This invention is in the field of systems and methods for recovering hydrocarbons from water, including oil spills on open-water surfaces such as the ocean.
The continuing incidence of oil spillage into both marine and inland waterways due to shipping accidents results in enormous annual costs both financially to the shipping and insurance industries and environmentally. Many spill incidents occur in bad weather or in remote locations. Current systems for ameliorating oil spills require that specialized spill-response ships containing unique heavy equipment reach the site of the spill quickly, which requires relatively calm waters. There is a limited number of units of specialized equipment, and they are not easily transported. Thus, in many cases, response to the spill is delayed for many hours or even days. The impact of a spill is greatly increased by both bad weather and delayed response. Spill damage can be mitigated if response is rapid, even in rough-water conditions.
An additional problem is the high cost of disposal of the recovered material. Current recovery systems create large quantities of waste, which must be disposed of as hazardous waste at high financial cost. This problem can be solved by employing a system that allows for recycling, reclaiming, or low cost disposal.
Known systems for the clean-up of oil spilled on water fall into two categories: (1) absorption or adsorption (sorbing) of the oil, or (2) skimming of the oil, typically in conjunction with containment.
Many materials are known to be oil-absorbent or oil-adsorbent, such as wood chips, activated carbon, wool, cotton balls, corn husks, duck feathers, and various synthetic polymeric materials. A number of polymeric materials (polypropylene, polyester, polyurethane, vinyl polymers, and others) are known to absorb or adsorb crude or refined oil. Systems for applying these materials to oil spills are less developed. Application of materials to oil have been largely limited to two types: (1) spraying particles of the oil-sorbing material on the spill, or (2) placing the material inside booms or other barriers that surround the spill.
Either method creates severe collection problems for sorbent material in particulate form, including sinking of the oil-loaded material, loss of the oil-loaded material due to dispersion by wave or wind action, and dissolution of the oil-sorbent material in the oil spill. These problems are exacerbated when the spill occurs in bad weather or near shorelines. In addition, because 90% of spilled oil is typically located in 10% of the spill area, the dissolution problem can be particularly troublesome inside barriers. Further, the application of oil-sorbing material typically employs spill boats, which rely on availability of the boat and access to the spill. Both of these can be a severe problem in remote locations or bad weather.
Containers for oil-sorbing materials are known. These systems generally employ pillow or bale shaped containers. However, these containers have a tendency to pile up on top of each other, creating an undesirable condition in which a significant amount of the sorbent material is either below the waterline or floating above the oil, in either case out of contact with the oil. In addition, the large cross section of these types of containers tends to result in an “oil lock-out” phenomenon, in which the surface of the material becomes saturated with oil, effectively preventing oil migration to the center of the material. These containers also have a propensity for folding over on themselves in heavy seas, thereby reducing the contact between oil and the sorbent material.
On the other hand, oil-containment systems utilize booms to surround the spill until the oil can be collected. Boom systems have a number of designs, some of which employ oil sorbent materials in their construction. However, oil-sorbent booms are not designed to sorb substantial amounts of oil, but rather are generally used to retrieve a sheen or a small oil spill or to prevent the spill from expanding or reaching a protected area such as a shoreline until it can be collected by mechanical means, typically utilizing skimmers or oil-recovery boats.
Containment systems employing traditional booms have numerous problems. Deployment of some booms requires specialized equipment, which can be slow and difficult. If the spill is large, surrounding the spill may not be possible due to lack of sufficient boom resources. All of these problems can delay response to the spill. Therefore, boom and skimmer systems do not work well in rough water or near obstacles.
Delayed response to a spill results in a number of deleterious changes. A spill spreads uncontrollably and rapidly to a thin layer on water (less than 1 mm in many cases), making containment extremely difficult if not impossible. If close to shore, the oil may wash ashore, causing severe environmental damage. Lighter fractions of the oil (volatile organic compounds) are released into the atmosphere, resulting in hydrocarbon air pollution. The oil will undergo aging and emulsification, which can cause the oil to sink, making cleanup even more difficult. All of these changes cause the cleanup of the spill to become much more difficult, increase the environmental impact, and raise the financial cost of the cleanup.
There has been a need for some time, therefore, for an oil-recovery system that would (1) permit faster response, (2) work better in adverse conditions, such as rough water or near shorelines and obstacles, (3) prevent more of the oil from sinking, (4) contain the extent of the oil spill more quickly, (5) permit easier and more flexible deployment, (6) allow for easier collection, (7) permit economical recycling or disposal of the collected oil, and better protect the environment.
Accordingly, it is a primary object of the present invention to achieve a more effective system for recovering oil from the surface of bodies of water, such as oceans, lakes, or rivers.
It is another object of the invention to provide methods and apparatus for applying oil-absorbent or oil-adsorbent materials to an oil spill quickly and easily, accurately, and with minimal disturbance of the environment.
It is another object of the invention to provide methods and apparatus for effectively containing water-borne oil spills, even under adverse conditions or near shorelines, rocks, and reefs.
It is another object of the invention to provide methods and apparatus for ameliorating oil spills both by containment, such as within a barrier, and by entrapping the oil in an oil-sorbent material.
It is another object of the invention to provide a means of improving the collection of spilled oil.
It is another object of the invention to provide systems for controlling oil spills in areas of a body of water that are remote from collection vessels or in areas where shipping hazards or the oil itself prevent safe vessel operation, for later removal.
It is another object of the invention to provide collection systems that do not need to rely on the presence of specialized boats or vessels but can work with them.
It is another objective of the invention to provide systems for controlling oil spills that provide for the economical recycling of the collected oil as fuel.
It is another objective of the invention to provide systems for controlling oil spills that provide for the disposal of the oil through in-situ burning of the oil.
The present invention achieves the above and other objectives by use of a plurality of water- and oil-porous containers or sacks that are partially filled with a hydrophobic, compliant, oil-absorbent, copolymer material arranged in a number of bodies that (a) are generally cylindrical, (b) are porous, (c) have at least one passageway parallel to the axis of the cylinder, and (d) are dimensioned to float on water with the axis parallel to the surface of the water. The material is formed with a binder in a novel extrusion process. Optionally, a multitude of small flakes of a rigid, inert, smooth material having a surface that is wettable with respect to hydrocarbons are embedded in the bodies. Each sack is sewn in a novel way, with a perimeter stiffening ring, to retain a flat profile, and has a netting that closes to help inhibit outflow of the oil when the sack is retrieved. When deployed from ship or by air onto a spill, the sacks spread into a pancake shape and the copolymer bodies form a relatively thin layer that retains the oil. The inventive sacks will float indefinitely without releasing the oil or allowing it to emulsify, so the oil can remain in place until collection efforts are feasible. The sacks can be burned in situ, or standard fishing boats or specialized collection boats can be used to retrieve the sacks, and the collected material can be burned to capture the energy content of the oil or processed to separate the oil from the copolymer. The inventive sacks can be used in conjunction with other, known containment or retrieval equipment, such as booms or skimmers, if desired.
Thus, the inventive systems, devices, and methods can be used to permit (1) easy and quick deployment of containment equipment, even if a spill is in an inconvenient or distant location, (2) effective control of the spilled oil during any delays in recovery, and (3) comparatively inexpensive and easy collection of the oil during the clean-up stage. The system is specifically designed for rapid deployment and efficiency in rough water.
Other aspects of the invention will be appreciated by those skilled in the art after a reading of the detailed disclosure of the present invention below.
Common numerals are used in the several figures to indicate similar elements.
The system includes the application to the oil spill of hundreds or thousands of sacks containing a quantity of appropriately formed bodies comprising copolymer-based materials that are known to absorb and entrap crude or refined hydrocarbon products, including crude oil of any viscosity and gasoline or other refined fuels. For purposes of this application, the term “oil” refers to any hydrocarbon material.
Sack Deployment
The fact that sacks 10 are easy to deploy also permits the most rapid possible form of response, namely delivery from the very tanker that has caused a spill. Known spill-control systems typically require complex, specialized equipment run by well-trained crews, and cannot be readily deployed from tankers. The inventive delivery system, by contrast, is simple enough to be deployed by tanker workers who are not skilled in handling spills, and inexpensive enough to be carried aboard tankers. It is not likely that an on-board tanker-delivery system can cure the entire spill, but prompt application of a quantity of sacks 10 can assist in the initial clean-up by reducing the extent of spreading and quantity of unrecovered oil.
As also shown in
Sack Structure
Before deployment, sacks 10 are suitable for compact storage. As seen in the cross-section of the preferred embodiment of
In a preferred embodiment, each sack 10 may measure at least several feet across and contain from a few kilograms of material that can entrap oil to many tens of kilograms. Although larger sizes are also suitable, sacks 10 that measure less than a meter across have been found useful because of the ease of handling and flexibility of application. As shown in
It has been found that sacks 10, when dropped onto open water 50, will quickly expand into the configuration shown in
Sacks 10 will float on the surface of the water, and oil coming into contact with the material contained inside sacks 10 will become entrapped by those copolymers. Because the copolymer material is hydrophobic, however, it will not become water-logged. It has been found that sacks 10 containing copolymers will float on the surface of water for at least several weeks, and perhaps indefinitely, without sinking, releasing the oil, or allowing it to emulsify.
The copolymer material in sacks 10 can be of one color, such as white, and change color, such as to black, when oil is entrapped therein. Further details of the copolymer material are specified below.
An optional feature shown in
Another optional feature of sack 10 is a small radio transmitter 100, such as shown schematically in
Such a location device 100 can permit prompt location of sacks 10 that have floated beyond the extent of the spill or otherwise been lost. Also, in cases where sacks 10 are dropped in a remote location by air, location device 100 can provide boats approaching a spill with easy navigational guidance, allowing recovery boats to locate the spill and other boats to avoid inadvertently sailing into the midst of the spill.
The outer material of sack 10 is formed from two layers 200, 210 sewn together. The copolymer-based material described below is placed inside sack 10 between those two layers. The layers 200, 210 can be formed of polypropylene, plastic, string or cord such as used in ordinary fishing nets, nylon, or another suitable material. In one suitable embodiment, a woven mesh formed of polypropylene was used. That material floats on water and is a strong material that is highly resistent to tearing, so if a small tear or rip opens, the material will resist its extension.
It is necessary, however, that the sack material have enough porosity to allow passage of the spilled oil to the absorbent material contained therein. Material having gaps of three eighths of an inch has been found most suitable, particularly for use on crude oil.
The necessary porosity of the sacks will depend, however, on the weight of the oil being collected. For example, a tight mesh may work on diesel or gasoline spills but not on heavier crude oil. In one test, a fabric measured as having air permeability of 150 cubic feet per minute at a half inch of water was found suitable for absorbing diesel fuel but not crude oil.
The material of the sack, however, must be sufficiently non-porous to contain the encapsulating copolymer matter. If the copolymer bodies specified below are used, even sack material having high porosity will be able to contain the absorbent material without leakage. Thus, larger bodies have the additional advantage of promoting the desirable goal of using high-porosity sack material, which permits better passage of oil.
Forming the outer material of sack 10 from two layers 200, 210 sewn together is particularly advantageous in helping sack 10 lay flat on the water, while also reducing the chance that the sack will fold over onto itself, which is undesirable because it limits the extent of sack 10. The flat configuration further assists in distributing the weight of the sack across its entire lateral extent, which helps in preventing bursting from concentrations of oil-filled copolymer at any particular point. The use of dual layers also promotes the wave action of the water helping to spread out the sack, as opposed to ordinary designs, in which wave action causes problems. Thus, use of the inventive system permits improved collection in actual conditions encountered in real oil spills.
Outside of layers 200, 210 are two webs 220, 225 formed of 1.5 inch wide polyester webbing. Material with a yarn count of 1,300 per inch and a breaking point of 4,000 pounds has been found more than sufficient for the loads encountered. For smaller sized sacks (three foot diameter or smaller), polypropylene webbing with a breaking point of 1,200 pounds can be used. Webs 220, 225 assist in preventing or limiting the extent of rips or tears in layers 200, 210.
Webbing rings 240, 250 are placed around the perimeter of sack 10 outside of webs 220, 225. Nylon webbing about 4 cm. wide with a warp yarn count of 1,680 per inch and breaking point of 6,000 pounds has been found suitable. Webbing rings 240, 250 hold the elements shown in
If desired, during recovery, webbing rings 240, 250 can be hooked to pick up sacks 10.
The members of web 220 are sewn so as to leave an opening for the neck of flange 230, which can be made of hard plastic dip-molded material such as PVC. The base of flange 230 is attached between web 220 and layer 200, such as by sewing directly through the material of the plastic. Flange 230 is used as a port through which the copolymer material can be inserted into sack 10. The erect shape of the flange helps during retrieval.
A closer view of flange 230 is shown in
Shown in
Internal dividers (not shown) can optionally be used to further assist in preventing accumulation of copolymer material at certain spots. Neon colors can be used on the webbing or rings to facilitate location of sacks 10 during retrieval.
Webbing rings 240, 250 can also be formed of a single piece of material 245 that is folded over the edge of the perimeter of the assembly and stitched, forming a flat “U” shape in cross-section, as shown in
Double and triple stitching, or zigzag stitching, techniques are preferably used to prevent seam rupture or load failures. The connector rings such as snap hooks 260 shown in
Although
Also, booms of this sort can be deployed near shorelines, to prevent oil from reaching land, or directly on the shoreline at water's edge, to filter oil moving on shore or as oil returns to the water.
In a preferred embodiment, the members of webs 220, 225 are attached to the woven mesh of layers 200, 210. Specifically, the members are preferably oriented in the same direction as the major axes of the diamond-shaped holes formed by the mesh, which is usually perpendicular to the warp of the woven material of webs 220, 225. This preferred configuration is shown in
The unique construction of the sort shown in the example of
The construction produces the flat profile in part for the following reasons: Webbing rings 240, 250 help flatten the profile of sack 10 by providing a stiff perimeter member. Also, in the circular arrangement, each segment of rings 240, 250 form a kind of an arch, creating tension that resists any tendency of webs 220, 225 to pull the perimeter radially inward.
The flat profile of sacks 10 therefore spreads the oil-absorbent copolymer material into an optimal position for encountering the oil; that is, in a flat layer on the surface of the water. The encounter rate of the sorbent material with the oil is vastly improved with the arrangement shown, as opposed to known containers.
The arrangement of the sacks 10 combines with the natural buoyancy of the copolymer bodies to allow sacks 10 to remain afloat on the surface of the water for long periods of time, such as weeks or months or more. In one test, sacks remained afloat and effective for 16 weeks. Even over such extended time periods, the sacks 10 will hold the material in a flat sheet fashion, whether or not the material has sorbed oil.
A modified sack 10 is shown in
The configuration shown in
Like the sack of
In place of webs 220, 225 consisting of diametric straps (see
In sack 10 of
Cloth collar 250 can also be used to replace ring 80 and fill tube 230 in the embodiment of sack 10 shown in
Copolymer Bodies
The principal ingredient of bodies 300 is a copolymeric material that is known to sorb oil but not water. Preferably, the material is compliant or flexible. A possible alternative to copolymers is natural or synthetic rubber, such as polyisoprene.
Particularly suitable types of copolymers fall within the class of thermoplastic elastomers, such as styrene-butadiene-styrene (“SBS”), which is a styrenic block copolymer. Styrenic block copolymers were developed for applications that require impact resistance, and this is still their primary use. SBS is highly sorbent, non-toxic, and remains coherent after it is oil saturated. An alternative styrenic block copolymer is styrene-isoprene-styrene (“SIS”).
In a preferred embodiment formed in accordance with the preferred process described below, SBS material formed into granules is mixed with granulated binder material. In that embodiment, granular porous SBS with about 30% styrene has been found suitable, when sifted to retain particles in the range of sizes between 4 and 20 mesh. Preferably, the SBS product is manufactured without talc, contrary to the standard manufacturing process, to enhance inter-granular bonding in the formed body.
The binder material is a compliant or flexible, hydrophobic, olefinic polymer material in a granular form and having a melting point lower than that of the oil-absorbent copolymer. Polyolefin thermoplastic elastomers, such as ethylene propylene (“EP”) rubber or ethylene propylene diene monomer (“EPDM”) have been found suitable. The binder prevents formed bodies 300 from crumbling while being handled in dry form, yet also absorbs a certain quantity of oil, although perhaps not as fast as SBS.
An optionally third component of bodies 300 is a rigid, inert, smooth, thin flake of a material that has a surface that is wettable with respect to hydrocarbons. Any such material can be used, including mica, metal, or polymers, but polymethylpentene (“PMP”) is a primary example. Alternative examples include polyethylene-terephthalate (“PET”), metallized polycarbonate, and polyvinylchloride. The flakes should be relatively thin, such as less than a millimeter thick. The shapes of the flakes is not particularly important, and good results have been achieved with randomly chopped material a few millimeters across. In some embodiments, the flakes enhance the flow of oil into the center of the formed copolymer body 300, apparently by providing a channel or surface along which the oil can flow. In other embodiments, including those formed in accordance with the preferred process described below, the flakes are not essential but can optionally be added.
In the preferred embodiment, 70–90% by weight of the material of bodies 300 consists of SBS and the remainder of EPDM binder. As explained below, the SBS and EPDM granules are mixed and formed into bodies 300 in a way that results in SBS granules in an EPDM matrix. If flakes are included, they might make up about 5% of the total weight.
Because of the desire, as noted above, to allow the copolymer material to remain in a flat layer, it is desirable to create a relatively large body 300, so that the material does not pile on top of itself. However, large bodies result in a greater distance between outer surface 310 and center surface 320, which is disadvantageous because oil would require a much longer time of exposure to soak into the center. Because in real oil spills, a particular quantity of oil may encounter body 300 only sporadically, in a large body, the center material largely remains unused.
A preferred embodiment that solves this dilemma uses a generally tube shape for bodies 300. For example, a cylinder with an outer diameter from about two to five centimeters has an hole about one to two centimeters in diameter along the longitudinal axis, resulting in a body 300 that has all of its material less than about a centimeter or two from the nearest surface.
The relatively large inner hole allows water and oil to pass through and between the bodies 300 easily, thereby improving the chances of oil encountering a copolymer surface. Also, removal of material from the center of body 300 reduces the amount of material in each body, without significantly reducing the quantity of oil absorbed, which further improves the quantity of oil entrapped per unit quantity of copolymer.
Multiple holes parallel to the cylinder's axis can be used in addition to the axial hole or instead of it. For example, in one arrangement (not shown) three holes are arranged on radial planes separated by 120° angles, the holes being equidistant from the axis of the cylinder. This arrangement permits enhanced flow-through of oil even if the oil layer does not intersect the cylinder along the axis, for example if some of the bodies 300 are partly submerged.
Bodies 300 should be formed with a length exceeding the outer diameter of the cylinder. This restriction is important, because it ensures that bodies 300 will float on the water with the axial hole parallel to the surface of the water, permitting better pass-through of oil. This is particularly important for bodies 300 used with the inventive sacks 10, because sacks 10 are designed to permit bodies 300 to float in a single layer, as discussed above. When afloat amidst oil, bodies 300 near the circumference of sack 10 tends to physically block oil from flowing to other bodies 300 closer to the center. The inclusion of axial holes, and their orientation parallel to the surface of the water, counteracts this tendency. In addition, in some circumstances, the preferred hole orientation permits more oil to remain inside the axial passageway, permitting more time to complete the absorption process.
Bodies 300 can be supplemented with different-shaped bodies in sacks 10. Using such a mixture of bodies 300 is advantageous over the use of a uniform type of body, because regular-shaped bodies can become arranged in a more fitted-together fashion, reducing the quantity of interstitial space, which thereby lowers the encounter rate.
The generally cylindrical exterior 310 of bodies 300 is preferred, as it reduces the area of contact between adjacent bodies 300. The pressure from many bodies 300 in sack 10 and the softness of the constituent materials tends to meld bodies 300 together, with the consequential tendency to lower the encounter rate. A reduced contact area counters this undesired effect.
Another undesired effect is called “matting” or “gel blocking,” in which the first quantity of absorbed oil combines with an outer layer of grains in body 300 to form a barrier, preventing unabsorbed oil from continuing into the part to reach inner layers of grains and be absorbed thereby.
To increase the surface area of the bodies 300, consequently permitting faster oil absorption and less gel blocking, without increasing the distance from surface to center, it is desirable to have inner and outer surfaces 310 and 320 roughened somewhat. The same is true of end surfaces 350 and 360. The preferred process of formation discussed below promotes this goal. Alternatively, cutting or stamping bodies 300 from sheets of molded material has been found to roughen surfaces 310, 320, while first cutting the sheets from blocks roughens surfaces 350, 360. Also, the sheets or parts can be molded in a rough-sided dimple mold.
Also to reduce gel blocking, bodies 300 preferably have numerous fissures 370 extending into bodies 300 from some or all exterior surfaces and passing between the grains of SBS. Again, the preferred formation process discussed below promotes this goal.
In one example, a body 300 measuring about 3.5 cm. across and about 7.5 cm. long, with a 1 cm. diameter axial hole, was found suitable. That body 300 has a bulk density of about 0.62 g/cc and weighed, therefore, just over 40 grams. A sack 10 of 1.8 meters diameter can carry about 15 kg. of copolymer material, which represents nearly 400 units of the exemplary bodies 300. A sack 10 of two-thirds of a meter diameter can carry about 2 kg. of copolymer material, which represents about 50 units. The weight of the sacks after bodies 300 absorb oil is about an order of magnitude greater.
The bulk density of the resulting body is controlled, also to reduce gel blocking. With the preferred bulk density, the SBS granules in bodies 300 are also less likely to clump to each other when soaked with oil, which also improves sorbency. Similarly, the SBS grain sizes identified above are selected to avoid gel blocking from either overly large chunks or agglomerated small-diameter, powdery particles.
With the preferred materials discussed above, bulk density greater than 0.75 g/cc tend to prevent the oil from entering the bodies, while bulk density smaller than 0.45 g/cc cause the bodies to fragment, either when dry or after absorbing oil. For example, copolymer bodies with a bulk density in the preferred range have enough inter-granular voids to permit oil to penetrate substantially throughout the thickness of bodies 300 without causing them to fall apart.
Bodies 300 formed in accordance with
In another extension of the inventive form, a structure (not shown) is formed of a number of bodies 300 arranged side-by-side, with longitudinal axes parallel to each other. To form such a structure, multiple bodies 300 can be affixed together, or the structure can be manufactured as a unitary sheet haying opposing top and bottom scalloped surfaces, with the holes located between the surfaces at the thicker regions.
Forming the Copolymer Bodies
One method of forming bodies 300 shown in
Another, preferred method of forming bodies 300 applies a modified extrusion process. SBS and EPDM granules are placed in the hopper of an extruder of conventional design, for example, a two-inch Bonnot lab extruder with a hot-water external barrel heater. The extruder heats the granular material to a temperature not exceeding 120° F., far below normal extrusion temperatures for plastic products, and preferably not exceeding 105° F.
In the barrel of the extruder, the EPDM quickly become plasticized, as a result of heat, pressure, and mechanical agitation by the screw and barrel in combination. The extruder's screw mixes the plasticized EPDM and the unmelted SBS, forming a matrix of EPDM surrounding SBS granules. Because the SBS is not melted, some air bubbles remain in the mixture. The softening process occurs quite rapidly in the extruder, permitting very short dwell times (such as less than one minute), which permits rapid manufacturing.
The partially plasticized composite material is pressed through a circular die with a central rod or mandrel, to form the cylindrical structure with the axial hole shown in
Upon passing through the die, the SBS granules, which have been compressed somewhat by being forced through the die, reexpand, “fluffing” the extruded material while it cools and hardens. The expansion is further assisted by air remaining in the mixture. The extruded material is cut into suitable lengths to form the final bodies 300.
When cooled and resolidified outside the extruder, the EPDM matrix 390 (see
The fluffing effect (typically undesired in extrusion processes) is beneficial because it forms inter-granular fissures 370 in the EPDM matrix, throughout the structure. However, the fissuring is not so great as to cause loss of structural integrity. As noted above, fissures are preferred to facilitate rapid passage of oil into bodies 300 and to reduce the incidence of gel blocking, permitting continued absorption.
In bodies 300 formed according to the preferred method, any reduction in absorbency caused by the binder (compared to a body composed exclusively of higher-absorbent material, such as SBS) is more than offset by the increase rates of contact between oil and SBS caused by the fissuring and rough external texture and the reduced tendency to premature gelation.
Sack Collection
A vacuum airstream conveyance and transfer (VACT) system can be used to collect sacks 10 using airstream induction (as opposed to pure vacuum pressure). An example of such a system already on the market and known to the ordinarily skilled artisan is called the Linductor system, available from Linductor, Inc. of Seattle, Wash. This Linductor device was developed for transferring bulk solids or volumes of liquids, including removing spilled oil from the surface of water. It has been found that a VACT system that is a variant of the Linductor can be used to gather sacks 10 containing spilled oil more expediently in certain sea conditions. The Linductor system as marketed and if mounted on an appropriate vessel, such as a barge, is capable of picking up sacks up to three feet in diameter, but modifications can be made to allow pickup of larger sacks and conveyance on a smaller vessel.
Such a modified VACT system 420 is depicted in
In the collection methods depicted in
Disposal
The inventive configuration of sacks 10 permits a disposal method that has been considered desirable but which is difficult if not impossible to achieve in actual practice, namely in-situ burning on the water. In-situ burning prevents the need for the boat collection techniques described above.
Sacks 10, either alone or in assembled chains or “streamers,” can be easily ignited on the water, which creates a wicking or torch effect, thereby burning not only the sacks but also unabsorbed oil surrounding the sacks. Previous attempts to burn oil spills on water have suffered from numerous difficulties, particularly the problems in ignition caused by rough water, thin oil slicks, or high emulsification. Various published articles have described prior attempts at in-situ burning and the problems faced by such attempts.
If sacks 10 are transported to dry land, they can be disposed of as waste with the oil still intact, but this is costly and environmentally not preferred. Alternatively, sacks 10 can be incinerated on land, and the energy content of the oil and copolymer can be recovered and used as power. To allow for such a disposal technique, it is preferred to use materials for the particles, for the outer material of sack 10, and for all other components of the sacks 10 that can be burned, to reduce the quantity of solid waste or air-borne pollution. The preferred materials specified in this description are so suited. Another recycling use for oil-logged copolymers is in road building.
Also, it is possible to remove the oil from the copolymer using various processes, to allow recycling of the oil with no remaining hazardous material (or possibly reuse of the copolymer product in sacks 10). For example, a fully automated process for extraction of refined oil from the copolymer bodies has been developed within a reactor unit originally formed to break down scrap tire chips into the resalable commodities of scrap steel, carbon black, and refined oil. The reactor heats the oil-soaked copolymer bodies in a sealed environment to break down the molecular structure of the copolymers. Such a reactor is a modification of a scrap-tire reactor commercially available from Tire Recycling Technologies Corporation of Albuquerque, N. Mex., called the TRTM-60 tire decomposition machine.
Certain modifications to the TRTM-60 can allow it to work on oil-soaked copolymer bodies, at a reasonable cost: (1) because of the salt content, a higher-grade stainless steel is preferred; (2) the discharge system is changed to eliminate the magnetic separator for carbon black and steel scrap, which is produced from scrap tire but not from copolymer bodies; (3) a second, liquid seal is used at the discharge end; (4) the air condenser is replaced with a second water condenser; and (5) two screw conveyor stages are used instead of five.
As thus modified, the reactor works as follows:
The copolymer bodies from sacks 10 are delivered to an inlet hopper of a sealed screw conveyor. Commercially available as a package with the TRTM-60 is information identifying certain additives that permit better breakdown of the scrap tire, and these additives are useful with the copolymer bodies as well.
Two enclosed, horizontally oriented, stainless-steel screw conveyors stages, powered by individual hydraulic drives and a central hydraulic pumping system, move the material including the copolymer bodies through the reactor while chemically breaking down the bodies while they are conveyed through the entire length. The conveyors have top inlets and discharge chutes at each end. The inlet connection to the reactor and the outlet side of the reactor are sealed, for example by liquid seals, to prevent oxygen from entering the process.
The reactor heats the material in a vacuum at 200–300° C. Each reactor conveyor has a perforated top to vent gases produced during the process. A vertical stainless steel plenum welded to each conveyor provides a means to collect these process gases. The gases are “pulled” off the top of the plenum by a turbine pump. The gas is then filtered to remove residue carried over from the reactor unit. The gases, consisting mostly of vaporized fuel oils, are then pumped through two separate condensing stages that are a water-cooled heat exchanger. Cooling is provided via an air-cooled process chiller with a circulating pumping system. Non-condensable gases are collected and recycled as the fuel medium for the burners, which can be used to maintain the temperature in the reactor unit or to power an electric generator, or can be discharged to a flare and burned.
Oil-soaked copolymer material processed in this fashion can yield much of the output as liquid hydrocarbons. Indeed, some of the resulting liquid consists of styrene, which if separated by distillation, is five to ten times more valuable than crude oil, and can improve the recycling economics. An additional portion of the total output consists of gaseous hydrocarbons, which can be further processed to a hydrocarbon mixture that can be used as clean-burning fuel for the recycling reactor. Yet another portion, generated from the ethylene components, consists of a waxy solid residue that has commercial application as a feed stock for chemical refineries. Optimally, virtually no char will remain.
Although the invention has been described with reference to specific embodiments, many modifications and variations of such embodiments can be made without departing from the innovative concepts disclosed. Thus, it is understood by those skilled in the art that alternative forms and embodiments of the invention can be devised without departing from its spirit and scope.
This application is a division of application Ser. No. 10/396,020, filed Mar. 24, 2003, now U.S. Pat No. 7,048,878 which is a division of application Ser. No. 10/038,461, filed Dec. 31, 2001, now U.S. Pat. No. 6,723,791, which is a continuation of application Ser. No. 09/005,332, filed Jan. 9, 1998, now U.S. Pat. No. 6,344,519, which claims the benefit of U.S. Provisional Application No. 60/034,677, filed Jan. 10, 1997.
Number | Name | Date | Kind |
---|---|---|---|
248559 | Jackson | Oct 1881 | A |
425641 | Van De Walle | Apr 1890 | A |
530816 | Wright | Dec 1894 | A |
543740 | Kuhns | Jul 1895 | A |
1032700 | Pickett | Jul 1912 | A |
1164527 | Kelly, Jr. | Dec 1915 | A |
1274227 | Woodson | Jul 1918 | A |
1363792 | Johnston | Dec 1920 | A |
1471819 | Bauschard | Oct 1923 | A |
1935642 | Laughlin | Nov 1933 | A |
1972513 | Drehmann | Sep 1934 | A |
2102310 | Egan | Dec 1937 | A |
2182795 | Day | Dec 1939 | A |
2467021 | Fischer | Apr 1949 | A |
2557079 | Cutri | Jun 1951 | A |
2615526 | Lane | Oct 1952 | A |
2813745 | Frieder et al. | Nov 1957 | A |
2889928 | Sisk | Jun 1959 | A |
3147216 | Oemler | Sep 1964 | A |
3221888 | Muller | Dec 1965 | A |
3246582 | Wade | Apr 1966 | A |
3324630 | Teller et al. | Jun 1967 | A |
3415745 | Isaacson | Dec 1968 | A |
3494862 | Horowitz | Feb 1970 | A |
3518183 | Evans | Jun 1970 | A |
3536616 | Kondoh et al. | Oct 1970 | A |
3537587 | Kain | Nov 1970 | A |
3538020 | Heskett et al. | Nov 1970 | A |
3539013 | Smith | Nov 1970 | A |
3565257 | Cavalieri | Feb 1971 | A |
3567660 | Winkler | Mar 1971 | A |
3594335 | Schultz et al. | Jul 1971 | A |
3607741 | Sohnius | Sep 1971 | A |
3607793 | Mahlman | Sep 1971 | A |
3617565 | Fahlvik | Nov 1971 | A |
3617566 | Oshima et al. | Nov 1971 | A |
3667235 | Preus et al. | Jun 1972 | A |
3667608 | Burroughs et al. | Jun 1972 | A |
3679058 | Smith | Jul 1972 | A |
3681237 | Orban | Aug 1972 | A |
3702657 | Cunningham et al. | Nov 1972 | A |
3713539 | Thompson et al. | Jan 1973 | A |
3739913 | Bogosian | Jun 1973 | A |
3756948 | Weinberg | Sep 1973 | A |
3783621 | Preus et al. | Jan 1974 | A |
3800950 | Hess et al. | Apr 1974 | A |
3831760 | Economy et al. | Aug 1974 | A |
3837494 | Stevenson | Sep 1974 | A |
3868322 | Orloff | Feb 1975 | A |
3888766 | DeYoung | Jun 1975 | A |
3915859 | Sundin et al. | Oct 1975 | A |
3916969 | Auerbach et al. | Nov 1975 | A |
3923472 | Martinez et al. | Dec 1975 | A |
3929631 | Winkler | Dec 1975 | A |
4002177 | Rainer et al. | Jan 1977 | A |
4031839 | Pedone | Jun 1977 | A |
4039489 | Fletcher et al. | Aug 1977 | A |
4052306 | Schwartz et al. | Oct 1977 | A |
4060487 | Samsel | Nov 1977 | A |
4061807 | Shaler et al. | Dec 1977 | A |
4065923 | Preus | Jan 1978 | A |
4070287 | Wiegand et al. | Jan 1978 | A |
4084380 | Hallhagen | Apr 1978 | A |
4099619 | Hudler et al. | Jul 1978 | A |
4102783 | Zenno et al. | Jul 1978 | A |
4111813 | Preus | Sep 1978 | A |
RE29996 | Jordan et al. | May 1979 | E |
4206080 | Sato et al. | Jun 1980 | A |
4207378 | Klein | Jun 1980 | A |
4248758 | Wright | Feb 1981 | A |
4261823 | Gallagher et al. | Apr 1981 | A |
4264444 | Bronnec | Apr 1981 | A |
4332854 | Parker | Jun 1982 | A |
4366067 | Golding et al. | Dec 1982 | A |
4401475 | Eriksson et al. | Aug 1983 | A |
4419232 | Arntyr et al. | Dec 1983 | A |
4420400 | Weitzen | Dec 1983 | A |
4427157 | Klein | Jan 1984 | A |
4429065 | Gancy | Jan 1984 | A |
4439324 | Crotti | Mar 1984 | A |
4454039 | McCoy | Jun 1984 | A |
4497663 | Fisher et al. | Feb 1985 | A |
4497712 | Crowling | Feb 1985 | A |
4519431 | Yoshimura et al. | May 1985 | A |
4519918 | Ericsson et al. | May 1985 | A |
4560718 | Rittchey | Dec 1985 | A |
4592690 | Busch | Jun 1986 | A |
4594157 | McGowan | Jun 1986 | A |
4640730 | Streets et al. | Feb 1987 | A |
4672781 | Pichon | Jun 1987 | A |
4737394 | Zafiroglu | Apr 1988 | A |
4740435 | Markin et al. | Apr 1988 | A |
4776722 | Gaudin | Oct 1988 | A |
4801386 | Sugimori et al. | Jan 1989 | A |
4919820 | Lafay et al. | Apr 1990 | A |
4929349 | Beckman | May 1990 | A |
4941978 | Gabrick | Jul 1990 | A |
4965129 | Bair et al. | Oct 1990 | A |
4980229 | Park et al. | Dec 1990 | A |
5009790 | Bustamante et al. | Apr 1991 | A |
5032640 | Fachini | Jul 1991 | A |
5037541 | Ruey-Jang et al. | Aug 1991 | A |
5071564 | Stein et al. | Dec 1991 | A |
5075014 | Sullivan | Dec 1991 | A |
5104548 | Gabrick | Apr 1992 | A |
5133619 | Murfae et al. | Jul 1992 | A |
5135578 | Billings | Aug 1992 | A |
5135660 | Chromecek et al. | Aug 1992 | A |
5159016 | Inoue et al. | Oct 1992 | A |
5165821 | Fischer et al. | Nov 1992 | A |
5173182 | Debellian | Dec 1992 | A |
5179611 | Umeda et al. | Jan 1993 | A |
5180704 | Reindl et al. | Jan 1993 | A |
5181802 | Thengs et al. | Jan 1993 | A |
5186831 | DePetris | Feb 1993 | A |
5207901 | Ravagnan | May 1993 | A |
5211858 | Dovan et al. | May 1993 | A |
5223154 | MacPherson, Jr. et al. | Jun 1993 | A |
5227072 | Brinkley | Jul 1993 | A |
5232587 | Hegemier et al. | Aug 1993 | A |
5248729 | Inoue et al. | Sep 1993 | A |
5252215 | McFarlane et al. | Oct 1993 | A |
5256226 | Marzola et al. | Oct 1993 | A |
5278217 | Umeda et al. | Jan 1994 | A |
5281463 | Cotton | Jan 1994 | A |
5284580 | Shyh | Feb 1994 | A |
5297367 | Sainz | Mar 1994 | A |
5304311 | Codiglia | Apr 1994 | A |
5324429 | Holland | Jun 1994 | A |
5330651 | Robertson | Jul 1994 | A |
5360548 | Stein et al. | Nov 1994 | A |
5364535 | Buckalew | Nov 1994 | A |
5374600 | Hozumi et al. | Dec 1994 | A |
5391295 | Wilcox et al. | Feb 1995 | A |
5403474 | Emery | Apr 1995 | A |
5405539 | Schneider | Apr 1995 | A |
5407575 | Vinsonhaler | Apr 1995 | A |
5414029 | Lemoine et al. | May 1995 | A |
5423985 | Addeo et al. | Jun 1995 | A |
5427679 | Daniels | Jun 1995 | A |
5428085 | Burel et al. | Jun 1995 | A |
5432000 | Young, Sr. et al. | Jul 1995 | A |
5439590 | Steffan | Aug 1995 | A |
5468539 | Crivelli | Nov 1995 | A |
5480254 | Autry et al. | Jan 1996 | A |
5496865 | Heese et al. | Mar 1996 | A |
5511904 | Van Egmond | Apr 1996 | A |
5516845 | Heese et al. | May 1996 | A |
5573349 | Paoluccio | Nov 1996 | A |
5575925 | Logue, Jr. | Nov 1996 | A |
5624576 | Lenhart et al. | Apr 1997 | A |
5632889 | Tharp | May 1997 | A |
5641847 | Hozumi et al. | Jun 1997 | A |
5679246 | Wilcox et al. | Oct 1997 | A |
5707527 | Knutson et al. | Jan 1998 | A |
5712358 | Sojka | Jan 1998 | A |
5720574 | Barella | Feb 1998 | A |
5725782 | Chinn et al. | Mar 1998 | A |
5733445 | Fanelli | Mar 1998 | A |
5744048 | Stetler | Apr 1998 | A |
5762790 | Zoeller | Jun 1998 | A |
5767060 | Hanrahan | Jun 1998 | A |
5788849 | Hutter, Jr. et al. | Aug 1998 | A |
5820762 | Bamer et al. | Oct 1998 | A |
5824400 | Petrakis et al. | Oct 1998 | A |
5830967 | Sojka | Nov 1998 | A |
5834577 | Sojka | Nov 1998 | A |
5849198 | Sharpless | Dec 1998 | A |
5863440 | Rink et al. | Jan 1999 | A |
5869555 | Simmons et al. | Feb 1999 | A |
5925241 | Aldridge et al. | Jul 1999 | A |
5955552 | Sojka | Sep 1999 | A |
5958226 | Fleischmann | Sep 1999 | A |
5985157 | Leckner et al. | Nov 1999 | A |
6080307 | Morris et al. | Jun 2000 | A |
6086758 | Schilling et al. | Jul 2000 | A |
6099723 | Morris et al. | Aug 2000 | A |
6106706 | Roy et al. | Aug 2000 | A |
6106707 | Morris et al. | Aug 2000 | A |
6143172 | Rink et al. | Nov 2000 | A |
6214216 | Isaacson | Apr 2001 | B1 |
6231758 | Morris et al. | May 2001 | B1 |
6261444 | Forse | Jul 2001 | B1 |
6344519 | Rink et al. | Feb 2002 | B1 |
6531059 | Morris et al. | Mar 2003 | B1 |
6541569 | Morris et al. | Apr 2003 | B1 |
6712976 | Manzone | Mar 2004 | B2 |
6723791 | Rink et al. | Apr 2004 | B2 |
7048878 | Rink et al. | May 2006 | B2 |
Number | Date | Country | |
---|---|---|---|
20050151289 A1 | Jul 2005 | US |
Number | Date | Country | |
---|---|---|---|
60034677 | Jan 1997 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10396020 | Mar 2003 | US |
Child | 11006354 | US | |
Parent | 10038461 | Dec 2001 | US |
Child | 10396020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09005332 | Jan 1998 | US |
Child | 10038461 | US |