The present invention generally relates to methods and devices for controlling movement of a working end of a surgical device.
In laparoscopic surgical procedures, a small incision is made in the body and an elongate shaft of a surgical device is inserted through the incision to position a distal end of the shaft at a surgical site. In endoscopic procedures, the elongate shaft of a surgical device is inserted through a natural orifice, such as the mouth or anus, and is advanced along a pathway to position a distal end of the device at a surgical site. Endoscopic procedures typically require the use of a flexible shaft to accommodate the tortuous pathway of the body lumen, whereas rigid shafts can be used in laparoscopic procedures. These tools can be used to engage and/or treat tissue in a number of ways to achieve a diagnostic or therapeutic effect.
Many current laparoscopic and endoscopic devices utilize articulating effectors to provide the user with more control over the orientation of the working end of the instrument. Integration of the controls for articulating, as well as actuating, a working end of a laparoscopic or endoscopic device tend to be complicated by the size constraints of the relatively small pathway through which it is inserted. The controls for an endoscopic device are further complicated by the flexibility of the shaft. Generally, the control motions are all transferred through the shaft as longitudinal translations, which can interfere with the flexibility of the shaft. There is also a desire to lower the force necessary to articulate and/or actuate the working end to a level that all or a great majority of surgeons can handle. One known solution to lower the force-to-fire is to use electrical motors. However, surgeons typically prefer to experience feedback from the working end to assure proper operation of the end effector. The user-feedback effects are not suitably realizable in present motor-driven devices.
U.S. Patent Application Publication No. US 2008/0147113 A1 to Rudolph H. Nobis et al., Ser. No. 11/610,803, filed Dec. 14, 2006, the disclosure of which is herein incorporated by reference in its entirety discloses various manually articulated surgical instruments that may be actuated by manipulating one or more actuation wires that extend from a handle through an elongate tube to an end effector operably coupled to the distal end of the tube. Various embodiments of those devices employ an end effector that may also be selectively rotated relative to a longitudinal axis of the device. When rotated, the actuation wire or wires also rotate to avoid malfunction thereof.
Accordingly, there remains a need for improved rotational coupling arrangement for surgical instruments that are actuated by flexible or semi-flexible members such as wires and the like.
The foregoing discussion is intended only to illustrate some of the shortcomings present in the field of the invention at the time, and should not be taken as a disavowal of claim scope.
Methods and devices are provided for controlling movement of a working end of a surgical device. In one embodiment, a surgical device is provided that has an elongate substantially hollow shaft that defines an elongate axis. An end effector may be operably coupled to a distal end of the elongate shaft for selective pivotal and rotational travel relative thereto. The end effector may have at least one actuation feature thereon that is actuatable upon application of axial actuation motions thereto. An articulation actuator may operably interface with the end effector for applying axial articulation motions thereto to cause the end effector to pivot relative to the distal end of the elongate shaft and selectively apply rotation motions thereto to cause the end effector to rotate relative to the distal end of the elongate shaft about the elongate axis. A first input actuator may be provided for transferring axial actuation motions. Various embodiments further include a rotational coupling that comprises a driving coupler that is movably supported within a portion of the elongate substantially hollow shaft and is also coupled to a distal end of the first input actuator for receiving the axial actuation motions therefrom. An idler coupler may be movably supported within a portion of the substantially elongate hollow shaft and may be rotatably coupled to the driving coupler for rotation relative thereto about the elongate axis. The idler coupler may be further configured for axial travel with the driving coupler along the actuation axis. At least one second input actuator may be coupled to the idler coupler and the actuation features on the end effector such that the second input actuator transfers the axial actuation motions from the rotational coupling to at least one actuation feature of the end effector. A proximal end of a three-bar linkage may be coupled to the distal end of the elongate shaft, and a distal end of the three-bar linkage may be coupled to an end effector. The end effector can be, for example, a grasper, a biopsy probe, a snare loop, forceps, scissors, a needle knife, a sphincterotome, etc. In use, the three-bar linkage is adapted to laterally articulate relative to a longitudinal axis of the elongate shaft to allow the end effector to be angularly oriented relative to the elongate shaft.
In accordance with other embodiments of the present invention, there is provided a surgical device that includes an elongate substantially hollow shaft that defines an elongate axis. An end effector is operably coupled to a distal end of the elongate shaft for selective pivotal and rotational travel relative thereto. The end effector may have at least one actuation feature thereon that is actuatable upon application of at least one axial actuation motion thereto. An articulation actuator may operably interface with the end effector to apply axial articulation motions thereto to cause the end effector to pivot relative to the distal end of the elongate shaft and to selectively apply rotation motions thereto to cause the end effector to rotate relative to the distal end of said elongate shaft about the elongate axis. A first input actuator may extend from the handle assembly to transfer at least one axial actuation motion. The embodiments may further comprise a rotational coupling that has a proximal tubular member that is rotatably supported within the hollow elongate shaft and is coupled to the first input actuator for receiving at least one axial actuation motion therefrom. A distal tubular member may be rotatably supported within the hollow elongate shaft and be coupled to the proximal tubular member for axial travel therewith such that the distal tubular member can rotate relative to the proximal tubular member. At least one second input actuator may be coupled to the distal tubular member and the actuation features on the end effector such that the second input actuator transfers the at least one axial actuation motion applied thereto to at least one actuation feature of the end effector.
In connection with other features of the present invention, there is provided various rotational couplings for surgical devices that are movably coupled to an elongate shaft wherein the surgical device has at least one actuation feature thereon that is actuatable upon application of at least one actuation motion from an actuator and which surgical device is articulatable and rotatable relative to the elongate shaft upon application of other actuation motions from another actuator. Various embodiments of the rotational coupling comprise a driver member that is coupled to the actuator for receiving at least one actuation motion therefrom. An idler member may be rotatably coupled to the driver member for selective rotation relative to the driver member about a longitudinal axis and is configured to axially move as a unit with the driver member. The driver member and the idler member may movably support a portion of the other actuator therein. An output member may be coupled to the idler member and the surgical device for transferring the at least one actuation motion from the idler member to the surgical device.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention, and, together with the general description of the invention given above, and the detailed description of the embodiments given below, serve to explain the principles of the present invention.
Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those of ordinary skill in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope of the various embodiments of the present invention is defined solely by the claims. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention.
The present invention generally provides methods and devices for controlling movement of a working end of a surgical device and, in particular, for performing various surgical procedures using an instrument having an end effector that can be articulated relative to an elongate shaft of the device by means of flexible or semi-flexible actuation members such as, for example, wires. As will described in further detail below, various embodiments are provided with a unique and novel coupling arrangement that permits the end effector to be rotated without adversely affecting the actuation wire or wires. Articulation and rotation of the end effector will allow the end effector to be positioned at various locations during a surgical procedure, thereby providing the user with precise control over the end effector. A person skilled in the art will appreciate that the present invention has application in endoscopic procedures, laparoscopic procedures, and in conventional open surgical procedures, including robotic-assisted surgery.
It will be appreciated that the terms “proximal” and “distal” are used herein with reference to a clinician manipulating the handle portion of the surgical instrument. The term “proximal” referring to the portion closest to the clinician and the term “distal” referring to the portion located away from the clinician. It will be further appreciated that, for convenience and clarity, spatial terms such as “vertical”, “horizontal”, “up” and “down” may be used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and/or absolute.
The three-bar linkage 16 allows the end effector 14 to be oriented at an angle relative to a longitudinal axis L-L of the elongate shaft 12. The device can also optionally be configured to allow the end effector 14 to rotate relative to and about the longitudinal axis L-L of the elongate shaft 12. In the illustrated embodiment, the three-bar linkage 16 is rotatably coupled to the distal end 12b of the elongate shaft 12, and thus the three-bar linkage 16, as well as the end effector 14 coupled thereto, can be positioned in various axial orientations. The location of the rotation joint R proximal of the articulation joint A is particularly advantageous in that rotation of the end effector 14 can change the location of the plane within which the end effector 14 articulates.
The three-bar linkage 16 can have a variety of configurations, but in an exemplary embodiment, as shown in more detail in
The articulation actuator 30 can have a variety of configurations, but in an exemplary embodiment, the articulation actuator 30 comprises a “semi-flexible” member or wire fabricated from, for example, stainless steel, Nickel-Titanium alloy (Nitinol®), etc. As used herein, the term “semi-flexible” means components that are able to exhibit adequate flexibility within the desired strain with pit permanent deformation yet deliver acceptable stiffness for the desired load transmission. As can be seen in
In use, proximal movement of the articulation actuator 30 relative to and along the longitudinal axis L-L of the elongate shaft 12 will apply a proximally-directed force to the third link 24. The third link 24 will thus apply a proximally-directed force to the second link 22, causing the second link 22 to pivot laterally relative to the longitudinal axis L-L of the elongate shaft 12. As a result, the second link 22, with the end effector 14 coupled thereto, will move laterally in a single plane to allow the end effector 14 to extend at an angle relative the longitudinal axis L-L of the elongate shaft 12, as shown in
As previously indicated, in addition to articulating movement, the end effector 14 can also be configured to rotate relative to the elongate shaft 12, thus allowing the end effector 14 to be positioned in multiple angular orientations. The particular location of the rotation joint R can vary, and it can be located proximal to the three-bar linkage 16, at a mid-portion of the three-bar linkage 16, or distal to the three-bar linkage 16. In an exemplary embodiment, the rotation joint R is located proximal to the three-bar linkage 16, and more preferably proximal to the articulation joint A formed between the first and second links 20, 22. As shown in
The illustrated embodiment includes first and second rotation couplings 26, 28. Second rotation coupling 28 may be affixed to (e.g., welded, glued, etc.) to a coupling sleeve 490. The first rotation coupling 26 has a generally elongate hollow shape with a proximal end 26a that is fixedly mated to the elongate shaft 12 and a distal end 26b that has deflectable tabs 26c formed therearound. The tabs 26c can be formed by longitudinally-extending cut-outs formed in and spaced radially around the distal end 26b of the first rotation coupling 26. Each tab 26c can include an annular flange or lip formed on an inner surface thereof. The second rotation coupling 28 can be rotatably supported on the coupling sleeve 490 by advancing the tabs 26c over a retention flange 492 on the coupling sleeve 490. The tabs 26c will deflect until the annular flange or lip on the tabs 26c extends into and engages a groove 494 formed in the coupling sleeve 490. The elongate shaft 12 may be affixed to the first rotation coupling 26 by welding, adhesive, etc. Such arrangement permits the first rotation coupling 26 and the elongate shaft 12 to rotate about the coupling sleeve 490.
As can also be seen in
Various embodiments of the subject invention may further include a third rotation coupling 500. The third rotation coupling 500 may include a driving coupler 510 that is axially and rotatably movable within the elongate shaft 12 and a portion of the coupling sleeve 490. An idler coupler 520 may be rotatably coupled to a distal end 510a of the driving coupler 510 in the manner depicted in
Also in various embodiments, a “first” input actuator 530 is attached to the driving coupler 510. The input actuator 530 may comprise, for example, a “semi-flexible” member or wire that may be manufactured from stainless steel, Nickel-Titanium alloy (Nitinol®), etc. Likewise, an output actuator 540 that may comprise, for example, a “semi-flexible” member or wire that may be manufactured from stainless steel, Nickel-Titanium alloy (Nitinol®), etc. is attached to the idler coupler 520 and an actuation pusher 44 in the end effector 14.
As indicated above, the end effector 14 of the device can have various configurations but in the embodiment shown in
In use, proximal movement of the input actuator 530 relative to the elongate shaft 12 will pull the driving coupler 510 and idler coupler 520 in the proximal direction “PD” within the coupling sleeve 490. Movement of the idler coupler 520 in the proximal direction “PD” also causes the actuation pusher 44 to move within the slots formed in the second link 22. The actuation links 40, 42 will thus be pulled in the proximal direction “PD”, bringing the proximal and distal portions 36a, 38a, 36b, 38b of each jaw 18a, 18b toward each other to thereby close the jaws 18a, 18b. Conversely, distal movement of the input actuator 530 causes the driving coupler 510 and idler coupler 520 to move distally and cause the actuation pusher 44 to also move distally within the slots formed in the second link 22. Such movement will cause the links 40, 42 and the proximal and distal portions 36a, 38a, 36b, 38b of the jaws 18a, 18b to pivot laterally outward, thereby opening the jaws 18a, 18b.
As previously indicated, the device can also include a handle assembly 50 coupled to the proximal end of the elongate shaft 12 and have various controls formed thereon for controlling and manipulating the device. A person skilled in the art will appreciate that the particular configuration of the handle can vary, and that various techniques known in the art can be used for effecting movement of various portions on the device.
The articulation knob 54 may have a generally cylindrical configuration. The knob 54 can have an integral or unitary configuration, or it can be formed from two halves 54a, 54b that may be coupled together by bolts 57 and nuts 59, as shown. While various techniques can be used to affix the articulation actuator 30 to the articulation knob 54, in an exemplary embodiment the articulation knob 54 includes an axle 58 fixedly disposed therein and engaged between the knob halves 54a, 54b. The articulation actuator 30 extends through an inner lumen of the axle 58 and is affixed thereto. Various fastening techniques can be used to affix the articulation actuator 30 to the axle 58 including, for example, an interference or compression fit, an adhesive, or other mechanical or chemical mating techniques known in the art. The proximal end 30a of the articulation actuator 30 can mate to the knob 54 such that rotation and translation of the knob 54 will cause corresponding rotation and translation of the articulation actuator 30, thereby rotating and articulating the end effector 14, as previously described.
In various embodiments, the handle housing 52 can include an elongate cavity 52c formed therein that is configured to slidably and rotatably receive a portion of the knob 54 therein. The handle housing 52 can also include one or more cut-outs 60 formed therein for allowing a user to access the knob.
In use, the articulation knob 54 can be grasped by a user and rotated about its longitudinal axis (i.e., about the longitudinal axis L-L of the shaft 12 and handle 50). Rotation of the knob 54 will cause corresponding rotation of the axle 58 and the articulation actuator 30. The articulation actuator 30 is not coupled to the articulation knob 54 and therefore is not affected by its actuation. As previously explained, rotation of the articulation actuator 30 will cause corresponding rotation of the three-bar linkage 16 and the end effector 14. The articulation knob 54 can also be moved or translated longitudinally along the longitudinal axis L-L, and within the elongate cavity 52c formed in the handle housing 52. Proximal movement of the articulation knob 54 within the handle housing 52 will pull the articulation actuator 30 in the proximal direction “PD”, thereby articulating the end effector 14, as previously explained. Distal movement of the articulation knob 54 within the handle housing 52 will in turn move the articulation actuator 30 distally, thereby returning the end effector 14 to its original longitudinally-aligned position.
As indicated above, the device can also include an actuation knob 56 for actuating the actuation features on the end effector 14 (i.e. for firing, opening and closing, energizing, etc.). The actuation knob 56 can have a variety of configurations, but in the illustrated embodiment the knob 56 has a bar-bell shape. The knob 56 can have an integral or unitary configuration, or it can be formed from two halves 56a, 56b that mate together, as shown in
Actuation knob 56 is slidably disposed around an elongate shaft portion 62 of the handle housing 52. In use, the knob 56 can be grasped by a user and translated along the shaft portion 62 of the handle housing 52. Proximal movement of the actuation knob 56 along the shaft portion 62 will pull the input actuator 530 proximally, thereby opening the jaws 18a, 18b of the end effector 12 as previously explained. Distal movement of the actuation knob 56 along the shaft portion 62 will in turn move the input actuator 530 distally, thereby moving the jaws 18a, 18b to the closed position. Those of ordinary skill in the art will appreciate that the unique and novel third rotational coupler 500 of the present invention enables the actuators 30, 530, 540 to be independently operated while avoiding aberrant twisting/jamming of the actuators when the end effector is to be articulated, rotated and/or actuated.
Another rotational coupler embodiment 600 of the present invention is depicted in
As can be further seen in
Also in various embodiments, an input articulation member 730 is non-movably affixed to the proximal end of the proximal tubular member 630. The input articulation member 730 may comprise, for example, stainless steel, Nickel-Titanium alloy (Nitinol®), etc. and be non-movably affixed to the proximal tubular member 630 by, for example, welding, gluing, swaging, coining, crimping, etc. The proximal end of the input articulation member 730 may be coupled to the articulation knob 54 in the manners described above. Thus, the input articulation member 730 may be axially and rotatably moved within the elongate shaft 12 by manipulation of the articulation knob 54.
Also in various embodiments, an output articulation member 740 is non-movably attached to the distal tubular member 640 and the articulation coupling 34. The output articulation member 740 may comprise, for example, stainless steel, Nickel-Titanium alloy (Nitinol®), etc. and be attached to the distal tubular member 640 by, for example, welding, gluing, swaging, coining, crimping, etc. In use, movement of the input articulation member 730 in the proximal direction “PD” relative to and along the longitudinal axis L-L of the elongate shaft 12 will pull the proximal tubular member 630 as well as the entire rotational coupler 600 in the proximal direction “PD” and will apply a proximally-directed force to the third link 24. The third link 24 will thus apply a proximally-directed force to the second link 22, causing the second link 22 to pivot laterally relative to the longitudinal axis L-L of the elongate shaft 12. As a result, the second link 22, with the end effector 14 coupled thereto, will move laterally in a single plane to allow the end effector 14 to extend at an angle relative the longitudinal axis L-L of the elongate shaft 12. The end effector 14 can be returned to the original, longitudinally-aligned position, shown in
Rotation of input articulation member 730 relative to and about the longitudinal axis L-L of the elongate shaft 12 will rotate the articulation coupling 34 and the third link 24, which is coupled to the second link 22, which in turn is coupled to the end effector 14 and the first link 20. As a result, the entire three-bar linkage 16 will rotate with the end effector 14 relative to and about the longitudinal axis L-L of the elongate shaft 12. Rotation can also be accomplished while the end effector 14 is articulated, thereby changing the plane within which the end effector 14 articulates. Again such unique and novel rotational coupler arrangement enable the actuators 30, 530, 540 to be independently operated while avoiding aberrant twisting/jamming of the actuators when the end effector is to be articulated, rotated and/or actuated.
While the rotational couplers discussed above are described and shown in connection with an end effector that employs actuation features such as grasper jaws, the various coupler embodiments of the present invention may be effectively employed in connection with a variety of other end effectors for performing various surgical procedures. Examples of such end effector arrangements may comprise those end effector arrangements described in U.S. Patent Application Publication No. U.S. 2008/0147113, such as, for example, biopsy forceps, tissue-penetrating spikes, snare loops, scissors, needle knives and sphincterotomes. A person skilled in the art will appreciate that the rotation coupler embodiments of the present invention may be used in connection with a variety of other end effectors other than those described and illustrated herein and in the aforementioned published application which has been herein incorporated by reference in its entirety.
As indicated above, the various devices disclosed herein for controlling movement of a working end of a surgical device can be used in a variety of surgical procedures, including endoscopic procedures, laparoscopic procedures, and in conventional open surgical procedures, including robotic-assisted surgery. In one exemplary endoscopic procedure, an elongate shaft of a surgical device, such as one previously disclosed herein, can be inserted through a natural orifice and a body lumen to position an end effector located at a distal end of the elongate shaft adjacent to tissue to be treated. An articulation actuator can be translated along a longitudinal axis of the elongate shaft to cause a three-bar linkage to laterally articulate the end effector in a direction substantially perpendicular to a longitudinal axis of the elongate shaft to allow the end effector to be angularly oriented relative to the elongate shaft. This can be achieved by actuating one or more actuation mechanisms formed on a handle of the device. The method can also include rotating the end effector relative to the elongate shaft. In one embodiment, the three-bar linkage can rotate with the end effector relative to the elongate shaft. For example, the articulation actuator can be rotated relative to the elongate shaft to rotate both the three-bar linkage and the end effector. In another embodiment, the end effector can rotate relative to the three-bar linkage. For example, an actuation wire coupled to the end effector and extending through the elongate shaft and the three-bar linkage can be rotated.
The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device can be disassembled, and any number of the particular pieces or parts of the device can be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device can be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
Preferably, the invention described herein will be processed before surgery. First, a new or used instrument is obtained and if necessary cleaned. The instrument can then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation kills bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container keeps the instrument sterile until it is opened in the medical facility.
It is preferred that device is sterilized. This can be done by any number of ways known to those skilled in the art including beta or gamma radiation, ethylene oxide, steam.
Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
The invention which is intended to be protected is not to be construed as limited to the particular embodiments disclosed. The embodiments are therefore to be regarded as illustrative rather than restrictive. Variations and changes may be made by others without departing from the spirit of the present invention. Accordingly, it is expressly intended that all such equivalents, variations and changes which fall within the spirit and scope of the present invention as defined in the claims be embraced thereby.
Number | Name | Date | Kind |
---|---|---|---|
645576 | Telsa | Mar 1900 | A |
649621 | Tesla | May 1900 | A |
787412 | Tesla | Apr 1905 | A |
1127948 | Wappler | Feb 1915 | A |
1482653 | Lilly | Feb 1924 | A |
1625602 | Gould et al. | Apr 1927 | A |
2028635 | Wappler | Jan 1936 | A |
2113246 | Wappler | Apr 1938 | A |
2155365 | Rankin | Apr 1939 | A |
2191858 | Moore | Feb 1940 | A |
2196620 | Attarian | Apr 1940 | A |
2388137 | Graumlich | Oct 1945 | A |
2493108 | Casey, Jr. | Jan 1950 | A |
2504152 | Riker et al. | Apr 1950 | A |
2938382 | De Graaf | May 1960 | A |
2952206 | Becksted | Sep 1960 | A |
3069195 | Buck | Dec 1962 | A |
3170471 | Schnitzer | Feb 1965 | A |
3435824 | Gamponia | Apr 1969 | A |
3470876 | Barchilon | Oct 1969 | A |
3669487 | Roberts et al. | Jun 1972 | A |
3746881 | Fitch et al. | Jul 1973 | A |
3799672 | Vurek | Mar 1974 | A |
3854473 | Matsuo | Dec 1974 | A |
3946740 | Bassett | Mar 1976 | A |
3948251 | Hosono | Apr 1976 | A |
3994301 | Agris | Nov 1976 | A |
4011872 | Komiya | Mar 1977 | A |
4012812 | Black | Mar 1977 | A |
4164225 | Johnson et al. | Aug 1979 | A |
4178920 | Cawood, Jr. et al. | Dec 1979 | A |
4207873 | Kruy | Jun 1980 | A |
4235238 | Ogiu et al. | Nov 1980 | A |
4258716 | Sutherland | Mar 1981 | A |
4278077 | Mizumoto | Jul 1981 | A |
4285344 | Marshall | Aug 1981 | A |
4311143 | Komiya | Jan 1982 | A |
4329980 | Terada | May 1982 | A |
4396021 | Baumgartner | Aug 1983 | A |
4452246 | Bader et al. | Jun 1984 | A |
4461281 | Carson | Jul 1984 | A |
4491132 | Aikins | Jan 1985 | A |
4527331 | Lasner et al. | Jul 1985 | A |
4527564 | Eguchi et al. | Jul 1985 | A |
4538594 | Boebel et al. | Sep 1985 | A |
D281104 | Davison | Oct 1985 | S |
4569347 | Frisbie | Feb 1986 | A |
4580551 | Siegmund et al. | Apr 1986 | A |
4646722 | Silverstein et al. | Mar 1987 | A |
4653476 | Bonnet | Mar 1987 | A |
4669470 | Brandfield | Jun 1987 | A |
4671477 | Cullen | Jun 1987 | A |
4685447 | Iversen et al. | Aug 1987 | A |
4711240 | Goldwasser et al. | Dec 1987 | A |
4712545 | Honkanen | Dec 1987 | A |
4721116 | Schintgen et al. | Jan 1988 | A |
4733662 | DeSatnick et al. | Mar 1988 | A |
D295894 | Sharkany et al. | May 1988 | S |
4763669 | Jaeger | Aug 1988 | A |
4770188 | Chikama | Sep 1988 | A |
4815450 | Patel | Mar 1989 | A |
4823794 | Pierce | Apr 1989 | A |
4829999 | Auth | May 1989 | A |
4873979 | Hanna | Oct 1989 | A |
4880015 | Nierman | Nov 1989 | A |
4911148 | Sosnowski et al. | Mar 1990 | A |
4926860 | Stice et al. | May 1990 | A |
4938214 | Specht et al. | Jul 1990 | A |
4950273 | Briggs | Aug 1990 | A |
4950285 | Wilk | Aug 1990 | A |
4960133 | Hewson | Oct 1990 | A |
4977887 | Gouda | Dec 1990 | A |
4984581 | Stice | Jan 1991 | A |
5007917 | Evans | Apr 1991 | A |
5010876 | Henley et al. | Apr 1991 | A |
5020514 | Heckele | Jun 1991 | A |
5020535 | Parker et al. | Jun 1991 | A |
5025778 | Silverstein et al. | Jun 1991 | A |
5033169 | Bindon | Jul 1991 | A |
5037433 | Wilk et al. | Aug 1991 | A |
5041129 | Hayhurst et al. | Aug 1991 | A |
5046513 | Gatturna et al. | Sep 1991 | A |
5050585 | Takahashi | Sep 1991 | A |
5052372 | Shapiro | Oct 1991 | A |
5065516 | Dulebohn | Nov 1991 | A |
5066295 | Kozak et al. | Nov 1991 | A |
5123913 | Wilk et al. | Jun 1992 | A |
5123914 | Cope | Jun 1992 | A |
5133727 | Bales et al. | Jul 1992 | A |
5147374 | Fernandez | Sep 1992 | A |
5174300 | Bales et al. | Dec 1992 | A |
5176126 | Chikama | Jan 1993 | A |
5190050 | Nitzsche | Mar 1993 | A |
5190555 | Wetter et al. | Mar 1993 | A |
5192284 | Pleatman | Mar 1993 | A |
5201752 | Brown et al. | Apr 1993 | A |
5201908 | Jones | Apr 1993 | A |
5203785 | Slater | Apr 1993 | A |
5203787 | Noblitt et al. | Apr 1993 | A |
5209747 | Knoepfler | May 1993 | A |
5217003 | Wilk | Jun 1993 | A |
5217453 | Wilk | Jun 1993 | A |
5219357 | Honkanen et al. | Jun 1993 | A |
5219358 | Bendel et al. | Jun 1993 | A |
5222362 | Maus et al. | Jun 1993 | A |
5222965 | Haughton | Jun 1993 | A |
5234437 | Sepetka | Aug 1993 | A |
5234453 | Smith et al. | Aug 1993 | A |
5235964 | Abenaim | Aug 1993 | A |
5242456 | Nash et al. | Sep 1993 | A |
5246424 | Wilk | Sep 1993 | A |
5259366 | Reydel et al. | Nov 1993 | A |
5263958 | deGuillebon et al. | Nov 1993 | A |
5273524 | Fox et al. | Dec 1993 | A |
5275607 | Lo et al. | Jan 1994 | A |
5284128 | Hart | Feb 1994 | A |
5284162 | Wilk | Feb 1994 | A |
5287845 | Faul et al. | Feb 1994 | A |
5290299 | Fain et al. | Mar 1994 | A |
5290302 | Pericic | Mar 1994 | A |
5295977 | Cohen et al. | Mar 1994 | A |
5297536 | Wilk | Mar 1994 | A |
5301061 | Nakada et al. | Apr 1994 | A |
5312333 | Churinetz et al. | May 1994 | A |
5312351 | Gerrone | May 1994 | A |
5312416 | Spaeth et al. | May 1994 | A |
5312423 | Rosenbluth et al. | May 1994 | A |
5320636 | Slater | Jun 1994 | A |
5325845 | Adair | Jul 1994 | A |
5330471 | Eggers | Jul 1994 | A |
5330486 | Wilk | Jul 1994 | A |
5330488 | Goldrath | Jul 1994 | A |
5330496 | Alferness | Jul 1994 | A |
5330502 | Hassler et al. | Jul 1994 | A |
5331971 | Bales et al. | Jul 1994 | A |
5334198 | Hart et al. | Aug 1994 | A |
5344428 | Griffiths | Sep 1994 | A |
5350391 | Iacovelli | Sep 1994 | A |
5352184 | Goldberg et al. | Oct 1994 | A |
5352222 | Rydell | Oct 1994 | A |
5354302 | Ko | Oct 1994 | A |
5354311 | Kambin et al. | Oct 1994 | A |
5356408 | Rydell | Oct 1994 | A |
5364408 | Gordon | Nov 1994 | A |
5364410 | Failla et al. | Nov 1994 | A |
5366466 | Christian et al. | Nov 1994 | A |
5366467 | Lynch et al. | Nov 1994 | A |
5368605 | Miller, Jr. | Nov 1994 | A |
5370647 | Graber et al. | Dec 1994 | A |
5370679 | Atlee, III | Dec 1994 | A |
5374273 | Nakao et al. | Dec 1994 | A |
5374275 | Bradley et al. | Dec 1994 | A |
5374277 | Hassler | Dec 1994 | A |
5377695 | An Haack | Jan 1995 | A |
5383877 | Clarke | Jan 1995 | A |
5383888 | Zvenyatsky et al. | Jan 1995 | A |
5391174 | Weston | Feb 1995 | A |
5392789 | Slater et al. | Feb 1995 | A |
5395386 | Slater | Mar 1995 | A |
5401248 | Bencini | Mar 1995 | A |
5403328 | Shallman | Apr 1995 | A |
5403342 | Tovey et al. | Apr 1995 | A |
5403348 | Bonutti | Apr 1995 | A |
5405073 | Porter | Apr 1995 | A |
5405359 | Pierce | Apr 1995 | A |
5409478 | Gerry et al. | Apr 1995 | A |
5417699 | Klein et al. | May 1995 | A |
5423821 | Pasque | Jun 1995 | A |
5433721 | Hooven et al. | Jul 1995 | A |
5439471 | Kerr | Aug 1995 | A |
5439478 | Palmer | Aug 1995 | A |
5441059 | Dannan | Aug 1995 | A |
5441499 | Fritzsch | Aug 1995 | A |
5449021 | Chikama | Sep 1995 | A |
5456667 | Ham et al. | Oct 1995 | A |
5456684 | Schmidt et al. | Oct 1995 | A |
5458131 | Wilk | Oct 1995 | A |
5458583 | McNeely et al. | Oct 1995 | A |
5460168 | Masubuchi et al. | Oct 1995 | A |
5460629 | Shlain et al. | Oct 1995 | A |
5462561 | Voda | Oct 1995 | A |
5465731 | Bell et al. | Nov 1995 | A |
5467763 | McMahon et al. | Nov 1995 | A |
5468250 | Paraschac et al. | Nov 1995 | A |
5470308 | Edwards et al. | Nov 1995 | A |
5470320 | Tiefenbrun et al. | Nov 1995 | A |
5478347 | Aranyi | Dec 1995 | A |
5480404 | Kammerer et al. | Jan 1996 | A |
5482054 | Slater et al. | Jan 1996 | A |
5484451 | Akopov et al. | Jan 1996 | A |
5489256 | Adair | Feb 1996 | A |
5496347 | Hashiguchi et al. | Mar 1996 | A |
5499990 | Schülken et al. | Mar 1996 | A |
5499992 | Meade et al. | Mar 1996 | A |
5501692 | Riza | Mar 1996 | A |
5503616 | Jones | Apr 1996 | A |
5505686 | Willis et al. | Apr 1996 | A |
5507755 | Gresl et al. | Apr 1996 | A |
5511564 | Wilk | Apr 1996 | A |
5514157 | Nicholas et al. | May 1996 | A |
5522829 | Michalos | Jun 1996 | A |
5522830 | Aranyi | Jun 1996 | A |
5527321 | Hinchliffe | Jun 1996 | A |
5540648 | Yoon | Jul 1996 | A |
5554151 | Hinchliffe | Sep 1996 | A |
5555883 | Avitall | Sep 1996 | A |
5558133 | Bortoli et al. | Sep 1996 | A |
5562693 | Devlin et al. | Oct 1996 | A |
5569243 | Kortenbach et al. | Oct 1996 | A |
5569298 | Schnell | Oct 1996 | A |
5573540 | Yoon | Nov 1996 | A |
5578030 | Levin | Nov 1996 | A |
5582611 | Tsuruta et al. | Dec 1996 | A |
5582617 | Klieman et al. | Dec 1996 | A |
5584845 | Hart | Dec 1996 | A |
5591179 | Edelstein | Jan 1997 | A |
5593420 | Eubanks, Jr et al. | Jan 1997 | A |
5595562 | Grier | Jan 1997 | A |
5597378 | Jervis | Jan 1997 | A |
5601573 | Fogelberg et al. | Feb 1997 | A |
5601588 | Tonomura et al. | Feb 1997 | A |
5604531 | Iddan et al. | Feb 1997 | A |
5607389 | Edwards et al. | Mar 1997 | A |
5607450 | Zvenyatsky et al. | Mar 1997 | A |
5613975 | Christy | Mar 1997 | A |
5618303 | Marlow et al. | Apr 1997 | A |
5620415 | Lucey et al. | Apr 1997 | A |
5624399 | Ackerman | Apr 1997 | A |
5624431 | Gerry et al. | Apr 1997 | A |
5628732 | Antoon, Jr. et al. | May 1997 | A |
5630782 | Adair | May 1997 | A |
5643283 | Younker | Jul 1997 | A |
5643292 | Hart | Jul 1997 | A |
5643294 | Tovey et al. | Jul 1997 | A |
5644798 | Shah | Jul 1997 | A |
5645083 | Essig et al. | Jul 1997 | A |
5649372 | Souza | Jul 1997 | A |
5653677 | Okada et al. | Aug 1997 | A |
5653722 | Kieturakis | Aug 1997 | A |
5662663 | Shallman | Sep 1997 | A |
5669875 | van Eerdenburg | Sep 1997 | A |
5681324 | Kammerer et al. | Oct 1997 | A |
5681330 | Hughett et al. | Oct 1997 | A |
5685820 | Riek et al. | Nov 1997 | A |
5690656 | Cope et al. | Nov 1997 | A |
5690660 | Kauker et al. | Nov 1997 | A |
5695448 | Kimura et al. | Dec 1997 | A |
5695505 | Yoon | Dec 1997 | A |
5695511 | Cano et al. | Dec 1997 | A |
5700275 | Bell et al. | Dec 1997 | A |
5702438 | Avitall | Dec 1997 | A |
5704892 | Adair | Jan 1998 | A |
5709708 | Thal | Jan 1998 | A |
5716326 | Dannan | Feb 1998 | A |
5730740 | Wales et al. | Mar 1998 | A |
5741278 | Stevens | Apr 1998 | A |
5741285 | McBrayer et al. | Apr 1998 | A |
5746759 | Meade et al. | May 1998 | A |
5749881 | Sackier et al. | May 1998 | A |
5749889 | Bacich et al. | May 1998 | A |
5752951 | Yanik | May 1998 | A |
5755731 | Grinberg | May 1998 | A |
5766167 | Eggers et al. | Jun 1998 | A |
5766170 | Eggers | Jun 1998 | A |
5766205 | Zvenyatsky et al. | Jun 1998 | A |
5769849 | Eggers | Jun 1998 | A |
5779701 | McBrayer et al. | Jul 1998 | A |
5779716 | Cano et al. | Jul 1998 | A |
5779727 | Orejola | Jul 1998 | A |
5782859 | Nicholas et al. | Jul 1998 | A |
5782866 | Wenstrom, Jr. | Jul 1998 | A |
5791022 | Bohman | Aug 1998 | A |
5792113 | Kramer et al. | Aug 1998 | A |
5792153 | Swain et al. | Aug 1998 | A |
5792165 | Klieman et al. | Aug 1998 | A |
5797835 | Green | Aug 1998 | A |
5797928 | Kogasaka | Aug 1998 | A |
5797939 | Yoon | Aug 1998 | A |
5797941 | Schulze et al. | Aug 1998 | A |
5803903 | Athas et al. | Sep 1998 | A |
5808665 | Green | Sep 1998 | A |
5810806 | Ritchart et al. | Sep 1998 | A |
5810849 | Kontos | Sep 1998 | A |
5810865 | Koscher et al. | Sep 1998 | A |
5810876 | Kelleher | Sep 1998 | A |
5810877 | Roth et al. | Sep 1998 | A |
5813976 | Filipi et al. | Sep 1998 | A |
5814058 | Carlson et al. | Sep 1998 | A |
5817061 | Goodwin et al. | Oct 1998 | A |
5817107 | Schaller | Oct 1998 | A |
5817119 | Klieman et al. | Oct 1998 | A |
5819736 | Avny et al. | Oct 1998 | A |
5827281 | Levin | Oct 1998 | A |
5827299 | Thomason et al. | Oct 1998 | A |
5830231 | Geiges, Jr. | Nov 1998 | A |
5833700 | Fogelberg et al. | Nov 1998 | A |
5833703 | Manushakian | Nov 1998 | A |
5843017 | Yoon | Dec 1998 | A |
5849022 | Sakashita et al. | Dec 1998 | A |
5853374 | Hart et al. | Dec 1998 | A |
5855585 | Kontos | Jan 1999 | A |
5860913 | Yamaya et al. | Jan 1999 | A |
5860995 | Berkelaar | Jan 1999 | A |
5868762 | Cragg et al. | Feb 1999 | A |
5876411 | Kontos | Mar 1999 | A |
5882331 | Sasaki | Mar 1999 | A |
5882344 | Stouder, Jr. | Mar 1999 | A |
5893846 | Bales et al. | Apr 1999 | A |
5893874 | Bourque et al. | Apr 1999 | A |
5893875 | O'Connor et al. | Apr 1999 | A |
5899919 | Eubanks, Jr. et al. | May 1999 | A |
5902254 | Magram | May 1999 | A |
5904702 | Ek et al. | May 1999 | A |
5908420 | Parins et al. | Jun 1999 | A |
5916147 | Boury | Jun 1999 | A |
5921993 | Yoon | Jul 1999 | A |
5921997 | Fogelberg et al. | Jul 1999 | A |
5922008 | Gimpelson | Jul 1999 | A |
5925052 | Simmons | Jul 1999 | A |
5928255 | Meade et al. | Jul 1999 | A |
5928266 | Kontos | Jul 1999 | A |
5936536 | Morris | Aug 1999 | A |
5944718 | Austin et al. | Aug 1999 | A |
5951549 | Richardson et al. | Sep 1999 | A |
5954720 | Wilson et al. | Sep 1999 | A |
5954731 | Yoon | Sep 1999 | A |
5957943 | Vaitekunas | Sep 1999 | A |
5957953 | DiPoto et al. | Sep 1999 | A |
5971995 | Rousseau | Oct 1999 | A |
5976074 | Moriyama | Nov 1999 | A |
5976075 | Beane et al. | Nov 1999 | A |
5976130 | McBrayer et al. | Nov 1999 | A |
5976131 | Guglielmi et al. | Nov 1999 | A |
5980539 | Kontos | Nov 1999 | A |
5980556 | Giordano et al. | Nov 1999 | A |
5984938 | Yoon | Nov 1999 | A |
5989182 | Hori et al. | Nov 1999 | A |
5993447 | Blewett et al. | Nov 1999 | A |
5997555 | Kontos | Dec 1999 | A |
6001120 | Levin | Dec 1999 | A |
6004269 | Crowley et al. | Dec 1999 | A |
6004330 | Middleman et al. | Dec 1999 | A |
6007566 | Wenstrom, Jr. | Dec 1999 | A |
6010515 | Swain et al. | Jan 2000 | A |
6012494 | Balazs | Jan 2000 | A |
6019770 | Christoudias | Feb 2000 | A |
6024708 | Bales et al. | Feb 2000 | A |
6024747 | Kontos | Feb 2000 | A |
6027522 | Palmer | Feb 2000 | A |
6030365 | Laufer | Feb 2000 | A |
6033399 | Gines | Mar 2000 | A |
6053927 | Hamas | Apr 2000 | A |
6066160 | Colvin et al. | May 2000 | A |
6068603 | Suzuki | May 2000 | A |
6068629 | Haissaguerre et al. | May 2000 | A |
6071233 | Ishikawa et al. | Jun 2000 | A |
6074408 | Freeman | Jun 2000 | A |
6086530 | Mack | Jul 2000 | A |
6090108 | McBrayer et al. | Jul 2000 | A |
6096046 | Weiss | Aug 2000 | A |
6102926 | Tartaglia et al. | Aug 2000 | A |
6110154 | Shimomura et al. | Aug 2000 | A |
6110183 | Cope | Aug 2000 | A |
6113593 | Tu et al. | Sep 2000 | A |
6117144 | Nobles et al. | Sep 2000 | A |
6117158 | Measamer et al. | Sep 2000 | A |
6139555 | Hart et al. | Oct 2000 | A |
6146391 | Cigaina | Nov 2000 | A |
6148222 | Ramsey, III | Nov 2000 | A |
6149653 | Deslauriers | Nov 2000 | A |
6149662 | Pugliesi et al. | Nov 2000 | A |
6159200 | Verdura et al. | Dec 2000 | A |
6165184 | Verdura et al. | Dec 2000 | A |
6168570 | Ferrera | Jan 2001 | B1 |
6168605 | Measamer et al. | Jan 2001 | B1 |
6170130 | Hamilton et al. | Jan 2001 | B1 |
6179776 | Adams et al. | Jan 2001 | B1 |
6179837 | Hooven | Jan 2001 | B1 |
6183420 | Douk et al. | Feb 2001 | B1 |
6190353 | Makower et al. | Feb 2001 | B1 |
6190384 | Ouchi | Feb 2001 | B1 |
6190399 | Palmer et al. | Feb 2001 | B1 |
6203533 | Ouchi | Mar 2001 | B1 |
6206872 | Lafond et al. | Mar 2001 | B1 |
6206877 | Kese et al. | Mar 2001 | B1 |
6214007 | Anderson | Apr 2001 | B1 |
6228096 | Marchand | May 2001 | B1 |
6245079 | Nobles et al. | Jun 2001 | B1 |
6246914 | de la Rama et al. | Jun 2001 | B1 |
6258064 | Smith et al. | Jul 2001 | B1 |
6261242 | Roberts et al. | Jul 2001 | B1 |
6264664 | Avellanet | Jul 2001 | B1 |
6270497 | Sekino et al. | Aug 2001 | B1 |
6270505 | Yoshida et al. | Aug 2001 | B1 |
6277136 | Bonutti | Aug 2001 | B1 |
6283963 | Regula | Sep 2001 | B1 |
6293909 | Chu et al. | Sep 2001 | B1 |
6293952 | Brosens et al. | Sep 2001 | B1 |
6296630 | Altman et al. | Oct 2001 | B1 |
6322578 | Houle et al. | Nov 2001 | B1 |
6326177 | Schoenbach et al. | Dec 2001 | B1 |
6328730 | Harkrider, Jr. | Dec 2001 | B1 |
6350267 | Stefanchik | Feb 2002 | B1 |
6350278 | Lenker et al. | Feb 2002 | B1 |
6352503 | Matsui et al. | Mar 2002 | B1 |
6352543 | Cole | Mar 2002 | B1 |
6355035 | Manushakian | Mar 2002 | B1 |
6371956 | Wilson et al. | Apr 2002 | B1 |
6379366 | Fleischman et al. | Apr 2002 | B1 |
6383195 | Richard | May 2002 | B1 |
6383197 | Conlon et al. | May 2002 | B1 |
6391029 | Hooven et al. | May 2002 | B1 |
6402735 | Langevin | Jun 2002 | B1 |
6406440 | Stefanchik | Jun 2002 | B1 |
6409733 | Conlon et al. | Jun 2002 | B1 |
6431500 | Jacobs et al. | Aug 2002 | B1 |
6447511 | Slater | Sep 2002 | B1 |
6447523 | Middleman et al. | Sep 2002 | B1 |
6454783 | Piskun | Sep 2002 | B1 |
6454785 | De Hoyos Garza | Sep 2002 | B2 |
6464701 | Hooven et al. | Oct 2002 | B1 |
6475104 | Lutz et al. | Nov 2002 | B1 |
6485411 | Konstorum et al. | Nov 2002 | B1 |
6489745 | Koreis | Dec 2002 | B1 |
6491626 | Stone et al. | Dec 2002 | B1 |
6491691 | Morley et al. | Dec 2002 | B1 |
6493590 | Wessman et al. | Dec 2002 | B1 |
6494893 | Dubrul et al. | Dec 2002 | B2 |
6503192 | Ouchi | Jan 2003 | B1 |
6506190 | Walshe | Jan 2003 | B1 |
6508827 | Manhes | Jan 2003 | B1 |
6543456 | Freeman | Apr 2003 | B1 |
6551270 | Bimbo et al. | Apr 2003 | B1 |
6554829 | Schulze et al. | Apr 2003 | B2 |
6558384 | Mayenberger | May 2003 | B2 |
6562035 | Levin | May 2003 | B1 |
6562052 | Nobles et al. | May 2003 | B2 |
6569159 | Edwards et al. | May 2003 | B1 |
6572629 | Kalloo et al. | Jun 2003 | B2 |
6572635 | Bonutti | Jun 2003 | B1 |
6575988 | Rousseau | Jun 2003 | B2 |
6579311 | Makower | Jun 2003 | B1 |
6585642 | Christopher | Jul 2003 | B2 |
6585717 | Wittenberger et al. | Jul 2003 | B1 |
6592559 | Pakter et al. | Jul 2003 | B1 |
6592603 | Lasner | Jul 2003 | B2 |
6602262 | Griego et al. | Aug 2003 | B2 |
6605105 | Cuschieri et al. | Aug 2003 | B1 |
6610072 | Christy et al. | Aug 2003 | B1 |
6610074 | Santilli | Aug 2003 | B2 |
6620193 | Lau et al. | Sep 2003 | B1 |
6626919 | Swanstrom | Sep 2003 | B1 |
6632229 | Yamanouchi | Oct 2003 | B1 |
6638286 | Burbank et al. | Oct 2003 | B1 |
6652521 | Schulze | Nov 2003 | B2 |
6652551 | Heiss | Nov 2003 | B1 |
6656194 | Gannoe et al. | Dec 2003 | B1 |
6663641 | Kovac et al. | Dec 2003 | B1 |
6666854 | Lange | Dec 2003 | B1 |
6672338 | Esashi et al. | Jan 2004 | B1 |
6673058 | Snow | Jan 2004 | B2 |
6673087 | Chang et al. | Jan 2004 | B1 |
6685628 | Vu | Feb 2004 | B2 |
6685724 | Haluck | Feb 2004 | B1 |
6692445 | Roberts et al. | Feb 2004 | B2 |
6692462 | Mackenzie et al. | Feb 2004 | B2 |
6699180 | Kobayashi | Mar 2004 | B2 |
6699256 | Logan et al. | Mar 2004 | B1 |
6699263 | Cope | Mar 2004 | B2 |
6706018 | Westlund et al. | Mar 2004 | B2 |
6708066 | Herbst et al. | Mar 2004 | B2 |
6716226 | Sixto, Jr. et al. | Apr 2004 | B2 |
6736822 | McClellan et al. | May 2004 | B2 |
6740030 | Martone et al. | May 2004 | B2 |
6743240 | Smith et al. | Jun 2004 | B2 |
6749560 | Konstorum et al. | Jun 2004 | B1 |
6749609 | Lunsford et al. | Jun 2004 | B1 |
6752768 | Burdorff et al. | Jun 2004 | B2 |
6752811 | Chu et al. | Jun 2004 | B2 |
6752822 | Jespersen | Jun 2004 | B2 |
6761685 | Adams et al. | Jul 2004 | B2 |
6761718 | Madsen | Jul 2004 | B2 |
6761722 | Cole et al. | Jul 2004 | B2 |
6773434 | Ciarrocca | Aug 2004 | B2 |
6780151 | Grabover et al. | Aug 2004 | B2 |
6780352 | Jacobson | Aug 2004 | B2 |
6783491 | Saadat et al. | Aug 2004 | B2 |
6786864 | Matsuura et al. | Sep 2004 | B2 |
6790173 | Saadat et al. | Sep 2004 | B2 |
6795728 | Chornenky et al. | Sep 2004 | B2 |
6800056 | Tartaglia et al. | Oct 2004 | B2 |
6808491 | Kortenbach et al. | Oct 2004 | B2 |
6824548 | Smith et al. | Nov 2004 | B2 |
6837847 | Ewers et al. | Jan 2005 | B2 |
6843794 | Sixto, Jr. et al. | Jan 2005 | B2 |
6861250 | Cole et al. | Mar 2005 | B1 |
6866627 | Nozue | Mar 2005 | B2 |
6878106 | Herrmann | Apr 2005 | B1 |
6878110 | Yang et al. | Apr 2005 | B2 |
6884213 | Raz et al. | Apr 2005 | B2 |
6887255 | Shimm | May 2005 | B2 |
6896683 | Gadberry et al. | May 2005 | B1 |
6908427 | Fleener et al. | Jun 2005 | B2 |
6908476 | Jud et al. | Jun 2005 | B2 |
6916284 | Moriyama | Jul 2005 | B2 |
6918871 | Schulze | Jul 2005 | B2 |
6926725 | Cooke et al. | Aug 2005 | B2 |
6932810 | Ryan | Aug 2005 | B2 |
6932824 | Roop et al. | Aug 2005 | B1 |
6932827 | Cole | Aug 2005 | B2 |
6932834 | Lizardi et al. | Aug 2005 | B2 |
6939327 | Hall et al. | Sep 2005 | B2 |
6942613 | Ewers et al. | Sep 2005 | B2 |
6945472 | Wuttke et al. | Sep 2005 | B2 |
6945979 | Kortenbach et al. | Sep 2005 | B2 |
6955683 | Bonutti | Oct 2005 | B2 |
6958035 | Friedman et al. | Oct 2005 | B2 |
6960162 | Saadat et al. | Nov 2005 | B2 |
6960163 | Ewers et al. | Nov 2005 | B2 |
6962587 | Johnson et al. | Nov 2005 | B2 |
6964662 | Kidooka | Nov 2005 | B2 |
6966909 | Marshall et al. | Nov 2005 | B2 |
6966919 | Sixto, Jr. et al. | Nov 2005 | B2 |
6967462 | Landis | Nov 2005 | B1 |
6971988 | Orban, III | Dec 2005 | B2 |
6972017 | Smith et al. | Dec 2005 | B2 |
6974411 | Belson | Dec 2005 | B2 |
6976992 | Sachatello et al. | Dec 2005 | B2 |
6984203 | Tartaglia et al. | Jan 2006 | B2 |
6984205 | Gazdzinski | Jan 2006 | B2 |
6986774 | Middleman et al. | Jan 2006 | B2 |
6988987 | Ishikawa et al. | Jan 2006 | B2 |
6989028 | Lashinski et al. | Jan 2006 | B2 |
6991627 | Madhani et al. | Jan 2006 | B2 |
6994708 | Manzo | Feb 2006 | B2 |
6997931 | Sauer et al. | Feb 2006 | B2 |
7000818 | Shelton, IV et al. | Feb 2006 | B2 |
7008375 | Weisel | Mar 2006 | B2 |
7009634 | Iddan et al. | Mar 2006 | B2 |
7010340 | Scarantino et al. | Mar 2006 | B2 |
7020531 | Colliou et al. | Mar 2006 | B1 |
7025580 | Heagy et al. | Apr 2006 | B2 |
7029435 | Nakao | Apr 2006 | B2 |
7029438 | Morin et al. | Apr 2006 | B2 |
7035680 | Partridge et al. | Apr 2006 | B2 |
7037290 | Gardeski et al. | May 2006 | B2 |
7041052 | Saadat et al. | May 2006 | B2 |
7052489 | Griego et al. | May 2006 | B2 |
7060024 | Long et al. | Jun 2006 | B2 |
7060025 | Long et al. | Jun 2006 | B2 |
7063697 | Slater | Jun 2006 | B2 |
7063715 | Onuki et al. | Jun 2006 | B2 |
7066879 | Fowler et al. | Jun 2006 | B2 |
7066936 | Ryan | Jun 2006 | B2 |
7070602 | Smith et al. | Jul 2006 | B2 |
7076305 | Imran et al. | Jul 2006 | B2 |
7083629 | Weller et al. | Aug 2006 | B2 |
7087071 | Nicholas et al. | Aug 2006 | B2 |
7090673 | Dycus et al. | Aug 2006 | B2 |
7090685 | Kortenbach et al. | Aug 2006 | B2 |
7093518 | Gmeilbauer | Aug 2006 | B2 |
7101371 | Dycus et al. | Sep 2006 | B2 |
7101372 | Dycus et al. | Sep 2006 | B2 |
7101373 | Dycus et al. | Sep 2006 | B2 |
7105000 | McBrayer | Sep 2006 | B2 |
7105005 | Blake | Sep 2006 | B2 |
7108703 | Danitz et al. | Sep 2006 | B2 |
7112208 | Morris et al. | Sep 2006 | B2 |
7115092 | Park et al. | Oct 2006 | B2 |
7118531 | Krill | Oct 2006 | B2 |
7118578 | West, Jr. et al. | Oct 2006 | B2 |
7118587 | Dycus et al. | Oct 2006 | B2 |
7128708 | Saadat et al. | Oct 2006 | B2 |
RE39415 | Bales et al. | Nov 2006 | E |
7131978 | Sancoff et al. | Nov 2006 | B2 |
7131979 | DiCarlo et al. | Nov 2006 | B2 |
7131980 | Field et al. | Nov 2006 | B1 |
7137980 | Buysse et al. | Nov 2006 | B2 |
7137981 | Long | Nov 2006 | B2 |
7146984 | Stack et al. | Dec 2006 | B2 |
7147650 | Lee | Dec 2006 | B2 |
7153321 | Andrews | Dec 2006 | B2 |
7163525 | Franer | Jan 2007 | B2 |
7172714 | Jacobson | Feb 2007 | B2 |
7179254 | Pendekanti et al. | Feb 2007 | B2 |
7195612 | Van Sloten et al. | Mar 2007 | B2 |
7195631 | Dumbauld | Mar 2007 | B2 |
7208005 | Frecker et al. | Apr 2007 | B2 |
7211092 | Hughett | May 2007 | B2 |
7223272 | Francere et al. | May 2007 | B2 |
7232414 | Gonzalez | Jun 2007 | B2 |
7232445 | Kortenbach et al. | Jun 2007 | B2 |
7241290 | Doyle et al. | Jul 2007 | B2 |
7244228 | Lubowski | Jul 2007 | B2 |
7252660 | Kunz | Aug 2007 | B2 |
7270663 | Nakao | Sep 2007 | B2 |
7294139 | Gengler | Nov 2007 | B1 |
7301250 | Cassel | Nov 2007 | B2 |
7306597 | Manzo | Dec 2007 | B2 |
7318802 | Suzuki et al. | Jan 2008 | B2 |
7320695 | Carroll | Jan 2008 | B2 |
7322934 | Miyake et al. | Jan 2008 | B2 |
7323006 | Andreas et al. | Jan 2008 | B2 |
7329257 | Kanehira et al. | Feb 2008 | B2 |
7329383 | Stinson | Feb 2008 | B2 |
7344536 | Lunsford et al. | Mar 2008 | B1 |
7352387 | Yamamoto | Apr 2008 | B2 |
7364582 | Lee | Apr 2008 | B2 |
7371215 | Colliou et al. | May 2008 | B2 |
7381216 | Buzzard et al. | Jun 2008 | B2 |
7393322 | Wenchell | Jul 2008 | B2 |
7402162 | Ouchi | Jul 2008 | B2 |
7404791 | Linares et al. | Jul 2008 | B2 |
7413563 | Corcoran et al. | Aug 2008 | B2 |
7416554 | Lam et al. | Aug 2008 | B2 |
7422590 | Kupferschmid et al. | Sep 2008 | B2 |
7435257 | Lashinski et al. | Oct 2008 | B2 |
7452327 | Durgin et al. | Nov 2008 | B2 |
7455208 | Wales et al. | Nov 2008 | B2 |
7468066 | Vargas et al. | Dec 2008 | B2 |
7488295 | Burbank et al. | Feb 2009 | B2 |
7497867 | Lasner et al. | Mar 2009 | B2 |
7507200 | Okada | Mar 2009 | B2 |
7524281 | Chu et al. | Apr 2009 | B2 |
7524302 | Tower | Apr 2009 | B2 |
7534228 | Williams | May 2009 | B2 |
7544203 | Chin et al. | Jun 2009 | B2 |
7548040 | Lee et al. | Jun 2009 | B2 |
7549564 | Boudreaux | Jun 2009 | B2 |
7553278 | Kucklick | Jun 2009 | B2 |
7553298 | Hunt et al. | Jun 2009 | B2 |
7559887 | Dannan | Jul 2009 | B2 |
7560006 | Rakos et al. | Jul 2009 | B2 |
7561916 | Hunt et al. | Jul 2009 | B2 |
7566334 | Christian et al. | Jul 2009 | B2 |
7579550 | Dayton et al. | Aug 2009 | B2 |
7582096 | Gellman et al. | Sep 2009 | B2 |
7588557 | Nakao | Sep 2009 | B2 |
7618398 | Holman et al. | Nov 2009 | B2 |
7632250 | Smith et al. | Dec 2009 | B2 |
7635373 | Ortiz | Dec 2009 | B2 |
7637903 | Lentz et al. | Dec 2009 | B2 |
7651483 | Byrum et al. | Jan 2010 | B2 |
7651509 | Bojarski et al. | Jan 2010 | B2 |
7654431 | Hueil et al. | Feb 2010 | B2 |
7662089 | Okada et al. | Feb 2010 | B2 |
7666180 | Holsten et al. | Feb 2010 | B2 |
7713270 | Suzuki | May 2010 | B2 |
7736374 | Vaughan et al. | Jun 2010 | B2 |
7762998 | Birk et al. | Jul 2010 | B2 |
7771416 | Spivey et al. | Aug 2010 | B2 |
7780683 | Roue et al. | Aug 2010 | B2 |
7794475 | Hess et al. | Sep 2010 | B2 |
7837615 | Le et al. | Nov 2010 | B2 |
7850660 | Uth et al. | Dec 2010 | B2 |
7857183 | Shelton, IV | Dec 2010 | B2 |
7862546 | Conlon et al. | Jan 2011 | B2 |
7867216 | Wahr et al. | Jan 2011 | B2 |
7896887 | Rimbaugh et al. | Mar 2011 | B2 |
7918869 | Saadat et al. | Apr 2011 | B2 |
7931624 | Smith et al. | Apr 2011 | B2 |
7947000 | Vargas et al. | May 2011 | B2 |
7955298 | Carroll et al. | Jun 2011 | B2 |
7963975 | Criscuolo | Jun 2011 | B2 |
20010049497 | Kalloo et al. | Dec 2001 | A1 |
20020022771 | Diokno et al. | Feb 2002 | A1 |
20020022857 | Goldsteen et al. | Feb 2002 | A1 |
20020023353 | Ting-Kung | Feb 2002 | A1 |
20020042562 | Meron et al. | Apr 2002 | A1 |
20020049439 | Mulier et al. | Apr 2002 | A1 |
20020068945 | Sixto, Jr. et al. | Jun 2002 | A1 |
20020078967 | Sixto, Jr. et al. | Jun 2002 | A1 |
20020082516 | Stefanchik | Jun 2002 | A1 |
20020095164 | Andreas et al. | Jul 2002 | A1 |
20020107530 | Sauer et al. | Aug 2002 | A1 |
20020133115 | Gordon et al. | Sep 2002 | A1 |
20020138086 | Sixto, Jr. et al. | Sep 2002 | A1 |
20020147456 | Diduch et al. | Oct 2002 | A1 |
20020183591 | Matsuura et al. | Dec 2002 | A1 |
20030023255 | Miles et al. | Jan 2003 | A1 |
20030036679 | Kortenbach et al. | Feb 2003 | A1 |
20030069602 | Jacobs et al. | Apr 2003 | A1 |
20030083681 | Moutafis et al. | May 2003 | A1 |
20030114732 | Webler et al. | Jun 2003 | A1 |
20030120257 | Houston et al. | Jun 2003 | A1 |
20030130564 | Martone et al. | Jul 2003 | A1 |
20030130656 | Levin | Jul 2003 | A1 |
20030158521 | Ameri | Aug 2003 | A1 |
20030167062 | Gambale et al. | Sep 2003 | A1 |
20030171651 | Page et al. | Sep 2003 | A1 |
20030176880 | Long et al. | Sep 2003 | A1 |
20030216611 | Vu | Nov 2003 | A1 |
20030216615 | Ouchi | Nov 2003 | A1 |
20030220545 | Ouchi | Nov 2003 | A1 |
20030225312 | Suzuki et al. | Dec 2003 | A1 |
20030225332 | Okada et al. | Dec 2003 | A1 |
20030229269 | Humphrey | Dec 2003 | A1 |
20030229371 | Whitworth | Dec 2003 | A1 |
20030236549 | Bonadio et al. | Dec 2003 | A1 |
20040002683 | Nicholson et al. | Jan 2004 | A1 |
20040034369 | Sauer et al. | Feb 2004 | A1 |
20040098007 | Heiss | May 2004 | A1 |
20040101456 | Kuroshima et al. | May 2004 | A1 |
20040116948 | Sixto, Jr. et al. | Jun 2004 | A1 |
20040133077 | Obenchain et al. | Jul 2004 | A1 |
20040133089 | Kilcoyne et al. | Jul 2004 | A1 |
20040136779 | Bhaskar | Jul 2004 | A1 |
20040138525 | Saadat et al. | Jul 2004 | A1 |
20040138529 | Wiltshire et al. | Jul 2004 | A1 |
20040138587 | Lyons, IV | Jul 2004 | A1 |
20040186350 | Brenneman et al. | Sep 2004 | A1 |
20040193009 | Jaffe et al. | Sep 2004 | A1 |
20040193146 | Lee et al. | Sep 2004 | A1 |
20040193186 | Kortenbach et al. | Sep 2004 | A1 |
20040193188 | Francese | Sep 2004 | A1 |
20040193189 | Kortenbach et al. | Sep 2004 | A1 |
20040193200 | Dworschak et al. | Sep 2004 | A1 |
20040199052 | Banik et al. | Oct 2004 | A1 |
20040210245 | Erickson et al. | Oct 2004 | A1 |
20040215058 | Zirps et al. | Oct 2004 | A1 |
20040225183 | Michlitsch et al. | Nov 2004 | A1 |
20040225186 | Horne, Jr. et al. | Nov 2004 | A1 |
20040230095 | Stefanchik et al. | Nov 2004 | A1 |
20040230096 | Stefanchik et al. | Nov 2004 | A1 |
20040230097 | Stefanchik et al. | Nov 2004 | A1 |
20040230161 | Zeiner | Nov 2004 | A1 |
20040249246 | Campos | Dec 2004 | A1 |
20040249367 | Saadat et al. | Dec 2004 | A1 |
20040249394 | Morris et al. | Dec 2004 | A1 |
20040249443 | Shanley et al. | Dec 2004 | A1 |
20050004515 | Hart et al. | Jan 2005 | A1 |
20050033265 | Engel et al. | Feb 2005 | A1 |
20050033277 | Clague et al. | Feb 2005 | A1 |
20050033319 | Gambale et al. | Feb 2005 | A1 |
20050033333 | Smith et al. | Feb 2005 | A1 |
20050043690 | Todd | Feb 2005 | A1 |
20050049616 | Rivera et al. | Mar 2005 | A1 |
20050065397 | Saadat et al. | Mar 2005 | A1 |
20050065517 | Chin | Mar 2005 | A1 |
20050070754 | Nobis et al. | Mar 2005 | A1 |
20050070763 | Nobis et al. | Mar 2005 | A1 |
20050070764 | Nobis et al. | Mar 2005 | A1 |
20050080413 | Canady | Apr 2005 | A1 |
20050085693 | Belson et al. | Apr 2005 | A1 |
20050085832 | Sancoff et al. | Apr 2005 | A1 |
20050090837 | Sixto, Jr. et al. | Apr 2005 | A1 |
20050090838 | Sixto, Jr. et al. | Apr 2005 | A1 |
20050101837 | Kalloo et al. | May 2005 | A1 |
20050101838 | Camillocci et al. | May 2005 | A1 |
20050107663 | Saadat et al. | May 2005 | A1 |
20050107664 | Kalloo et al. | May 2005 | A1 |
20050110881 | Glukhovsky et al. | May 2005 | A1 |
20050113847 | Gadberry et al. | May 2005 | A1 |
20050124855 | Jaffe et al. | Jun 2005 | A1 |
20050125010 | Smith et al. | Jun 2005 | A1 |
20050131279 | Boulais et al. | Jun 2005 | A1 |
20050131457 | Douglas et al. | Jun 2005 | A1 |
20050137454 | Saadat et al. | Jun 2005 | A1 |
20050143647 | Minai et al. | Jun 2005 | A1 |
20050143690 | High | Jun 2005 | A1 |
20050143774 | Polo | Jun 2005 | A1 |
20050143803 | Watson et al. | Jun 2005 | A1 |
20050149087 | Ahlberg et al. | Jul 2005 | A1 |
20050149096 | Hilal et al. | Jul 2005 | A1 |
20050159648 | Freed | Jul 2005 | A1 |
20050165272 | Okada et al. | Jul 2005 | A1 |
20050165378 | Heinrich et al. | Jul 2005 | A1 |
20050165411 | Orban, III | Jul 2005 | A1 |
20050165429 | Douglas et al. | Jul 2005 | A1 |
20050182429 | Yamanouchi | Aug 2005 | A1 |
20050192478 | Williams et al. | Sep 2005 | A1 |
20050192598 | Johnson et al. | Sep 2005 | A1 |
20050192602 | Manzo | Sep 2005 | A1 |
20050192654 | Chanduszko et al. | Sep 2005 | A1 |
20050209624 | Vijay | Sep 2005 | A1 |
20050215858 | Vail, III | Sep 2005 | A1 |
20050216050 | Sepetka et al. | Sep 2005 | A1 |
20050228406 | Bose | Oct 2005 | A1 |
20050234297 | Devierre et al. | Oct 2005 | A1 |
20050250983 | Tremaglio et al. | Nov 2005 | A1 |
20050250990 | Le et al. | Nov 2005 | A1 |
20050250993 | Jaeger | Nov 2005 | A1 |
20050251166 | Vaughan et al. | Nov 2005 | A1 |
20050251176 | Swanstrom et al. | Nov 2005 | A1 |
20050261674 | Nobis et al. | Nov 2005 | A1 |
20050267492 | Poncet et al. | Dec 2005 | A1 |
20050272975 | McWeeney et al. | Dec 2005 | A1 |
20050272977 | Saadat et al. | Dec 2005 | A1 |
20050273084 | Hinman et al. | Dec 2005 | A1 |
20050277945 | Saadat et al. | Dec 2005 | A1 |
20050277951 | Smith et al. | Dec 2005 | A1 |
20050277952 | Arp et al. | Dec 2005 | A1 |
20050277954 | Smith et al. | Dec 2005 | A1 |
20050277955 | Palmer et al. | Dec 2005 | A1 |
20050277956 | Francese et al. | Dec 2005 | A1 |
20050277957 | Kuhns et al. | Dec 2005 | A1 |
20050283118 | Uth et al. | Dec 2005 | A1 |
20050283119 | Uth et al. | Dec 2005 | A1 |
20050288555 | Binmoeller | Dec 2005 | A1 |
20060004406 | Wehrstein et al. | Jan 2006 | A1 |
20060004409 | Nobis et al. | Jan 2006 | A1 |
20060004410 | Nobis et al. | Jan 2006 | A1 |
20060015009 | Jaffe et al. | Jan 2006 | A1 |
20060016853 | Racenet | Jan 2006 | A1 |
20060020167 | Sitzmann | Jan 2006 | A1 |
20060020247 | Kagan et al. | Jan 2006 | A1 |
20060025654 | Suzuki et al. | Feb 2006 | A1 |
20060025781 | Young et al. | Feb 2006 | A1 |
20060025812 | Shelton, IV | Feb 2006 | A1 |
20060025819 | Nobis et al. | Feb 2006 | A1 |
20060036267 | Saadat et al. | Feb 2006 | A1 |
20060041188 | Dirusso et al. | Feb 2006 | A1 |
20060058582 | Maahs et al. | Mar 2006 | A1 |
20060058776 | Bilsbury | Mar 2006 | A1 |
20060069396 | Meade et al. | Mar 2006 | A1 |
20060069424 | Acosta et al. | Mar 2006 | A1 |
20060074413 | Behzadian | Apr 2006 | A1 |
20060079890 | Guerra | Apr 2006 | A1 |
20060089528 | Tartaglia et al. | Apr 2006 | A1 |
20060095060 | Mayenberger et al. | May 2006 | A1 |
20060100687 | Fahey et al. | May 2006 | A1 |
20060106423 | Weisel et al. | May 2006 | A1 |
20060111209 | Hinman et al. | May 2006 | A1 |
20060111210 | Hinman et al. | May 2006 | A1 |
20060111704 | Brenneman et al. | May 2006 | A1 |
20060129166 | Lavelle | Jun 2006 | A1 |
20060135962 | Kick et al. | Jun 2006 | A1 |
20060135971 | Swanstrom et al. | Jun 2006 | A1 |
20060135984 | Kramer et al. | Jun 2006 | A1 |
20060142644 | Mulac et al. | Jun 2006 | A1 |
20060142652 | Keenan | Jun 2006 | A1 |
20060142790 | Gertner | Jun 2006 | A1 |
20060142798 | Holman et al. | Jun 2006 | A1 |
20060149132 | Iddan | Jul 2006 | A1 |
20060149135 | Paz | Jul 2006 | A1 |
20060161190 | Gadberry et al. | Jul 2006 | A1 |
20060167416 | Mathis et al. | Jul 2006 | A1 |
20060167482 | Swain et al. | Jul 2006 | A1 |
20060178560 | Saadat et al. | Aug 2006 | A1 |
20060183975 | Saadat et al. | Aug 2006 | A1 |
20060184161 | Maahs et al. | Aug 2006 | A1 |
20060189844 | Tien | Aug 2006 | A1 |
20060189845 | Maahs et al. | Aug 2006 | A1 |
20060190027 | Downey | Aug 2006 | A1 |
20060195084 | Slater | Aug 2006 | A1 |
20060200005 | Bjork et al. | Sep 2006 | A1 |
20060200169 | Sniffin | Sep 2006 | A1 |
20060200170 | Aranyi | Sep 2006 | A1 |
20060200199 | Bonutti et al. | Sep 2006 | A1 |
20060217665 | Prosek | Sep 2006 | A1 |
20060217697 | Lau et al. | Sep 2006 | A1 |
20060217742 | Messerly et al. | Sep 2006 | A1 |
20060217743 | Messerly et al. | Sep 2006 | A1 |
20060229639 | Whitfield | Oct 2006 | A1 |
20060229640 | Whitfield | Oct 2006 | A1 |
20060237022 | Chen et al. | Oct 2006 | A1 |
20060237023 | Cox et al. | Oct 2006 | A1 |
20060241570 | Wilk | Oct 2006 | A1 |
20060247576 | Poncet | Nov 2006 | A1 |
20060247673 | Voegele et al. | Nov 2006 | A1 |
20060253004 | Frisch et al. | Nov 2006 | A1 |
20060253039 | McKenna et al. | Nov 2006 | A1 |
20060258907 | Stefanchik et al. | Nov 2006 | A1 |
20060258908 | Stefanchik et al. | Nov 2006 | A1 |
20060258910 | Stefanchik et al. | Nov 2006 | A1 |
20060258954 | Timberlake et al. | Nov 2006 | A1 |
20060258955 | Hoffman et al. | Nov 2006 | A1 |
20060259010 | Stefanchik et al. | Nov 2006 | A1 |
20060264752 | Rubinsky et al. | Nov 2006 | A1 |
20060264904 | Kerby et al. | Nov 2006 | A1 |
20060264930 | Nishimura | Nov 2006 | A1 |
20060270902 | Igarashi et al. | Nov 2006 | A1 |
20060271102 | Bosshard et al. | Nov 2006 | A1 |
20060276835 | Uchida | Dec 2006 | A1 |
20060281970 | Stokes et al. | Dec 2006 | A1 |
20060282106 | Cole et al. | Dec 2006 | A1 |
20060285732 | Horn et al. | Dec 2006 | A1 |
20060287644 | Inganas et al. | Dec 2006 | A1 |
20060287666 | Saadat et al. | Dec 2006 | A1 |
20060293626 | Byrum et al. | Dec 2006 | A1 |
20070002135 | Glukhovsky | Jan 2007 | A1 |
20070005019 | Okishige | Jan 2007 | A1 |
20070015965 | Cox et al. | Jan 2007 | A1 |
20070016225 | Nakao | Jan 2007 | A1 |
20070032700 | Fowler et al. | Feb 2007 | A1 |
20070032701 | Fowler et al. | Feb 2007 | A1 |
20070043261 | Watanabe et al. | Feb 2007 | A1 |
20070043345 | Davalos et al. | Feb 2007 | A1 |
20070049800 | Boulais | Mar 2007 | A1 |
20070049902 | Griffin et al. | Mar 2007 | A1 |
20070051375 | Milliman | Mar 2007 | A1 |
20070060880 | Gregorich et al. | Mar 2007 | A1 |
20070067017 | Trapp | Mar 2007 | A1 |
20070073102 | Matsuno et al. | Mar 2007 | A1 |
20070073269 | Becker | Mar 2007 | A1 |
20070079924 | Saadat et al. | Apr 2007 | A1 |
20070088370 | Kahle et al. | Apr 2007 | A1 |
20070100375 | Mikkaichi et al. | May 2007 | A1 |
20070100376 | Mikkaichi et al. | May 2007 | A1 |
20070106118 | Moriyama | May 2007 | A1 |
20070112251 | Nakhuda | May 2007 | A1 |
20070112331 | Weber et al. | May 2007 | A1 |
20070112342 | Pearson et al. | May 2007 | A1 |
20070112383 | Conlon et al. | May 2007 | A1 |
20070112384 | Conlon et al. | May 2007 | A1 |
20070112385 | Conlon | May 2007 | A1 |
20070112417 | Shanley et al. | May 2007 | A1 |
20070112425 | Schaller et al. | May 2007 | A1 |
20070118115 | Artale et al. | May 2007 | A1 |
20070123840 | Cox | May 2007 | A1 |
20070129605 | Schaaf | Jun 2007 | A1 |
20070129719 | Kendale et al. | Jun 2007 | A1 |
20070129760 | Demarais et al. | Jun 2007 | A1 |
20070135709 | Rioux et al. | Jun 2007 | A1 |
20070142706 | Matsui et al. | Jun 2007 | A1 |
20070156127 | Rioux et al. | Jul 2007 | A1 |
20070161855 | Mikkaichi et al. | Jul 2007 | A1 |
20070173691 | Yokoi et al. | Jul 2007 | A1 |
20070173869 | Gannoe et al. | Jul 2007 | A1 |
20070173870 | Zacharias | Jul 2007 | A2 |
20070173872 | Neuenfeldt | Jul 2007 | A1 |
20070175947 | Ortiz et al. | Aug 2007 | A1 |
20070179525 | Frecker et al. | Aug 2007 | A1 |
20070179530 | Tieu et al. | Aug 2007 | A1 |
20070197865 | Miyake et al. | Aug 2007 | A1 |
20070198057 | Gelbart et al. | Aug 2007 | A1 |
20070203487 | Sugita | Aug 2007 | A1 |
20070208364 | Smith et al. | Sep 2007 | A1 |
20070213754 | Mikkaichi et al. | Sep 2007 | A1 |
20070225554 | Maseda et al. | Sep 2007 | A1 |
20070233040 | Macnamara et al. | Oct 2007 | A1 |
20070244358 | Lee | Oct 2007 | A1 |
20070250057 | Nobis et al. | Oct 2007 | A1 |
20070255096 | Stefanchik et al. | Nov 2007 | A1 |
20070255100 | Barlow et al. | Nov 2007 | A1 |
20070255273 | Fernandez et al. | Nov 2007 | A1 |
20070255303 | Bakos et al. | Nov 2007 | A1 |
20070255306 | Conlon et al. | Nov 2007 | A1 |
20070260112 | Rahmani | Nov 2007 | A1 |
20070260117 | Zwolinski et al. | Nov 2007 | A1 |
20070260121 | Bakos et al. | Nov 2007 | A1 |
20070260273 | Cropper et al. | Nov 2007 | A1 |
20070270629 | Charles | Nov 2007 | A1 |
20070270889 | Conlon et al. | Nov 2007 | A1 |
20070270895 | Nobis et al. | Nov 2007 | A1 |
20070270907 | Stokes et al. | Nov 2007 | A1 |
20070282371 | Lee et al. | Dec 2007 | A1 |
20070299387 | Williams et al. | Dec 2007 | A1 |
20080004650 | George | Jan 2008 | A1 |
20080015409 | Barlow et al. | Jan 2008 | A1 |
20080015552 | Doyle et al. | Jan 2008 | A1 |
20080027387 | Grabinsky | Jan 2008 | A1 |
20080033451 | Rieber et al. | Feb 2008 | A1 |
20080051629 | Sugiyama et al. | Feb 2008 | A1 |
20080051735 | Measamer et al. | Feb 2008 | A1 |
20080058586 | Karpiel | Mar 2008 | A1 |
20080065169 | Colliou et al. | Mar 2008 | A1 |
20080086172 | Martin et al. | Apr 2008 | A1 |
20080097472 | Agmon et al. | Apr 2008 | A1 |
20080097483 | Ortiz et al. | Apr 2008 | A1 |
20080103527 | Martin et al. | May 2008 | A1 |
20080114384 | Chang et al. | May 2008 | A1 |
20080119870 | Williams | May 2008 | A1 |
20080125796 | Graham | May 2008 | A1 |
20080132892 | Lunsford et al. | Jun 2008 | A1 |
20080139882 | Fujimori | Jun 2008 | A1 |
20080147113 | Nobis et al. | Jun 2008 | A1 |
20080171907 | Long et al. | Jul 2008 | A1 |
20080188868 | Weitzner et al. | Aug 2008 | A1 |
20080200755 | Bakos | Aug 2008 | A1 |
20080200762 | Stokes et al. | Aug 2008 | A1 |
20080200911 | Long | Aug 2008 | A1 |
20080200912 | Long | Aug 2008 | A1 |
20080200933 | Bakos et al. | Aug 2008 | A1 |
20080200934 | Fox | Aug 2008 | A1 |
20080208213 | Benjamin et al. | Aug 2008 | A1 |
20080221587 | Schwartz | Sep 2008 | A1 |
20080221619 | Spivey et al. | Sep 2008 | A1 |
20080228213 | Blakeney et al. | Sep 2008 | A1 |
20080230972 | Ganley | Sep 2008 | A1 |
20080234696 | Taylor et al. | Sep 2008 | A1 |
20080243106 | Coe et al. | Oct 2008 | A1 |
20080243148 | Mikkaichi et al. | Oct 2008 | A1 |
20080243176 | Weitzner et al. | Oct 2008 | A1 |
20080262540 | Bangera et al. | Oct 2008 | A1 |
20080269782 | Stefanchik et al. | Oct 2008 | A1 |
20080269783 | Griffith | Oct 2008 | A1 |
20080275474 | Martin et al. | Nov 2008 | A1 |
20080275475 | Schwemberger et al. | Nov 2008 | A1 |
20080287737 | Dejima | Nov 2008 | A1 |
20080287983 | Smith et al. | Nov 2008 | A1 |
20080300461 | Shaw et al. | Dec 2008 | A1 |
20080300547 | Bakos | Dec 2008 | A1 |
20080309758 | Karasawa et al. | Dec 2008 | A1 |
20080312496 | Zwolinski | Dec 2008 | A1 |
20080312499 | Handa et al. | Dec 2008 | A1 |
20080312500 | Asada et al. | Dec 2008 | A1 |
20080312506 | Spivey et al. | Dec 2008 | A1 |
20080319436 | Daniel et al. | Dec 2008 | A1 |
20080319439 | Ootsubu | Dec 2008 | A1 |
20090054728 | Trusty | Feb 2009 | A1 |
20090062788 | Long et al. | Mar 2009 | A1 |
20090062792 | Vakharia et al. | Mar 2009 | A1 |
20090062795 | Vakharia et al. | Mar 2009 | A1 |
20090069634 | Larkin | Mar 2009 | A1 |
20090076499 | Azure | Mar 2009 | A1 |
20090082776 | Cresina | Mar 2009 | A1 |
20090082779 | Nakao | Mar 2009 | A1 |
20090112059 | Nobis | Apr 2009 | A1 |
20090112062 | Bakos | Apr 2009 | A1 |
20090112063 | Bakos et al. | Apr 2009 | A1 |
20090131751 | Spivey et al. | May 2009 | A1 |
20090131932 | Vakharia et al. | May 2009 | A1 |
20090131933 | Ghabrial et al. | May 2009 | A1 |
20090143639 | Stark | Jun 2009 | A1 |
20090143649 | Rossi | Jun 2009 | A1 |
20090143794 | Conlon et al. | Jun 2009 | A1 |
20090149710 | Stefanchik et al. | Jun 2009 | A1 |
20090177031 | Surti et al. | Jul 2009 | A1 |
20090177219 | Conlon | Jul 2009 | A1 |
20090182332 | Long et al. | Jul 2009 | A1 |
20090192344 | Bakos et al. | Jul 2009 | A1 |
20090198231 | Esser et al. | Aug 2009 | A1 |
20090227828 | Swain et al. | Sep 2009 | A1 |
20090248055 | Spivey et al. | Oct 2009 | A1 |
20090281559 | Swain et al. | Nov 2009 | A1 |
20090287236 | Bakos et al. | Nov 2009 | A1 |
20090292164 | Yamatani | Nov 2009 | A1 |
20090299135 | Spivey | Dec 2009 | A1 |
20090299143 | Conlon et al. | Dec 2009 | A1 |
20090299362 | Long et al. | Dec 2009 | A1 |
20090299385 | Stefanchik et al. | Dec 2009 | A1 |
20090299406 | Swain et al. | Dec 2009 | A1 |
20090299409 | Coe et al. | Dec 2009 | A1 |
20090306658 | Nobis et al. | Dec 2009 | A1 |
20090306683 | Zwolinski et al. | Dec 2009 | A1 |
20090322864 | Karasawa et al. | Dec 2009 | A1 |
20090326561 | Carroll, II et al. | Dec 2009 | A1 |
20100010294 | Conlon et al. | Jan 2010 | A1 |
20100010298 | Bakos et al. | Jan 2010 | A1 |
20100010299 | Bakos et al. | Jan 2010 | A1 |
20100010303 | Bakos | Jan 2010 | A1 |
20100010510 | Stefanchik | Jan 2010 | A1 |
20100010511 | Harris et al. | Jan 2010 | A1 |
20100023032 | Granja Filho | Jan 2010 | A1 |
20100042045 | Spivey | Feb 2010 | A1 |
20100048990 | Bakos | Feb 2010 | A1 |
20100049190 | Long et al. | Feb 2010 | A1 |
20100049223 | Granja Filho | Feb 2010 | A1 |
20100056861 | Spivey | Mar 2010 | A1 |
20100056862 | Bakos | Mar 2010 | A1 |
20100057085 | Holcomb et al. | Mar 2010 | A1 |
20100057108 | Spivey et al. | Mar 2010 | A1 |
20100063538 | Spivey et al. | Mar 2010 | A1 |
20100076451 | Zwolinski et al. | Mar 2010 | A1 |
20100081877 | Vakharia | Apr 2010 | A1 |
20100087813 | Long | Apr 2010 | A1 |
20100113872 | Asada et al. | May 2010 | A1 |
20100121362 | Clague et al. | May 2010 | A1 |
20100130817 | Conlon | May 2010 | A1 |
20100130975 | Long | May 2010 | A1 |
20100152539 | Ghabrial et al. | Jun 2010 | A1 |
20100152609 | Zwolinski et al. | Jun 2010 | A1 |
20100152746 | Ceniccola et al. | Jun 2010 | A1 |
20100179510 | Fox et al. | Jul 2010 | A1 |
20100179530 | Long et al. | Jul 2010 | A1 |
20100191050 | Zwolinski | Jul 2010 | A1 |
20100191267 | Fox | Jul 2010 | A1 |
20100198005 | Fox | Aug 2010 | A1 |
20100198149 | Fox | Aug 2010 | A1 |
20100198244 | Spivey et al. | Aug 2010 | A1 |
20100198248 | Vakharia | Aug 2010 | A1 |
20100249700 | Spivey | Sep 2010 | A1 |
20100286791 | Goldsmith | Nov 2010 | A1 |
20100298642 | Trusty et al. | Nov 2010 | A1 |
20100312056 | Galperin et al. | Dec 2010 | A1 |
20100331622 | Conlon | Dec 2010 | A2 |
20100331774 | Spivey | Dec 2010 | A2 |
20110093009 | Fox | Apr 2011 | A1 |
20110098694 | Long | Apr 2011 | A1 |
20110098704 | Long et al. | Apr 2011 | A1 |
20110105850 | Voegele et al. | May 2011 | A1 |
20110112434 | Ghabrial et al. | May 2011 | A1 |
20110115891 | Trusty | May 2011 | A1 |
20110124964 | Nobis | May 2011 | A1 |
20110152609 | Trusty et al. | Jun 2011 | A1 |
20110152610 | Trusty et al. | Jun 2011 | A1 |
20110152612 | Trusty et al. | Jun 2011 | A1 |
20110152858 | Long et al. | Jun 2011 | A1 |
20110152859 | Long et al. | Jun 2011 | A1 |
20110152878 | Trusty et al. | Jun 2011 | A1 |
20110152923 | Fox | Jun 2011 | A1 |
20110160514 | Long et al. | Jun 2011 | A1 |
20110190659 | Long et al. | Aug 2011 | A1 |
20110190764 | Long et al. | Aug 2011 | A1 |
Number | Date | Country |
---|---|---|
666310 | Feb 1996 | AU |
3008120 | Sep 1980 | DE |
4323585 | Jan 1995 | DE |
19757056 | Aug 2008 | DE |
102006027873 | Oct 2009 | DE |
0086338 | Aug 1983 | EP |
0286415 | Oct 1988 | EP |
0589454 | Mar 1994 | EP |
0464479 | Mar 1995 | EP |
0529675 | Feb 1996 | EP |
0724863 | Jul 1999 | EP |
0760629 | Nov 1999 | EP |
0818974 | Nov 1999 | EP |
1281356 | Feb 2003 | EP |
0947166 | May 2003 | EP |
0836832 | Dec 2003 | EP |
1402837 | Mar 2004 | EP |
0744918 | Apr 2004 | EP |
0931515 | Aug 2004 | EP |
1411843 | Oct 2004 | EP |
1150614 | Nov 2004 | EP |
1477104 | Nov 2004 | EP |
1481642 | Dec 2004 | EP |
1493391 | Jan 2005 | EP |
0848598 | Feb 2005 | EP |
1281360 | Mar 2005 | EP |
1568330 | Aug 2005 | EP |
1452143 | Sep 2005 | EP |
1616527 | Jan 2006 | EP |
1006888 | Mar 2006 | EP |
1629764 | Mar 2006 | EP |
1013229 | Jun 2006 | EP |
1721561 | Nov 2006 | EP |
1153578 | Mar 2007 | EP |
1334696 | Mar 2007 | EP |
1769766 | Apr 2007 | EP |
1836971 | Sep 2007 | EP |
1836980 | Sep 2007 | EP |
1854421 | Nov 2007 | EP |
1857061 | Nov 2007 | EP |
1875876 | Jan 2008 | EP |
1891881 | Feb 2008 | EP |
1902663 | Mar 2008 | EP |
1477106 | Jun 2008 | EP |
1949844 | Jul 2008 | EP |
1518499 | Aug 2008 | EP |
1709918 | Oct 2008 | EP |
1985226 | Oct 2008 | EP |
1994904 | Nov 2008 | EP |
1707130 | Dec 2008 | EP |
1769749 | Nov 2009 | EP |
2731610 | Sep 1996 | FR |
330629 | Jun 1930 | GB |
2335860 | Oct 1999 | GB |
2403909 | Jan 2005 | GB |
2421190 | Jun 2006 | GB |
2443261 | Apr 2008 | GB |
56-46674 | Apr 1981 | JP |
8-29699 | Feb 1996 | JP |
2002-369791 | Dec 2002 | JP |
2003-088494 | Mar 2003 | JP |
2003-235852 | Aug 2003 | JP |
2004-33525 | Feb 2004 | JP |
2004-065745 | Mar 2004 | JP |
2005-121947 | May 2005 | JP |
2005-261514 | Sep 2005 | JP |
1021295 | Feb 2004 | NL |
194230 | May 1967 | SU |
980703 | Dec 1982 | SU |
WO 8401707 | May 1984 | WO |
WO 9213494 | Aug 1992 | WO |
WO 9310850 | Jun 1993 | WO |
WO 9320760 | Oct 1993 | WO |
WO 9320765 | Oct 1993 | WO |
WO 9509666 | Apr 1995 | WO |
WO 9622056 | Jul 1996 | WO |
WO 9627331 | Sep 1996 | WO |
WO 9639946 | Dec 1996 | WO |
WO 9712557 | Apr 1997 | WO |
WO 9801080 | Jan 1998 | WO |
WO 9909919 | Mar 1999 | WO |
WO 9917661 | Apr 1999 | WO |
WO 9930622 | Jun 1999 | WO |
WO 0035358 | Jun 2000 | WO |
WO 0110319 | Feb 2001 | WO |
WO 0141627 | Jun 2001 | WO |
WO 0158360 | Aug 2001 | WO |
WO 0211621 | Feb 2002 | WO |
WO 0234122 | May 2002 | WO |
WO 02094082 | Nov 2002 | WO |
WO 03045260 | Jun 2003 | WO |
WO 03047684 | Jun 2003 | WO |
WO 03059412 | Jul 2003 | WO |
WO 03078721 | Sep 2003 | WO |
WO 03082129 | Oct 2003 | WO |
WO 2004006789 | Jan 2004 | WO |
WO 2004028613 | Apr 2004 | WO |
WO 2004037123 | May 2004 | WO |
WO 2004052221 | Jun 2004 | WO |
WO 2004086984 | Oct 2004 | WO |
WO 2005009211 | Feb 2005 | WO |
WO 2005018467 | Mar 2005 | WO |
WO 2005037088 | Apr 2005 | WO |
WO 2005048827 | Jun 2005 | WO |
WO 2005065284 | Jul 2005 | WO |
WO 2005097019 | Oct 2005 | WO |
WO 2005097234 | Oct 2005 | WO |
WO 2005112810 | Dec 2005 | WO |
WO 2005120363 | Dec 2005 | WO |
WO 2006007399 | Jan 2006 | WO |
WO 2006041881 | Apr 2006 | WO |
WO 2006060405 | Jun 2006 | WO |
WO 2006110733 | Oct 2006 | WO |
WO 2006113216 | Oct 2006 | WO |
WO 2007014063 | Feb 2007 | WO |
WO 2007048085 | Apr 2007 | WO |
WO 2007063550 | Jun 2007 | WO |
WO 2007100067 | Sep 2007 | WO |
WO 2007109171 | Sep 2007 | WO |
WO 2008005433 | Jan 2008 | WO |
WO 2008041225 | Apr 2008 | WO |
WO 2008076337 | Jun 2008 | WO |
WO 2008076800 | Jun 2008 | WO |
WO 2008101075 | Aug 2008 | WO |
WO 2008102154 | Aug 2008 | WO |
WO 2009021030 | Feb 2009 | WO |
WO 2009027065 | Mar 2009 | WO |
WO 2009029065 | Mar 2009 | WO |
WO 2009032623 | Mar 2009 | WO |
WO 2009121017 | Oct 2009 | WO |
WO 2010027688 | Mar 2010 | WO |
WO 2010080974 | Jul 2010 | WO |
WO 2010088481 | Aug 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20100131005 A1 | May 2010 | US |