, as in FIG. 1(c), the torque lever arm at a reference length of 0.7071 is 30% shorter than when the torque lever arm is a reference length of 1.0 at 90.degree. to the centerline as in FIG. 1(b).
Therefore, as the lever is rotated from the beginning of actuator travel as shown in FIG. 1(a), the actuator torque resulting from the torque lever arm and the driving linear actuator force is low. At the mid-travel position shown in FIG. 1(b), the actuator torque is high, and at the end of the travel position shown in FIG. 1(c), the actuator torque is again low. The typical rotary actuator therefore provides a low-high-low actuator torque output to the associated rotary valve during valve actuation.
However, during valve actuation most rotary valves require a high torque at the beginning of travel to rotate the valve disc, for instance, out of the valve seat. High torque also is required to seat the valve disc at the end of the travel. In other words a high-low-high actuator torque output is desired rather than the currently available low-high-low actuator torque output.
SUMMARY OF THE INVENTION
In accordance with the principles of the present invention there is provided a rotary valve actuator with a link member pivotally connected at each end to ridged linkage between a linearly movable member and a rotatable lever. This enables the actuator lever arm to be positioned 90.degree. to the linkage centerline at the beginning of actuator travel and thereby provides the longest actuator torque lever arm. As the lever is actuably rotated to mid-travel, the torque lever arm is 30% shorter than in the initial actuator position. At the end of actuator travel, the torque lever arm is back to the same longest length as it was at the beginning of actuation. This provides a highly desired high-low-high actuator torque to match the torque required by most rotary valves during opening and closing of the valve disc or other valve closure members with respect to the valve seat.





BRIEF DESCRIPTION OF THE DRAWINGS
The features of this invention which are believed to be novel are set forth with particularity in the appended claims. The invention may be best understood by reference to the following description taken in conjunction with the accompanying drawings, in which like reference numerals identify like elements in the several figures and in which:
FIGS. 1(a), 1(b), 1(c) are schematic views illustrating a prior art rotary valve actuator with typical linkage between a linear movable actuator member and a rotatable lever; and
FIGS. 2(a), 2(b), 2(c) are schematic views illustrating a rotary valve actuator with improved torque linkage.





DETAILED DESCRIPTION
Referring to FIGS. 2(a), 2(b), 2(c), there is illustrated an improved rotary valve actuator 10 which includes a linearly movable member 12, and a rod 14 connected to the movable member 12 at one rod end 16 for driven linear movement. The linearly movable member 12 of available rotary actuators typically is a moving diaphragm under a pressure difference, or a moving canister driven by a pressurized bladder. The other rod end 18 is coupled by a link 20 to a rotatable lever 22 to transform the actuating linear movement of the movable member 12 to a rotary movement of the lever 22. In a known manner, the lever 22 is drivingly coupled to rotate a valve shaft of a fluid control valve.
A pivot connection 24 pivotally connects a link end 26 to the rod end 18. A similar pivot connection 28 pivotally connects a link end 30 to an upright boss 32 formed as a part of the lever 22.
It is to be understood that the actuator linkage is ridged and maintained in tension between the actuator linearly movable member 12 and the rotating lever 22. The pivotal connections 24, 28 do enable respective pivotal movement of link 20 in response to linear actuation of the rod 14, and rotational movement of the lever 22 in response to the pivoting of link 20.
As shown in FIG. 2(a), in this initial actuating position a lever arm 34 is defined between the lever center 36 and the linkage pivot connection point 28. Note that the lever arm 34 is at 90.degree. to the linkage centerline 38. A reference number of 1.0 is indicated for the length of a resultant torque lever arm in FIG. 2(a) for comparison with the length of a resultant torque lever arm in FIGS. 2(b) and 2(c).
At this beginning of actuator travel the highest actuator torque is desired to rotate the valve closure member out of the valve seat. In response to linear actuation of the movable actuator member 12, the rod 14 is linearly driven to the left in FIG. 2(a) to pivotally drive the link 20 and rotate the lever 22 using the initial torque developed in accordance with the lever arm 34 at 90.degree. with a reference length of 1.0.
FIG. 2(b) shows the actuator linkage position at actuator mid-travel wherein the lever 22 has been rotated through 45.degree. from the initial actuation position of FIG. 2(a). At this mid-travel position the length of a resultant torque lever arm is seen as one leg of a 45.degree. right triangle, and therefore can be calculated to be 0.7071 of the resultant torque lever arm length of FIG. 2(a). Note that the actuator torque is developed as a directly proportional product of the linear force from rod 14 and the length of a right angle torque lever arm. Thus, the actuator torque in FIG. 2(b) is 30% lower than in FIG. 2(a).
At the actuator mid-travel position of FIG. 2(b), the valve closure member has been rotated to its mid-travel point. Less actuator torque is required to rotate the valve shaft at the valve mid-travel position as compared to the initial valve position where the valve closure member has to be moved off the valve seat, or as compared to the end travel position where the valve closure member has to be seated on the valve seat.
As the actuator moving member 12 drives the rod 14 and the link arm 20 to rotate the lever 22 another 45.degree., the end travel position of FIG. 2(c) is reached. The length of the resultant torque lever arm is again at 1.0 as shown in FIG. 2(c), which means that the developed actuator torque is the same as in FIG. 2(a). It is understood that the initial and ending valve positions can be reversed from that described above, and the same high-low-high actuating torque is desired.
Therefore, the rotary valve actuator 10 with improved linkage according to the invention provides a high torque at initial actuation, a low torque at mid-travel, and a high torque at the end travel position. In other words a high-low-high actuating torque is provided as desired to match the requirements of most rotary shaft valves.
The link 20 enables the actuator to begin valve travel with the longest torque lever arm and to enable the lever 22 to rotate 90.degree. to reach the end travel position with the same torque lever arm as initially. If link 20 is too short in length, the lever 22 will not be able to rotate the full 90.degree. from the initial to the end travel position. If the link 20 is too long, the lever 22 can rotate the full 90.degree., but the actuator linkage becomes undesirably long. The link 20 should therefore match the contour of the rotatable lever. Also, a minimum length link 20 should permit full 90.degree. rotation of lever 22 and have the end linkage pivot connection 28 travel the same 90.degree..
The foregoing detailed description has been given for clearness of understanding only, and no unnecessary limitations should be understood therefrom, as modifications will be obvious to those skilled in the art.
Claims
  • 1. In a rotary valve actuator for controlling fluid flow through a rotary shaft control valve, including an actuator linear movable member, a rotatable lever coupled to said rotary shaft, and actuator linkage coupling the actuator linear movable member to said rotatable lever and defining a torque lever arm for converting linear movement of said movable member to rotary movement of said rotatable lever for rotating said rotatable lever in one rotatable direction from an initial actuating lever position corresponding to an initial high torque requiring position of said rotary shaft control valve, continuing rotation in said one rotatable direction to a mid-travel actuating lever position corresponding to a mid-travel low torque requiring position of said rotary shaft control valve, and continuing rotation in said one rotatable direction to an ending actuating lever position corresponding to an ending high torque requiring position of said rotary shaft control valve, the improvement comprising:
  • said actuator linkage including a link member pivotally connected at one end to said actuator linear movable member and pivotally connected at the other end to said rotatable lever;
  • said actuator linkage at said initial actuating lever position and at said ending actuating lever position providing said torque lever arm longer than the torque lever arm at said mid-travel actuating lever position to enable a high-low-high actuating torque capability of said rotary valve actuator during rotating of said rotatable lever in said one rotatable direction thereby matching said high-low-high torque requiring positions of said rotary shaft control valve.
  • 2. A rotary valve actuator according to claim 1, wherein the link member enables the longest torque lever arm at said initial and ending actuator lever positions.
  • 3. A rotary valve actuator according to claim 2, wherein said link member is contoured to match the contour of said rotatable lever.
  • 4. A rotary valve actuator according to claim 3, wherein said link member pivot connection to said rotatable lever provides said torque lever arm at said initial and ending actuating lever positions equal to the length between the lever center and said pivot connection.
US Referenced Citations (102)
Number Name Date Kind
RE35136 Hasegawa et al. Jan 1996
362767 McNair May 1887
2190117 Griffith Feb 1940
2293269 Rufus Aug 1942
2296213 Kretzschmar Sep 1942
2305099 Morris Dec 1942
2535382 Bachli et al. Dec 1950
2641280 Fleischhauer Jun 1953
2642216 Carter Jun 1953
2707966 Taplin May 1955
2722881 Sutterfield et al. Nov 1955
2731534 Hansen et al. Jan 1956
2870873 Mueller Jan 1959
2878701 Weersma Mar 1959
3011758 McFarland, Jr. Dec 1961
3070029 Russell Dec 1962
3082792 Jenkins Mar 1963
3084901 Thorburn Apr 1963
3175472 Little Mar 1965
3195418 Zukas Jul 1965
3224345 Doetsch Dec 1965
3254660 Ray Jun 1966
3275286 Wood Sep 1966
3282171 Tuckmantel Nov 1966
3434395 Londal Mar 1969
3452961 Forsman Jul 1969
3486731 Magnani et al. Dec 1969
3513059 Prohaska May 1970
3516442 Munroe Jun 1970
3588036 Harter Jun 1971
3610571 Cisco Oct 1971
3717322 Bernard Feb 1973
3719199 Mentink Mar 1973
3719343 Werra Mar 1973
3804364 De Lepeleire Apr 1974
3814119 Bertrand et al. Jun 1974
3817452 Dean, Jr. Jun 1974
3845783 De Lepeleire Nov 1974
3945565 Lynch et al. Mar 1976
3958592 Wells et al. May 1976
3963377 Elliot et al. Jun 1976
3978922 Johnson et al. Sep 1976
3980135 Garrett Sep 1976
3982558 Ochs Sep 1976
4003547 Snyder et al. Jan 1977
4014386 Johnson et al. Mar 1977
4017025 Dravnieks et al. Apr 1977
4027692 Bouteille et al. Jun 1977
4050670 Borg et al. Sep 1977
4111211 Olsen Sep 1978
4111608 Elliot et al. Sep 1978
4147094 Iguchi Apr 1979
4149561 Dalton Apr 1979
4151819 Inada et al. May 1979
4178938 Au Dec 1979
4187764 Cho Feb 1980
4225110 Akkerman et al. Sep 1980
4240335 Stucka et al. Dec 1980
4261546 Cory et al. Apr 1981
4278108 Casacci Jul 1981
4295630 Card et al. Oct 1981
4299373 Troyer Nov 1981
4309022 Reinicke et al. Jan 1982
4340079 Smith et al. Jul 1982
4364414 Bouteille et al. Dec 1982
4434707 Takeuchi et al. Mar 1984
4441519 Terral Apr 1984
4480811 Card et al. Nov 1984
4527769 Stogner et al. Jul 1985
4545433 Wambaugh Oct 1985
4546953 Vinoiguerra et al. Oct 1985
4569378 Bergandy Feb 1986
4572237 Thompson Feb 1986
4582082 Tosseghini Apr 1986
4604944 Tsubouchi Aug 1986
4732189 Jones et al. Mar 1988
4783046 Young et al. Nov 1988
4787413 Saggers Nov 1988
4809733 Hawkins Mar 1989
4877058 Stoll Oct 1989
4889153 Zepernick et al. Dec 1989
4925498 Kemmler May 1990
4930555 Rudick Jun 1990
4977922 McWilliams Dec 1990
4986299 Schultz Jan 1991
5007330 Scobie et al. Apr 1991
5016856 Tartaglino May 1991
5029806 Huo-Lien et al. Jul 1991
5069248 Gill Dec 1991
5086801 Peacock et al. Feb 1992
5101853 Mailliet et al. Apr 1992
5275014 Solomon Jan 1994
5277397 Tartaglino Jan 1994
5279325 Kaspers Jan 1994
5305987 Baumann Apr 1994
5337797 Janssen et al. Aug 1994
5348270 Dinh Sep 1994
5357999 Loth et al. Oct 1994
5370147 Brusse et al. Dec 1994
5469774 Kaspers Nov 1995
5487527 Eggleston Jan 1996
5507467 Mott Apr 1996
Foreign Referenced Citations (10)
Number Date Country
A 0 192 973 Sep 1986 EPX
2 509 008 Jan 1983 FRX
1944 871 Feb 1971 DEX
23 34 336 Jan 1975 DEX
2 343 069 Feb 1975 DEX
23 43 069 Feb 1975 DEX
42 44 573 Jul 1994 DEX
56-63164 May 1981 JPX
431 216 Aug 1967 CHX
1 595 576 Jul 1969 GBX
Non-Patent Literature Citations (4)
Entry
Fisher Controls, "Type 657 and 667 Diaphragm Actuators," Bulletin 61.1:657, Apr. 1992.
Fisher Controls, "470 Series Piston Actuators," Billetin 61.2:470, Jul. 1993.
Fisher Controls, "Type 585 and 585R Piston Actuators," Bulletin 61.2:585, July 1993.
Computers Schlumberger, Division Controle Industriel, Technical File, FT50-37/C,"Servo-Moteur Pneumatique Reversible, Type KW," pp. 1-8, Mai 1976 (Translation supplied).