Route reference

Information

  • Patent Grant
  • 8762056
  • Patent Number
    8,762,056
  • Date Filed
    Wednesday, February 6, 2008
    16 years ago
  • Date Issued
    Tuesday, June 24, 2014
    10 years ago
Abstract
A user input is received on a wireless device specifying a starting location. The position of the wireless device is tracked from the starting location in response to the user input. A user input is received on the wireless device specifying an ending location, and a route is generated from the tracking of the wireless device from the starting location to the ending location. A first reference is associated with the route, wherein the route is retrievable by a selection of the first reference.
Description
BACKGROUND

This disclosure relates to navigation using a mobile device.


Navigation systems have historically provided little intelligence other than the ability to navigate from an origination point to a destination point. Some navigation systems include functionality for using traffic information in navigating from the origination point to the destination point. Other systems have also provided more than one route for a user based on an origination and destination point, and allowed the user to select one of the routes. However, these systems do not allow the users to interact with the routes nor change the routes in any way.


Thus, the navigation system adds little value outside of providing a map to the user. Such problems with navigation systems can undermine a user's desire to use the navigation system.


SUMMARY

Disclosed herein are systems and methods for generating a route. In one implementation, a user input is received on a wireless device specifying a starting location. The position of the wireless device is tracked from the starting location in response to the user input. A user input is received on the wireless device specifying an ending location, and a route is generated from the tracking of the wireless device from the starting location to the ending location. A first reference is associated with the route, wherein the route is retrievable by a selection of the first reference.


In another implementation, an input is received specifying a first location, and an input is received specifying a second location. A travel route is computed between the first and second locations. An edit is received associated with the travel route, and the travel route is edited on the wireless device in accordance with the edit.


In another implementation, a user input is received on a wireless device specifying a starting location. A user input is received on the wireless device specifying an ending location. One or more routes are generated from the starting location to the ending location. User input is received on the wireless device selecting one or the one or more routes. A first reference is associated with the selected route, wherein the selected route is retrievable by a selection of the first reference.


In another implementation, a system includes a location engine for a wireless device that produces information indicative of a plurality of locations. The system also includes a route engine that receives information indicative of a first location, tracks a position of the wireless device from the first location in response to the information, receives information indicative of a second location, generates a route from the first location to the second location in accordance with the tracking of the wireless device, receives information indicative of en edit, and edits the route by tracking the position of the wireless device to the second location, wherein the route is associated with a reference.





DESCRIPTION OF DRAWINGS


FIG. 1 is a block diagram of an example mobile device.



FIG. 2 is a block diagram of an example network operating environment for the mobile device of FIG. 1.



FIG. 3 is a block diagram of an example implementation of the mobile device of FIG. 1.



FIG. 4 is a block diagram illustrating an example operation of routing instructions.



FIG. 5 is a block diagram of an example mobile device using a route reference.



FIG. 6 is an example process for generating a route.



FIG. 7 is another example process for generating a route.



FIG. 8 is an example process for editing a route.





DETAILED DESCRIPTION


FIG. 1 is a block diagram of an example mobile device 100. The mobile device 100 can be, for example, a handheld computer, a personal digital assistant, a cellular telephone, a network appliance, a camera, a smart phone, an enhanced general packet radio service (EGPRS) mobile phone, a network base station, a media player, a navigation device, an email device, a game console, or a combination of any two or more of these data processing devices or other data processing devices.


Mobile Device Overview

In some implementations, the mobile device 100 includes a touch-sensitive display 102. The touch-sensitive display 102 can implement liquid crystal display (LCD) technology, light emitting polymer display (LPD) technology, or some other display technology. The touch-sensitive display 102 can be sensitive to haptic and/or tactile contact with a user.


In some implementations, the touch-sensitive display 102 can comprise a multi-touch-sensitive display 102. A multi-touch-sensitive display 102 can, for example, process multiple simultaneous touch points, including processing data related to the pressure, degree and/or position of each touch point. Such processing facilitates gestures and interactions with multiple fingers, chording, and other interactions. Other touch-sensitive display technologies can also be used, e.g., a display in which contact is made using a stylus or other pointing device. Some examples of multi-touch-sensitive display technology are described in U.S. Pat. Nos. 6,323,846, 6,570,557, 6,677,932, and U.S. Patent Publication 2002/0015024A1, each of which is incorporated by reference herein in its entirety.


In some implementations, the mobile device 100 can display one or more graphical user interfaces on the touch-sensitive display 102 for providing the user access to various system objects and for conveying information to the user. In some implementations, the graphical user interface can include one or more display objects 104, 106. In the example shown, the display objects 104, 106, are graphic representations of system objects. Some examples of system objects include device functions, applications, windows, files, alerts, events, or other identifiable system objects.


Exemplary Mobile Device Functionality

In some implementations, the mobile device 100 can implement multiple device functionalities, such as a telephony device, as indicated by a phone object 110; an e-mail device, as indicated by the e-mail object 112; a network data communication device, as indicated by the Web object 114; a Wi-Fi base station device (not shown); and a media processing device, as indicated by the media player object 116. In some implementations, particular display objects 104, e.g., the phone object 110, the e-mail object 112, the Web object 114, and the media player object 116, can be displayed in a menu bar 118. In some implementations, device functionalities can be accessed from a top-level graphical user interface, such as the graphical user interface illustrated in FIG. 1. Touching one of the objects 110, 112, 114 or 116 can, for example, invoke corresponding functionality.


In some implementations, the mobile device 100 can implement network distribution functionality. For example, the functionality can enable the user to take the mobile device 100 and its associated network while traveling. In particular, the mobile device 100 can extend Internet access (e.g., Wi-Fi) to other wireless devices in the vicinity. For example, mobile device 100 can be configured as a base station for one or more devices. As such, mobile device 100 can grant or deny network access to other wireless devices.


In some implementations, upon invocation of device functionality, the graphical user interface of the mobile device 100 changes, or is augmented or replaced with another user interface or user interface elements, to facilitate user access to particular functions associated with the corresponding device functionality. For example, in response to a user touching the phone object 110, the graphical user interface of the touch-sensitive display 102 may present display objects related to various phone functions; likewise, touching of the email object 112 may cause the graphical user interface to present display objects related to various e-mail functions; touching the Web object 114 may cause the graphical user interface to present display objects related to various Web-surfing functions; and touching the media player object 116 may cause the graphical user interface to present display objects related to various media processing functions.


In some implementations, the top-level graphical user interface environment or state of FIG. 1 can be restored by pressing a button 120 located near the bottom of the mobile device 100. In some implementations, each corresponding device functionality may have corresponding “home” display objects displayed on the touch-sensitive display 102, and the graphical user interface environment of FIG. 1 can be restored by pressing the “home” display object.


In some implementations, the top-level graphical user interface can include additional display objects 106, such as a short messaging service (SMS) object 130, a calendar object 132, a photos object 134, a camera object 136, a calculator object 138, a stocks object 140, a weather object 142, a maps object 144, a notes object 146, a clock object 148, an address book object 150, and a settings object 152. Touching the SMS display object 130 can, for example, invoke an SMS messaging environment and supporting functionality; likewise, each selection of a display object 132, 134, 136, 138, 140, 142, 144, 146, 148, 150 and 152 can invoke a corresponding object environment and functionality.


Additional and/or different display objects can also be displayed in the graphical user interface of FIG. 1. For example, if the device 100 is functioning as a base station for other devices, one or more “connection” objects may appear in the graphical user interface to indicate the connection. In some implementations, the display objects 106 can be configured by a user, e.g., a user may specify which display objects 106 are displayed, and/or may download additional applications or other software that provides other functionalities and corresponding display objects.


In some implementations, the mobile device 100 can include one or more input/output (I/O) devices and/or sensor devices. For example, a speaker 160 and a microphone 162 can be included to facilitate voice-enabled functionalities, such as phone and voice mail functions. In some implementations, a loud speaker 164 can be included to facilitate hands-free voice functionalities, such as speaker phone functions. An audio jack 166 can also be included for use of headphones and/or a microphone.


In some implementations, a proximity sensor 168 can be included to facilitate the detection of the user positioning the mobile device 100 proximate to the user's ear and, in response, to disengage the touch-sensitive display 102 to prevent accidental function invocations. In some implementations, the touch-sensitive display 102 can be turned off to conserve additional power when the mobile device 100 is proximate to the user's ear.


Other sensors can also be used. For example, in some implementations, an ambient light sensor 170 can be utilized to facilitate adjusting the brightness of the touch-sensitive display 102. In some implementations, an accelerometer 172 can be utilized to detect movement of the mobile device 100, as indicated by the directional arrow 174. Accordingly, display objects and/or media can be presented according to a detected orientation, e.g., portrait or landscape. In some implementations, the mobile device 100 may include circuitry and sensors for supporting a location determining capability, such as that provided by the global positioning system (GPS) or other positioning systems (e.g., systems using Wi-Fi access points, television signals, cellular grids, Uniform Resource Locators (URLs)). In some implementations, a positioning system (e.g., a GPS receiver) can be integrated into the mobile device 100 or provided as a separate device that can be coupled to the mobile device 100 through an interface (e.g., port device 190) to provide access to location-based services.


The mobile device 100 can also include a camera lens and sensor 180. In some implementations, the camera lens and sensor 180 can be located on the back surface of the mobile device 100. The camera can capture still images and/or video.


The mobile device 100 can also include one or more wireless communication subsystems, such as an 802.11b/g communication device 186, and/or a Bluetooth™ communication device 188. Other communication protocols can also be supported, including other 802.x communication protocols (e.g., WiMax, Wi-Fi, 3G), code division multiple access (CDMA), global system for mobile communications (GSM), Enhanced Data GSM Environment (EDGE), etc.


In some implementations, a port device 190, e.g., a Universal Serial Bus (USB) port, or a docking port, or some other wired port connection, can be included. The port device 190 can, for example, be utilized to establish a wired connection to other computing devices, such as other communication devices 100, network access devices, a personal computer, a printer, or other processing devices capable of receiving and/or transmitting data. In some implementations, the port device 190 allows the mobile device 100 to synchronize with a host device using one or more protocols, such as, for example, the TCP/IP, HTTP, UDP and any other known protocol. In some implementations, a TCP/IP over USB protocol can be used.


Network Operating Environment


FIG. 2 is a block diagram of an example network operating environment 200 for the mobile device 100 of FIG. 1. The mobile device 100 of FIG. 1 can, for example, communicate over one or more wired and/or wireless networks 210 in data communication. For example, a wireless network 212, e.g., a cellular network, can communicate with a wide area network (WAN) 214, such as the Internet, by use of a gateway 216. Likewise, an access point 218, such as an 802.11g wireless access point, can provide communication access to the wide area network 214. In some implementations, both voice and data communications can be established over the wireless network 212 and the access point 218. For example, the mobile device 100a can place and receive phone calls (e.g., using VoIP protocols), send and receive e-mail messages (e.g., using POP3 protocol), and retrieve electronic documents and/or streams, such as web pages, photographs, and videos, over the wireless network 212, gateway 216, and wide area network 214 (e.g., using TCP/IP or UDP protocols). Likewise, the mobile device 100b can place and receive phone calls, send and receive e-mail messages, and retrieve electronic documents over the access point 218 and the wide area network 214. In some implementations, the mobile device 100 can be physically connected to the access point 218 using one or more cables and the access point 218 can be a personal computer. In this configuration, the mobile device 100 can be referred to as a “tethered” device.


The mobile devices 100a and 100b can also establish communications by other means. For example, the wireless device 100a can communicate with other wireless devices, e.g., other wireless devices 100, cell phones, etc., over the wireless network 212. Likewise, the mobile devices 100a and 100b can establish peer-to-peer communications 220, e.g., a personal area network, by use of one or more communication subsystems, such as the Bluetooth™ communication device 188 shown in FIG. 1. Other communication protocols and topologies can also be implemented.


The mobile device 100 can, for example, communicate with one or more services 230, 240, 250, and 260 and/or one or more content publishers 270 over the one or more wired and/or wireless networks 210. For example, a navigation service 230 can provide navigation information, e.g., map information, location information, route information, and other information, to the mobile device 100. In the example shown, a user of the mobile device 100b has invoked a map functionality, e.g., by pressing the maps object 144 on the top-level graphical user interface shown in FIG. 1, and has requested and received a map for the location “1 Infinite Loop, Cupertino, Calif.”


A messaging service 240 can, for example, provide e-mail and/or other messaging services. A media service 250 can, for example, provide access to media files, such as song files, movie files, video clips, and other media data. One or more other services 260 can also be utilized by the mobile device 100.


The mobile device 100 can also access other data and content over the one or more wired and/or wireless networks 210. For example, content publishers, e.g., content publisher(s) 270, such as news sites, RSS feeds, web sites, blogs, social networking sites, developer networks, etc., can be accessed by the mobile device 100. Such access can be provided by invocation of a web browsing function or application (e.g., a browser) in response to a user touching the Web object 114.


Exemplary Mobile Device Architecture


FIG. 3 is a block diagram 300 of an example implementation of the mobile device 100 of FIG. 1. The mobile device 100 can include a memory interface 302, one or more data processors, image processors and/or central processing units 304, and a peripherals interface 306. The memory interface 302, the one or more processors 304 and/or the peripherals interface 306 can be separate components or can be integrated in one or more integrated circuits. The various components in the mobile device 100 can be coupled by one or more communication buses or signal lines.


Sensors, devices and subsystems can be coupled to the peripherals interface 306 to facilitate multiple functionalities. For example, a motion sensor 310, a light sensor 312, and a proximity sensor 314 can be coupled to the peripherals interface 306 to facilitate the orientation, lighting and proximity functions described with respect to FIG. 1. Other sensors 316 can also be connected to the peripherals interface 306, such as a positioning system (e.g., GPS receiver), a temperature sensor, a biometric sensor, or other sensing device, to facilitate related functionalities.


In some implementations, the mobile device can receive positioning information from a positioning system 318. The positioning system 318, in various implementations, can be located on the mobile device, or can be coupled to the mobile device (e.g., using a wired connection or a wireless connection). In some implementations, the positioning system 318 can include a global positioning system (GPS) receiver and a positioning engine operable to derive positioning information from received GPS satellite signals. In other implementations, the positioning system 318 can include a compass and an accelerometer, as well as a positioning engine operable to derive positioning information based on dead reckoning techniques. In still further implementations, the positioning system 318 can use wireless signals to determine location information associated with the mobile device. Other positioning systems are possible. In still other implementations, the user can enter a set of position coordinates (e.g., latitude, longitude) for the mobile device. For example, the position coordinates can be typed into the phone (e.g., using a virtual keyboard) or selected by touching a point on a map. Position coordinates can also be acquired from another device (e.g., a car navigation system) by syncing or linking with the other device.


A camera subsystem 320 and an optical sensor 322, e.g., a charged coupled device (CCD) or a complementary metal-oxide semiconductor (CMOS) optical sensor, can be utilized to facilitate camera functions, such as recording photographs and video clips.


Communication functions can be facilitated through one or more wireless communication subsystems 324, which can include radio frequency receivers and transmitters and/or optical (e.g., infrared) receivers and transmitters. The specific design and implementation of the communication subsystem 324 can depend on the communication network(s) over which the mobile device 100 is intended to operate. For example, a mobile device 100 may include communication subsystems 324 designed to operate over a GSM network, a GPRS network, an EDGE network, a Wi-Fi or WiMax network, and a Bluetooth™ network. In particular, the wireless communication subsystems 324 may include hosting protocols such that the device 100 may be configured as a base station for other wireless devices.


An audio subsystem 326 can be coupled to a speaker 328 and a microphone 330 to facilitate voice-enabled functions, such as voice recognition, voice replication, digital recording, and telephony functions.


The I/O subsystem 340 can include a touch screen controller 342 and/or other input controller(s) 344. The touch-screen controller 342 can be coupled to a touch screen 346. The touch screen 346 and touch screen controller 342 can, for example, detect contact and movement or break thereof using any of a plurality of touch sensitivity technologies, including but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity sensor arrays or other elements for determining one or more points of contact with the touch screen 346.


The other input controller(s) 344 can be coupled to other input/control devices 348, such as one or more buttons, rocker switches, thumb-wheel, infrared port, USB port, and/or a pointer device such as a stylus. The one or more buttons (not shown) can include an up/down button for volume control of the speaker 328 and/or the microphone 330.


In one implementation, a pressing of the button for a first duration may disengage a lock of the touch screen 346; and a pressing of the button for a second duration that is longer than the first duration may turn power to the mobile device 100 on or off. The user may be able to customize a functionality of one or more of the buttons. The touch screen 346 can, for example, also be used to implement virtual or soft buttons and/or a keyboard.


In some implementations, the mobile device 100 can present recorded audio and/or video files, such as MP3, AAC, and MPEG files. In some implementations, the mobile device 100 can include the functionality of an MP3 player, such as an iPod™. The mobile device 100 may, therefore, include a 36-pin connector that is compatible with the iPod. Other input/output and control devices can also be used.


The memory interface 302 can be coupled to memory 350. The memory 350 can include high-speed random access memory and/or non-volatile memory, such as one or more magnetic disk storage devices, one or more optical storage devices, and/or flash memory (e.g., NAND, NOR). The memory 350 can store an operating system 352, such as Darwin, RTXC, LINUX, UNIX, OS X, WINDOWS, or an embedded operating system such as VxWorks. The operating system 352 may include instructions for handling basic system services and for performing hardware dependent tasks. In some implementations, the operating system 352 can be a kernel (e.g., UNIX kernel).


The memory 350 may also store communication instructions 354 to facilitate communicating with one or more additional devices, one or more computers and/or one or more servers. The memory 350 may include graphical user interface instructions 356 to facilitate graphic user interface processing; sensor processing instructions 358 to facilitate sensor-related processing and functions; phone instructions 360 to facilitate phone-related processes and functions; electronic messaging instructions 362 to facilitate electronic-messaging related processes and functions; web browsing instructions 364 to facilitate web browsing-related processes and functions; media processing instructions 366 to facilitate media processing-related processes and functions; GPS/Navigation instructions 368 to facilitate GPS and navigation-related processes and instructions; camera instructions 370 to facilitate camera-related processes and functions; and/or other software instructions 372 to facilitate other processes and functions.


Each of the above identified instructions and applications can correspond to a set of instructions for performing one or more functions described above. These instructions need not be implemented as separate software programs, procedures or modules. The memory 350 can include additional instructions or fewer instructions. Furthermore, various functions of the mobile device 100 may be implemented in hardware and/or in software, including in one or more signal processing and/or application specific integrated circuits.



FIG. 4 is a block diagram illustrating example routing instructions to facilitate proving navigation guidance to a user. The routing instructions can include a route engine 410, a presentation engine 420, an editor engine 430, a map system 440, a user interface 450, and a positioning system 318. The routing instructions 372 can receive input specifying a starting location 460 and an ending location 462 can generate a route using the starting location 460 and ending location 462. The routing instructions 372 can, for example, associate a reference with the generated route to be used in, for example, storing and retrieving the generated route. In one implementation, the routing instructions 372 can edit a previously created route.


In one implementation, a user input can, for example, be received on a mobile device 100 specifying a starting location for a route. The input can, for example, be received on the user interface 450. The mobile device 100 can, for example, provide the route to a user of the mobile device 100. The starting location 460 can, for example, correspond to a geographic location that is used to generate a route, and can be input manually by a user of the mobile device 100 based on the starting location. The input can, for example, be received on the user interface 450. The user can, for example, input an address corresponding to the starting location 460. The address can, for example, include a street number, street name, city, state and zip code. In one implementation, the starting location 460 can be indicated by a landmark, e.g., an airport or airport code.


In one implementation, the route engine 410 can automatically derive the starting location information using the current location as the starting location 460. For example, the user of the mobile device 100 can decide to navigate to a particular location from a current location. The mobile device 100 can receive an indication as to whether automatically derive the starting location 460 information. The route engine 410 can derive starting information using the positioning system 318 when the indication is received to use the current location as the starting location 460.


In one implementation, the positioning system 318 can be a global positioning system (GPS) device. In other implementations, the positioning system 318 can be provided by an accelerometer and a compass using dead reckoning techniques. In such implementations, the positioning system can be reset by marking the device's presence at a known location (e.g., landmark, intersection, etc.). In still further implementations, the positioning system 318 can be provided by using wireless signal strength and one or more locations of known wireless signal sources to provide current location. Wireless signal sources can include access points and/or cellular towers. Other positioning systems are possible. For example, a user may be driving in a car with the mobile device 100 and decide to use the mobile device 100 to generate a route to a specific destination. The route engine 410 can automatically derive the starting location 460 of the mobile device 100 by the positioning system 318. The mobile device 100 can automatically derive the starting location 460 information in response to a user input.


In one implementation, the route engine 410 can track a position of the mobile device 100 from the starting location 460 in response to the user input. The position of the mobile device 100 can, for example, be tracked in conjunction with the positioning system 318. In various implementations, the positioning system 318 can be provided by a separate device coupled to the mobile device (e.g., mobile device 100 of FIG. 1). In other implementations, the positioning system 318 can be provided internal to the mobile device.


The route engine 410 can, for example, start tracking the position of the mobile device 100 until an indication is received to stop tracking. For example, as the user in the above example moves from the starting location 460, the route engine 410 tracks the position of the mobile device 100 until an indication is received to end tracking of the mobile device 100.


In one implementation, user input can be received on the mobile device 100 specifying an ending location 462. The route engine 410 can stop tracking the mobile device 100 upon receipt of the user input specifying the ending location 462. The ending location 462 can, for example, be input manually by the user of the mobile device 100. The mobile device 100 can, for example, receive an address corresponding to the ending location 462 in response to a user input. In one implementation, the ending location 462 can, for example, be automatically derived by the route engine 410. The mobile device 100 can receive the ending location 462 as the current location of the mobile device 100 in response to a user input. The route engine 410 can derive the ending location 462 using the current location and the positioning system 318.


A route can include route guidelines including streets distances, landmarks, etc. that were taken while navigating from the starting location 460 to the ending location 462. Based on the complexity of a route, the route can include many route guidelines. Route guidelines, in some implementations, can include a discrete length of road which comprises a route. The route can, for example, include navigating directions from the starting location 460 to the ending location 462.


The route engine 410 can provide the route tracked to a presentation engine 420. The presentation engine can, for example, communicate with a map system 440. In some implementations, the map system 440 can be provided, for example, by a navigation service (e.g., navigation service 230 of FIG. 2). In other implementations, the map system 440 can be provided by a map store residing on the mobile device (e.g., mobile device 100 of FIG. 1). The presentation engine 420 can use the map provided by the map system 440 to overlay the route information.


In other implementations, the route can be overlayed on a map provided by a local map information store. In some implementations, the map includes a number of road representations. The road representations, for example, can be overlayed by traffic information 464 associated with respective route progressions. Traffic information 464 can be indicated, for example, by color coding on or alongside road representations, pushpin messages associated with road representations, traffic animations associated with road representation, etc. The presentation of the route can enable a user of the mobile device to navigate from a current location to an ending location 462. For example, the route the user took from the starting location 460 to the ending location 462 can be saved by the route engine 410 and displayed on the presentation engine 420.


In some implementations, the one or more routes can be generated based upon user preferences retrieved from a data store in conjunction with the user specified starting locations 460 and ending locations 462. User preference information 466, for example, might indicate a user preference for types of roads, distance, traffic, traffic control devices (e.g., traffic lights, stop signs, rotaries, etc.), time, preferred routes, neighborhoods, etc.


In one implementation, the route engine 410 can generate one or more routes based upon traffic information 464. The traffic information 464 can be retrieved, for example, from a traffic information 464 service. In some implementations, the traffic information 464 service can be provided by a government or commercial service provider.


In one implementation any of the generated routes can be selected as the route to navigate. The route engine 410 can, for example, provide the route selected to a presentation engine 420. The presentation engine 420 can, for example, communicate with a map system 440. In some implementations, the map system 440 can be provided, for example, by a navigation service (e.g., navigation service 230 of FIG. 2). In other implementations, the map system 440 can be provided by a map store residing on the mobile device (e.g., mobile device 100 of FIG. 1). The presentation engine 420 can use the map provided by the map system 440 to overlay the route information.


In one implementation, the route engine 410 can associate a reference with each of the routes generated. In another implementation, the route engine 410 can associate a reference with each route determined by tracking the mobile device 100. The reference can, for example, include one or more parameters associated with the route. The parameters can be associated with the names of the starting location 460 and ending location 462. The parameters can also be associated with user specified parameters associated with the route. The route engine 410 can, for example, save the route under the reference in the mobile device 100. The mobile device 100 can, for example, at any time, retrieve the saved route using the reference in response to a user input.


For example, suppose the starting location 460 of the route was indicated at the grocery store. Suppose also that the ending location 462 is the grocery store. The route can be saved with the reference “home to grocery,” or if the route was a scenic route, the route can be saved with the reference “scenic route.” In one implementation, the same route can be associated with one or more reference names. Therefore, the route in the above example can be associated with the reference “home to grocery,” as well as “scenic route.”


In another example, suppose an address of the user's house is indicated as the starting location 460 and the address of a friend's house is indicated as the ending location 462. The route engine 410 can generate a route from the user's house to the friend's house and display it for the user. A reference can be associated with this route and the route can be retrieved at a later time using the reference.


In one implementation, the mobile device 100 can be used in conjunction with an on-board navigation system for a vehicle. The mobile device 100 can provide route information to a user of the navigation system.


In one implementation, any route generated by the route engine 410 can be edited by an editor engine 430. A route can, for example, be edited by an editor engine 430 if it was created by tracking the mobile device 100 as described above. A route can also be edited if created by the route engine 410 by receiving a starting location 460 and an ending location 462 and the route engine 410 generating the route. In other implementations, any route previously created or saved by the route engine 410 or received from a peer through the mobile device 100, e.g., an SMS message describing the route, can be edited.


For example, a saved route can be retrieved by indicating the reference of the route. The route engine 410 can retrieve the saved route using the reference input by the user. While navigating according to the route guidelines, the mobile device 100 can receive an indication to edit the route. For example, a different road can be selected than the current road indicated on the route, or a different ending location 462 can be selected other than the one indicated on the route. Upon receipt of an edit, the editor engine 430 can track the position of the route to the ending location 462. In one implementation, the route engine 410 can associate the same reference with the edited route. In other implementations, the route engine 410 can, for example, associate the new route with a second reference. In one implementation, upon receipt of an edit location indicator, the editor engine 430 can track the position of the route to the ending location 462.


For example, suppose a route referenced as “back roads home from work” is selected. The mobile device 100 can retrieve the route using the reference “back roads home from work” and display the route for the user. An alternate road can be selected than the one indicated on the retrieved route at a certain point during the route. The mobile device 100 can receive an indication that the route “back roads home from work” is to be edited. The editor engine 430 can therefore start tracking the changes in the route from the point in time of receipt of the edit indication. At the ending location 462, the mobile device 100 can receive an indication that the ending location 462 has been reached. The route engine 410 save the edited route as “back roads home from work” and save this new route information. The route engine 410 can also select a new reference for the edited route, e.g., “back roads home from work not using highway.”


In one implementation, the route engine 410 can retrieve real time traffic information on the mobile device 100 as described above. The traffic information 464 can, for example, be related to a universe of area roads can be communicated to one or more mobile devices (e.g., mobile devices 100 of FIG. 1), and the route engine 410 can parse the signal to obtain traffic information 464 for route guidelines.


In one implementation, the current route can be edited based on the traffic information 464. The mobile device 100 can receive an edit location indicator and the route can be edited based on the traffic information 464. Editing the route can, for example, include receiving input of a different road than the current one displayed on the mobile device 100. For example, suppose a saved route is retrieved by the mobile device 100 by receiving an indication of a reference route A. The route includes directions from point A to point B. While navigating from point A to B according to “Route A,” the mobile device 100 receives traffic information 464 indicating heavy traffic where “Route A” indicates the next turn should occur. The mobile device 100 can then edit “Route A” by receiving an input of an edit location indicator. An alternative road can be selected from the current location. At any time, an indication can be received on the mobile device 100 to start tracking “Route A” from the current location. The editor engine 430 can track the mobile device 100 from the new location to the ending location 462. The route engine 410 can associate a new reference with the edited route, e.g., “alternative Route A,” or associate the same reference “Route A” with the edited route.


In some implementations, if a route is retrieved by a reference, the routing instructions 372 can continue to analyze a current route to monitor for changing conditions. For example, an accident between the start of navigation of a route and the end of navigation of the route might change the analysis associated with recommending the current route. In such situations, the routing instructions 372 using the route engine 410 can calculate alternative routes. In some implementations, the routing instructions 372 can automatically communicate a new route through the presentation engine 420. Such automatic rerouting can be provided with notification of the change or without notification of the change. In other implementations, the routing instructions 372 can present the estimated navigation times associated with alternative routes through the presentation engine 420. An alternative route can be selected based upon the estimated navigation times. The selection, in various implementations, can be indicated by selecting a route using an I/O device (e.g., touch screen 346 of FIG. 3), or by navigating one of the alternative routes, among others. Once the route changes, a new reference can be associated with the route. In other implementations, the same reference can be associated with the edited route.


In one implementation, the route engine 410 can learn to use a specific route when determining a route from a starting to an ending location. The route engine 410 can, for example, analyze all previous routes generated and navigated, and determine that one particular route is often used. In another example, the route engine 410 can keep a log entry every time a user edits a route and determine whether the route is edited to use a particular road. The route engine 410 can use this particular road the next time the route is generated.



FIG. 5 is a block diagram of an example mobile device using a route reference. The mobile device 100 can receive a map representation 500 from a navigation service (e.g., navigation service 230 of FIG. 2) of a reference 502. The map representation 500 can, for example, include route from a starting location 460 to an ending location 462.



FIG. 6 is a flow diagram of an example process 600 for generating a route. The process 600 can, for example, be implemented in the mobile device 100 of FIG. 1.


At stage 602 a user input is received on a mobile device specifying a starting location 460. The user input can, for example, be received by a mobile device (e.g., mobile device 100 of FIG. 1) in conjunction with sensor processing instructions (e.g., sensor processing instructions 358 of FIG. 3) and GPS/Navigation instructions (e.g., GPS/Navigation instructions 368 of FIG. 1) operating in conjunction with a wireless communication (324 of FIG. 3). The starting location 460 can be input manually by a user or be automatically determined by a positioning system (e.g., the positioning system 318).


At stage 604, a position of the mobile device is tracked from the starting location 460 in response to the user input. The position of the mobile device can, for example, be tracked by a positioning system (e.g., the positioning system 318 of FIG. 3) in conjunction GPS/Navigation instructions (e.g., GPS/Navigation instructions 368 of FIG. 3).


At stage 606 a user input is received on the mobile device specifying an ending location 462. The user input can, for example, be received by a mobile device (e.g., mobile device 100 of FIG. 1) in conjunction with sensor processing instructions 358 and GPS/Navigation instructions (e.g., GPS/Navigation instructions 368 of FIG. 3). The ending location 462 can be input manually by a user or be automatically determined by a positioning system (e.g., the positioning system 318).


At stage 608 a route is generated from the tracking of the mobile device from the starting location 460 to the ending location 462. Alternatively, the route can be generated without tracking that is based on a request to progress from a starting location to a destination without movement (e.g., prior to commencing the travel). The route can, for example, be generated by a route engine (e.g., route engine 410 of FIG. 4) in conjunction with GPS/Navigation instructions (e.g., GPS/Navigation instructions 368 of FIG. 3). The route can include directions from the starting location 460 to the ending location 462.


At stage 610 a first reference is associated with the route, wherein the route is retrievable by a selection of the first reference. The first reference can, for example, be associated with the route by a route engine (e.g., route engine 410 of FIG. 4) in conjunction with GPS/Navigation instructions (e.g., GPS/Navigation instructions 368 of FIG. 3).



FIG. 7 is an example process for associating a reference with a travel route. The process 700 can, for example, be implemented in the mobile device 100 of FIG. 1.


At stage 702 an input is received specifying a first location. The input can, for example, be received by a wireless device (e.g., mobile device 100 of FIG. 1) in conjunction with sensor processing instructions (e.g., sensor processing instructions 358) and GPS/Navigation instructions (e.g., GPS/Navigation instructions 368 of FIG. 3). The first location can correspond to a first geographic location.


At stage 704 input is received specifying a second location. The input can, for example, be received by a mobile device (e.g., mobile device 100 of FIG. 1) in conjunction with sensor processing instructions (e.g., sensor processing instructions 358) and GPS/Navigation instructions (e.g., GPS/Navigation instructions 368 of FIG. 3). The second location can correspond to a second geographic location.


At stage 706 a travel route is computed between the first and second geographic locations. The travel route can, for example, be computed by route engine (e.g., route engine 410 of FIG. 4) in conjunction with GPS/Navigation instructions (e.g., GPS/Navigation instructions 368 of FIG. 3).


At stage 708 an input is received indicating an edit. The input can, for example, be received by a wireless device (e.g., mobile device 100 of FIG. 1) in conjunction with sensor processing instructions (e.g., sensor processing instructions 358) and GPS/Navigation instructions (e.g., GPS/Navigation).


At stage 710 the travel route is edited on a wireless in accordance with the edit. The travel route can, for example, be edited on a wireless device (e.g., mobile device 100 of FIG. 1) in conjunction with GPS/Navigation instructions (e.g., GPS/Navigation).



FIG. 8 is an example process for editing a route. The process 800 can, for example, be implemented in the mobile device 100 of FIG. 1.


At stage 802 a user input is received specifying a first reference. The input can, for example, be received by a wireless device (e.g., mobile device 100 of FIG. 1) in conjunction with sensor processing instructions (e.g., sensor processing instructions 358) and GPS/Navigation instructions (e.g., GPS/Navigation).


At stage 804 a route is displayed on a wireless device. The route can, for example, be displayed on a wireless device (e.g., mobile device 100 of FIG. 1) in conjunction with sensor processing instructions (e.g., sensor processing instructions 358) and GPS/Navigation instructions (e.g., GPS/Navigation).


At stage 806 a user input is received specifying an edit. The input can, for example, be received by a wireless device (e.g., mobile device 100 of FIG. 1) in conjunction with sensor processing instructions (e.g., sensor processing instructions 358) and GPS/Navigation instructions (e.g., GPS/Navigation).


At stage 808 the route is edited by tracking the position of the wireless device to the ending location. The route can, for example, be edited by an editor engine (e.g., editor engine 430) in conjunction with GPS/Navigation instructions (e.g., GPS/Navigation).


The systems and methods disclosed herein may use data signals conveyed using networks (e.g., local area network, wide area network, internet, etc.), fiber optic medium, carrier waves, wireless networks (e.g., wireless local area networks, wireless metropolitan area networks, cellular networks, etc.), etc. for communication with one or more data processing devices (e.g., mobile devices). The data signals can carry any or all of the data disclosed herein that is provided to or from a device.


The methods and systems described herein may be implemented on many different types of processing devices by program code comprising program instructions that are executable by one or more processors. The software program instructions may include source code, object code, machine code, or any other stored data that is operable to cause a processing system to perform methods described herein.


The systems and methods may be provided on many different types of computer-readable media including computer storage mechanisms (e.g., CD-ROM, diskette, RAM, flash memory, computer's hard drive, etc.) that contain instructions for use in execution by a processor to perform the methods' operations and implement the systems described herein.


The computer components, software modules, functions and data structures described herein may be connected directly or indirectly to each other in order to allow the flow of data needed for their operations. It is also noted that software instructions or a module can be implemented for example as a subroutine unit of code, or as a software function unit of code, or as an object (as in an object-oriented paradigm), or as an applet, or in a computer script language, or as another type of computer code or firmware. The software components and/or functionality may be located on a single device or distributed across multiple devices depending upon the situation at hand.


This written description sets forth the best mode of the invention and provides examples to describe the invention and to enable a person of ordinary skill in the art to make and use the invention. This written description does not limit the invention to the precise terms set forth. Thus, while the invention has been described in detail with reference to the examples set forth above, those of ordinary skill in the art may effect alterations, modifications and variations to the examples without departing from the scope of the invention.


These and other implementations are within the scope of the following claims.

Claims
  • 1. A method, comprising: receiving, through a user interface implemented by a mobile device, a first input specifying a starting location, wherein the mobile device is a handheld device that includes telephony and a display for displaying a route in the user interface;tracking a position of the mobile device from the starting location in response to receiving the first input;receiving, through the user interface implemented by the mobile device, a second input specifying a first ending location;generating a route from the tracking of the mobile device from the starting location to the ending location;associating a first reference with the route, wherein the route is retrievable by a selection of the first reference;saving the route and the associated first reference on the mobile device;retrieving the saved route in response to receiving a third input specifying the first reference;displaying the route in the user interface of the mobile device display;while navigating the route, receiving a fourth input indicating that the route is to be edited; andin response to receiving the fourth input, modifying the route by tracking the position of the mobile device from a location of the mobile device on the route when the fourth input was received to a second ending location.
  • 2. The method of claim 1, wherein the first ending location is different than the second ending location.
  • 3. The method of claim 1, further comprising: associating the modified route with a second reference; andsaving the modified route and the associated second reference on the mobile device.
  • 4. The method of claim 1, further comprising: receiving information indicative of real-time traffic information.
  • 5. The method of claim 4, further comprising: receiving a user input specifying an edit location indicator;displaying the real-time traffic information; andmodifying the route based on the real-time traffic information.
  • 6. The method of claim 1, wherein the first reference is associated with one or more names.
  • 7. The method of claim 1, wherein the mobile device is GPS-enabled.
  • 8. The method of claim 1, wherein the mobile device is adapted to communicate with a vehicular on-board navigation system.
  • 9. The method of claim 1, wherein the first input is determined automatically based on a current position of the mobile device and displayed in the user interface.
  • 10. The method of claim 6, wherein the first reference and the second reference each comprise one or more parameters associated with the route.
  • 11. The method of claim 1, further comprising: displaying the route and the first reference as an overlay on a map displayed in the user interface of the mobile device display.
  • 12. The method of claim 1, wherein generating the route comprises: retrieving data representing user preferences from a data store; andgenerating the route based in part on the retrieved data.
  • 13. The method of claim 1, further comprising sending the route to another mobile device in an SMS message.
  • 14. A system, comprising: one or more processors; anda computer-readable medium including one or more sequences of instructions which, when executed by the one or more processors, causes:receiving, through a user interface implemented by a mobile device, a first input specifying a starting location, wherein the mobile device is a handheld device that includes telephony and a display for displaying a route in the user interface;tracking a position of the mobile device from the starting location in response to receiving the first input;receiving, through the user interface implemented by the mobile device, a second input specifying a first ending location;generating a route from the tracking of the mobile device from the starting location to the ending location;associating a first reference with the route, wherein the route is retrievable by a selection of the first reference;saving the route and the associated first reference on the mobile device;retrieving the saved route in response to receiving a third input specifying the first reference;displaying the route in the user interface of the mobile device display;while navigating the route, receiving a fourth input indicating that the route is to be edited; andin response to receiving the fourth input, modifying the route by tracking the position of the mobile device from a location of the mobile device on the route when the fourth input was received to a second ending location.
  • 15. The system of claim 14, wherein the first ending location is different than the second ending location.
  • 16. The system of claim 14, wherein the instructions cause: associating the modified route with a second reference; andsaving the modified route and the associated second reference on the mobile device.
  • 17. The system of claim 14, wherein the instructions cause: receiving information indicative of real-time traffic information.
  • 18. The system of claim 17, wherein the instructions cause: receiving a user input specifying an edit location indicator;displaying the real-time traffic information; andmodifying the route based on the real-time traffic information.
  • 19. The system of claim 14, wherein the first reference is associated with one or more names.
  • 20. The system of claim 14, wherein the mobile device is GPS-enabled.
  • 21. The system of claim 14, wherein the mobile device is adapted to communicate with a vehicular on-board navigation system.
  • 22. The system of claim 14, wherein the first input is determined automatically based on a current position of the mobile device and displayed in the user interface.
  • 23. The system of claim 19, wherein the first reference and the second reference each comprise one or more parameters associated with the route.
  • 24. The system of claim 14, wherein the instructions cause: displaying the route and the first reference as an overlay on a map displayed in the user interface of the mobile device display.
  • 25. The system of claim 14, wherein the instructions that cause generating the route comprise instructions that cause: retrieving data representing user preferences from a data store; andgenerating the route based in part on the retrieved data.
  • 26. The system of claim 14, wherein the instructions cause sending the route to another mobile device in an SMS message.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority to U.S. Provisional Patent Application Ser. No. 60/946,771 filed Jun. 28, 2007, and entitled “ROUTE REFERENCE,” the contents of which are incorporated herein by reference.

US Referenced Citations (886)
Number Name Date Kind
4644351 Zabarsky et al. Feb 1987 A
4903212 Yokouchi et al. Feb 1990 A
4907159 Mauge et al. Mar 1990 A
4999783 Tenmoku et al. Mar 1991 A
5031104 Ikeda et al. Jul 1991 A
5046011 Kakihara et al. Sep 1991 A
5067081 Person Nov 1991 A
5126941 Gurmu et al. Jun 1992 A
5164904 Sumner Nov 1992 A
5170165 Iihoshi et al. Dec 1992 A
5173691 Sumner Dec 1992 A
5182555 Sumner Jan 1993 A
5187810 Toneyama et al. Feb 1993 A
5195031 Ordish Mar 1993 A
5208763 Hong et al. May 1993 A
5218629 Dumond, Jr. et al. Jun 1993 A
5243652 Teare Sep 1993 A
5274560 LaRue Dec 1993 A
5289572 Yano et al. Feb 1994 A
5295064 Malec et al. Mar 1994 A
5307278 Hermans et al. Apr 1994 A
5317311 Martell et al. May 1994 A
5337044 Folger et al. Aug 1994 A
5339391 Wroblewski et al. Aug 1994 A
5371678 Nomura Dec 1994 A
5374933 Kao Dec 1994 A
5379057 Clough et al. Jan 1995 A
5390125 Sennott et al. Feb 1995 A
5406490 Braegas Apr 1995 A
5416712 Geier et al. May 1995 A
5416890 Beretta May 1995 A
5440484 Kao Aug 1995 A
5463725 Henckel Oct 1995 A
5469362 Hunt et al. Nov 1995 A
5479600 Wroblewski et al. Dec 1995 A
5504482 Schreder Apr 1996 A
5508707 LeBlanc et al. Apr 1996 A
5510801 Engelbrecht et al. Apr 1996 A
5519760 Borkowski et al. May 1996 A
5523950 Peterson Jun 1996 A
5537460 Holliday, Jr. et al. Jul 1996 A
5539395 Buss Jul 1996 A
5539647 Shibata et al. Jul 1996 A
5552989 Bertrand Sep 1996 A
5559520 Barzeger et al. Sep 1996 A
5570412 LeBlanc Oct 1996 A
5598572 Tanikoshi et al. Jan 1997 A
5627547 Ramaswamy et al. May 1997 A
5627549 Park May 1997 A
5628050 McGraw May 1997 A
5630206 Urban et al. May 1997 A
5636245 Ernst Jun 1997 A
5642303 Small Jun 1997 A
5646853 Takahashi et al. Jul 1997 A
5654908 Yokoyama Aug 1997 A
5663732 Stangeland et al. Sep 1997 A
5675362 Clough et al. Oct 1997 A
5675573 Karol et al. Oct 1997 A
5677837 Reynolds Oct 1997 A
5684859 Chanroo et al. Nov 1997 A
5689252 Ayanoglu et al. Nov 1997 A
5689270 Kelley et al. Nov 1997 A
5689431 Rudow et al. Nov 1997 A
5708478 Tognazzini Jan 1998 A
5717392 Eldridge Feb 1998 A
5727057 Emery et al. Mar 1998 A
5732074 Spaur et al. Mar 1998 A
5742666 Alpert Apr 1998 A
5745865 Rostoker et al. Apr 1998 A
5748109 Kosaka et al. May 1998 A
5752186 Malackowski et al. May 1998 A
5754430 Sawada May 1998 A
5758049 Johnson et al. May 1998 A
5760773 Berman et al. Jun 1998 A
5767795 Schaphorst Jun 1998 A
5771280 Johnson Jun 1998 A
5774824 Streit et al. Jun 1998 A
5774829 Cisneros et al. Jun 1998 A
5793630 Theimer Aug 1998 A
5796365 Lewis et al. Aug 1998 A
5796613 Kato et al. Aug 1998 A
5799061 Melcher et al. Aug 1998 A
5806018 Smith et al. Sep 1998 A
5825306 Hiyokawa et al. Oct 1998 A
5825884 Zdepski et al. Oct 1998 A
5831552 Sogawa et al. Nov 1998 A
5835061 Stewart Nov 1998 A
5839086 Hirano Nov 1998 A
5845227 Peterson Dec 1998 A
5848373 DeLorme et al. Dec 1998 A
5862244 Kleiner et al. Jan 1999 A
5867110 Naito et al. Feb 1999 A
5870686 Monson Feb 1999 A
5872526 Tognazzini Feb 1999 A
5873068 Beaumont et al. Feb 1999 A
5883580 Briancon Mar 1999 A
5887269 Brunts et al. Mar 1999 A
5892454 Schipper et al. Apr 1999 A
5893898 Tanimoto Apr 1999 A
5898680 Johnstone Apr 1999 A
5899954 Sato May 1999 A
5905451 Sakashita May 1999 A
5908465 Ito et al. Jun 1999 A
5910799 Carpenter Jun 1999 A
5923861 Bertram et al. Jul 1999 A
5933094 Goss et al. Aug 1999 A
5933100 Golding Aug 1999 A
5936572 Loomis et al. Aug 1999 A
5938721 Dussell et al. Aug 1999 A
5941930 Morimoto et al. Aug 1999 A
5941934 Sato Aug 1999 A
5946618 Agre et al. Aug 1999 A
5948040 DeLorme et al. Sep 1999 A
5948041 Abo et al. Sep 1999 A
5948061 Merriman et al. Sep 1999 A
5955973 Anderson Sep 1999 A
5959577 Fan Sep 1999 A
5959580 Maloney et al. Sep 1999 A
5968109 Israni et al. Oct 1999 A
5969678 Stewart Oct 1999 A
5982298 Lappenbusch et al. Nov 1999 A
5982324 Watters et al. Nov 1999 A
5987381 Oshizawa Nov 1999 A
5991692 Spencer, II et al. Nov 1999 A
5999126 Ito Dec 1999 A
6002932 Kingdon et al. Dec 1999 A
6002936 Roel-Ng et al. Dec 1999 A
6005928 Johnson Dec 1999 A
6014090 Rosen et al. Jan 2000 A
6014607 Yagyu et al. Jan 2000 A
6018697 Morimoto et al. Jan 2000 A
6023653 Ichimura et al. Feb 2000 A
6026375 Hall et al. Feb 2000 A
6028550 Froeberg et al. Feb 2000 A
6029069 Takaki Feb 2000 A
6031490 Forssen et al. Feb 2000 A
6041280 Kohli et al. Mar 2000 A
6052645 Harada Apr 2000 A
6058350 Ihara May 2000 A
6064335 Eschenbach May 2000 A
6067502 Hayashida et al. May 2000 A
6069570 Herring May 2000 A
6073013 Agre et al. Jun 2000 A
6073062 Hoshino et al. Jun 2000 A
6076041 Watanabe Jun 2000 A
6078818 Kingdon et al. Jun 2000 A
6081206 Kielland Jun 2000 A
6085090 Yee et al. Jul 2000 A
6085148 Jamison Jul 2000 A
6087965 Murphy Jul 2000 A
6088594 Kingdon et al. Jul 2000 A
6091956 Hollenberg Jul 2000 A
6091957 Larkins Jul 2000 A
6092076 McDonough et al. Jul 2000 A
6094607 Diesel Jul 2000 A
6101443 Kato Aug 2000 A
6104931 Havinis et al. Aug 2000 A
6108555 Maloney et al. Aug 2000 A
6111541 Karmel Aug 2000 A
6115611 Kimoto et al. Sep 2000 A
6115754 Landgren Sep 2000 A
6119014 Alperovich et al. Sep 2000 A
6122520 Want et al. Sep 2000 A
6125279 Hyziak et al. Sep 2000 A
6127945 Mura-Smith Oct 2000 A
6128482 Nixon et al. Oct 2000 A
6128571 Ito et al. Oct 2000 A
6134548 Gottsman et al. Oct 2000 A
6138003 Kingdon et al. Oct 2000 A
6138142 Linsk Oct 2000 A
6140957 Wilson et al. Oct 2000 A
6151309 Busuioc et al. Nov 2000 A
6151498 Roel-Ng et al. Nov 2000 A
6154152 Ito Nov 2000 A
6157381 Bates et al. Dec 2000 A
6157841 Bolduc et al. Dec 2000 A
6163749 McDonough et al. Dec 2000 A
6166627 Reeley Dec 2000 A
6167266 Havinis et al. Dec 2000 A
6169552 Endo et al. Jan 2001 B1
6175740 Souissi et al. Jan 2001 B1
6177905 Welch Jan 2001 B1
6177938 Gould Jan 2001 B1
6181934 Havinis et al. Jan 2001 B1
6185427 Krasner et al. Feb 2001 B1
6188959 Schupfner Feb 2001 B1
6195557 Havinis et al. Feb 2001 B1
6195609 Pilley et al. Feb 2001 B1
6199014 Walker Mar 2001 B1
6199045 Giniger Mar 2001 B1
6199099 Gershman et al. Mar 2001 B1
6202008 Beckert et al. Mar 2001 B1
6202023 Hancock et al. Mar 2001 B1
6208866 Rouhollahzadeh et al. Mar 2001 B1
6212473 Stefan et al. Apr 2001 B1
6216086 Seymour et al. Apr 2001 B1
6222483 Twitchell et al. Apr 2001 B1
6233518 Lee May 2001 B1
6236365 LeBlanc et al. May 2001 B1
6236933 Lang May 2001 B1
6246948 Thakker Jun 2001 B1
6249252 Dupray Jun 2001 B1
6252543 Camp Jun 2001 B1
6252544 Hoffberg Jun 2001 B1
6256498 Ludwig Jul 2001 B1
6259405 Stewart et al. Jul 2001 B1
6266612 Dussell et al. Jul 2001 B1
6266614 Alumbaugh Jul 2001 B1
6266615 Jin Jul 2001 B1
6272342 Havinis et al. Aug 2001 B1
6278884 Kim Aug 2001 B1
6281807 Kynast et al. Aug 2001 B1
6282491 Bochmann et al. Aug 2001 B1
6282496 Chowdhary Aug 2001 B1
6295454 Havinis et al. Sep 2001 B1
6298306 Suarez et al. Oct 2001 B1
6304758 Iierbig et al. Oct 2001 B1
6313761 Shinada Nov 2001 B1
6314369 Ito et al. Nov 2001 B1
6314406 O'Hagan et al. Nov 2001 B1
6317684 Roeseler et al. Nov 2001 B1
6321158 DeLorme et al. Nov 2001 B1
6323846 Westerman et al. Nov 2001 B1
6324692 Fiske Nov 2001 B1
6326918 Stewart Dec 2001 B1
6332127 Bandera et al. Dec 2001 B1
6339437 Nielsen Jan 2002 B1
6339746 Sugiyama et al. Jan 2002 B1
6343317 Glorikian Jan 2002 B1
6345288 Reed et al. Feb 2002 B1
6351235 Stilp Feb 2002 B1
6353398 Amin et al. Mar 2002 B1
6353743 Karmel Mar 2002 B1
6353837 Blumenau Mar 2002 B1
6356761 Huttunen Mar 2002 B1
6356763 Kangas et al. Mar 2002 B1
6356836 Adolph Mar 2002 B1
6356838 Paul Mar 2002 B1
6370629 Hastings et al. Apr 2002 B1
6377810 Geiger et al. Apr 2002 B1
6377886 Gotou Apr 2002 B1
6381465 Chern et al. Apr 2002 B1
6381539 Shimazu Apr 2002 B1
6381603 Chan et al. Apr 2002 B1
6385458 Papadimitriou et al. May 2002 B1
6385465 Yoshioka May 2002 B1
6385535 Ohishi et al. May 2002 B2
6389288 Kuwahara et al. May 2002 B1
6401027 Xu et al. Jun 2002 B1
6401032 Jamison Jun 2002 B1
6405034 Tijerino Jun 2002 B1
6405123 Rennar et al. Jun 2002 B1
6411899 Dussell et al. Jun 2002 B2
6414635 Stewart et al. Jul 2002 B1
6415207 Jones Jul 2002 B1
6415220 Kovacs Jul 2002 B1
6415227 Lin Jul 2002 B1
6427115 Sekiyama Jul 2002 B1
6430411 Lempio et al. Aug 2002 B1
6434530 Sloane et al. Aug 2002 B1
6438490 Ohta Aug 2002 B2
6449485 Anzil Sep 2002 B1
6452498 Stewart Sep 2002 B2
6456234 Johnson Sep 2002 B1
6456956 Xiong Sep 2002 B1
6459782 Bedrosian et al. Oct 2002 B1
6463289 Havinis et al. Oct 2002 B1
6477581 Carpenter Nov 2002 B1
6487305 Kambe et al. Nov 2002 B2
6490454 Kangas et al. Dec 2002 B1
6490519 Lapidot et al. Dec 2002 B1
6501421 Dutta et al. Dec 2002 B1
6502033 Phuyal Dec 2002 B1
6505046 Baker Jan 2003 B1
6505048 Moles et al. Jan 2003 B1
6505123 Root et al. Jan 2003 B1
6507802 Payton et al. Jan 2003 B1
6516197 Havinis et al. Feb 2003 B2
6519463 Tendler Feb 2003 B2
6519571 Guheen et al. Feb 2003 B1
6526335 Treyz et al. Feb 2003 B1
6529143 Mikkola et al. Mar 2003 B2
6535140 Goss et al. Mar 2003 B1
6542812 Obradovich et al. Apr 2003 B1
6542819 Kovacs et al. Apr 2003 B1
6545638 Sladen Apr 2003 B2
6546336 Matsuoka et al. Apr 2003 B1
6546360 Gilbert et al. Apr 2003 B1
6552682 Fan Apr 2003 B1
6563430 Kemink et al. May 2003 B1
6564143 Alewine et al. May 2003 B1
6570557 Westerman et al. May 2003 B1
6571279 Herz et al. May 2003 B1
6574484 Carley Jun 2003 B1
6574550 Hashida Jun 2003 B2
6587688 Chambers et al. Jul 2003 B1
6587782 Nocek et al. Jul 2003 B1
6587835 Treyz et al. Jul 2003 B1
6594480 Montalvo et al. Jul 2003 B1
6597305 Szeto et al. Jul 2003 B2
6611687 Clark et al. Aug 2003 B1
6611788 Hussa Aug 2003 B1
6615131 Rennard et al. Sep 2003 B1
6615213 Johnson Sep 2003 B1
6643587 Brodie et al. Nov 2003 B2
6647257 Owensby Nov 2003 B2
6650902 Richton Nov 2003 B1
6650997 Funk Nov 2003 B2
6662016 Buckham et al. Dec 2003 B1
6662023 Helle Dec 2003 B1
6667963 Rantalainen et al. Dec 2003 B1
6671377 Havinis et al. Dec 2003 B1
6674849 Froeberg Jan 2004 B1
6677894 Sheynblat et al. Jan 2004 B2
6678516 Nordman et al. Jan 2004 B2
6679932 Birler et al. Jan 2004 B2
6680694 Knockeart et al. Jan 2004 B1
6681120 Kim Jan 2004 B1
6683538 Wilkes, Jr. Jan 2004 B1
6697018 Stewart Feb 2004 B2
6697734 Suomela Feb 2004 B1
6711408 Raith Mar 2004 B1
6711474 Treyz et al. Mar 2004 B1
6714791 Friedman Mar 2004 B2
6718344 Hirono Apr 2004 B2
6721572 Smith et al. Apr 2004 B1
6731236 Hager et al. May 2004 B1
6731238 Johnson May 2004 B2
6732047 de Silva May 2004 B1
6738808 Zellner et al. May 2004 B1
6741188 Miller et al. May 2004 B1
6741926 Zhao et al. May 2004 B1
6748226 Wortham Jun 2004 B1
6748318 Jones Jun 2004 B1
6750883 Parupudi et al. Jun 2004 B1
6759960 Stewart Jul 2004 B2
6762772 Imamura et al. Jul 2004 B1
6766174 Kenyon Jul 2004 B1
6766245 Padmanabhan Jul 2004 B2
6781575 Hawkins et al. Aug 2004 B1
6782278 Chen et al. Aug 2004 B2
6789012 Childs et al. Sep 2004 B1
6795686 Master et al. Sep 2004 B2
6801855 Walters et al. Oct 2004 B1
6810323 Bullock et al. Oct 2004 B1
6813501 Kinnunen et al. Nov 2004 B2
6813503 Zillikens et al. Nov 2004 B1
6813582 Levi et al. Nov 2004 B2
6816782 Walters et al. Nov 2004 B1
6819919 Tanaka Nov 2004 B1
6823188 Stern Nov 2004 B1
6834195 Brandenberg et al. Dec 2004 B2
6845318 Moore et al. Jan 2005 B1
6847891 Pietras et al. Jan 2005 B2
6847969 Mathai et al. Jan 2005 B1
6853911 Sakarya Feb 2005 B1
6853917 Miwa Feb 2005 B2
6859149 Ohta et al. Feb 2005 B1
6865483 Cook, III et al. Mar 2005 B1
6868074 Hanson Mar 2005 B1
6871144 Lee Mar 2005 B1
6882313 Fan et al. Apr 2005 B1
6888536 Westerman et al. May 2005 B2
6909902 Sawada et al. Jun 2005 B1
6912398 Domnitz Jun 2005 B1
6914626 Squibbs Jul 2005 B2
6915208 Garin et al. Jul 2005 B2
6931322 Jung et al. Aug 2005 B2
6933841 Muramatsu et al. Aug 2005 B2
6944447 Portman et al. Sep 2005 B2
6948656 Williams Sep 2005 B2
6950746 Yano et al. Sep 2005 B2
6952181 Karr et al. Oct 2005 B2
6954646 Churt Oct 2005 B2
6954735 Djupsjobacka et al. Oct 2005 B1
6957072 Kangras et al. Oct 2005 B2
6975959 Dietrich et al. Dec 2005 B2
6980909 Root et al. Dec 2005 B2
6990495 Grason et al. Jan 2006 B1
6999779 Hashimoto Feb 2006 B1
7003289 Kolls Feb 2006 B1
7009556 Stewart Mar 2006 B2
7031725 Rorabaugh Apr 2006 B2
7044372 Okuda et al. May 2006 B2
7058594 Stewart Jun 2006 B2
7069319 Zellner et al. Jun 2006 B2
7076255 Parupudi et al. Jul 2006 B2
7082365 Sheha et al. Jul 2006 B2
7089264 Guido et al. Aug 2006 B1
7096029 Parupudi et al. Aug 2006 B1
7096030 Huomo Aug 2006 B2
7103470 Mintz Sep 2006 B2
7103472 Itabashi Sep 2006 B2
7117015 Scheinert et al. Oct 2006 B2
7120469 Urakawa Oct 2006 B1
7123189 Lalik et al. Oct 2006 B2
7123926 Himmelstein Oct 2006 B2
7136853 Kohda et al. Nov 2006 B1
7146298 Matomedi et al. Dec 2006 B2
7149503 Aarnio et al. Dec 2006 B2
7151921 Otsuka Dec 2006 B2
7165725 Casey Jan 2007 B2
7171190 Ye et al. Jan 2007 B2
7181189 Hotta et al. Feb 2007 B2
7187997 Johnson Mar 2007 B2
7200409 Ichikawa et al. Apr 2007 B1
7200566 Moore et al. Apr 2007 B1
7213048 Parupudi et al. May 2007 B1
7215967 Kransmo et al. May 2007 B1
7236883 Garin et al. Jun 2007 B2
7254481 Yamada et al. Aug 2007 B2
7256711 Sheha et al. Aug 2007 B2
7257392 Tang et al. Aug 2007 B2
7260378 Holland et al. Aug 2007 B2
7266376 Nakagawa Sep 2007 B2
7269601 Kinno et al. Sep 2007 B2
7271765 Stilp et al. Sep 2007 B2
7272403 Creamer et al. Sep 2007 B2
7272404 Overy et al. Sep 2007 B2
7274332 Dupray Sep 2007 B1
7274939 Ruutu et al. Sep 2007 B2
7280822 Fraccaroli Oct 2007 B2
7286933 Cho Oct 2007 B2
7295556 Roese et al. Nov 2007 B2
7295925 Breed et al. Nov 2007 B2
7298327 Dupray et al. Nov 2007 B2
7299008 Gluck Nov 2007 B2
7310516 Vacanti Dec 2007 B1
7313467 Breed et al. Dec 2007 B2
7319412 Coppinger et al. Jan 2008 B1
7336928 Paalasmaa et al. Feb 2008 B2
7336949 Nasielski Feb 2008 B2
7339496 Endo et al. Mar 2008 B2
7343564 Othmer Mar 2008 B2
7349706 Kim et al. Mar 2008 B2
7353034 Haney Apr 2008 B2
7359713 Tiwari Apr 2008 B1
7370283 Othmer May 2008 B2
7373246 O'Clair May 2008 B2
7386396 Johnson Jun 2008 B2
7389179 Jin et al. Jun 2008 B2
7392017 Chu et al. Jun 2008 B2
7395031 Ritter Jul 2008 B1
7418402 McCrossin et al. Aug 2008 B2
7421422 Dempster et al. Sep 2008 B1
7421486 Parupudi et al. Sep 2008 B1
7426437 Breed et al. Sep 2008 B2
7427021 Kemper et al. Sep 2008 B2
7433694 Morgan et al. Oct 2008 B2
7440842 Vorona Oct 2008 B1
7441203 Othmer et al. Oct 2008 B2
7466235 Kolb et al. Dec 2008 B1
7483944 Parupudi et al. Jan 2009 B2
7486201 Kelly et al. Feb 2009 B2
7500607 Williams Mar 2009 B2
7512487 Golding et al. Mar 2009 B1
7522927 Fitch et al. Apr 2009 B2
7525484 Dupray et al. Apr 2009 B2
7536388 Jung et al. May 2009 B2
7545281 Richards et al. Jun 2009 B2
7558696 Vilppula et al. Jul 2009 B2
7565132 Ben Ayed Jul 2009 B2
7565157 Ortega et al. Jul 2009 B1
7574222 Sawada et al. Aug 2009 B2
7577448 Pande et al. Aug 2009 B2
7587345 Mann et al. Sep 2009 B2
7593740 Crowley et al. Sep 2009 B2
7593991 Friedman et al. Sep 2009 B2
7596450 Hong Sep 2009 B2
7599795 Blumberg et al. Oct 2009 B1
7603233 Tashiro Oct 2009 B2
7606580 Granito et al. Oct 2009 B2
7617044 Lee Nov 2009 B2
7620404 Chesnais et al. Nov 2009 B2
7623848 Rosenfelt et al. Nov 2009 B2
7624358 Kim et al. Nov 2009 B2
7647174 Kwon Jan 2010 B2
7680591 Nagaa et al. Mar 2010 B2
7683893 Kim et al. Mar 2010 B2
7689916 Goel et al. Mar 2010 B1
7710290 Johnson May 2010 B2
7711478 Gluck May 2010 B2
7714778 Dupray May 2010 B2
7729691 Newville Jun 2010 B2
7739040 Horvitz Jun 2010 B2
7743074 Parupudi et al. Jun 2010 B1
7756639 Colley et al. Jul 2010 B2
7768395 Gold Aug 2010 B2
7783421 Arai et al. Aug 2010 B2
7792273 Fano et al. Sep 2010 B2
7811203 Unuma et al. Oct 2010 B2
7822547 Lindroos Oct 2010 B2
7840347 Noguchi Nov 2010 B2
7848388 Tudosoiu Dec 2010 B2
7848765 Phillips et al. Dec 2010 B2
7860758 McCrossin et al. Dec 2010 B2
7890123 Granito et al. Feb 2011 B2
7933612 Counts et al. Apr 2011 B2
7933929 McClendon et al. Apr 2011 B1
7941188 Jung et al. May 2011 B2
7970418 Schmidt et al. Jun 2011 B2
7991432 Silverbrook et al. Aug 2011 B2
8036630 Park et al. Oct 2011 B2
8046009 Bodmer et al. Oct 2011 B2
8073565 Johnson Dec 2011 B2
8082094 Gao Dec 2011 B2
8250634 Agarwal et al. Aug 2012 B2
8332878 Harm Dec 2012 B2
20010018349 Kinnunen et al. Aug 2001 A1
20010046884 Yoshioka Nov 2001 A1
20020032035 Teshima Mar 2002 A1
20020035493 Mozayeny et al. Mar 2002 A1
20020035609 Lessard et al. Mar 2002 A1
20020042266 Heyward et al. Apr 2002 A1
20020046069 Mozayeny et al. Apr 2002 A1
20020046077 Mozayeny et al. Apr 2002 A1
20020046084 Steele et al. Apr 2002 A1
20020055373 King et al. May 2002 A1
20020067353 Kenyon et al. Jun 2002 A1
20020077144 Keller et al. Jun 2002 A1
20020087505 Smith et al. Jul 2002 A1
20020091632 Turock et al. Jul 2002 A1
20020091991 Castro Jul 2002 A1
20020095486 Bahl Jul 2002 A1
20020118112 Lang Aug 2002 A1
20020126146 Burns et al. Sep 2002 A1
20020128773 Chowanic et al. Sep 2002 A1
20020132625 Ogino et al. Sep 2002 A1
20020140560 Altman et al. Oct 2002 A1
20020160815 Patel et al. Oct 2002 A1
20020167442 Taylor Nov 2002 A1
20020173905 Jin et al. Nov 2002 A1
20030008662 Stern et al. Jan 2003 A1
20030014181 Myr Jan 2003 A1
20030016804 Sheha et al. Jan 2003 A1
20030032404 Wager et al. Feb 2003 A1
20030055560 Phillips Mar 2003 A1
20030060212 Thomas Mar 2003 A1
20030060215 Graham Mar 2003 A1
20030060973 Mathews et al. Mar 2003 A1
20030060976 Sato et al. Mar 2003 A1
20030065934 Angelo et al. Apr 2003 A1
20030069029 Dowling et al. Apr 2003 A1
20030069683 Lapidot et al. Apr 2003 A1
20030078054 Okuda Apr 2003 A1
20030078055 Smith et al. Apr 2003 A1
20030078057 Watanabe et al. Apr 2003 A1
20030093217 Petzold et al. May 2003 A1
20030096620 Ozturk et al. May 2003 A1
20030100326 Grube et al. May 2003 A1
20030100334 Mazzara, Jr. May 2003 A1
20030101225 Han et al. May 2003 A1
20030120423 Cochlovius et al. Jun 2003 A1
20030134657 Norta et al. Jul 2003 A1
20030140136 Nakamura Jul 2003 A1
20030144793 Melaku et al. Jul 2003 A1
20030148774 Naghian et al. Aug 2003 A1
20030158655 Obradovich et al. Aug 2003 A1
20030191578 Paulauskas et al. Oct 2003 A1
20030236106 Master et al. Dec 2003 A1
20040010358 Oesterling et al. Jan 2004 A1
20040036649 Taylor Feb 2004 A1
20040054428 Sheha et al. Mar 2004 A1
20040059502 Levi et al. Mar 2004 A1
20040068439 Elgrably Apr 2004 A1
20040072557 Paila et al. Apr 2004 A1
20040072577 Myllymaki et al. Apr 2004 A1
20040073361 Tzamaloukas et al. Apr 2004 A1
20040082351 Westman Apr 2004 A1
20040083050 Biyani Apr 2004 A1
20040093155 Simonds May 2004 A1
20040093392 Nagamatsu et al. May 2004 A1
20040098175 Said et al. May 2004 A1
20040104842 Drury et al. Jun 2004 A1
20040110488 Komsi Jun 2004 A1
20040110515 Blumberg et al. Jun 2004 A1
20040128067 Smith Jul 2004 A1
20040151151 Kubler et al. Aug 2004 A1
20040158401 Yoon Aug 2004 A1
20040158584 Necsoiu et al. Aug 2004 A1
20040172409 James Sep 2004 A1
20040176907 Nesbitt Sep 2004 A1
20040180669 Kall Sep 2004 A1
20040192299 Wilson et al. Sep 2004 A1
20040198335 Campen Oct 2004 A1
20040198379 Magee et al. Oct 2004 A1
20040198397 Weiss Oct 2004 A1
20040203569 Jijina et al. Oct 2004 A1
20040203746 Knauerhase et al. Oct 2004 A1
20040203836 Gorday et al. Oct 2004 A1
20040203880 Riley Oct 2004 A1
20040203909 Koster Oct 2004 A1
20040204842 Shinozaki Oct 2004 A1
20040215707 Fujita et al. Oct 2004 A1
20040225436 Yoshihashi Nov 2004 A1
20040228330 Kubler et al. Nov 2004 A1
20040236504 Bickford et al. Nov 2004 A1
20040242149 Luneau Dec 2004 A1
20040246940 Kubler et al. Dec 2004 A1
20040248586 Patel et al. Dec 2004 A1
20040260939 Ichikawa et al. Dec 2004 A1
20040263084 Mor et al. Dec 2004 A1
20040264442 Kubler et al. Dec 2004 A1
20050002419 Doviak et al. Jan 2005 A1
20050004838 Perkowski et al. Jan 2005 A1
20050009511 Bostrom et al. Jan 2005 A1
20050027442 Kelley et al. Feb 2005 A1
20050033509 Clapper Feb 2005 A1
20050033515 Bozzone Feb 2005 A1
20050037781 Ozugur et al. Feb 2005 A1
20050039140 Chen Feb 2005 A1
20050046584 Breed Mar 2005 A1
20050071078 Yamada et al. Mar 2005 A1
20050071702 Morisawa Mar 2005 A1
20050075116 Laird Apr 2005 A1
20050085272 Anderson et al. Apr 2005 A1
20050091408 Parupudi et al. Apr 2005 A1
20050096840 Simske May 2005 A1
20050114021 Krull et al. May 2005 A1
20050130677 Meunier et al. Jun 2005 A1
20050134440 Breed Jun 2005 A1
20050134578 Chambers et al. Jun 2005 A1
20050149250 Isaac Jul 2005 A1
20050153681 Hanson Jul 2005 A1
20050176411 Taya Aug 2005 A1
20050186954 Kenney Aug 2005 A1
20050192025 Kaplan Sep 2005 A1
20050197767 Nortrup Sep 2005 A1
20050203698 Lee Sep 2005 A1
20050221799 Tervo et al. Oct 2005 A1
20050221808 Karlsson et al. Oct 2005 A1
20050221843 Friedman et al. Oct 2005 A1
20050222756 Davis et al. Oct 2005 A1
20050222763 Uyeki Oct 2005 A1
20050227709 Chang et al. Oct 2005 A1
20050228860 Hamynen et al. Oct 2005 A1
20050234637 Obradovich et al. Oct 2005 A1
20050239477 Kim et al. Oct 2005 A1
20050250440 Zhou et al. Nov 2005 A1
20050256639 Aleksic et al. Nov 2005 A1
20050267676 Nezu et al. Dec 2005 A1
20050286421 Janacek Dec 2005 A1
20060009908 Tomita et al. Jan 2006 A1
20060015249 Gieseke Jan 2006 A1
20060022048 Johnson Feb 2006 A1
20060025158 Leblanc et al. Feb 2006 A1
20060029109 Moran Feb 2006 A1
20060038719 Pande et al. Feb 2006 A1
20060041374 Inoue Feb 2006 A1
20060041377 Jung et al. Feb 2006 A1
20060041378 Cheng et al. Feb 2006 A1
20060056388 Livingwood Mar 2006 A1
20060058955 Mehren Mar 2006 A1
20060063539 Beyer, Jr. Mar 2006 A1
20060064239 Ishii Mar 2006 A1
20060068809 Wengler et al. Mar 2006 A1
20060069503 Suomela Mar 2006 A1
20060072542 Sinnreich et al. Apr 2006 A1
20060085392 Wang et al. Apr 2006 A1
20060094353 Nielsen et al. May 2006 A1
20060101005 Yang et al. May 2006 A1
20060111122 Carlsan et al. May 2006 A1
20060116137 Jung Jun 2006 A1
20060148463 Zhu et al. Jul 2006 A1
20060149461 Rowley Jul 2006 A1
20060150119 Chesnais et al. Jul 2006 A1
20060166679 Karaoguz et al. Jul 2006 A1
20060168300 An et al. Jul 2006 A1
20060172769 Oh Aug 2006 A1
20060172778 Sundararajan et al. Aug 2006 A1
20060179114 Deeds Aug 2006 A1
20060180649 Casey Aug 2006 A1
20060184320 Hong Aug 2006 A1
20060184978 Casey Aug 2006 A1
20060195481 Arrouye et al. Aug 2006 A1
20060199567 Alston Sep 2006 A1
20060202819 Adamczyk et al. Sep 2006 A1
20060211453 Schick Sep 2006 A1
20060218209 Arrouye et al. Sep 2006 A1
20060227047 Rosenberg Oct 2006 A1
20060229802 Vertelney et al. Oct 2006 A1
20060247855 de Silva et al. Nov 2006 A1
20060251034 Park Nov 2006 A1
20060270421 Phillips et al. Nov 2006 A1
20060271280 O'Clair Nov 2006 A1
20060284767 Taylor Dec 2006 A1
20060287824 Lin Dec 2006 A1
20060291639 Radziewicz et al. Dec 2006 A1
20060293029 Jha et al. Dec 2006 A1
20060293083 Bowen Dec 2006 A1
20070001875 Taylor Jan 2007 A1
20070003040 Radziewicz et al. Jan 2007 A1
20070005188 Johnson Jan 2007 A1
20070005233 Pinkus et al. Jan 2007 A1
20070006098 Krumm et al. Jan 2007 A1
20070008515 Otani et al. Jan 2007 A1
20070010942 Bill Jan 2007 A1
20070016362 Nelson Jan 2007 A1
20070027614 Reeser et al. Feb 2007 A1
20070027628 Geelen Feb 2007 A1
20070038364 Lee et al. Feb 2007 A1
20070038369 Devries et al. Feb 2007 A1
20070042790 Mohi et al. Feb 2007 A1
20070055684 Steven Mar 2007 A1
20070060328 Zrike et al. Mar 2007 A1
20070061245 Ramer et al. Mar 2007 A1
20070061301 Ramer et al. Mar 2007 A1
20070061363 Ramer et al. Mar 2007 A1
20070071114 Sanderford et al. Mar 2007 A1
20070073480 Singh Mar 2007 A1
20070073719 Ramer et al. Mar 2007 A1
20070087726 McGary et al. Apr 2007 A1
20070093258 Steenstra et al. Apr 2007 A1
20070093955 Hughes Apr 2007 A1
20070106465 Adam et al. May 2007 A1
20070106466 Noguchi May 2007 A1
20070109323 Nakashima May 2007 A1
20070115868 Chen et al. May 2007 A1
20070124043 Ayoub et al. May 2007 A1
20070124058 Kitagawa et al. May 2007 A1
20070124066 Kikuchi May 2007 A1
20070127439 Stein Jun 2007 A1
20070127661 Didcock Jun 2007 A1
20070129888 Rosenberg Jun 2007 A1
20070130153 Nachman et al. Jun 2007 A1
20070135136 Ische Jun 2007 A1
20070135990 Seymour et al. Jun 2007 A1
20070142026 Kuz et al. Jun 2007 A1
20070146342 Medler et al. Jun 2007 A1
20070149212 Gupta et al. Jun 2007 A1
20070150192 Wakamatsu et al. Jun 2007 A1
20070150320 Huang Jun 2007 A1
20070153983 Bloebaum et al. Jul 2007 A1
20070153984 Bloebaum et al. Jul 2007 A1
20070153986 Bloebaum et al. Jul 2007 A1
20070155360 An Jul 2007 A1
20070155404 Yamane et al. Jul 2007 A1
20070156326 Nesbitt Jul 2007 A1
20070156337 Yanni Jul 2007 A1
20070162224 Luo Jul 2007 A1
20070179854 Ziv et al. Aug 2007 A1
20070184855 Klassen Aug 2007 A1
20070191029 Zarem et al. Aug 2007 A1
20070198304 Cohen et al. Aug 2007 A1
20070200713 Weber et al. Aug 2007 A1
20070202887 Counts et al. Aug 2007 A1
20070204218 Weber et al. Aug 2007 A1
20070206730 Polk Sep 2007 A1
20070208492 Downs et al. Sep 2007 A1
20070208497 Downs et al. Sep 2007 A1
20070208498 Barker et al. Sep 2007 A1
20070208507 Gotoh Sep 2007 A1
20070218925 Islam et al. Sep 2007 A1
20070219706 Sheynblat Sep 2007 A1
20070229549 Dicke et al. Oct 2007 A1
20070232272 Gonsalves et al. Oct 2007 A1
20070232326 Johnson Oct 2007 A1
20070233387 Johnson Oct 2007 A1
20070237096 Vengroff et al. Oct 2007 A1
20070238491 He Oct 2007 A1
20070243853 Bumiller et al. Oct 2007 A1
20070247435 Benko et al. Oct 2007 A1
20070254676 Pedigo et al. Nov 2007 A1
20070259674 Neef et al. Nov 2007 A1
20070260751 Meesseman Nov 2007 A1
20070266116 Rensin et al. Nov 2007 A1
20070271328 Geelen et al. Nov 2007 A1
20070276586 Jeon et al. Nov 2007 A1
20070276587 Johnson Nov 2007 A1
20070276596 Solomon et al. Nov 2007 A1
20070281664 Kaneko et al. Dec 2007 A1
20070282521 Broughton Dec 2007 A1
20070282565 Bye et al. Dec 2007 A1
20070290920 Shintai et al. Dec 2007 A1
20070299601 Zhao et al. Dec 2007 A1
20080004789 Horvitz et al. Jan 2008 A1
20080004791 Sera Jan 2008 A1
20080004802 Horvitz Jan 2008 A1
20080005104 Flake et al. Jan 2008 A1
20080005301 Li et al. Jan 2008 A1
20080015422 Wessel Jan 2008 A1
20080021632 Amano Jan 2008 A1
20080024360 Taylor Jan 2008 A1
20080024364 Taylor Jan 2008 A1
20080027636 Tengler et al. Jan 2008 A1
20080030308 Johnson Feb 2008 A1
20080032703 Krumm et al. Feb 2008 A1
20080032721 MacDonald et al. Feb 2008 A1
20080045234 Reed Feb 2008 A1
20080046176 Jurgens Feb 2008 A1
20080052407 Baudino et al. Feb 2008 A1
20080065311 Bauchot et al. Mar 2008 A1
20080070593 Altman et al. Mar 2008 A1
20080071466 Downs et al. Mar 2008 A1
20080082254 Huhtala et al. Apr 2008 A1
20080085727 Kratz Apr 2008 A1
20080086240 Breed Apr 2008 A1
20080088486 Rozum et al. Apr 2008 A1
20080091347 Tashiro Apr 2008 A1
20080096518 Mock et al. Apr 2008 A1
20080097698 Arnold-Huyser et al. Apr 2008 A1
20080098090 Geraci et al. Apr 2008 A1
20080104634 Gajdos et al. May 2008 A1
20080109153 Gueziec May 2008 A1
20080113672 Karr et al. May 2008 A1
20080129528 Guthrie Jun 2008 A1
20080132243 Spalink et al. Jun 2008 A1
20080132251 Altman et al. Jun 2008 A1
20080132252 Altman et al. Jun 2008 A1
20080140308 Yamane et al. Jun 2008 A1
20080140520 Hyder et al. Jun 2008 A1
20080153512 Kale et al. Jun 2008 A1
20080153513 Flake et al. Jun 2008 A1
20080155453 Othmer Jun 2008 A1
20080160956 Jackson et al. Jul 2008 A1
20080161034 Akiyama Jul 2008 A1
20080167083 Wyld et al. Jul 2008 A1
20080167796 Narayanaswami Jul 2008 A1
20080167811 Geelen Jul 2008 A1
20080172173 Chang et al. Jul 2008 A1
20080172361 Wong et al. Jul 2008 A1
20080172374 Wolosin et al. Jul 2008 A1
20080176545 Dicke et al. Jul 2008 A1
20080177793 Epstein et al. Jul 2008 A1
20080178116 Kim Jul 2008 A1
20080186162 Rajan et al. Aug 2008 A1
20080189033 Geelen et al. Aug 2008 A1
20080194273 Kansal et al. Aug 2008 A1
20080200142 Abdel-Kader et al. Aug 2008 A1
20080207167 Bugenhagen et al. Aug 2008 A1
20080225779 Bragiel et al. Sep 2008 A1
20080227473 Haney Sep 2008 A1
20080233919 Kenney Sep 2008 A1
20080242312 Paulson et al. Oct 2008 A1
20080248815 Busch Oct 2008 A1
20080249667 Horvitz et al. Oct 2008 A1
20080268876 Gelfand et al. Oct 2008 A1
20080271072 Rothschild et al. Oct 2008 A1
20080284642 Seacat et al. Nov 2008 A1
20080287124 Karabinis Nov 2008 A1
20080288166 Onishi Nov 2008 A1
20080293397 Gajdos et al. Nov 2008 A1
20080310850 Pederson et al. Dec 2008 A1
20080318550 DeAtley Dec 2008 A1
20080319644 Zehler Dec 2008 A1
20080319652 Moshfeghi Dec 2008 A1
20090003659 Forstall et al. Jan 2009 A1
20090005005 Forstall et al. Jan 2009 A1
20090005018 Forstall et al. Jan 2009 A1
20090005021 Forstall et al. Jan 2009 A1
20090005068 Forstall et al. Jan 2009 A1
20090005070 Forstall et al. Jan 2009 A1
20090005071 Forstall et al. Jan 2009 A1
20090005072 Forstall et al. Jan 2009 A1
20090005076 Forstall et al. Jan 2009 A1
20090005080 Forstall et al. Jan 2009 A1
20090005082 Forstall et al. Jan 2009 A1
20090005964 Forstall et al. Jan 2009 A1
20090005965 Forstall et al. Jan 2009 A1
20090005975 Forstall et al. Jan 2009 A1
20090005981 Forstall et al. Jan 2009 A1
20090006336 Forstall et al. Jan 2009 A1
20090030605 Breed Jan 2009 A1
20090031006 Johnson Jan 2009 A1
20090033540 Breed et al. Feb 2009 A1
20090042585 Matsuda Feb 2009 A1
20090089706 Furches et al. Apr 2009 A1
20090098857 DeAtley Apr 2009 A1
20090121927 Moshfeghi May 2009 A1
20090197612 Kiiskinen Aug 2009 A1
20090228961 Wald et al. Sep 2009 A1
20090234743 Wald et al. Sep 2009 A1
20090259573 Cheng et al. Oct 2009 A1
20090271271 Johnson Oct 2009 A1
20090281724 Blumenberg et al. Nov 2009 A1
20090286549 Sazegari et al. Nov 2009 A1
20100076818 Peterson et al. Mar 2010 A1
20100082820 Furukawa Apr 2010 A1
20100106397 Van Essen Apr 2010 A1
20100120450 Herz May 2010 A1
20100128935 Filley et al. May 2010 A1
20100131584 Johnson May 2010 A1
20100173647 Sheynblat Jul 2010 A1
20100207782 Johnson Aug 2010 A1
20100285817 Zhao et al. Nov 2010 A1
20110051658 Jin et al. Mar 2011 A1
Foreign Referenced Citations (129)
Number Date Country
9904979 Dec 2000 BR
2163215 May 1994 CA
2287596 Apr 2000 CA
2432239 Dec 2004 CA
1 412 573 Apr 2003 CN
3 621 456 Jan 1988 DE
4437360 Apr 1996 DE
19506890 Aug 1996 DE
19914257 Mar 1999 DE
10 141 695 Mar 2003 DE
10141695 Mar 2003 DE
0 288 068 Jul 1992 EP
0 633 452 Jan 1995 EP
0 745 867 Dec 1996 EP
0 762 362 Mar 1997 EP
0 763 749 Mar 1997 EP
0 786 646 Jul 1997 EP
785535 Jul 1997 EP
0 809 117 Nov 1997 EP
0 813 072 Dec 1997 EP
0699330 Apr 1998 EP
0 908 835 Apr 1999 EP
0 997 808 May 2000 EP
1 083 764 Mar 2001 EP
1 251 362 Oct 2002 EP
1300652 Apr 2003 EP
1 457 928 Sep 2004 EP
1 469 287 Oct 2004 EP
1 496 338 Jan 2005 EP
1 770 956 Sep 2005 EP
1 465 041 Feb 2006 EP
1 659 817 May 2006 EP
1 672 474 Jun 2006 EP
1 790 947 May 2007 EP
1 860 904 Nov 2007 EP
1 944 701 Jul 2008 EP
1 933 249 Aug 2008 EP
1 975 567 Oct 2008 EP
2730083 Aug 1996 FR
2754093 Apr 1998 FR
2272911 Jun 1999 FR
2810183 Dec 2001 FR
2 278 196 Nov 1994 GB
2 322 248 Aug 1998 GB
2 359 888 May 2001 GB
2 407 230 Apr 2005 GB
62142215 Jun 1987 JP
05-071974 Mar 1993 JP
5-191504 Jul 1993 JP
06-525189 May 1994 JP
2007-221433 May 1994 JP
08-069436 Mar 1996 JP
09-054895 Feb 1997 JP
9-80144 Mar 1997 JP
09-098474 Apr 1997 JP
9-113288 May 1997 JP
09-153125 Jun 1997 JP
9-062993 Jul 1997 JP
09-200850 Jul 1997 JP
9-210710 Aug 1997 JP
9-319300 Dec 1997 JP
10-021259 Jan 1998 JP
11-234736 Aug 1999 JP
2000-163379 Jun 2000 JP
2001-008270 Jan 2001 JP
2001-160063 Jun 2001 JP
2001-313972 Nov 2001 JP
2002-310680 Oct 2002 JP
10030933 Feb 2003 JP
2003-228532 Aug 2003 JP
2004-045054 Feb 2004 JP
2004-219146 Jul 2004 JP
2004-362271 Dec 2004 JP
2005-106741 Apr 2005 JP
2005-182146 Jul 2005 JP
2005-241519 Sep 2005 JP
2005277764 Oct 2005 JP
2006-112338 Apr 2006 JP
2006-184007 Jul 2006 JP
2006-270889 Oct 2006 JP
2006-279838 Oct 2006 JP
2007-033220 Feb 2007 JP
2007-033331 Feb 2007 JP
2007-033368 Feb 2007 JP
2007-127439 May 2007 JP
2007-147439 Jun 2007 JP
2007-201699 Aug 2007 JP
2007-240400 Sep 2007 JP
2007-259291 Oct 2007 JP
2007-271299 Oct 2007 JP
2007-304009 Nov 2007 JP
2008-058917 Mar 2008 JP
2008-129774 Jun 2008 JP
2004-102440 Dec 2004 KR
2005-096746 Oct 2005 KR
200426387 Dec 2004 TW
WO 9320546 Oct 1993 WO
WO 9408250 Apr 1994 WO
WO 9707467 Feb 1997 WO
WO 9724577 Jul 1997 WO
WO 9741654 Nov 1997 WO
WO 9803951 Jan 1998 WO
WO 9807112 Feb 1998 WO
WO 9854682 Dec 1998 WO
WO 9916036 Apr 1999 WO
WO 9944183 Sep 1999 WO
WO 9961934 Dec 1999 WO
WO 0131966 May 2001 WO
WO 0137597 May 2001 WO
WO 0233533 Apr 2002 WO
WO 02054813 Jul 2002 WO
WO 03023593 Mar 2003 WO
WO 03096055 Nov 2003 WO
WO 2004008792 Jan 2004 WO
WO 2004016032 Feb 2004 WO
WO 2004021730 Mar 2004 WO
WO 2004034194 Apr 2004 WO
WO 2004061576 Jul 2004 WO
WO 2004076977 Sep 2004 WO
WO 2005006258 Jan 2005 WO
WO 2005084052 Sep 2005 WO
WO 2006065856 Jun 2006 WO
WO 2006113125 Oct 2006 WO
WO 2007027065 Mar 2007 WO
WO 2007052285 May 2007 WO
WO 2008051929 May 2008 WO
WO 2008085740 Jul 2008 WO
WO 2009002942 Dec 2008 WO
WO 2009140031 Nov 2009 WO
Non-Patent Literature Citations (209)
Entry
U.S. Appl. No. 09/589,328, filed Jun. 7, 2000, Van Os et al.
U.S. Appl. No. 11/464,671, filed Aug. 15, 2006, Johnson.
U.S. Appl. No. 11/827,065, filed Jul. 10, 2007, Johnson.
U.S. Appl. No. 11/972,559, filed Jan. 10, 2008, Alten.
U.S. Appl. No. 12/044,363, filed Mar. 7, 2008, Johnson.
U.S. Appl. No. 11/114,714, filed May 2, 2008, Williamson et al.
U.S. Appl. No. 12/119,316, filed May 12, 2008, Blumenberg et al.
U.S. Appl. No. 12/122,339, filed May 16, 2008, Sazegari et al.
U.S. Appl. No. 12/233,358, filed Sep. 18, 2008, Low et al.
U.S. Appl. No. 12/270,814, filed Nov. 13, 2008, Herz.
U.S. Appl. No. 11/969,901, filed Jan. 6, 2009, Matas et al.
“27 Countries in your pocket”; [online] [Retrieved on Sep. 29, 2005] Retrieved from the Internet <URL: http://www.mio-tech.be/en/printview/press-releases-2005-09-29.htm; 1 page.
“Animated Transition”; [online] [Retrieved on Oct. 16, 2006] Retrieved from the Internet <URL: http://designinterfaces.com/Animated—Transition; 2 pages.
“DaimlerCrysler Guide5 Usecases Overview Map”, 1 page (no reference date).
“International Roaming Guide—Personal Experience(s) from Customer and Community Member”; [online] [Retrieved Jun. 26, 2006] Retrieved from the Internet <URL: http://forums.cingular.com/cng/board/message?board.id=1185; 6 pages.
“Mio 269+ Users Manula”; 2005; 44 pages.
“New program for mobile blogging for PocketPC released: My Blog”; [online] [Retrieved on Apr. 5, 2006]; Retrieved from the Internet, URL: http://msmobiles.com/news.php/4067.html.
“Numbering and Dialing Plan within the United States”, Alliance for Telecommunications Industry Solutions; 2005; 17 pages.
Review Guide—Google Maps for mobile (beta); Google; 2006; 7 pages.
“User-centered design of mobile solutions”, Namahn, 2006, 18 pages.
“User's Manual MioMap 2.0”; Aug. 2005; 60 pages.
“Windows Live Search for Mobile Goes Final, Still Great”; [online] [Retrieved on Mar. 11, 2007]; Retrieved from the Internet, URL: http://gizmodo.com/gadgets/software/windows-live-search-for-mobile-goes-final-still-great-236002.php; 3 pages.
“Windows Mobile 6 Professional Video Tour”; [online] [Retrieved on Mar. 11, 2007]; Retrieved from the Internet, URL: http://gizmodo.com/gadgets/cellphones/windows-mobile-6-professional-video-tour-237039.php; 4 pages.
“Windows Mobile”; Microsoft; 2007, 2 pages.
Anand et al., “Quantitative Analysis of Power Consumption for Location-Aware Applications on Smart Phones”, IEEE International Symposium on Industrial Electronics, 2007.
Beard et al., “Estimating Positions and Paths of Moving Objects”, IEEE 2000, pp. 1-8.
Bederson, B.B., Audio Augmented Reality: A Prototype Automated Tour Guide [online] [retrieved on Aug. 30, 2002] [retrieved from http://www.cs.umd.edu/˜bederson/papers/chi-95-aar/] pp. 1-4.
Berman et al., “The Role of Dead Reckoning and Inertial Sensors in Future General Aviation Navigation”, IEEE, 1998, pp. 510-517.
Bevly et al., “Cascaded Kalman Filters for Accurate Estimation of Multiple Biases, Dead-Reckoning Navigation, and Full State Feedback Control of Ground Vehicles”, IEEE Transactions on Control Systems in Technology, vol. 15, No. 2, Mar. 2007, pp. 199-208.
Binzhuo et al., “Mobile Phone GIS Based on Mobile SVG”, IEEE 2005.
Bokharouss et al., “A Location-Aware Mobile Call Handling Assistant”, International Conference on Advanced Information Networking and Applications Workshops, 2007.
Camp et al., “A computer-based method for predicting transit time systems”, Decsision Sciences, vol. 5, pp. 339-346, 1974.
Carew; “Phones that tell you where to drive, meet, eat”; [online] [Retrieved May 26, 2007]; Retrieved from the Internet <URL httlp://news.yahoo.com/s/nm/20070525/wr—nm/column—pluggedin—dc—2&printer=1;—ylt=Ahqaftn7xm1S2r0FZFeu9G4ht.cA; 2 pages.
Cho et al., A Traveler Information Service Structure in Hybrid T-DMB and Cellular Communication Network, Broadcast Systems Research Group, IEEE, 2006, pp. 747-750.
Christie et al., “Development and Deployment of GPS wireless devices for E911 and Location based services”, IEEE 2002.
Chua et al., “Intelligent Portal for Event-triggered SMS Alerts”, 2nd International Conference on Mobile Technology, Applications and Systems, 2005.
Civilis et al., “Efficient Tracking of Moving Objects with Precision Guarantees”, IEEE, Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, 2004, 10 pages.
Dibdin, Peter, “Where are mobile location based services?”, Dec. 14, 2001, pp. 1-8.
Dunn et al., “Wireless Emergency Call System”, IBM TDB, Sep. 1994.
Ebine, “Dual Frequency resonant base station antennas for PDC systems in Japan”, IEEE, pp. 564-567, 1999.
Evans, “In-Vehicle Man-Machine Interaction the Socrates Approach”, Vehicle Navigation & Information System Conference Proceedings, Aug. 31, 1994-Sep. 2, 1994, pp. 473-477.
FM 3-25.26 Map Reading and Land Navigation Field Manual No. 3-25.26, Headquarters Department of the Army, Washington, DC [online] [retrieved on Apr. 9, 2004] [retrieved from http://155.217.58.58/cgi-bin/atdl.d11/fm/3-25.26/toc.htm] Jul. 20, 2001, pp. 1-7 and J-1 to J-3.
GPS 12 Personal Navigator Owner's Manual & Reference, Garmin Corporation, Jan. 1999, pp. 1-60.
Guo et al., “An Intelligent Query System based on Chinese Short Message Service for Restaurant Recommendation”, IEEE 2007, 1 page.
Hameed et al., “An Intelligent Agent-Based Medication and Emergency System”, IEEE 2006.
Helal et al., “Drishti: An Integrated Navigation System for Visually Impaired and Disabled”, Fifth International Symposium on Wearable Computers (ISWC'01), IEEE, 2001, pp. 149-156.
Hohman et al., “GPS Roadside Integrated Precision Positioning System”, Position Location and Navigation Symposium (IEEE 2000), pp. 221-230.
International Numbering and SMS—Type of Numbering, TON, Numbering Plan Indicator, NPI, [online] [Retrieved Jan. 5, 2007] Retrieved from the Internet <URL: http://www.activeexperts.com/support/activsms/tonnpi>.
Jirawimut et al., “A Method for Dead Reckoning Parameter Correction in Pedestrian Navigation System”, IEEE Transactions on Instrumentation and Measurement, vol. 52, No. 1, Feb. 2003, pp. 209-215.
Ju et al., “RFID Data Collection and Integration based on Mobile Agent”, IEEE, 2006.
Kbar et al., “Mobile Station Location based on Hybrid of Signal Strength and Time of Arrival”, IEEE, 2005.
Koide et al., “3-D Human Navigation System with Consideration of Neighboring Space Information”, IEEE International Conference on Systems, Man and Cybernetics, 2006 (SMC '06), vol. 2, (Oct. 8-11, 2006), pp. 1693-1698.
Lloyd et al., “Cellular phone base stations installation violate the Electromagnetic Compatibility regulations”, IEEE, 2004.
Meier et al., “Location-Aware Event-Base Middleware: A Paradigm for Collaborative Mobile Applications?”, Sep. 2003.
Miller et al., “Synchronization of Mobile XML Databases by Utilizing Deferred Views”, IEEE 2004.
Nardi et al., “Integrating Communication and Information through Contact Map”, Communications of the ACM, vol. 45, No. 4, Apr. 2002.
Northard, “Docking Station Communication Link”, IBM TDB, Feb. 1994.
Oh et al., “Spatial Applications Using 4S Technology for Mobile Environment”, IEEE 2002.
Paksoy et al., “The Global Position System-Navigation Tool of the Future”, Journal of Electrical & Electronics, 2002, vol. 2, No. 1, pp. 467-476.
Parikh, “Tele Locate”, IBM Technical Disclosure Bulletin, [online] [Retrieved Nov. 7, 2008] Retrieved from the Internet, URL: https://www.delphion.com/tdbs/tdb?order=92A+62775; Sep. 1992; 1 page.
Partial International Search Report, dated Jul. 29, 2008, issued in corresponding PCT/US2008/050295.
Pfoser et al., “Dynamic Travel Time Maps—Enabling Efficient Navigation”, Proceedings of the 18th International Conference on Scientific and Statistical Database Management (SSDBM'06), IEEE, 10 pages.
Portfolio 2007; [online] [Retrieved on Jun. 14, 2007]; Retrieved from the Internet, URL: http://eric.wahlforss.com/folio; 3 pages.
RD 409052, Research Disclosure Alerting Abstract, “Location dependent information for satellite based vehicle communication—required application of Global Position System (GPS) to automatically extract relevant portions of data package as vehicle changes position,” May 10, 1998, 1 page.
Rekimoto, J., Augment-able Reality: Situated Communication through Physical and Digital Spaces, ISWC, pp. 68, Second International Symposium on Wearable computers (ISWC '98), 1998, pp. 1-8.
Rogers et al., “Adaptive User Interfaces for Automotive Environments”, IEEE Intelligent Vehicles Symposium 2000, Oct. 3-5, 2000, pp. 662-667.
Rozier, J., Hear & There: An Augmented Reality System of Linked Audio, Proceedings of the International Conference on Auditory Display, Atlanta, GA, Apr. 2000, pp. 1-6.
Samadani et al., “PathMaker: Systems for Capturing Trips”, IEEE (2004) International Conference on Multimedia and Expo., Publication Date: Jun. 27-30, 2004, vol. 3, pp. 2123-2126, 2004.
Sung et al., “Towards Reliable Peer-to-Peer Data Sharing over Mobile Ad hoc Networks”, IEEE, 2005.
Weib et al., “Zone services—An approach for location-based data collection”, Proceedings of the 8th International Conference on E-commerce Technology and the 3rd IEEE International Conference on Enterprise Computing, E-Commerce and E-Services.
Yang et al., “A Mutlimedia System for Route Sharing and Video-based Navigation”, IEEE, 2006, pp. 73-76.
Yanyan et al., “The model of optimum route selection in vehicle automatic navigation system based on unblocked reliability analyses”, IEEE 2003.
Balliet, “Transportation Information Distribution System”, IBM Technical Disclosure Bulletin, [online] [Retrieved Nov. 7, 2008] Retrieved from the Internet, URL: https://www.delphion.com/tdbs/tdb?order=86A+61395; Jun. 1986; 2 pages.
Charny, “AT&T puts 411 to the text”; [online] [Retrieved Mar. 4, 2009]; Retrieved from the Internet <URL http://news.cnet.com/ATT-puts-411-to-the-text/2100-1039—3-1000669.html; May 8, 2003; 2 pages.
Jain, R., Potential Networking Applications of Global Positioning Systems (GPS) [online] [retrieved on Nov. 18, 2008] [retrieved from http://arxiv.org/ftp/cs/papers/9809/9809079.pdf] OSU Technical Report TR-24, Apr. 1996, pp. 1-40.
International Search Report and Written Opinion, dated Jun. 9, 2008, issued in Interntiaonal Application No. PCT/US2007/088880, filed Dec. 27, 2007.
Spohrer. “New Paradigms for Using Computers”, 1997; retrieved from the Internet, URL: <http://almaden.ibm.com/npuc97/1997/spohrer.htm>.
Yang et al. “Global Snapshots for Distributed Debugging”, IEEE, pp. 436-440, 1992.
“Cyberguide: a mobile context-aware tour guide”, Wireless Networks Archive (Special Issue: Mobile computing and networking; selecting papers from MobiCom '96), 3(5):421-433, 1997.
“Frontiers in electronic media”, Interactions Archive 4(4):32-64, 1997.
“Location-aware mobile applications based on directory services”, International Conference on Mobile Computing and Networking Archive, Proceedings on the 3rd Annual ACM/IEEE International Conference on Mobile Computing and Networking, Budapest, Hungary, pp. 23-33, 1997.
Sharpe et al., U.S. Appl. No. 12/434,586, filed May 1, 2009.
Sharp et al., U.S. Appl. No. 12/434,582, filed May 1, 2009.
Van Os et al., U.S. Appl. No. 12/165,413, filed Jun. 30, 2008.
Blumenberg et al., U.S. Appl. No. 12/119,316, filed May 12, 2008.
Low et al., U.S. Appl. No. 12/233,358, filed Sep. 18, 2008.
Sazegari et al., U.S. Appl. No. 12/122,339, filed May 16, 2008.
Johnson, U.S. Appl. No. 12/044,363, filed Mar. 7, 2008.
Johnson, U.S. Appl. No. 11/827,065, filed Jul. 10, 2007.
Herz, U.S. Appl. No. 12/270,814, filed Nov. 13, 2008.
Boonsrimuang et al., “Mobile Internet Navigation System”, IEEE, 2002, pp. 325-328.
Manabe et al., “On the M-CubITS Pedestrian Navigation System”, IEEE, 2006, pp. 793-798.
Schreiner, “Where We At? Mobile Phones Brings GPS to the Masses”, IEEE Computers Society, May/Jun. 2007, pp. 6-11.
Drane et al., “The accurate location of mobile telephones”, Third Annual World Congress on Intelligent Transport Systems, Orlando, Florida, Oct. 1996.
“Travel Time Data Collection Handbook—Chapter 5: Its Probe Vehicle Techniques”, FHWA-PL-98-035 Report, Department of Transport, University of Texas, Mar. 1998; [online] [Retrieved from the Internet at http://www.fhwa.dot.gov/ohim/handbook/chap5.pdf.
Ygnace et al., “Travel Time Estimation on the San Francisco Bay Area Network Using Cellular Phones as Probes”, Working Paper, Institute of Transportation Studies, University of California, Berkeley, 2000.
Wang et al., “A Unified Vehicle Supervising and Traffic Information System”, IEEE, 1996, pp. 968-972.
Weiss et al., “Zone services—An approach for location-based data collection”, Proceedings of the 8th International Conference on E-commerce Technology and the 3rd IEEE International Conference on Enterprise Computing, E-Commerce and E-Services, 2006; 8 pages.
Budka et al., “A Bayesian method to Improve Mobile Geolocation Accuracy”, IEEE, 2002, pp. 1021-1025.
Yamamoto et al., “Position Location Technologies Using Signal Strength in Cellular Systems”, IEEE, 2001, pp. 2570-2575.
International Search Report and Written Opinion, dated Oct. 1, 2009, issued in PCT/US2009/041298.
Dalrymple, “Google Maps adds locator, but not for iPhone,” [online] [Retrieved Nov. 30, 2007]; Retrieved from the Internet URL: http://news.yahoo.com/s/macworld/20071130/tc—macworld/googlemaps20071130—0&printer=1;—ylt=Auvf3s6LQK—p0aJ1b954T—DQn6gB; 1 page.
Feddema et al., “Cooperative Sentry Vehicles and Differential GPS Leapfrog,” 2000, United States Department of Energy, pp. 1-12.
Maxwell et al., “Alfred: The Robot Waiter Who Remembers You,” AAAI Technical Report WS-99-15, 1999, 12 pages.
Shibata et al., “Development and Integration of Generic Components for a Teachable Vision-Based Mobile Robot,” IEEE/ASME Transactions on Mechatronics, 1996, 1(3):230-236.
Yogesh C. Rathod, Third Party Submission in U.S. Appl. No. 12/233,358 mailed Mar. 30, 2010, 12 pages.
US 7,254,416, 08/2007, Kim (withdrawn).
US 6,731,928, 5/2004, Tanaka (withdrawn).
Dey, “Context-Aware Computing: The CyberDesk Project,” [online] Retrieved from the Internet: URL: http://www.cc.gatech.edu/fce/cyberdesk/pubs/AAAI98/AAAI98.html; AAAI '98 Spring Symposium, Stanford University, Mar. 23-25, 1998, downloaded from the Internet on Aug. 6, 2010, 8 pages.
Challe, “CARMINAT—An Integrated information and guidance system,” Vehicle Navigation and Information Systems Conference, Oct. 20-23, 1991, Renault—Direction de la Recherche, Rueil-Malmaison, France.
Pungel, “Traffic control-beat the jam electronically,” Funkschau, 1988, 18:43-45 (w/English translation).
Rillings and Betsold, “Advanced driver information systems,” Vehicular Technology, IEEE Vehicular Technology Society, 1991, 40:31-40.
Tsuzawa and Okamoto, “Advanced Mobile Traffic Information and Communication System,” First Vehicle Navigation and Information Systems Conference, Sep. 11-13, 1989, Toronto, Canada, Abstract only.
Wong, “GPS: making roads safer and solving traffic tangles,” Asia Engineer, 1995, 23(9):31-32.
Ayatsuka et al., “UbiquitousLinks: Hypermedia Links Embedded in the Real World, Technical Report of Information Processing Society, 96-HI-67,” Information Processing Society of Japan, Jul. 11, 1996, 96(62):23-30.
Nagao et al., Walk Navi: A Location-Aware Interactive Navigation/Guideline System and Software III, First edition, pp. 9-48, published by Kindai-Kagaku-Sya Co. Ltd., Dec. 10, 1995.
Benefon ESC! GSM+GPS Personal Navigation Phone, benefon.com, Copyright 2001, 4 pages.
Freundschuh, “Does ‘Anybody’ Really Want (Or Need) Vehicle Navigation Aids?” First Vehicle Navigation and Information System Conference, Sep. 11-13, 1989, Toronto, Canada, 5 pages.
Gould, “The Provision of Usable Navigation Assistance: Considering Individual Cognitive Ability,” First Vehicle Navigation and Information System Conference, Sep. 11-13, 1989, Toronto, Canada, 7 pages.
Mark, “A Conceptual Model for Vehicle Navigation Systems,” First Vehicle Navigation and Information System Conference, Sep. 11-13, 1989, Toronto, Canada, 11 pages.
Wheeler et al., “Development of Human Factors Guidelines for Advanced Traveler Information Systems and Commercial Vehicle Operations: Task Analysis of ATIS/CVO Functions,” US Dept. Transportation Federal Highway Administration Research and Development, Publication No. FHWA-RD-95-176, Nov. 1996, 124 pages.
Miller et al., “Integrating Hierarchical Navigation and Querying: A User Customizable Solution,” ACM Multimedia Workshop on Effective Abstractions in Multimedia Layout, Presentation, and Interaction, San Francisco, CA, Nov. 1995, 8 pages.
Hoogenraad, “Location Dependent Services,” 3rd AGILE Conference on Geographic Information Science, Helsinki/Espoo, Finland, May 25-27, 2000, pp. 74-77.
Bonsignore, “A Comparative Evaluation of the Benefits of Advanced Traveler Information System (ATIS) Operational Tests,” MIT Masters Thesis, Feb. 1994, 140 pages.
Noonan and Shearer, “Intelligent Transportation Systems Field Operational Test Cross-Cutting Study Advance Traveler Information systems,” Intelligent Transportation Systems Field Operational Test Cross-Cutting Study, Sep. 1998, 26 pages.
Burnett, “Usable Vehicle Navigation Systems: Are We There Yet?” Vehicle Electronic Systems 2000, Jun. 29-30, 2000, 3.1.1-3.1.12.
Khattak et al., “Bay Area ATIS Testbed Plan,” Research Reports, California Partners for Advanced Transit and Highways (PATH), Institute of Transportation Studies, UC Berkeley, Jan. 1, 1992, 83 pages.
Yim et al., “Travinfo Field Operational Test: Work Plan for the Target, Network, and Value Added Reseller (VAR) Customer Studies,” Working Papers, California Partners for Advanced Transit and Highways (PATH), Institute of Transportation Studies, UC Berkeley, Apr. 1, 1997, 49 pages.
Mahmassani et al., “Providing Advanced and Real-Time Travel/Traffic Information to Tourists,” Center for Transportation Research, Bureau of Engineering Research, The University of Texas at Austin, Oct. 1998, 15 pages.
“New Handsets Strut Their Stuff At Wireless '99,” Internet: URL: http://findarticles.com/p/articles/mi—m0BMD/is—1999—Feb—11/ai—n27547656/ downloaded from Internet on Feb. 11, 1999, 3 pages.
“School Buses to Carry Noticom's First Application,” Internet: URL: http://findarticles.com/p/articles/mi—m0BMD/is—1999—Feb—17/ai—n27547754/ downloaded from the Internet on Feb. 17, 1999, 2 pages.
Green et al., “Suggested Human Factors Design Guidelines for Driver Information Systems,” Technical Report UMTRI-93-21, Nov. 1993, 119 pages.
Tijerina et al., “Driver Workload Assessment of Route Guidance System Destination Entry While Driving: A Test Track Study,” Proceedings of the 5th ITS World Congress, Oct. 12-16, 1998, Seoul, Korea, 9 pages.
Muraskin, “Two-Minute Warnings for School Bus Riders,” Internet: URL: http://www.callcentermagazine.com/shared/printableArticle.jhtml;jsessionid=PQH1SZXW . . . Jul. 1, 1999, 3 pages.
Ni and Deakin, “On-Board Advanced Traveler Information Systems,” Dec. 1, 2002, 10 pages.
Serafin et al., “Functions and Features of Future Driver Information Systems,” Technical Report UMTRI-91-16, May 1991, 104 pages.
Shekhar and Liu, “Genesis and Advanced Traveler Information Systems (ATIS): Killer Applications for Mobile Computing?” NSF Mobidata Workshop on Mobile and Wireless Information Systems, Nov. 1994, 20 pages.
“LaBarge in joint venture on bus system,” Internet: URL: http://www.bizjournals.com/stlouis/stories/1998/08/10/focus2.html?t-printable, Aug. 7, 1998, 1 page.
Clarke et al., “Development of Human Factors Guidelines for Advanced Traveler Information Systems (ATIS) and Commercial Vehicle Operations (CVO): Comparable Systems Analysis,” U.S. Department of Transportation Federal Highway Administration, Publication No. FHWA-RD-95-197, Dec. 1996, 212 pages.
Zubac and Strahonja, “Theory and Development of an Online Navigation System,” 18th International Conference on Information and Intelligent Systems, University of Zagreb, Sep. 12-14, 2007.
Brown, “The stick-e document: a framework for creating context-aware applications,” Electronic Publishing, 1995, 8:259-272.
Brown, “Triggering Information by Context,” Personal Technologies, 1998, 2:18-27.
Dey et al., “CyberDesk: a framework for providing self-integrating context-aware services,” Knowledge-Based Systems, 1998, 11:3-13.
Hodes and Katz, “Composable ad hoc location-based services for heterogeneous mobile clients,” Wireless Networks, 1999, 5:411-427.
Kreller et al., “A Mobile-Aware City Guide Application,” ACTS Mobile Communication Summit, 1998, Rhodes, Greece, 7 pages.
Lusky et al., “Mapping the Present,” ColoradoBiz, Nov. 1999, 26(11):16-17.
McCarthy and Meidel, “ACTIVEMAP: A Visualization Tool for Location Awareness to Support Informal Interactions,” HUC '99, LNCS 1707, 1999, pp. 158-170.
O'Grady et al., “A Tourist-Centric Mechanism for Interacting with the Environment,” Proceedings of the First International Workshop on Managing Interactions in Smart Environments (MANSE '99), Dublin, Ireland, Dec. 1999, pp. 56-67.
Pascoe et al., “Developing Personal Technology for the Field,” Personal Technologies, 1998, 2:28-36.
Tarumi et al., “Public Applications of SpaceTag and Their Impacts,” Digital Cities, LNCS 1765, 2000, pp. 350-363.
Tebbutt, “Dial your way out of the woods,” The Australian, Feb. 2000, 1 page.
Tso et al., “Always on, Always Connected Mobile Computing,” Mobile Communications Operation—Mobile Handheld Products Group, 1996, pp. 918-924.
Wang and Lin, “Location Aware Information Agent over WAP,” Tamkang Journal of Science and Engineering, 2000, 3(2):107-115.
“3rd Generation Partnership Project (3GPP); Technical Specification Group (TSG) RAN; Working Group 2 (WG2); Report on Location Services (LCS),” 3G TR 25.923 v.1.0.0, Apr. 1999, 45 pages.
“Report on Location Service feature (LCS) 25.923 v1.0.0,” TSG-RAN Working Group 2 (Radio layer 2 and Radio layer 3), Berlin, May 25-28, 1999, 45 pages.
“3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Functional stage 2 description of location services in UMTS,” 3G TS 23.171 v.1.1.0, Nov. 1999, 42 pages.
“3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Stage 2 Functional Specification of Location Services in UTRAN,” 3G TS 25.305 v.3.1.0, Mar. 2000, 45 pages.
“Enabling UMTS / Third Generation Services and Applications,” No. 11 Report from the UMTS Forum, Oct. 2000, 72 pages.
“3rd Generation Partnership Project (3GPP); Technical Specification Group (TSG) RAN; Working Group 2 (WG2); Report on Location Services,” TS RAN R2.03 V0.1.0, Apr. 1999, 43 pages.
“Revised CR to 09/31 on work item LCS,” ETSI SMG3 Plenary Meeting #6, Nice, France, Dec. 13-15, 1999. 18 pages.
Digital cellular telecommunications system (Phase 2+); Location Services (LCS); Service description, Stage 1 (GSM 02.71) ETSI, Apr. 1999, 22 pages.
Akerblom, “Tracking Mobile Phones in Urban Areas,” Goteborg University Thesis, Sep. 2000, 67 pages.
Borsodi, “Super Resolution of Discrete Arrivals in a Cellular Geolocation System,” University of Calgary Thesis, Apr. 2000, 164 pages.
Abowd et al., “Context-awareness in wearable and ubiquitous computing,” 1st International Symposium on Wearable Computers, Oct. 13-14, 1997, Cambridge, MA, 9 pages.
Balsiger et al., “MOGID: Mobile Geo-depended Information on Demand,” Workshop on Position Dependent Information Services (W3C-WAP), 2000, 8 pages.
Cheverst et al., “Architectural Ideas for the Support of Adaptive Context-Aware Applications,” Proceedings of Workshop on Infrastructure for Smart Devices—How to Make Ubiquity an Actuality, HUC'00, Bristol, Sep. 2000, 3 pages.
Cheverst et al., “The Role of Connectivity in Supporting Context-Sensitive Applications,” HUC'99, LNCS 1707, 1999, pp. 193-209.
Efstratiou and Cheverst, “Reflection: A Solution for Highly Adaptive Mobile Systems,” 2000 Workshop on Reflective Middleware, 2000, 2 pages.
Cheverst et al., “The Support of Mobile-Awareness in Collaborative Groupware,” Personal Technologies, 1999, 3:33-42.
Cheverst et al., “Design of an Object Model for a Context Sensitive Tourist Guide,” Computers and Graphics, 1999, 23(6):883-891.
Cheverst et al., “Developing Interfaces for Collaborative Mobile Systems,” 1999, 15 pages.
Cheverst et al., “Experiences of Developing and Deploying a Context-Aware Tourist Guide: The Guide Project,” 2000, pp. 20-31.
Cheverst et al., “Exploiting Context to Support Social Awareness and Social Navigation,” SIGGROUP Bulleting Dec. 2000, 21(3):43-48.
Cheverst et al., “Services to Support Consistency in Mobile Collaborative Applications,” Proc. 3rd International Workshop on Services in Distributed Networked Environments, 1996, 8 pages.
Cheverst et al., “Sharing (Location) Context to Facilitate Collaboration Between City Visitors,” 2000, 8 pages.
Cheverst et al., “Supporting Collaboration in Mobile-aware Groupware,” Workshop on Handheld CSCW, 1998, 6 pages.
Change Request for “U.S. specific Emergency Services requirements included as an informative annex,” Nov. 29, 1999, 2 pages.
Costa et al., “Experiments with Reflective Middleware,” Proceedings of the ECOOP'98 Workshop on Reflective Object-Oriented Programming and Systems, ECOOP'98 Workshop Reader, 1998, 13 pages.
Davies et al., “L2imbo: A distributed systems platform for mobile computing,” Mobile Networks and Applications, 1998, 3:143-156.
Davies et al., “‘Caches in the Air’: Disseminating Tourist Information in the Guide System,” Second IEEE Workshop on Mobile Computer Systems and Applications, Feb. 25-26, 1999, 9 pages.
Dix et al., “Exploiting Space and Location as a Design Framework for Interactive Mobile Systems,” ACM Transactions on Computer-Human Interaction (TOCHI)—Special issue on human-computer interaction with mobile systems, 2000, 7(3):285-321.
Drane et al., “Positioning GSM Telephones,” IEEE Communications Magazine, Apr. 1998, pp. 46-59.
Drane and Rizos, “Role of Positioning Systems in ITS,” Positioning Systems in Intelligent Transportation Systems, Dec. 1997, pp. 312, 346-349.
Efstratiou et al., “Architectural Requirements for the Effective Support of Adaptive Mobile Applications,” 2000, 12 pages.
“Estonian operator to launch world's first Network-based location services,” Ericsson Press Release, Oct. 11, 1999, 2 pages.
Fischer et al., “System Performance Evaluation of Mobile Positioning Methods,” IEEE, Aug. 2002, pp. 1962-1966.
Flinn and Satyanarayanan, “PowerScope: A Tool for Profiling the Energy Usage of Mobile Applications,” Proc. WMCSA '99 Second IEEE Workshop on Mobile Computing Systems and Applications, Feb. 25-26, 1999, 9 pages.
French and Driscoll, “Location Technologies for ITS Emergency Notification and E911,” Proc. 1996 National Technical Meeting of the Institute of Navigation, Jan. 22-24, 1996, pp. 355-359.
Friday et al., “Developing Adaptive Applications: The MOST Experience,” J. Integrated Computer-Aided Engineering, 1999, pp. 143-157.
Gunnarsson et al., “Location Trial System for Mobile Phones,” IEEE, 1998, pp. 2211-2216.
Jose and Davies, “Scalable and Flexible Location-Based Services for Ubiquitous Information Access,” HUC'99, LNCS 1707, 1999, pp. 52-66.
Klinec and Nolz, “Nexus-Positioning and Communication Environment for Spatially Aware Applications,” IAPRS, Amsterdam, 2000, 7 pages.
Kovacs et al., “Adaptive Mobile Access to Context-aware Services,” Proc. ASAMA '99 Proc. First International Symposium on Agent Systems and Applications Third International Symposium on Mobile Agents, IEEE Computer Society Washington, DC, 1999, 12 pages.
Kreller et al., “UMTS: A Middleware Architecture and Mobile API/Approach,” IEEE Personal Communications, Apr. 1998, pp. 32-38.
Kugler and Lechner, “Combined Use of GPS and LORAN-C in Integrated Navigation Systems,” Fifth International Conference on Satellite Systems for Mobile Communications and Navigation, London, UK, May 13-15, 1996, pp. 199-207.
Kyriazakos et al., “Optimization of the Handover Algorithm based on the Position of the Mobile Terminals,” Communications and Vehicular Technology, Oct. 2000, pp. 155-159.
Leonhardt and Magee, “Multi-Sensor Location Tracking,” MobiCom 98, Dallas, TX, pp. 203-214.
Leonhardt and Magee, “Towards a general location service for mobile environments,” Proc. Third International Workshop on Services in Distributed and Networked Environments, Jun. 3-4, 1996, 8 pages.
Long et al., “Rapid Prototyping of Mobile Context-Aware Applications: The Cyberguide Case Study,” MobiCom '96, 1996, 11 pages.
Yokote, “The Apertos Reflective Operating System: The Concept and Its Implementation,” OOPSLA'92, pp. 414-434.
Popescu-Zeletin et al., “Applying Location-Aware Computing for Electronic Commerce: Mobile Guide,” Proc. 5th Conference on Computer Communications, AFRICOM-CCDC'98,Oct. 20-22, 1998, 14 pages.
Zhao, “Mobile Phone Location Determination and Its Impact on Intelligent Transportation Systems,” IEEE Transactions on Intelligent Transportation Systems, Mar. 2000, 1(1):55-64.
Microsoft Outlook 2003 User's Guide, http://opan.admin.ufl.edu/user—guides/outlook2003.htm. Aug. 2004, 17 pages.
“Error: could not find a contact with this e-mail address.” Outlookbanter.com. Dec. 2006, 12 pages.
European Search Report in EP 12 15 4027 mailed Apr. 10, 2012, 7 pages.
European Search Report in EP 12 15 4026 mailed Apr. 10, 2012, 5 pages.
European Search Report in EP 12 15 4025 mailed Apr. 12, 2012, 7 pages.
European Search Report in EP 12 15 4024 mailed Apr. 10, 2012, 6 pages.
Weinberg, “Using the ADXL202 in Pedometer and Personal Navigation Applications,” AN-602, Analog Devices, Jul. 2002, 8 pages.
Related Publications (1)
Number Date Country
20090005978 A1 Jan 2009 US
Provisional Applications (1)
Number Date Country
60946771 Jun 2007 US