1. Field of the Invention
The invention is directed to a passive safety shield system which may be associated with a pen needle to protect the patient and/or healthcare professional using the pen needle from accidental needlesticks from the injection end and the non-injection end of the needle.
2. Description of the Related Art
Accidental needlestick injuries from contaminated needles expose healthcare workers to the risk of infection from blood-borne pathogens, including the viruses that cause hepatitis B and C, and HIV. According to the Centers for Disease Control and Prevention, healthcare workers in the United States experience an estimated 600,000 exposures to blood each year, with RNs being subject to an overwhelming majority of these incidents.
While the injection device of choice in the U.S. remains the syringe, the demand for pen needles is growing rapidly. The use of self-injection pen needle devices is increasing due to the relative convenience, portability, and ease of use of these devices as compared to single use syringes. Pen needles are also becoming more commonplace in the hospital/clinical setting, as certain drugs, such as human growth hormone and osteoporosis medications, are available only in pen needle format.
Healthcare workers have sustained needlestick injuries while removing and disposing of pen needles from injection devices after administering an injection to patients. The needles are typically removed after each injection to minimize contamination of the medication in the cartridge and to prevent needle re-use. Removal of the needle generally requires the re-shielding of the needle using the outer protective shield in which it was supplied and it is especially during the re-shielding step where injuries can occur. Needlestick injuries also occur during the removal of pen needles that have not been re-shielded.
U.S. Pat. No. 6,986,760 B2, assigned to the assignee of the present application, the disclosure of which is herein incorporated by reference in its entirety, teaches a pen needle and safety shield system wherein a safety shield, which normally encloses the needle cannula prior to use, permits retraction of the safety shield during injection and automatically extends and locks the shield in the extended enclosed position following use. The pen needle also prevents retraction of the shield during assembly of the shield and needle cannula and hub assembly on the pen injector.
The present invention includes a shield system for the injection end of the needle. A sleeve cooperates with the hub and with the injection end shield to hold the sleeve in a position covering the needle before an injection, and to lock the shield in a position covering the needle after an injection or in the event of an accidental triggering. In embodiments, a non-injection end shield is provided which prevents needle stick injuries at the non-injection end of the needle, which might otherwise occur before a pen injector is inserted, or after removal.
An injection pen needle according to the invention includes an automatic or “passive” safety shield system. In a first aspect, the invention is a novel shield system for the injection end of the needle. The needle is mounted on a hub. An injection end shield, having an aperture to permit passage of the needle through the shield, situated on and moving coaxially on the hub, is biased with a spring toward the injection end of the needle. In use, the shield slides toward the non-injection end of the hub and engages a sleeve having fastening elements cooperating with corresponding elements on the shield to fasten the shield to the sleeve.
The sleeve also has hub fastening elements engaging corresponding elements on the hub. Thus, the sleeve engages to the hub in two positions. The sleeve may be temporarily retained on a first retaining element on the hub in a first position, before the injection is administered. This prevents an accidental needlestick until an ample injection force is applied to the endwall of the shield against the patient's body. After the injection is administered, or in the event of an accidental triggering, the hub, sleeve and shield interact to permanently lock out the shield in a protecting position.
In another aspect of the invention, the system includes automatic or “passive” shields for both the injection end and the non-injection end of the needle. The injection-end shield is as described above. The non-injection end shield is situated on the hub in a recess surrounding the non-injection end of the needle and is provided with an aperture allowing the non-injection end of the needle to access medicament in the pen injector. The non-injection end shield is provided with at least one engaging element to engage a corresponding element on the hub, such that, when the pen injector is removed from the hub, the non-injection end shield locks out against the hub in a position covering the non-injection end of the needle.
The safety shield system according to the invention is “passive” because shielding of the injection end of the needle is automatic upon administering an injection, or upon triggering the pen needle in the case of an accidental use. Likewise, shielding of the non-injection end is automatic upon removing the pen-injector. User-implemented steps are not required to shield the needle. The two shields on either side of the needle operate independently, but together constitute a shield “system.” The shield on the injection end cooperates with the sleeve and hub and therefore by itself also constitutes a “system.” The terms “injection end” and “non-injection end” refer to directions on the device. The injection end refers to a direction toward the end of the device that is normally pressed against a patient's body during an injection (the distal end), while the non-injection end refers to the opposite direction, toward the proximal end.
A pen needle generally has a longest dimension and a small width relative to its length. Movement on the longitudinal axis is referred to herein as “axial” movement. The perpendicular direction is referred to as the “radial” direction. A pen needle according to the invention typically is generally cylindrical, but need not be. A “tubular” element in this context means simply an element with openings at opposite sides.
As used herein, the injection end shield and the non injection end shield “cover” the respective ends of the needle when the tip of the needle does not extend beyond the end wall of the respective shield, notwithstanding that the tip of the needle may be quite close to the aperture in the respective shields, and exposed to view.
In the exploded view of
Shield 10, which is typically an injection molded plastic part, comprises a central aperture 30 for passage of the needle. To aid priming, the shield may have a number of cut-outs 20, which allow a view of the needle's tip. In the embodiment shown in
The hub 70 is typically an injection-molded plastic housing that supports needle 60. As seen in
In the embodiment shown in
In
Sleeve 50 is likewise preferably an injection molded plastic part, assembled coaxially on the outside of hub 70 with at least one hub fastening element cooperating with a corresponding element on the hub. As an example of ahub fastening element, alignment tab 90 on the end of the sleeve is preferably on a flexible arm 94 of the sleeve, allowing the tab to temporarily engage retaining recess 192 to restrain axial movement of the sleeve when the shield is depressed during the start of an injection or an accidental use, and on the return stroke, to more permanently engage hub lock out recess 96 to prevent axial movement of the shield altogether, while it is locked to the hub.
Additional elements, including further protrusions and recesses, may be added to further limit relative motion of the hub, sleeve and shield, without in any way limiting the foregoing description.
In
As shown in
The non-injection end shield may be described in conjunction with the same Figures. In
In
An embodiment of the non-injection end shield is shown in
Optionally, second spring 140 assists the return of the shield 40 after an injection has been administered to ensure that it becomes fully deployed and locked out as the pen injector is removed, and also ensuring that the non-injection end shield covers the non-injection of the needle before the pen injector is installed.
The foregoing description of the preferred embodiments is for the purposes of illustration, and is not to be considered as limiting the invention, which is defined by the appended claims. It will be understood by those of ordinary skill in the art, for example, in connection with the present disclosure that the relative positions of a positive feature (tab, protrusion, or the like) on a first element, engaging a corresponding negative feature (recess, cutout, through-hole, or the like) on a second element, may be reversed, so that the negative feature appears on the first element and the positive feature appears on the second element. Likewise, those of ordinary skill in the art will understand that typical features, including for example, recesses, cutouts, and through-holes, may be interchangeable.
Number | Name | Date | Kind |
---|---|---|---|
5030209 | Wanderer et al. | Jul 1991 | A |
5403286 | Lockwood, Jr. | Apr 1995 | A |
5423758 | Shaw | Jun 1995 | A |
5545145 | Clinton et al. | Aug 1996 | A |
5658259 | Pearson et al. | Aug 1997 | A |
5725508 | Chanoch et al. | Mar 1998 | A |
5827232 | Chanoch et al. | Oct 1998 | A |
5893845 | Newby et al. | Apr 1999 | A |
5928205 | Marshall | Jul 1999 | A |
5941857 | Nguyen et al. | Aug 1999 | A |
5964739 | Champ | Oct 1999 | A |
6379337 | Mohammad | Apr 2002 | B1 |
6547764 | Larsen et al. | Apr 2003 | B2 |
6595931 | Ranford | Jul 2003 | B2 |
6986760 | Giambattista et al. | Jan 2006 | B2 |
7104969 | Du Plessis | Sep 2006 | B2 |
20030060776 | Heiniger | Mar 2003 | A1 |
20050038392 | DeSalvo | Feb 2005 | A1 |
20050171485 | Larsen et al. | Aug 2005 | A1 |
20060189933 | Alheidt et al. | Aug 2006 | A1 |
Number | Date | Country |
---|---|---|
724890 | Aug 1996 | EP |
2006111862 | Oct 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20080177237 A1 | Jul 2008 | US |