The invention relates to a piston for a combustion engine.
Pistons of combustion engines which have a piston crown with a ring belt and piston skirt located below same are known. Such pistons are also designated, for example, as box pistons or pistons with a box design. It is known that in the area of the piston skirt a piston pin bore is present where a recess surface is configured around the piston pin bore which is set back compared to the outer diameter of the piston. It is further known that in the area of the lowest ring groove within the ring belt of the piston at least one depression is present by way of which the oil collected by the lowest ring while the piston is operating is collected and taken by way of the recess area towards the lower edge of the piston skirt. It has turned out that while the known pistons are operating, depressions of this type are located above the piston pin bore such that they are in a particularly stressed area. This particularly stressed area of the piston is located to the right and left next to the highest point of the piston pin bore since the piston, in particular the piston crown, deforms around the piston pin located in the piston pin bore during operation. If the recesses are in this particularly stressed area, the recesses create a design fracture point so that cracks occur when the piston is operating, particularly when used in today's highly stressed diesel combustion engines.
It would be desirable to find a remedy for this problem.
A piston with at least one depression located outside the particularly stressed area above the piston pin bore and thus approximately at the edge of the recess area in the transition zone to the skirt surface, where the particular stressed area extends towards the lower edge of the ring belt, starting from a highest point of the pin bore. On the one hand, the effect of the depression is retained because the oil collected by the oil scraper ring in the last ring groove can be directed downwards by way of the recess area. On the other hand, cracking is effectively prevented because the at least one depression is located in such an area in the upper area of the recess surface around the piston pin bore which is not particularly stressed.
Supplemental to this of the invention, an enlargement is provided in a transition area from the depression towards the recess surface which is also set back behind the outer diameter of the piston. The onset of cracking is thereby further effectively prevented, where such an enlargement can also contribute to locating the depression in an area next to the highest point of the piston pin bore which can still be particularly stressed.
In a further aspect, the surfaces set back compared to the outer diameter of the piston, which may be the at least one depression, the enlargement and the entire recess surface around the piston pin bore, can be produced at least partially, and in particular, completely, in free casting and/or by metal-removing machining. If the set-back surfaces are produced in free casting, the negative mold form of the piston, or of the piston blank, has projecting areas which form the set-back areas after the piston blank is cast. This has the advantage that a mold form has to be produced only once with the corresponding projecting areas which then form the set-back areas with each casting of a piston blank. Supplementally or as an alternative thereto, it is conceivable that a piston blank with a constant and continuous diameter can be cast and the set-back surfaces are removed subsequently during fine machining by metal-removing machining. This is a choice, in particular, when numerically controlled machines (CNC machines) are used during fine machining of the piston. When producing the set-back surfaces, absolute care must be taken that the transitions from lower lying surfaces, where the reference is the outer diameter of the piston, are rounded to prevent design fracture points which would permit a crack while the piston is operating.
Aspects of the invention to which it is, however, not restricted, are described in the following description and explained using the drawing in which:
The piston crown 2 has a ring belt known per se with usually three ring grooves, where the piston skirt has two diametrically opposed skirt surfaces 5 with which the piston 1 is supported against and guided along the cylinder bores during operation. Furthermore, the piston skirt 3 has a piston pin bore 6 to receive a piston pin with which the piston 1 is connected by way of a connecting rod not shown here. In the area around the piston pin 6 a recessed surface is provided which is set back behind the outside diameter of the piston 1, while the skirt surfaces lie on the outer diameter of the piston 1. At least one depression 8 with a plurality, i.e., four depressions is also possible present in the area of a lowest ring groove 9, where this depression 8 is also designated as a scupper slot. To the left of the highest point of the piston pin bore 6 an area particularly stressed during operation of the piston 1 is depicted in with the reference numeral 10, where this particularly stressed area 10 also exists to the right of the highest point of the piston pin bore 6. The effect of the depressions 8 is that the oil collected by the oil scraper ring located in the lowest ring groove 9 is taken away downward by way of the recess surface 7 next to the piston pin bore (when looking at
For further clarification of the invention, reference is made to
Supplemental to
The invention can be used with any piston 1 possible for a combustion engine, however, preferably with pistons of a lightweight material, such as aluminum, and then with larger capacity combustion engines, in particular, those which are used in trucks.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 061 777.5 | Dec 2004 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP05/12708 | 11/29/2005 | WO | 00 | 8/15/2007 |