Field of the Invention
This invention relates to optical cable assemblies. More particularly, the invention relates to an optical fiber furcation tube with improved strength characteristics and/or ease of use.
Description of Related Art
The wireless communications industry is changing from traditional signal delivery from ground based transceivers delivering/receiving the RF signal to/from the antenna atop the radio tower via bulky/heavy/high material cost metal RF coaxial cable to optical signal delivery to a tower top mounted transceiver known as a remote radio unit (RRU) or remote radio head (RRH) with implementation of fiber to the antenna (FTTA) cabling.
Optical conductors of FTTA cabling may be fragile, requiring great care to properly terminate.
Prior RRU/RRH terminations have employed an over-voltage protection and/or distribution box for terminating each of the optical conductors as individual jumpers. These additional enclosures require field termination of the several conductors atop the radio tower, increasing installation time and labor requirements. Further, each break in the conductors provides another opportunity for signal degradation and/or environmental fouling.
Factory terminated cable assemblies are known. However, these assemblies may apply splices to the conductors, require a relatively large in-line break-out/splice enclosure and/or utilize environmental seals which fail to positively interlock the jumpers therewith, which may increase the potential for cable and/or individual conductor damage to occur.
Furcation tubes may be applied to fibers and or fiber bundles stripped back from the cable end to protect the optical fibers from damage between the cable and the optical fiber termination. Prior optical fiber furcation tubes typically consist of an inner polymer tube surrounded by a para-aramid synthetic fiber sheath, or a para-aramid synthetic fiber sheath alone. Further, it may be labor intensive to prepare the furcation tube for interconnection and/or to thread an optical fiber through a furcation tube.
Therefore, an object of the invention is to provide an optical conductor furcation tube solution that overcomes deficiencies in the prior art.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention, where like reference numbers in the drawing figures refer to the same feature or element and may not be described in detail for every drawing figure in which they appear and, together with a general description of the invention given above, and the detailed description of the embodiments given below, serve to explain the principles of the invention.
In order to connect conductors and/or fibers of a cable directly to the RRH, optical fiber and electrical conductors, if present, may be separated from the cable as individual jumpers, the jumpers protected with separate furcation tubes. The inventor has recognized that, although available optical furcation tubes may provide protection, compared to a bare optical fiber, damage to optical fibers may still occur if the furcation tube is crushed, kinked or bent.
An exemplary rugged furcation tube 1 has an inner jacket 5 surrounded by a radial array of fibers 10 and strength members 15 provided in a fiber and strength layer 17 which are surrounded by an outer jacket 20, for example as shown in
The fiber and strength layer 17 may be provided with a radial array of the strength members 13 spaced generally equal distances apart from one another, such that one of the strength members 13 is provided between each of the bundles of fiber 10.
The inner jacket 5 may be dimensioned for ease of inserting an optical fiber 30, fiber bundle and/or electrical conductor therethrough, with or without the assistance of a pull strand 25, for example, as shown in
The inner jacket 5 may be provided, for example, as a polymer material with desired strength, cost, temperature and/or moisture resistance characteristics, such as polyethylene, thermoplastic polyester elastomer, polytetrafluoroethylene, nylon, polyvinylidene difluoride and the like.
The inner jacket 5 may alternatively be provided further surrounding a fiber layer 35 and an inner tube 40, for example as shown in
Alternatively, the inner jacket 5 may surround a plurality of inner tubes 40, for example two inner tubes 40, as shown in
A pull strand 25 may also be provided in the inner diameter of each inner tube 40.
A fiber layer 35 may also be applied to fill space between and/or further stabilize the plurality of inner tubes 40 and the inner jacket 5, for example as shown in
The strength members 15 may be para-aramid, glass-reinforced plastic or other forms of resin-pultruded fiber rod selected for a desired tensile strength and cable bend radius. Alternatively, the strength members may be embedded in the outer jacket 20. One skilled in the art will appreciate that the strength members 15 also provide a thermal expansion stability characteristic to the furcation tube 1.
Diameters of the outer jacket 20 and/or inner jacket 5 may be selected to seat within connectors or seal glands at cable entry points of intended equipment and/or junction boxes.
One or more rip cords 45 may be provided between the outer and inner jackets 20, 5, for ease of stripping back the fiber and strength layer 17 during cable termination.
The fibers of the fiber and strength layer 17 and/or fiber layer 35 may be, for example, para-aramid fibers or yarn bundles.
One skilled in the art will appreciate that the rugged furcation tube 1 enables the splice-free fiber distribution of an optical cable, wherein the optical fibers are protected from kinking, crushing and/or thermal stresses. Further, color coding of inner tubes 40, pull strands 25 and/or rip cords 45 may simplify installation of the furcation tube 1.
Where in the foregoing description reference has been made to materials, ratios, integers or components having known equivalents then such equivalents are herein incorporated as if individually set forth.
While the present invention has been illustrated by the description of the embodiments thereof, and while the embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details, representative apparatus, methods, and illustrative examples shown and described. Accordingly, departures may be made from such details without departure from the spirit or scope of applicant's general inventive concept. Further, it is to be appreciated that improvements and/or modifications may be made thereto without departing from the scope or spirit of the present invention as defined by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4695127 | Ohlhaber et al. | Sep 1987 | A |
5050958 | Smith et al. | Sep 1991 | A |
5345526 | Blew | Sep 1994 | A |
5408561 | McCallum et al. | Apr 1995 | A |
5418878 | Sass et al. | May 1995 | A |
5467420 | Rohrmann et al. | Nov 1995 | A |
5468913 | Seaman et al. | Nov 1995 | A |
5539851 | Taylor et al. | Jul 1996 | A |
5915055 | Bennett et al. | Jun 1999 | A |
6195487 | Anderson et al. | Feb 2001 | B1 |
6326550 | Dyer et al. | Dec 2001 | B1 |
6350947 | Bertini et al. | Feb 2002 | B1 |
6738555 | Cooke et al. | May 2004 | B1 |
7035511 | Rhoney et al. | Apr 2006 | B1 |
7257298 | Moon et al. | Aug 2007 | B2 |
7738759 | Parikh et al. | Jun 2010 | B2 |
7903925 | Cooke et al. | Mar 2011 | B2 |
7955004 | DiMarco | Jun 2011 | B2 |
8000572 | Varkey | Aug 2011 | B2 |
8155490 | de Jong et al. | Apr 2012 | B2 |
8267596 | Theuerkorn | Sep 2012 | B2 |
20020003935 | Warden et al. | Jan 2002 | A1 |
20040197066 | Daoud | Oct 2004 | A1 |
20050276551 | Brown et al. | Dec 2005 | A1 |
20060188210 | Zimmel | Aug 2006 | A1 |
20080138026 | Yow et al. | Jun 2008 | A1 |
20080247717 | Patlakh | Oct 2008 | A1 |
20080289851 | Varkey | Nov 2008 | A1 |
20090060431 | Lu | Mar 2009 | A1 |
20090304338 | Davidson et al. | Dec 2009 | A1 |
20100098386 | Kleeberger | Apr 2010 | A1 |
20100158457 | Drozd et al. | Jun 2010 | A1 |
20110243514 | Nav | Oct 2011 | A1 |
20120230636 | Blockley et al. | Sep 2012 | A1 |
20120328253 | Hurley et al. | Dec 2012 | A1 |
20130163932 | Cooke | Jun 2013 | A1 |
20140226940 | Keller et al. | Aug 2014 | A1 |
Number | Date | Country |
---|---|---|
2163928 | Mar 2010 | EP |
Entry |
---|
Sung Chul Kang, International Search Report for PCT/US2013/061525, Jan. 22, 2014, Daejeon Metropolitan City, Republic of Korea. |
Jon Andreassen, European Search Report for associated application EP13857286, European Patent Office, Berlin Germany. |
Number | Date | Country | |
---|---|---|---|
20140140669 A1 | May 2014 | US |
Number | Date | Country | |
---|---|---|---|
61728020 | Nov 2012 | US |