SALMONELLA VACCINE FOR THE TREATMENT OF CORONAVIRUS

Information

  • Patent Application
  • 20220047697
  • Publication Number
    20220047697
  • Date Filed
    August 13, 2021
    2 years ago
  • Date Published
    February 17, 2022
    2 years ago
Abstract
The present invention provides live-attenuated bacterium of the genus Salmonella comprising a recombinant plasmid encoding a fusion protein, wherein the fusion protein comprises a coronavirus antigen and an adjuvant peptide.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of European Patent Application No. 20 191 142.7, filed Aug. 14, 2020, the entire contents of each of which are fully incorporated herein by reference.


INCORPORATION BY REFERENCE OF MATERIAL SUBMITTED ELECTRONICALLY

A Sequence Listing, which is a part of the present disclosure, is submitted concurrently with the specification as a text file. The name of the text file containing the Sequence Listing is “56989_Seqlisting.txt.” The Sequence Listing was created on Jul. 30, 2021, and is 64,132 bytes in size. The subject matter of the Sequence Listing is incorporated by reference herein in its entirety.


TECHNICAL FIELD

The present invention aims to provide a novel vaccine for the treatment and/or prevention of coronavirus diseases. Thus, the present invention is within the field of coronavirus vaccines.


TECHNICAL BACKGROUND

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the strain of coronavirus that causes coronavirus disease 2019 (COVID-19), the respiratory illness responsible for the COVID-19 pandemic. SARS-CoV-2 has wreaked havoc around the world crippling healthcare systems and devastating economies. More particularly, SARS-CoV-2 is an emerging virus that is highly pathogenic and caused the recent global pandemic, officially known as coronavirus disease (COVID-19). It belongs to the family of Coronaviruses (CoVs), which can cause mild to lethal respiratory tract infections in mammals and birds. Members causing more lethal infections in humans include SARS-CoV, Middle East respiratory syndrome (MERS) and SARS-CoV-2. These are cytoplasmic replicating, single-stranded RNA viruses with four structural proteins: The Spike (S) glycoprotein, the envelope protein (E), the membrane protein (M), and the nucleocapsid protein (N) (Chen et al., 2020). The S protein plays a critical role in triggering the immune response in the disease process (To et al., 2020). SARS-CoV-2 enters host cells via the receptor angiotensin converting enzyme 2 (ACE2) and the S protein is required for cell entry (Hoffmann et al., 2020, Ou et al., 2020, Zhou et al., 2020). The trimeric S protein contains two subunits, S1 and S2, which mediate receptor binding and membrane fusion, respectively. The S1 subunit contains a fragment called the receptor-binding domain (RBD) that is capable of binding ACE2 (Letko et al., 2020, Wan et al., 2020). Binding of the S protein to the ACE2 receptor triggers complex conformational changes that move the S protein from a prefusion conformation to a postfusion conformation. In view of previous studies and the experience of previously approved SARS-CoV-2 vaccines, the inventors considered that the S protein elicits potent cellular and humoral immune responses. The S protein of SARS-CoV-2, particularly the RBD, is capable of inducing neutralizing antibody and T cell immune responses (Suthar et al., 2020).


In addition to the S protein, the nucleocapsid protein (N protein) may function as promising antigen in vaccines. For the CoV N protein it has been demonstrated to induce protective specific cytotoxic T lymphocytes (Gao et al., 2003, Kim et al., 2004).


Live attenuated S. enterica serovar Typhi (S. typhi) are candidates for the engineering of live recombinant mucosal vaccines. One strategy to develop new vaccines is the use of live attenuated bacteria as carriers for the presentation of heterologous antigens (Cheminay et al., 2008). Salmonella strains are useful since these strains can be administered orally, i.e. by the natural route of infection, and may induce mucosal as well as systemic immune responses. Both humoral and cellular immune responses can be primed by this form of application. Furthermore, convenient methods for the genetic manipulation of Salmonella are available, and one can express single or multiple heterologous antigens from other bacteria or from viruses or parasites, allowing to create a single recombinant vaccine for simultaneous protection against S. typhi and other pathogens. More than 20 years of experience with a licensed live attenuated Salmonella vaccine, S. typhi Ty21a (Typhoral® L) (Xu et al., 2013) are available and indicate that this strain is safe in mass vaccination against typhoid fever.


To produce foreign antigens in S. typhi, plasmids carrying genetic cassettes for the expression and delivery of cargo proteins have been generated. Therefore, plasmid stability is the most critical parameter for the successful delivery of cargo proteins (antigens) in vaccinated humans. Plasmid stability in general has been achieved by integrating genes conferring antibiotics resistance into the plasmid. However, the use of antibiotic resistance genes as a selective determinant for plasmid maintenance is impractical in vivo. This problem was first addressed by the construction of a balanced-lethal system in which the asd gene of St. mutans was introduced in a plasmid that complements an asd mutation in the chromosome of an diaminopimelic acid auxotrophic Salmonella strain (Galan et al., 1990).


Recently, the inventors developed a balanced-lethal-system (BLS) for the antibiotic-free stabilization of plasmids in S. typhi Ty21a which is independent of any auxotrophy. The system depends on the complementation of an essential gene and therefore does not require cost-intensive defined media for selection. The BLS the inventors designed is made up of the chromosomal knockout of the putative essential gene tyrS encoding for the tyrosyl-tRNA-synthetase and the in trans complementation of this gene on the respective antigen-delivery-plasmid (Diessner, 2009, Gesser, 2010). For the construction of the chromosomal tyrS-knockout the inventors modified the method of “one-step inactivation of chromosomal genes using PCR products” which was described by Datsenko and Wanner (2000) (Datsenko et al., 2000). As tyrS is an essential gene, the approach described by Datsenko and Wanner (2000) has to be adapted since the knockout without genetic compensation would be lethal. For this reason, tyrS was replaced by a knock-in fragment encoding for the antibiotic resistance and also for a gene encoding E. coli tyrS flanked by two flippase recognition targets (FRT) for the conditional deletion in complemented strains resulting in the newly generated (FRT-tyrS Cm FRT)-knock-in-strain (->S.t. Typhi Ty21a (ΔtyrS (tyrS Cm)+) (Diessner, 2009). Based on this intermediate strain, the balanced lethal stabilized vaccine strains can be constructed.


Antigens expressed by the Salmonella carriers can be secreted as hemolysin fusion proteins via the hemolysin (HlyA) secretion system of Escherichia coli, which allows efficient protein secretion (Gentschev et al., 1996). The secretion of antigens from the carrier strain has been used for anti-infective vaccination and for cancer vaccines (Hess et al., 1996, Gomez-Duarte et al., 2001, Fensterle et al., 2008). Protein antigens can be fused to cholera toxin subunit B (CtxB) (Arakawa et al., 1998, Yuki et al., 2001, Sadeghi et al., 2002), one of the most effective experimental mucosal adjuvants (Holmgren et al., 2005, Lycke, 2005). U.S. Pat. No. 10,973,908 B1 (date of patent: Apr. 13, 2021) relates to the expression of Sars-Cov-2 spike protein receptor binding domain in attenuated salmonella as a vaccine.


In summary, there is currently a dire need for a vaccine that can prevent SARS-CoV-2 infections. In particular, there is still an urgent need for a SARS-CoV-2 vaccine that can be used globally and with less stringent handling requirements, i.e. provided at moderate costs, stored without a need for ultra-low temperature freezers or other high-tech equipment, and administered without the need for medical equipment or trained medical personnel.





FIGURES


FIG. 1: Map of plasmid pSalVac 001 A0_B0 KanR for expressing one or more fusion proteins of the present invention. Basic cloning vector for integration of NsiI- and SalI-fragments into A- (->NsiI-), respectively B-(->SalI-) Site (SEQ ID NO: 42)



FIG. 2: Map of plasmid pSalVac 101 A1_B0 KanR of the present invention. NsiI-fragment No. 1 (improved DNA) (SEQ ID NO: 31) has been inserted into the NsiI site of pSalVac 001 A0_B0 KanR resulting in pSalVac 101 A1_B0 KanR with CDS of fusion protein A1 (SEQ ID NO: 30).



FIG. 3: Features of the nucleic acids that can be inserted at the A) NsiI site and B) SalI site.



FIG. 4: Antigenic plot for SEQ ID NO: 30.



FIG. 5: Antigenic plot for SEQ ID NO: 41.



FIG. 6: Flowchart for the generation of vaccine strains.



FIG. 7: Codon-optimized sequence (SEQ ID NO: 177) of the CtxB adjuvant for expression in Salmonella typhi (strain ATCC 700931/Ty2) using JCat http://www.jcat.de (Grote et al., 2005). A total of 79 codons of CtxB coding sequence (CDS CtxB mature protein: 103 codons, AAC34728.1 (SEQ ID NO: 176) were modified for optimal codon utilization (A), which resulted in no change in the amino acid sequence (SEQ ID NO: 2) of the encoded protein (B). The sequence alignments were performed by SnapGene software using global alignment (Needleman-Wunsch).



FIG. 8:


A) Codon-optimized sequence (SEQ ID NO: 119) of CDS RBD (Receptor-binding domain) of S-Protein in fusion protein A1. CodonUsage adapted to Salmonella typhi (strain ATCC 700931/Ty2) using JCat http://www.jcat.de. A total of 76 codons of RBD coding sequence (CDS RBD: 223 codons, S-Protein Wuhan Hu-1, GeneID 43740568—NC_045512.2, (SEQ ID NO: 179)) were modified for optimal codon utilization, which resulted in no change in the amino acid sequence of the encoded protein. The sequence alignments were performed using the SnapGene software using global alignment (Needleman-Wunsch).


B) Codon usage optimization of the Dimerization Region (DR) of N-Protein (SEQ ID NO: 169). CodonUsage adapted to Salmonella typhi (strain ATCC 700931/Ty2) using JCat: http://www.jcat.de. A total of 65 codons of DR coding sequence (CDS DR: 104 codons, (SEQ ID NO: 182) CDS N-Protein NC_045512.2, GeneID: 43740575) were modified for optimal codon utilization, which resulted in no change in the amino acid sequence of the encoded protein. The sequence alignments were performed by SnapGene software using global alignment (Needleman-Wunsch)



FIG. 9: Plasmid maps of pSalVac 101 A1_B3f ΔKanR (A), pSalVac 101 A1_B10f KanR (B), pSalVac 101 A1_B10f ΔKanR (C)



FIG. 10: Demonstration of the deletion of chromosomal tyrS in one of the JMU-SalVac-100 strains (exemplary JMU-SalVac-104) harboring a BLS-stabilized plasmid of the pSalVac 101 Ax_By series.


A. Shown is the sequence of the ΔtyrS locus of the BLS strains. (TAA in bold: Stop codon of ΔtyrS upstream-gene pdxH; ATG in bold: Start codon of ΔtyrS downstream-gene pdxY; FRT-Site (minimal): underlined). SEQ ID NO: 184


B. Validation of the tyrS deletion in the indicated strains by PCR amplification. (Primer sequences (17/18; SEQ ID NO: 47/48)) correspond to regions flanking tyrS gene on chromosome.)



FIG. 11:


A: Expression and secretion of fusion proteins A1 (49.1 kDa) and A3 (45.8 kDa) detected in the lysate of bacteria (pellet) and the supernatant using anti-CtxB and anti-S-protein antisera. Proteins precipitated from supernatant (S) of bacterial culture or pellets of whole cell lysate (P) were loaded. The immunoblots were developed with anti-CtxB antibody and anti-RBD-Antibody. Arrow: 55 kDa.


B: Expression of fusion proteins B3 (27.6 kDa), B5 (20.7 kDa) and B7 (23.0 kDa). Whole cell lysate of mid-log cultures were analyzed by Western blot. The immunoblots were developed with anti-hBD1 antibody (abeam). Black arrow indicates the mol. mass of 35 kDa



FIG. 12: Expression of RNAs of the SalVac plasmids. cDNA was made from the indicated strains as described in chapter 2.10. A: mRNA made from the A site amplified with primers 4 and 5 (table 8 and table 12). B: mRNA made from the B site amplified with primers 57 and 58 (table 12). C: mRNA made from the plasmid encoded hlyB gene amplified with primers 62 and 63 (table 12). D: mRNA made from the plasmid encoded hlyD gene amplified with primers 64 and 65 (table 12).



FIG. 13: Growth curves of JMU-SalVac 100 strains and S. typhi Ty21a Growth of the indicated strains was measured as described in chapter 2.9.



FIG. 14: Stability of plasmids with and without BLS Stability of plasmids was determined as described in chapter 2.11. A: Data of the experiment explained in Example 3, chapter 3.7.11. B: Chromosomal tyrS was amplified with the primers 17 and 18 (Table 8) and the gene insert in the A site with the primers 68 and 69 (Table 8) to determine stability of the plasmid in the BLS strains. Numbers refer to: 1: size marker; 2: No template, control (water); 3: S. typhi Ty21a, control; 4: JMU-SalVac-101, control; 5: JMU-SalVac-104, control; 6-8: samples JMU-SalVac-101; 9-11: samples JMU-SalVac-104; 12: 1 kb Marker; 13: No template, control (water); 14: Ty21a; 15: JMU-SalVac-101, control; 16: JMU-SalVac-104, control; 17-19: samples JMU-SalVac-101; 20-22: samples JMU-SalVac-104. C: Data shown in (A) depicted as bar diagram. D: Plasmid stability testing example. Day 4: Low stability of pMKhly1 w/o BLS stabilization. Example shows colonies of S. typhi 21a with pMKhly1 grown for 4 days under the conditions as explained in Example 3, chapter 3.7.11. Left plate TS agar, right plate TS agar+25 g/mL Kanamycin. Only few colonies retain the plasmid and are therefore antibiotic resistant. E: Copy number determination of BLS strains. Plasmid copy number was determined on day 1 and day 5 as described in chapter 2.11.



FIG. 15: Expression of proteins in strains prepared for immunization Expression and Secretion of fusion protein A1 in JMU-SalVac-100-strains. Whole cell lysate and proteins precipitated from supernatant of mid-log (A) JMU-SalVac-100 vaccine strains and of late-log cultures (B) of S. typhimurium SL7207 vaccine strains were analyzed by Western blot. The immunoblots were developed with anti-ctxB antibody (Zytomed) (black arrow: 55 kDa)



FIG. 16: Tolerability study Tolerability of JMU-SalVac-100 (A) and S. typhimurium SL7207 (B) vaccine strains were tested over a period of 10 days as described in chapter 2.12.2.





SUMMARY OF THE INVENTION

The present invention provides a live-attenuated bacterium of the genus Salmonella comprising a recombinant plasmid encoding a fusion protein, wherein the fusion protein comprises a coronavirus antigen, and an adjuvant peptide.


The present invention also provides a combination product comprising the bacterium of the present invention and at least one of the one or more fusion proteins encoded by the plasmid of said bacterium.


Further, the present invention provides a vaccine comprising the bacterium of the present invention or the combination product of the present invention.


The bacterium, combination product or vaccine may be used as a medicament. In particular, they may be used in a method of treating a disease or disorder caused by a member of the coronavirus family.


The present invention also provides a kit comprising a live-attenuated bacterium of the genus Salmonella, and a recombinant plasmid encoding a fusion protein, wherein the fusion protein comprises a coronavirus antigen and an adjuvant peptide.


DETAILED DESCRIPTION OF THE INVENTION
Definitions

Any term not defined in the present application should be given the normal meaning in the art.


As used herein, the term “adjuvant” refers to a substance used in combination with a specific antigen that produces a more robust immune response than the antigen alone.


The term “combination product” can refer to (i) a product comprised of two or more regulated components that are physically, chemically, or otherwise combined or mixed and produced as a single entity; (ii) two or more separate products packaged together in a single package or as a unit and comprised of drug and device products, device and biological products, or biological and drug products; (iii) a drug, device, or biological product packaged separately that according to its investigational plan or proposed labeling is intended for use only with an approved individually specified drug, device, or biological product where both are required to achieve the intended use, indication, or effect and where upon approval of the proposed product the labeling of the approved product would need to be changed, e.g., to reflect a change in intended use, dosage form, strength, route of administration, or significant change in dose; or (iv) any investigational drug, device, or biological product packaged separately that according to its proposed labeling is for use only with another individually specified investigational drug, device, or biological product where both are required to achieve the intended use, indication, or effect. This definition is in accordance with 21 CFR 3.2(e) (see US Code of Federal Regulations).


As used herein, the term “coronavirus antigen” refers to a peptide encoded by the genome of a member of the coronavirus family that can elicit an adaptive immune system response in a subject. An exemplary member of the coronavirus family is SARS-CoV-2.


As used herein, the term “effective amount” is that amount sufficient to effect beneficial or desired results, for example, clinical results, and, as such, an “effective amount” depends upon the context in which it is being applied. The term “effective amount” can be used interchangeably with “effective dose”, “therapeutically effective amount”, or “therapeutically effective dose”.


The terms “identical” or “percent identity”, in the context of two or more polypeptide or nucleic acid molecule sequences, means two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same over a specified region (e.g., 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity), when compared and aligned for maximum correspondence over a comparison window, or designated region, as measured using methods known in the art, such as a sequence comparison algorithm, by manual alignment, or by visual inspection. For example, preferred algorithms suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al., 1977. Nucleic Acids Res. 25:3389 and Altschul et al., 1990. J Mol Biol. 215:403, respectively.


The terms “individual”, “patient” or “subject” are used interchangeably in the present application and refer to any multicellular eukaryotic heterotroph which can be infected by a coronavirus. The subject is preferably a mammal. Mammals which would be infected by a coronavirus include humans, cats, dogs, pigs, ferrets, rabbits, gerbils, hamsters, guinea pigs, horses, rats, mice, cows, sheep, goats, alpacas, camels, donkeys, llamas, yaks, giraffes, elephants, meerkats, lemurs, lions, tigers, kangaroos, koalas, bats, monkeys, chimpanzees, gorillas, bears, dugongs, manatees, seals and rhinoceroses. Most preferably, the subject is human.


As used herein, the expression “live-attenuated bacterium” refers to a prokaryote that has been rendered less virulent through modification and/or selection so that it can no longer cause a systemic infection in an immunocompetent subject.


As used herein, “pharmaceutically acceptable carrier” or “pharmaceutically acceptable diluent” means any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances is well known in the art. Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed and, without limiting the scope of the present invention, include: additional buffering agents; preservatives; co-solvents; antioxidants, including ascorbic acid and methionine; chelating agents such as EDTA; metal complexes (e.g., Zn-protein complexes); biodegradable polymers, such as polyesters; salt-forming counterions, such as sodium, polyhydric sugar alcohols; amino acids, such as alanine, glycine, glutamine, asparagine, histidine, arginine, lysine, ornithine, leucine, 2-phenylalanine, glutamic acid, and threonine; organic sugars or sugar alcohols, such as lactitol, stachyose, mannose, sorbose, xylose, ribose, ribitol, myoinisitose, myoinisitol, galactose, galactitol, glycerol, cyclitols (e.g., inositol), polyethylene glycol; sulfur containing reducing agents, such as urea, glutathione, thioctic acid, sodium thioglycolate, thioglycerol, [alpha]-monothioglycerol, and sodium thio sulfate; low molecular weight proteins, such as human serum albumin, bovine serum albumin, gelatin, or other immunoglobulins; and hydrophilic polymers, such as polyvinylpyrrolidone. Other pharmaceutically acceptable carriers, excipients, or stabilizers, such as those described in Remington: The Science and Practice of Pharmacy 22nd edition, Pharmaceutical press (2012), ISBN-13: 9780857110626 may also be included.


As used herein, the term “plasmid” refers to a genetic structure in a cell that can replicate independently of the cell's chromosome or it can also refer to a genetic structure that can be integrated into the chromosome of the cell (e.g., using a FLP/FRT recombination system or a Cre-Lox recombination system). A plasmid used in accordance with the invention is preferably a plasmid which can replicate independently of the chromosome of the bacterium and does not require antibiotic selection to ensure its maintenance in the bacterium. This has the advantage that no antibiotic resistance genes are administered when administering the vaccine of the invention, resulting in improved safety of the vaccine.


The term “protein” is used interchangeably with the term “peptide” in the present application. Both terms, as used in the present application, refer to molecules comprising one or more chains of amino acid residues. A “fusion protein”, as used in the present application, refers to a protein created through the joining of two or more genes that originally coded for separate proteins via recombinant DNA techniques.


As used herein, the term “recombinant” refers to any material that is derived from or contains a nucleic acid molecule that was made through the combination or insertion of one or more nucleic acid molecules that would not normally occur together.


The terms “treatment” and “therapy”, as used in the present application, refer to a set of hygienic, pharmacological, surgical and/or physical means used with the intent to cure and/or alleviate a disease and/or symptom with the goal of remediating the health problem. The terms “treatment” and “therapy” include preventive and curative methods, since both are directed to the maintenance and/or reestablishment of the health of an individual or animal. Regardless of the origin of the symptoms, disease and disability, the administration of a suitable medicament to alleviate and/or cure a health problem should be interpreted as a form of treatment or therapy within the context of this application.


Bacterium

The present invention provides a live-attenuated bacterium of the genus Salmonella comprising a recombinant plasmid encoding a fusion protein, wherein the fusion protein comprises a coronavirus antigen, and an adjuvant peptide.


Methods for generating live-attenuated bacteria of the genus Salmonella are known in the art (Tennant & Levine, 2015. Vaccine. 33(0 3):C36-41, doi: 10.1016/j.vaccine.2015.04.029).


In some embodiments, the bacterium is of the species Salmonella enterica. In some embodiments, the bacterium is a Salmonella enterica serovar Typhi strain, Salmonella enterica serovar Paratyphi A strain, Salmonella enterica serovar Paratyphi B strain, Salmonella enterica serovar Typhimurium strain, Salmonella enterica serovar Enteritidis strain or Salmonella enterica serovar Choleraesuis strain. In some embodiments, the bacterium is a Salmonella enterica serovar Typhi strain.


In some embodiments, the bacterium has one of the genotypes disclosed in Table 1 of Tennant & Levine, 2015. Vaccine. 33(0 3):C36-41 which is incorporated herein in its entirety by reference. In some embodiments, the bacterium is galE negative and Vi-capsule negative (see Germanier & Füer, 1975. J Infect Dis. 131(5):553-8).


In some embodiments, the bacterium is the Salmonella enterica serovar Typhi Ty21a strain (Germanier & Füer, 1975. J Infect Dis. 131(5):553-8). The genotype of the Ty21a strain is provided in Table 1 of Dharmasena et al., 2016. PLoS One. 11(9): e0163511. Ty21a is available for purchase from the American Type Culture Collection (ATCC 33459).


In some embodiments, the plasmid encodes one fusion protein comprising a coronavirus antigen and an adjuvant peptide. In some embodiments, the adjuvant promotes a Th1 or Th2-mediate response.


In some embodiments, the adjuvant is a mucosal adjuvant (see Aoshi, 2017. Viral Immunol. 30(6): 463-470). Exemplary mucosal adjuvants include interleukin-2 (IL-2) and cholera toxin B subunit.









IL-2 (SEQ ID NO: 1; UniProtKB - P60568)


APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKA





TELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSE





TTFMCEYADETATIVEFLNRWITFCQSIISTLT





Cholera toxin B subunit


(SEQ ID NO: 2; UniProtKB - Q57193)


TPQNITDLCAEYHNTQIHTLNDKIFSYTESLAGKREMAIITFKNGATFQV





EVPGSQHIDSQKKAIERMKDTLRIAYLTEAKVEKLCVWNNKTPHAIAAIS





MAN






In some embodiments, the adjuvant is SEQ ID NO: 1 or a peptide that has at least 95% sequence identity with SEQ ID NO: 1. In some embodiments, the adjuvant is SEQ ID NO: 1 or a peptide that has at least 98% sequence identity with SEQ ID NO: 1. In some embodiments, the adjuvant is SEQ ID NO: 1 or a peptide that has at least 99% sequence identity with SEQ ID NO: 1.


In some embodiments, the adjuvant is SEQ ID NO: 2 or a peptide that has at least 95% sequence identity with SEQ ID NO: 2. In some embodiments, the adjuvant is SEQ ID NO: 2 or a peptide that has at least 98% sequence identity with SEQ ID NO: 2. In some embodiments, the adjuvant is SEQ ID NO: 2 or a peptide that has at least 99% sequence identity with SEQ ID NO: 2.


In some embodiments, the adjuvant is a toll-like receptor agonist. Exemplary toll-like receptor agonists include Neisseria PorB and 50 s ribosomal protein L7/L12.










Neisseria PorB (SEQ ID NO: 3; UniProtKB - X5EGH0)



DVTLYGTIKAGVETSRSVEHNGGQVVSVETGTGIVDLGSKIGFKGQEDLG





NGLKAIWQVEQKASIAGTDSGWGNRQSFIGLKGGFGKLRVGRLNSVLKDT





GDINPWDSKSDYLGVNKIAEPEARLISVRYDSPEFAGLSGSVQYALNDNA





GRHNSESYHAGFNYKNGGFFVQYGGAYKRHQDVDDVKIEKYQIHRLVSGY





DNDALYASVAVQQQDAKLVEDNSHNSQTEVAATLAYRFGNVTPRVSYAHG





FKGSVDDAKRDNTYDQVVVGAEYDFSKRTSALVSAGWLQEGKGENKFVAT





AGGVGLRHKF





50s ribosomal protein L7/L12


(SEQ ID NO: 4; UniProtKB - Q735E8)


MAKMSTDDLLDAFKEMTLLELSDFVKKFEETFEVTAAAPVAVAAAGPAAG





GAPAEAAEEQSEFDVILESAGDKKIGVIKVVREIVSGLGLKEAKDLVDGA





PKPLLEKVAKEAADDAKAKLEAAGATVTVK






In some embodiments, the adjuvant is SEQ ID NO: 3 or a peptide that has at least 95% sequence identity with SEQ ID NO: 3. In some embodiments, the adjuvant is SEQ ID NO: 3 or a peptide that has at least 98% sequence identity with SEQ ID NO: 3. In some embodiments, the adjuvant is SEQ ID NO: 3 or a peptide that has at least 99% sequence identity with SEQ ID NO: 3.


In some embodiments, the adjuvant is SEQ ID NO: 4 or a peptide that has at least 95% sequence identity with SEQ ID NO: 4. In some embodiments, the adjuvant is SEQ ID NO: 4 or a peptide that has at least 98% sequence identity with SEQ ID NO: 4. In some embodiments, the adjuvant is SEQ ID NO: 4 or a peptide that has at least 99% sequence identity with SEQ ID NO: 4.


In some embodiments, the adjuvant is a β-defensin. Exemplary β-defensins include human β-defensin 1, human β-defensin 2, human β-defensin 3 and human β-defensin 4. In some embodiments, the adjuvant is human β-defensin 1.









Human β-defensin 1


(SEQ ID NO: 5; UniProtKB - P60022)


GNFLTGLGHRSDHYNCVSSGGQCLYSACPIFTKIQGTCYRGKAKCCK





Human β-defensin 2


(SEQ ID NO: 6; UniProtKB - O15263)


GIGDPVTCLKSGAICHPVFCPRRYKQIGTCGLPGTKCCKKP





Human β-defensin 3


(SEQ ID NO: 7; UniProtKB - P81534)


GIINTLQKYYCRVRGGRCAVLSCLPKEEQIGKCSTRGRKCCRRKK





Human β-defensin 4


(SEQ ID NO: 8; UniProtKB - Q8WTQ1)


EFELDRICGYGTARCRKKCRSQEYRIGRCPNTYACCLRKWDESLLNRTKP






In some embodiments, the adjuvant is SEQ ID NO: 5 or a peptide that has at least 90% sequence identity with SEQ ID NO: 5. In some embodiments, the adjuvant is SEQ ID NO: 5 or a peptide that has at least 95% sequence identity with SEQ ID NO: 5.


In some embodiments, the adjuvant is SEQ ID NO: 6 or a peptide that has at least 90% sequence identity with SEQ ID NO: 6. In some embodiments, the adjuvant is SEQ ID NO: 6 or a peptide that has at least 95% sequence identity with SEQ ID NO: 6.


In some embodiments, the adjuvant is SEQ ID NO: 7 or a peptide that has at least 90% sequence identity with SEQ ID NO: 7. In some embodiments, the adjuvant is SEQ ID NO: 7 or a peptide that has at least 95% sequence identity with SEQ ID NO: 7.


In some embodiments, the adjuvant is SEQ ID NO: 8 or a peptide that has at least 90% sequence identity with SEQ ID NO: 8. In some embodiments, the adjuvant is SEQ ID NO: 8 or a peptide that has at least 95% sequence identity with SEQ ID NO: 8.


In some embodiments, the fusion protein comprises the following structure:


Av-L-Ag (from N-terminus to C-terminus),


wherein Av is an adjuvant peptide, L is a linker and Ag is a coronavirus antigen.


The linker may be any genetically encodable linker known in the art (see Chen et al., 2013. Adv Drug Deliv Rev. 65(10):1357-1369). In some embodiments, the linker is EAAAK (SEQ ID NO: 9) or DPRVPSS (SEQ ID NO: 10).


In some embodiments, the plasmid encodes a first fusion protein and a second fusion protein, wherein each fusion protein comprises a coronavirus antigen and an adjuvant peptide.


An advantage of the present invention is that it allows for the combination of multiple antigens wherein one fusion protein may, for example, preferentially induce an antibody response whereas the second fusion protein may, for example, preferentially induce a T-cell response. The combination of an antibody response and T-cell response would be particularly advantageous for the treatment of a coronavirus infection.


In some embodiments, the first fusion protein comprises an adjuvant that promotes a Th1-mediated response and the second fusion protein comprises an adjuvant that promotes a Th2-mediated response.


In some embodiments, the first fusion protein comprises a mucosal adjuvant and the second fusion protein comprises an adjuvant that is a toll-like receptor agonist. In some embodiments, the first fusion protein comprises a mucosal adjuvant and the second fusion protein comprises an adjuvant that is a β-defensin.


In some embodiments, the first fusion protein comprises SEQ ID NO: 2 or a peptide that has at least 95, 98 or 99% sequence identity with SEQ ID NO: 2 and the second fusion protein comprises an adjuvant that is a toll-like receptor agonist. In some embodiments, the first fusion protein comprises SEQ ID NO: 2 or a peptide that has at least 95, 98 or 99% sequence identity with SEQ ID NO: 2 and the second fusion protein comprises an adjuvant that is a β-defensin.


In some embodiments, the coronavirus antigen is a SARS-CoV-2 antigen.


In some embodiments, the SARS-CoV-2 antigen is the spike glycoprotein or an antigenic fragment thereof, the membrane glycoprotein or an antigenic fragment thereof, the envelope protein, or the nucleocapsid protein or an antigenic fragment thereof.









Spike glycoprotein


(SEQ ID NO: 11; UniProtKB - P0DTC2)


MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHS





TQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNI





IRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNK





SWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGY





FKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLT





PGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETK





CTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASV





YAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSF





VIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYN





YLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPT





NGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTG





VLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITP





GTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCL





IGAEHVNNSYECDIPIGAGICASYQTQTNSPRRARSVASQSIIAYTMSLG





AENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECS





NLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGF





NFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLI





CAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAM





QMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQD





VVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGR





LQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLM





SFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGT





HWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKE





ELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDL





QELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSC





GSCCKFDEDDSEPVLKGVKLHYT





Membrane glycoprotein


(SEQ ID NO: 12; UniProtKB - P0DTC5)


MADSNGTITVEELKKLLEQWNLVIGFLFLTWICLLQFAYANRNRFLYIIK





LIFLWLLWPVTLACFVLAAVYRINWITGGIAIAMACLVGLMWLSYFIASF





RLFARTRSMWSFNPETNILLNVPLHGTILTRPLLESELVIGAVILRGHLR





IAGHHLGRCDIKDLPKEITVATSRTLSYYKLGASQRVAGDSGFAAYSRYR





IGNYKLNTDHSSSSDNIALLVQ





Envelope protein


(SEQ ID NO: 13; UniProtKB - P0DTC4)


MYSFVSEETGTLIVNSVLLFLAFVVFLLVTLAILTALRLCAYCCNIVNVS





LVKPSFYVYSRVKNLNSSRVPDLLV





Nucleocapsid protein


(SEQ ID NO: 14; UniProtKB - P0DTC9)


MSDNGPQNQRNAPRITFGGPSDSTGSNQNGERSGARSKQRRPQGLPNNTA





SWFTALTQHGKEDLKFPRGQGVPINTNSSPDDQIGYYRRATRRIRGGDGK





MKDLSPRWYFYYLGTGPEAGLPYGANKDGIIWVATEGALNTPKDHIGTRN





PANNAAIVLQLPQGTTLPKGFYAEGSRGGSQASSRSSSRSRNSSRNSTPG





SSRGTSPARMAGNGGDAALALLLLDRLNQLESKMSGKGQQQQGQTVTKKS





AAEASKKPRQKRTATKAYNVTQAFGRRGPEQTQGNFGDQELIRQGTDYKH





WPQIAQFAPSASAFFGMSRIGMEVTPSGTWLTYTGAIKLDDKDPNFKDQV





ILLNKHIDAYKTFPPTEPKKDKKKKADETQALPQRQKKQQTVTLLPAADL





DDFSKQLQQSMSSADSTQA






In some embodiments, the coronavirus antigen comprises SEQ ID NO: 11 or a sequence that has at least 99% sequence identity with SEQ ID NO: 11. In some embodiments, the coronavirus antigen comprises residues 2-1273 of SEQ ID NO: 11 or a sequence that has at least 99% sequence identity with residues 2-1273 of SEQ ID NO: 11. In some embodiments, the coronavirus antigen comprises residues 13-303 of SEQ ID NO: 11 or a sequence that has at least 99% sequence identity with residues 13-303 of SEQ ID NO: 11. In some embodiments, the coronavirus antigen comprises residues 319-541 of SEQ ID NO: 11 or a sequence that has at least 99% sequence identity with residues 319-541 of SEQ ID NO: 11. In some embodiments, the coronavirus antigen comprises residues 334-527 of SEQ ID NO: 11 or a sequence that has at least 99% sequence identity with residues 334-527 of SEQ ID NO: 11. In some embodiments, the coronavirus antigen comprises residues 437-508 of SEQ ID NO: 11 or a sequence that has at least 98% sequence identity with residues 437-508 of SEQ ID NO: 11. In some embodiments, the coronavirus antigen comprises residues 788-806 of SEQ ID NO: 11 or a sequence that has at least 94% sequence identity with residues 788-806 of SEQ ID NO: 11. In some embodiments, the coronavirus antigen comprises residues 920-970 of SEQ ID NO: 11 or a sequence that has at least 98% sequence identity with residues 920-970 of SEQ ID NO: 11. In some embodiments, the coronavirus antigen comprises residues 1163-1202 of SEQ ID NO: 11 or a sequence that has at least 97% sequence identity with residues 1163-1202 of SEQ ID NO: 11. In some embodiments, the coronavirus antigen comprises residues 1235-1273 of SEQ ID NO: 11 or a sequence that has at least 97% sequence identity with residues 1235-1273 of SEQ ID NO: 11.


In some embodiments, the coronavirus antigen comprises SEQ ID NO: 12 or a sequence that has at least 99% sequence identity with SEQ ID NO: 12. In some embodiments, the coronavirus antigen comprises residues 2-222 of SEQ ID NO: 12 or a sequence that has at least 99% sequence identity with residues 2-222 of SEQ ID NO: 12. In some embodiments, the coronavirus antigen comprises residues 2-100 of SEQ ID NO: 12 or a sequence that has at least 99% sequence identity with residues 2-100 of SEQ ID NO: 12.


In some embodiments, the coronavirus antigen comprises SEQ ID NO: 13 or a sequence that has at least 98% sequence identity with SEQ ID NO: 13.


In some embodiments, the coronavirus antigen comprises SEQ ID NO: 14 or a sequence that has at least 99% sequence identity with SEQ ID NO: 14. In some embodiments, the coronavirus antigen comprises residues 2-419 of SEQ ID NO: 14 or a sequence that has at least 99% sequence identity with residues 2-419 of SEQ ID NO: 14. In some embodiments, the coronavirus antigen comprises residues 41-186 of SEQ ID NO: 14 or a sequence that has at least 99% sequence identity with residues 41-186 of SEQ ID NO: 14. In some embodiments, the coronavirus antigen comprises residues 258-361 of SEQ ID NO: 14 or a sequence that has at least 99% sequence identity with residues 258-361 of SEQ ID NO: 14.


Other SARS-CoV-2 antigens include SEQ ID NOs: 15-18 provided below.









SEQ ID NO: 15


GTTLPKKKFFGMSRIGMEVTPSGTWKKLLPAADGPGPGAALALLLLDRLN





QLEGPGPGGTWLTYTGAIKLDDKGPGPGFPRGQGVPIAAYFPRGQGVPIA





AYFPRGQGVPIAAYLSPRWYFYYAAYLLLDRLNQLAAYKSAAEASKKAAY





KPRQKRTATAAYGMSRIGMEVAAYKTFPPTEPK





SEQ ID NO: 16


GTTLPKKKFFGMSRIGMEVTPSGTWKKLLPAADGPGPGAALALLLLDRLN





QLEGPGPGGTWLTYTGAIKLDDKGPGPGFPRGQGVPIAAYFPRGQGVPIA





AYFPRGQGVPIAAYLSPRWYFYY





SEQ ID NO: 17


AALALLLLDRLNQLEGPGPGGTWLTYTGAIKLDDKGPGPGFPRGQGVPIA





AYFPRGQGVPIAAYFPRGQGVPIAAYLSPRWYFYY





SEQ ID NO: 18


AALALLLLDRLNQLEGPGPGGTWLTYTGAIKLDDKGPGPGFPRGQGVPIA





AYFPRGQGVPIAAYFPRGQGVPIAAYLSPRWYFYYAAYLLLDRLNQLAAY





KSAAEASKKAAYKPRQKRTATAAYGMSRIGMEVAAYKTFPPTEPK






In some embodiments, the coronavirus antigen comprises SEQ ID NO: 15 or a sequence that has at least 99% sequence identity with SEQ ID NO: 15. In some embodiments, the coronavirus antigen comprises SEQ ID NO: 16 or a sequence that has at least 99% sequence identity with SEQ ID NO: 16. In some embodiments, the coronavirus antigen comprises SEQ ID NO: 17 or a sequence that has at least 98% sequence identity with SEQ ID NO: 17. In some embodiments, the coronavirus antigen comprises SEQ ID NO: 18 or a sequence that has at least 99% sequence identity with SEQ ID NO: 18.


In some embodiments, the coronavirus antigen comprises any one of SEQ ID NOs: 11-18 or an antigenic fragment thereof. In some embodiments, the coronavirus antigen is selected from any one of SEQ ID NOs: 11-18 or is an antigenic fragment of any one of SEQ ID NOs: 11-18.


In some embodiments, the fusion protein comprises:


(i) residues 319-541 of SEQ ID NO: 11 or a sequence that has at least 99% sequence identity with residues 319-541 of SEQ ID NO: 11; and


(ii) SEQ ID NO: 2 or a peptide that has at least 95% sequence identity with SEQ ID NO: 2.


In some embodiments, the fusion protein comprises the following structure:


Av-L-Ag (from N-terminus to C-terminus),


wherein Av is SEQ ID NO: 2 or a peptide that has at least 95% sequence identity with SEQ ID NO: 2, L is EAAAK; and


Ag is residues 319-541 of SEQ ID NO: 11 or a sequence that has at least 99% sequence identity with residues 319-541 of SEQ ID NO: 11.


In some embodiments, the fusion protein comprises:


(i) SEQ ID NO: 15 or a sequence that has at least 99% sequence identity with SEQ ID NO: 15; and


(ii) SEQ ID NO: 5 or a peptide that has at least 95% sequence identity with SEQ ID NO: 5.


In some embodiments, the fusion protein comprises the following structure:


Av-L-Ag (from N-terminus to C-terminus),


wherein Av is SEQ ID NO: 5 or a peptide that has at least 95% sequence identity with SEQ ID NO: 5, L is EAAAK; and


Ag is SEQ ID NO: 15 or a sequence that has at least 99% sequence identity with SEQ ID NO: 15.


In some embodiments, the plasmid comprises a nucleic acid encoding a first fusion protein and a nucleic acid encoding a second fusion protein,


wherein the first fusion protein comprises:


(i) residues 319-541 of SEQ ID NO: 11 or a sequence that has at least 99% sequence identity with residues 319-541 of SEQ ID NO: 11; and


(ii) SEQ ID NO: 2 or a peptide that has at least 95% sequence identity with SEQ ID NO: 2; and the second fusion protein comprises:


(i) SEQ ID NO: 15 or a sequence that has at least 99% sequence identity with SEQ ID NO: 15; and


(ii) SEQ ID NO: 5 or a peptide that has at least 95% sequence identity with SEQ ID NO: 5.


In some embodiments, the one or more fusion proteins further comprise a secretion signal peptide. The secretion signal peptide may be a hemolysin A secretion signal peptide, a PhoA signal peptide, an OmpA signal peptide, or a BLA signal peptide.


An example of a hemolysin A (HlyA) secretion signal peptide is SEQ ID NO: 19:









LAYGSQGDLNPLINEISKIISAAGSFDVKEERTAASLLQLSGNASDFSYG





RNSITLTTSA






An example of a PhoA signal peptide is SEQ ID NO: 20:











MKQSTIALALLPLLFTPVTKA






An example of an OmpA signal peptide is SEQ ID NO: 21:











MKKTAIAIAVALAGFATVAQA






An example of a BLA signal peptide is SEQ ID NO: 22:











MSIQHFRVALIPFFAAFCLPVFA






In some embodiments, the fusion protein comprises the BLA signal peptide according to SEQ ID NO: 23 and the C-terminal sequence of BLA according to SEQ ID NO: 24 (Xin et al., 2008. Infect Immun. 76(7):3241-3254).











SEQ ID NO: 23



MSIQHFRVALIPFFAAFCLPVFAHPETLVKVKDA







SEQ ID NO: 24



ATMDERNRQIAEIGASLIKHW






In embodiments wherein the fusion protein comprises the C-terminal signal peptide of HlyA (e.g., SEQ ID NO: 19), it may be advantageous to include the N-terminal sequence of HlyA (e.g., SEQ ID NO: 25).











SEQ ID NO: 25



MPTITTAQIKSTLQSAKQSAANKLHSAGQSTK






Thus, in some embodiments the fusion protein comprises the following structure:


HlyAN-L-Av-L-Ag-L-HlyAS (from N-terminus to C-terminus),


wherein HlyAN is the N-terminal sequence of HlyA (e.g., SEQ ID NO: 25),


Av is an adjuvant peptide,


L is a linker,


Ag is a coronavirus antigen, and


HlyAS is the signal peptide of HlyA (e.g., SEQ ID NO: 19).


In embodiments where the fusion protein comprises the HlyA secretion signal peptide, the plasmid may further encode HlyB and HlyD. Alternatively, a further nucleic acid encoding HlyB and HlyD is inserted into the bacterium. The plasmid may also further encode HlyC and/or HlyR or a further nucleic acid encoding HlyC and/or HlyR could be used.


In some embodiments, the bacterium and/or the plasmid does not comprise an antibiotic marker. In some embodiments, the bacterium is a ΔtyrS (i.e., the gene encoding tyrosyl-tRNA-synthetase has been removed or inactivated) strain and the plasmid further encodes tyrS. This provides a balanced lethal system which allows for the maintenance of the plasmid in the bacterium without the need of an antibiotic resistance cassette.


In some embodiments, the plasmid is integrated into the chromosome of the bacterium or replicates independently of the chromosome of the bacterium. Preferably, the plasmid replicates independently of the chromosome of the bacterium.



FIG. 1 depicts Map of plasmid pSalVac 001 A0_B0 KanR, the first generation of basic cloning vectors of the present invention. The plasmid has the capacity for inserting fragments encoding fusion proteins at two sites. The first site, depicted as A-Site, is the NsiI cleavage site which results in the secretion of a fusion protein via the HlyA secretion system (see FIG. 2). The second site, depicted as B-site is the SalI site which allows for more flexibility (e.g., can use different promoter regions and signal peptides). Furthermore, the plasmid harbours a kanamycin resistance gene flanked by two FRT-sites (Fensterle et al., 2008). This feature allows the excision of the kanamycin gene by the site-specific enzyme FLP recombinase, which acts on the directly repeated FRT (FLP recognition/recombination target). All genes of the hemolysin secretion system gene cluster (including the hlyA˜-fused hybrid gene) are transcribed from the promoter PhlyI in front of hlyC (Vogel et al., 1988, Gentschev et al., 1996). The enhancing sequence hlyR is separated from this promoter by more than 1.5 kb including an IS2 element (Vogel et al., 1988). As Vogel et al. (1988) could have shown that the IS2-like sequence is not directly involved in the enhancement mechanism of hlyR, we decided to delete this region creating a single SpeI-site which represents an integration-site for subsequent alternate tyrS-complementing expression cassettes. In pSalVac 001 A0_B0 KanR the tyrS expression cassette is under control of the lacI-like promotor (Promotor region PR 2, SEQ ID NO: 34).


Thus, in some embodiments, the first fusion protein comprises a HlyA secretion signal peptide and the second fusion protein comprises a HlyA secretion signal peptide, a PhoA signal peptide, an OmpA signal peptide, or a BLA signal peptide.


In some embodiments, the fusion protein further comprises a purification tag. Different purification tags and purification systems are known to the skilled person. The purification tag may be any one of those disclosed in Table 9.9.1 of Kimple et al., 2013. Curr Protoc Protein Sci. 73(1): 9.9.1-9.9.23 which is incorporated by reference in its entirety. In some embodiments, the purification tag is a polyhistidine tag, FLAG-tag or HA-tag. The HA-tag may consist of YPYDVPDYA (SEQ ID NO: 26).


In some embodiments, the purification tag may be attached to the fusion protein via a cleavable linker. Cleavable linkers are known in the art (see Chen et al., 2013. Adv Drug Deliv Rev. 65(10):1357-1369). In some embodiments, the cleavable linker consists of DDDDK (SEQ ID NO: 27) or LVPRGS (SEQ ID NO: 28).


In a preferred embodiment of the invention, the fusion protein selected from any one of the constructs of Table 4 or Table 5.


In another preferred embodiment of the invention, the fusion protein selected from any one of the constructs of Table 13 or Table 15.


In another preferred embodiment of the invention, the fusion protein is a protein consisting of an amino acid sequence of any one of SEQ ID NO: 30, 92, 94, 96, 98, 100, 102, 106, 108, 110, 112, 114, 116, 118, 146, 148, 150, 152, 154, 156, 162, 164, or 166, or a protein consisting of an amino acid sequence at least 99% identical to the amino acid sequence of any one of SEQ ID NO: 30, 92, 94, 96, 98, 100, 102, 106, 108, 110, 112, 114, 116, 118, 146, 148, 150, 152, 154, 156, 162, 164, or 166.


In another preferred embodiment of the invention, the fusion protein is encoded by any one of the coding sequences (CDS) of Tables 13 or 15.


In a very preferred embodiment of the invention, the first fusion protein is selected from any one of the constructs of Table 4, and the second fusion protein is selected from any one of the constructs of Table 5.


In a very preferred embodiment of the invention, the first fusion protein is selected from any one of the constructs of Table 13, and the second fusion protein is selected from any one of the constructs of Table 15.


In some embodiments, the plasmid comprises a nucleic acid encoding the following components:


Tg-L-Av-L-Ag; or


Av-L-Ag-L-Tg,


wherein Av is an adjuvant peptide, L is a linker, Ag is a coronavirus antigen and Tg is a purification tag.


In some embodiments, the plasmid comprises the following components:


HlyAN-X-L1-Av-L2-Ag-L3-X-HlyAS;


HlyAN-X-L1-Av-L2-Ag-L4-Tg-L3-X-HlyAS; or


HlyAN-X-Tg-L1-Av-L2-Ag-L3-X-HlyAS,


wherein HlyAN encodes the N-terminal sequence of HlyA (e.g., SEQ ID NO: 25),


X is a restriction recognition site,


Tg encodes a purification tag,


L1 encodes SEQ ID NO: 9 or SEQ ID NO: 10,


Av encodes an adjuvant peptide (preferably a mucosal adjuvant),


L2 encodes SEQ ID NO: 9 or SEQ ID NO: 10,


Ag encodes a coronavirus antigen,


L3 encodes SEQ ID NO: 9,


L4 encodes AAY, GPGPG (SEQ ID NO: 29), or KK, and


HlyAS encodes the signal peptide of HlyA (e.g., SEQ ID NO: 19). In some embodiments, the restriction recognition site is the NsiI recognition site (i.e., ATGCAT).


In some embodiments, the plasmid comprises a sequence that encodes SEQ ID NO: 30 or a sequence that has at least 95% identity with SEQ ID NO: 30. In some embodiments, the plasmid comprises a sequence that encodes SEQ ID NO: 30 or a sequence that has at least 98% identity with SEQ ID NO: 30. In some embodiments, the plasmid comprises a sequence that encodes SEQ ID NO: 30 or a sequence that has at least 99% identity with SEQ ID NO: 30.









HlyAN-linker-CtxB-linker-RBD (S-Protein)-FlagTag-


Linker-HlyAS-CDS


(SEQ ID NO: 30)


MPTITTAQIKSTLQSAKQSAANKLHSAGQSTKDASEAAAKTPQNITDLC





AEYHNTQIHTLNDKIFSYTESLAGKREMAIITFKNGATFQVEVPGSQHI





DSQKKAIERMKDTLRIAYLTEAKVEKLCVWNNKTPHAIAAISMANEAAA





KRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYS





VLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQT





GKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPF





ERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVL





SFELLHAPATVCGPKKSTNLVKNKCVNFDYKDDDDKEAAAKHALAYGSQ





GDLNPLINEISKIISAAGSFDVKEERTAASLLQLSGNASDFSYGRNSIT





LTTSA






In some embodiments, the fusion proteins have been codon optimized for optimal expression in the bacterium.


In some embodiments, the plasmid comprises SEQ ID NO: 31 or a sequence that has 75, 80, 85, 90, 95, 98 or 99% identity with SEQ ID NO: 31.









SEQ ID NO: 31


Atgcatcagaagcggcggcgaaaaccccgcagaacatcaccgacctgtg





cgcggaataccacaacacccagatccacaccctgaacgacaaaatcttc





tcctacaccgaatccctggcgggcaaacgtgaaatggcgatcatcacct





tcaaaaacggcgcgaccttccaggttgaagttccgggctcccagcacat





cgactcccagaaaaaagcgatcgaacgtatgaaagacaccctgcgtatc





gcgtacctgaccgaagcgaaagttgaaaaactgtgcgtttggaacaaca





aaaccccgcacgcgatcgcggcgatctccatggcgaacgaagcggcggc





gaaacgtgttcagccgaccgaatccatagttaggttcccgaacatcact





aacctgtgtccgtttggcgaagtgttcaacgcgacccgttttgcgtccg





tctacgcctggaaccgtaaacgtatctccaactgcgttgcggactactc





cgttctgtacaactccgcgtccttctccaccttcaaatgctacggcgtt





tccccgaccaaactgaacgacctgtgcttcaccaacgtttacgcggact





ccttcgttatccgtggcgacgaagttcgtcagatcgcgccgggccagac





cggcaaaatcgcggactacaactacaaactgccggacgacttcaccggc





tgcgttatcgcgtggaactccaacaacctggactccaaagttggcggca





actacaactacctgtaccgtctgttccgtaaatccaacctgaaaccgtt





cgaacgtgacatctccaccgaaatctaccaggcgggctccaccccgtgc





aacggcgttgaaggcttcaactgctacttcccgctgcagtcctacggct





tccagccgaccaacggcgttggctaccagccgtaccgtgttgttgttct





gtccttcgaactgctgcacgcgccggcgaccgtttgcggcccgaaaaaa





tccaccaacctggttaaaaacaaatgcgttaacttcgactacaaagacg





acgacgacaaagaagcggcggcgaaacatgcat






In some embodiments, the plasmid comprises SEQ ID NO: 32 or a sequence that has 75, 80, 85, 90, 95, 98 or 99% sequence identity with SEQ ID NO: 32.









SEQ ID NO: 32


atgccaacaataaccactgcacaaattaaaagcacactgcagtctgcaa





agcaatccgctgcaaataaattgcactcagcaggacaaagcacgaaaga





tgcatcagaagcggcggcgaaaaccccgcagaacatcaccgacctgtgc





gcggaataccacaacacccagatccacaccctgaacgacaaaatcttct





cctacaccgaatccctggcgggcaaacgtgaaatggcgatcatcacctt





caaaaacggcgcgaccttccaggttgaagttccgggctcccagcacatc





gactcccagaaaaaagcgatcgaacgtatgaaagacaccctgcgtatcg





cgtacctgaccgaagcgaaagttgaaaaactgtgcgtttggaacaacaa





aaccccgcacgcgatcgcggcgatctccatggcgaacgaagcggcggcg





aaacgtgttcagccgaccgaatccatagttaggttcccgaacatcacta





acctgtgtccgtttggcgaagtgttcaacgcgacccgttttgcgtccgt





ctacgcctggaaccgtaaacgtatctccaactgcgttgcggactactcc





gttctgtacaactccgcgtcctctccaccttcaaatgctacggcgtttc





cccgaccaaactgaacgacctgtgcttcaccaacgtttacgcggactcc





ttcgttatccgtggcgacgaagttcgtcagatcgcgccgggccagaccg





gcaaaatcgcggactacaactacaaactgccggacgacttcaccggctg





cgttatcgcgtggaactccaacaacctggactccaaagttggcggcaac





tacaactacctgtaccgtctgttccgtaaatccaacctgaaaccgttcg





aacgtgacatctccaccgaaatctaccaggcgggctccaccccgtgcaa





cggcgttgaaggcttcaactgctacttcccgctgcagtcctacggcttc





cagccgaccaacggcgttggctaccagccgtaccgtgttgttgttctgt





ccttcgaactgctgcacgcgccggcgaccgtttgcggcccgaaaaaatc





caccaacctggttaaaaacaaatgcgttaacttcgactacaaagacgac





gacgacaaagaagcggcggcgaaacatgcattagcctatggaagtcagg





gtgatcttaatccattaattaatgaaatcagcaaaatcatttcagctgc





aggtagcttcgatgttaaagaggaaagaactgcagcttctttattgcag





ttgtccggtaatgccagtgatttttcatatggacggaactcaataaccc





tgaccacatcagcataa






In some embodiments, the plasmid comprises the following components:


X-Pr-Av-L1-Ag-Tr-X;


X-Pr-Sp-Av-L1-Ag-Tr-X;


X-Pr-Av-L1-Ag-L2-Tg-Tr-X;


X-Pr-Sp-Av-L1-Ag-Tg-Tr-X; or


X-Pr-Sp-Av-L1-Ag-L2-Tg-Tr-X, wherein


X is a restriction recognition site,


Pr is a Promoter region,


Tr is a Terminator region,


Sp encodes a secretion signal peptide,


Tg encodes a purification tag,


Av encodes an adjuvant peptide (preferably a toll-like receptor agonist or β-defensin),


L1 encodes SEQ ID NO: 9, and


L2 encodes SEQ ID NO: 9, AAY, SEQ ID NO: 29 or KK, and


Ag encodes a coronavirus antigen. In some embodiments, L2 is optional. In some embodiments, the restriction recognition site is the SalI recognition site (i.e., GTCGAC). In some embodiments, Sp encodes a PhoA signal peptide, an OmpA signal peptide or a BLA signal peptide.


Exemplary promoter regions include:









lacIEC


(SEQ ID NO: 33)


GACACCATCGAATGGCGCAAAACCTTTCGCGGTATGGCATGATAGCGCC


CGGAAGAGAGTCAATTCAGGGTGGTGAAT





lacIEC-like


(SEQ ID NO: 34)


GCTAGCGACACCATCGAATGGCGCAAACCTTTCGCGGTATGGCATGATA


GCGCCCGAAGTCGTGTACCGGCAAAGGTGAGTCGTTATATACATGGAGA


TTTTG





tyrS of E. coli


(SEQ ID NO: 35)


GTAAATTCCTGGAGCTGAAGCAGAAGTTTCAACAGGGCGAAGTGCCATT





GCCGAGCTTTTGGGGCGGTTTTCGCGTCAGCCTTGAACAGATTGAGTTC





TGGCAGGGTGGTGAGCATCGCCTGCATGACCGCTTTTTGTACCAGCGTG





AAAATGATGCGTGGAAGATTGATCGTCTTGCACCCTGAAAAGATGCAAA





AATCTTGCTTTAATCGCTGGTACTCCTGATTCTGGCACTTTATTCTATG





TCTCTTTCGCATCTGGCGAAAAGTCGTGTACCGGCAAAGGTGCAGTCGT





TATATACATGGAGATTTTG





tyrS of E. coli


(SEQ ID NO: 36)


CCTGCATGACCGCTTTTTGTACCAGCGTGAAAATGATGCGTGGAAGATT





GATCGTCTTGCACCCTGAAAAGATGCAAAAATCTTGCTTTAATCGCTGG





TACTCCTGATTCTGGCACTTTATTCTATGTCTCTTTCGCATCTGGCGAA





AAGTCGTGTACCGGCAAAGGTGCAGTCGTTATATACATGGAGATTTTG


and





tyrS of E. coli


(SEQ ID NO: 37)


CTCCTGATTCTGGCACTTTATTCTATGTCTCTTTCGCATCTGGCGAAAA





GTCGTGTACCGGCAAAGGTGCAGTCGTTATATACATGGAGATTTTG.






Exemplary terminator regions include









Terminator region of TyrS-HisTag EPC


(SEQ ID NO: 38)


TAATCCACGGCCGCCAGTTTGGGCTGGCGGCATTTTGGTACC





lacIECE. coli


(SEQ ID NO: 39)


TAATGAGCGCAACGCAATTAATGTGAGTTAGCTCACTCATTAGGCACC





tyrSECE. coli


(SEQ ID NO: 40)


TGCATTAAGTGGAAAGGGGGAGTGAGAAATCACTCCCCCTGGTTTTTAT


ACAGGGAAC





Terminator Region TR 2


(SEQ ID NO: 43)


TGACGCAACGCAATTAATGTGAGTTAGCTCACTCATTAGGCACC


and





Terminator region T0: BBA_K864600 T0-TERMINATOR


(SEQ ID NO: 44)


TTGTTCAGAACGCTCGGTCTTGCACACCGGGCGTTTTTTCTTTGTGAGT


CCA






In some embodiments, the plasmid comprises a sequence that encodes SEQ ID NO: 41 or a sequence that has at least 95% identity with SEQ ID NO: 41. In some embodiments, the plasmid comprises a sequence that encodes SEQ ID NO: 41 or a sequence that has at least 98% identity with SEQ ID NO: 41. In some embodiments, the plasmid comprises a sequence that encodes SEQ ID NO: 41 or a sequence that has at least 99% identity with SEQ ID NO: 41.









PhoA-human β-defensin 1-N-Multiepitope unit


Variant 1-T7-tag


(SEQ ID NO: 41)


MKQSTIALALLPLLFTPVTKAGNFLTGLGHRSDHYNCVSSGGQCLYSAC





PIFTKIQGTCYRGKAKCCKEAAAKGTTLPKKKFFGMSRIGMEVTPSGTW





KKLLPAADGPGPGAALALLLLDRLNQLEGPGPGGTWLTYTGAIKLDDKG





PGPGFPRGQGVPIAAYFPRGQGVPIAAYFPRGQGVPIAAYLSPRWYFYY





AAYLLLDRLNQLAAYKSAAEASKKAAYKPRQKRTATAAYGMSRIGMEVA





AYKTFPPTEPKAAYMASMTGGQQMG






In some embodiments, the plasmid comprises:


(i) a sequence that encodes SEQ ID NO: 41 or a sequence that has at least 95% identity with SEQ ID NO: 41; and


(ii) a sequence that encodes SEQ ID NO: 30 or a sequence that has at least 95% identity with SEQ ID NO: 30.


In some embodiments, the plasmid comprises:


(i) a sequence that encodes SEQ ID NO: 41 or a sequence that has at least 98% identity with SEQ ID NO: 41; and


(ii) a sequence that encodes SEQ ID NO: 30 or a sequence that has at least 98% identity with SEQ ID NO: 30.


In some embodiments, the plasmid comprises:


(i) a sequence that encodes SEQ ID NO: 41 or a sequence that has at least 99% identity with SEQ ID NO: 41; and


(ii) a sequence that encodes SEQ ID NO: 30 or a sequence that has at least 99% identity with SEQ ID NO: 30.


In some embodiments, the plasmid comprises:


(i) a sequence that encodes SEQ ID NO: 41; and


(ii) a sequence that encodes SEQ ID NO: 30.


In a preferred embodiment of the invention, the coronavirus antigen is selected from any one of the viral antigen units of Table 4 or Table 5.


In another preferred embodiment of the invention, the coronavirus antigen is selected from any one of the viral antigen units of Table 14 or Table 16.


In another preferred embodiment of the invention, the coronavirus antigen consists of an amino acid sequence of any one of SEQ ID NOs: 11-18, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 168, or 170, or consists of an amino acid sequence at least 99% identical to the amino acid sequence of any one of SEQ ID NOs: 11-18, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 168, or 170.


In another preferred embodiment of the invention, the coronavirus antigen is encoded by any one of the coding sequences (CDS) of Table 14 or Table 16 or by the coding sequences (CDS) of any one of SEQ ID Nos 178-183.


Combination Product

The inclusion of a purification tag allows one to express and purify the one or more fusion proteins encoded by the plasmid comprised in the bacterium. After cleavage of the purification tags and removal of LPS, the fusion protein can be used in prime-boost vaccines (e.g. oral, nasal) or can be added to the live vaccine as an adjuvant-antigen-fusion protein to increase amount of the antigenic fusion protein and/or to deliver an additional set of adjuvant-antigen-combinations.


Thus, in another aspect the present invention provides a combination product comprising (i) the live-attenuated bacterium of the present invention and (ii) the one or more fusion proteins encoded by the recombinant plasmid found within the bacterium of the present invention.


Vaccine and Pharmaceutical Compositions

In another aspect, the present invention provides a vaccine comprising the bacterium of the present invention or the combination product of the present invention. In some embodiments, the vaccine further comprises a pharmaceutically acceptable carrier or diluent.


The vaccine may also be referred to as a “pharmaceutical composition”.


A pharmaceutical composition as described herein may also contain other substances. These substances include, but are not limited to, cryoprotectants, lyoprotectants, surfactants, bulking agents, anti-oxidants, and stabilizing agents. In some embodiments, the pharmaceutical composition may be lyophilized.


The term “cryoprotectant” as used herein, includes agents which provide stability to the active ingredient against freezing-induced stresses, by being preferentially excluded from the active ingredient's surface. Cryoprotectants may also offer protection during primary and secondary drying and long-term product storage. Non-limiting examples of cryoprotectants include sugars, such as sucrose, glucose, trehalose, mannitol, mannose, and lactose; polymers, such as dextran, hydroxyethyl starch and polyethylene glycol; surfactants, such as polysorbates (e.g., PS-20 or PS-80); and amino acids, such as glycine, arginine, leucine, and serine. A cryoprotectant exhibiting low toxicity in biological systems is generally used.


In one embodiment, a lyoprotectant is added to a pharmaceutical composition described herein. The term “lyoprotectant” as used herein, includes agents that provide stability to the active ingredient during the freeze-drying or dehydration process (primary and secondary freeze-drying cycles), by providing an amorphous glassy matrix and by binding with the a's surface through hydrogen bonding, replacing the water molecules that are removed during the drying process. This helps to minimize product degradation during the lyophilization cycle and improve the long-term product stability. Non-limiting examples of lyoprotectants include sugars, such as sucrose or trehalose; an amino acid, such as monosodium glutamate, non-crystalline glycine or histidine; a metHlyAmine, such as betaine; a lyotropic salt, such as magnesium sulfate; a polyol, such as trihydric or higher sugar alcohols, e.g., glycerin, erythritol, glycerol, arabitol, xylitol, sorbitol, and mannitol; propylene glycol; polyethylene glycol; pluronics; and combinations thereof. The amount of lyoprotectant added to a pharmaceutical composition is generally an amount that does not lead to an unacceptable amount of degradation of the strain when the pharmaceutical composition is lyophilized.


In some embodiments, a bulking agent is included in the pharmaceutical composition. The term “bulking agent” as used herein, includes agents that provide the structure of the freeze-dried product without interacting directly with the pharmaceutical product. In addition to providing a pharmaceutically elegant cake, bulking agents may also impart useful qualities in regard to modifying the collapse temperature, providing freeze-thaw protection, and enhancing the strain stability over long-term storage. Non-limiting examples of bulking agents include mannitol, glycine, lactose, and sucrose. Bulking agents may be crystalline (such as glycine, mannitol, or sodium chloride) or amorphous (such as dextran, hydroxyethyl starch) and are generally used in formulations in an amount from 0.5% to 10%.


Other pharmaceutically acceptable carriers, excipients, or stabilizers, such as those described in Remington: The Science and Practice of Pharmacy 22nd edition, Pharmaceutical press (2012), ISBN-13: 9780857110626 may also be included in a pharmaceutical composition described herein, provided that they do not adversely affect the desired characteristics of the pharmaceutical composition. As used herein, “pharmaceutically acceptable carrier” means any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances is well known in the art. Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed and include: additional buffering agents; preservatives; co-solvents; antioxidants, including ascorbic acid and methionine; chelating agents such as EDTA; metal complexes (e.g., Zn-protein complexes); biodegradable polymers, such as polyesters; salt-forming counterions, such as sodium, polyhydric sugar alcohols; amino acids, such as alanine, glycine, glutamine, asparagine, histidine, arginine, lysine, ornithine, leucine, 2-phenylalanine, glutamic acid, and threonine; organic sugars or sugar alcohols, such as lactitol, stachyose, mannose, sorbose, xylose, ribose, ribitol, myoinisitose, myoinisitol, galactose, galactitol, glycerol, cyclitols (e.g., inositol), polyethylene glycol; sulfur containing reducing agents, such as urea, glutathione, thioctic acid, sodium thioglycolate, thioglycerol, [alpha]-monothioglycerol, and sodium thio sulfate; low molecular weight proteins, such as human serum albumin, bovine serum albumin, gelatin, or other immunoglobulins; and hydrophilic polymers, such as polyvinylpyrrolidone.


In some embodiments, the pharmaceutical composition may be suitable for oral, buccal, nasal, intravenous, intramuscular, conjunctival, transdermal, intraperitoneal and/or subcutaneous administration, preferably oral, nasal, intravenous and/or intramuscular administration.


The pharmaceutical composition may further comprise common excipients and carriers which are known in the state of the art. For solution for injection, the pharmaceutical composition may further comprise cryoprotectants, lyoprotectants, surfactants, bulking agents, anti-oxidants, stabilizing agents and pharmaceutically acceptable carriers.


Medical Uses

In another aspect, the present invention provides the bacterium of the present invention, the combination product of the present invention or the vaccine of the present invention for use as a medicament.


In another aspect, the present invention provides the bacterium of the present invention, the combination product of the present invention or the vaccine of the present invention for use in a method of treating a disease or disorder caused by a member of the coronavirus family. In some embodiments, the method comprises administering a therapeutically effective amount of the bacterium, combination product or vaccine to a subject.


In some embodiments, the disease or disorder is COVID-19. In some embodiments, the coronavirus is SARS-CoV-2.


In some embodiments, the bacterium, combination product or vaccine is administered orally, buccally, intranasally, intravenously, intramuscularly, transdermally, intraperitoneally or subcutaneously. In some embodiments, administration is performed orally, intranasally, intravenously or intramuscularly.


Kit

In another aspect, the present invention provides a kit comprising a live-attenuated bacterium of the genus Salmonella and a recombinant plasmid encoding a fusion protein, wherein the fusion protein comprises a coronavirus antigen and an adjuvant peptide.


The bacterium, plasmid and fusion protein may be in accordance with any aspect and/or embodiment disclosed throughout this application.


For the avoidance of any doubt, any instance wherein the term “comprising” is used throughout the entirety of the present application may optionally be replaced by the expression “consisting of”.


Items

The present invention also provides the following items which may be combined with any aspect or embodiment described throughout the entirety of the present application.


[1] A live-attenuated bacterium of the genus Salmonella comprising a recombinant plasmid encoding a fusion protein, wherein the fusion protein comprises:


(i) a coronavirus antigen; and


(ii) an adjuvant peptide.


[2] The bacterium of [1], wherein the bacterium is of the species Salmonella enterica.


[3] The bacterium of [1] or [2], wherein the bacterium is a Salmonella enterica serovar Typhi strain.


[4] The bacterium of [3], wherein the bacterium is the Ty21a strain.


[5] The bacterium of any one of [1]-[4], wherein the adjuvant is a (i) mucosal adjuvant, or (ii) a toll-like receptor agonist or β-defensin.


[6] The bacterium of any one of [1]-[5], wherein the plasmid encodes a first fusion protein and a second fusion protein, wherein each fusion protein comprises:


(i) a coronavirus antigen; and


(ii) an adjuvant peptide.


[7] The bacterium of [6], wherein the first fusion protein comprises:


(i) a coronavirus antigen; and


(ii) a mucosal adjuvant peptide.


[8] The bacterium of [7], wherein the second fusion protein comprises:


(i) a coronavirus antigen; and


(ii) a toll-like receptor agonist or β-defensin.


[9] The bacterium of [5] or [7], wherein the mucosal adjuvant is an interleukin-2 or a cholera toxin B subunit, wherein, optionally, the mucosal adjuvant is a cholera toxin B subunit.


[10] The bacterium of [5] or [8], wherein the toll-like receptor agonist is a Neisseria PorB or 50 s ribosomal protein L7/L12.


[11] The bacterium of [5], [8] or [10], wherein the β-defensin is human β-defensin 1, human β-defensin 2, human β-defensin 3 or human β-defensin 4, wherein, optionally the β-defensin is human β-defensin 1.


[12] The bacterium of any one of [1]-[11], wherein the coronavirus antigen is a SARS-CoV-2 antigen.


[13] The bacterium of any one of [1]-[12], wherein the coronavirus antigen is selected from any one of SEQ ID NOs: 11-18, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 168, or 170 or is an antigenic fragment of any one of SEQ ID NOs: 11-18, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 168, or 170.


[14] The bacterium of any one of [1]-[13], wherein the coronavirus antigen is SEQ ID NO: 11 or an antigenic fragment thereof.


[15] The bacterium of any one of [1]-[13], wherein the coronavirus antigen is SEQ ID NO: 12 or an antigenic fragment thereof.


[16] The bacterium of any one of [1]-[13], wherein the coronavirus antigen is SEQ ID NO: 13 or an antigenic fragment thereof.


[17] The bacterium of any one of [1]-[13], wherein the coronavirus antigen is SEQ ID NO: 14 or an antigenic fragment thereof.


[18] The bacterium of any one of [1]-[13], wherein the coronavirus antigen is SEQ ID NO: 15 or an antigenic fragment thereof.


[19] The bacterium of any one of [1]-[13], wherein the coronavirus antigen is SEQ ID NO: 16 or an antigenic fragment thereof.


[20] The bacterium of any one of [1]-[13], wherein the coronavirus antigen is SEQ ID NO: 17 or an antigenic fragment thereof.


[21] The bacterium of any one of [1]-[13], wherein the coronavirus antigen is SEQ ID NO: 18 or an antigenic fragment thereof.


[22] The bacterium of any one of [1]-[21], wherein the one or more fusion proteins further comprise a secretion signal peptide.


[23] The bacterium of [22], wherein the secretion signal peptide is the hemolysin A secretion signal peptide, and the plasmid further encodes HlyB and HlyD.


[24] The bacterium of [23], wherein the plasmid further encodes HlyC and/or HlyR.


[25] The bacterium of any one of [1]-[24], wherein the bacterium and/or the plasmid does not comprise an antibiotic marker.


[26] The bacterium of any one of [1]-[25], wherein the bacterium is a ΔtyrS strain and the plasmid further encodes tyrS.


[27] The bacterium of any one of [1]-[26], wherein the plasmid is integrated into the chromosome of the bacterium or replicates independently of the chromosome of the bacterium.


[28] A combination product comprising:


(a) the bacterium of any one of [1]-[27]; and


(b) at least one of the one or more fusion proteins encoded by the plasmid of said bacterium.


[29] A vaccine comprising the bacterium of any one of [1]-[27] or the combination product of [28].


[30] The bacterium of any one of [1]-[27], the combination product of [28] or the vaccine of [29] for use as a medicament.


[31] The bacterium of any one of [1]-[27], the combination product of [28] or the vaccine of [29] for use in a method of treating a disease or disorder caused by a member of the coronavirus family.


[32] The bacterium, combination product or vaccine for use of [31], wherein the disease or disorder is COVID-19.


[33] A kit comprising:


(a) a live-attenuated bacterium of the genus Salmonella; and


(b) a recombinant plasmid encoding a fusion protein, wherein the fusion protein comprises:

    • (i) a coronavirus antigen; and
    • (ii) an adjuvant peptide.


[34] The kit of [33], wherein the live-attenuated bacterium and the recombinant plasmid are according to any one of [1]-[126].


Exemplary materials which can be used in accordance with the invention are shown in the following tables. These materials may be combined with any aspect or embodiment described throughout the entirety of the present application.









TABLE 1







Bacterial strains









Bacterial strains
Relevant characteristics/Plasmids
Source or reference






E. coli DH5α

F, ø80dlacZ M15, (lacZYA-
Invitrogen



argF)U169 deoR, recA1, endA1,




hsdR17(rk, mk+), phoA, supE44, λ,




thi-1, gyrA96, relA1




E. coli CC118 (λpir)

Δ(ara-leu), araD, ΔlacX74, galE, galK,
Herrero et al., (1990)



phoA20, thi-1, rpsE, rpoB, argE(Am),




recA, λpir phage lysogen




S. enterica serovar Typhi Ty21a

S. Typhi Ty2, galE, rpoS, yiaB
(Germanier et al., 1975),




Berna Biotech Ltd.




GenBank accession number




CP002099; (Xu et al., 2013)



S. enterica serovar Typhimurium

hisG46, DEL407 [aroA544::Tn10
(Hoiseth et al., 1981)


ΔaroA SL7207
(Tcs)]




S. enterica serovar Typhi Ty21a ΔtyrS

Ty21a derivat, tyrS gene
(Diessner, 2009)


(tyrS Cm)+, clone 120
replacement by a (FRT tyrS Cm




FRT)+-knock-in-Fragment
















TABLE 2







In silico design - antigen selection of antigens in accordance with the invention















Antigenic unit in



UniProt;
Average antigenic

fusion protein of the



SEQ ID
propensity for this
Length
A-Site, respectively



NO
sequence
(aa)
B-Site














Protein sequences of SARS-






CoV-2






Structural proteins






S - spike glycoprotein (Wuhan
P0DTC2;





Hu-1 isolate)
SEQ ID NO:






11





Region 2-1273

1.0417
1272



>sp | P0DTC2 | 1-1273






BetaCoV S1-NTD

1.0364
291



>sp | P0DTC2 | 13-303






Receptor binding domain

1.0432
223
A1


>sp | P0DTC2 | 319-541






BetaCoV S1-CTD

1.0446
194
A3


>sp | P0DTC2 | 334-527






RBM Receptor binding

1.0164
72



motif






>sp | P0DTC2 | 437-508






Fusion peptide

1.0239
19



>sp | P0DTC2 | 788-806






Heptad repeat 1

1.0350
51



>sp | P0DTC2 | 920-970






Heptad repeat 2

1.0208
40



>sp | P0DTC2 | 1163-1202






Cytoplasmic domain

1.1129
39



>sp | P0DTC2 | 1235-1273






M - Membrane glycoprotein
P0DTC5;






SEQ ID NO:






12





Region 2-222

1.0542
221



>sp | P0DTC5 | 2-222






Region 2-100

1.0756
99



>sp | P0DTC5| 2-100






E - Envelope-Protein
P0DTC4;






SEQ ID NO:






13





Region 1-75

1.1202
75



N - Nucleocapsid protein
P0DTC9;






SEQ ID NO:






14





Region: 2-419:

0.9874
418



>sp | P0DTC9 | 2-419






Region: 41-186: RNA-

0.9912
146



binding






>sp | P0DTC9 | 41-186






Region: 258-361:

0.9975
104
B5, B7, B9, B10, B11,


Dimerization



B12, B14


>sp | P0DTC9 | 258-361



A22


Multi-epitope unit,
SEQ ID NO:
1.0157
255
B3, B15, B16


Variant 6:
167





aa 217-231, L, aa 249-371,






L, aa 361-371, L , aa 361-






371






Region aa



A23





(aa = amino acid; L = Linker sequence)













TABLE 3







In silico design - adjuvant selection for use in the invention













Average






antigenic





UniProt;
propensity

adjuvant unit in fusion



SEQ ID
for this
Length
protein of the A-Site,



NO:
sequence
(aa)
respectively B-Site














Protein sequences of Adjuvants






Mucosal adjuvants






Cholera enterotoxin B-
Q57193;
1.0146
103
A1, A3


subunit
SEQ ID


A11, A12, A13, A14, A15,


>tr | Q57193 | 22-124
NO: 2


A17, A18, A19, A20,






A21, A22, A23






B13, B14, B16


IL2, (IL2_HUMAN)
P60568;
1.0307
133



>sp | P60568 | 21-153
SEQ ID






NO: 1





human β-defensin group






BD1
P60022;
1.0592
47
B3, B5, B7


>sp | P60022 | 22-68
SEQ ID






NO: 5





BD2
015263;
1.0779
41
B9, B11, B12


>sp | O15263 | 24-64
SEQ ID






NO: 6





BD3
P81534;
1.0512
45



>sp | P81534 | 23-67
SEQ ID






NO: 7





BD4
Q8WTQ1;
1.0256
50



>sp | Q8WTQ1 | 23-72)
SEQ ID






NO: 8





Bacterial adjuvants






50S ribosomal protein L7/L12
Q735E8;
1.0319
130



(Rv0652)
SEQ ID





Full length
NO: 4





Neisseria porB
X5EGHO;
1.0185
310



PorB sequence is 310
SEQ ID





residues long
NO: 3





>tr | X5EGH0 | 20-329





(aa = amino acid; L = Linker sequence)













TABLE 4







Fusion protein design of the A-site in accordance with the invention (see Table 13 for


the amino acid sequences of the fusion protein constructs)









Fusion proteins of A-Site






















Viral antigen











unit, S-Protein,





Construct
HlyA-
Nsil-



VOC VOI VOM

Nsil-



#
Nter.
Site
Linker
Adjuvant
Linker
(SEQ ID NO)
Linker
Site
HlyAs





A1
HlyA-
Nsil
EAAAK
CtxB
EAAAK
RBD Wuhan-Hu-1
EAAAK
Nsil
HlyAs



Nter.




Isolate





A3
HlyA-
Nsil
EAAAK
CtxB
EAAAK
BetaCoV S1-CTD
EAAAK
Nsil
HlyAs



Nter.




Wuhan-Hu-1











Isolate





A11
HlyA-
Nsil
EAAAK
CtxB
EAAAK
RBD variant
EAAAK
Nsil
HlyAs



Nter.




B.1.1.7, Alpha





A12
HlyA-
Nsil
EAAAK
CtxB
EAAAK
RBD variant
EAAAK
Nsil
HlyAs



Nter.




B.1.1.7 plus











E484K





A13
HlyA-
Nsil
EAAAK
CtxB
EAAAK
RBD variant
EAAAK
Nsil
HlyAs



Nter.




B.1.351, Beta





A14
HlyA-
Nsil
EAAAK
CtxB
EAAAK
RBD variant
EAAAK
Nsil
HlyAs



Nter.




B.1.351 plus RBD











variant B.1.1.7





A15
HlyA-
Nsil
EAAAK
CtxB
EAAAK
RBD variant P.1
EAAAK
Nsil
HlyAs



Nter.




(501Y.V.3),











Gamma





A16
HlyA-
Nsil
EAAAK
CtxB
EAAAK

EAAAK
Nsil
HlyAs



Nter.










A17
HlyA-
Nsil
EAAAK

EAAAK
RBD Wuhan-Hu-1
EAAAK
Nsil
HlyAs



Nter.




Isolate





A18
HlyA-
Nsil
EAAAK
CtxB
EAAAK
RBD variant
EAAAK
Nsil
HlyAs



Nter.




B.1.617.1, Kappa,











B.1.617.3





A19
HlyA-
Nsil
EAAAK
CtxB
EAAAK
RBD variant
EAAAK
Nsil
HlyAs



Nter.




B.1.617-2, Delta





A20
HlyA-
Nsil
EAAAK
CtxB
EAAAK
RBD variant
EAAAK
Nsil
HlyAs



Nter.




B.1.617-2.1











(Delta plus











K417N )





A21
HlyA-
Nsil
EAAAK
CtxB
EAAAK
RBD variant C.37
EAAAK
Nsil
HlyAs



Nter.




(Lambda)





Schematic structure of selected fusion proteins of the A-Site (aa = amino acid; L = Linker sequence) (VOC: variants of concern, VOI: variants of interest, VOM: variant under monitoring, HlyA-Nter (also referred to herein as “HlyAN”) is the N-terminal sequence of HlyA (SEQ ID NO: 25); HlyAs is the signal peptide of HlyA (SEQ ID NO: 19).













TABLE 5







Fusion protein design of the B-site in accordance with the invention (see


Table 15 for the amino acid sequences of the fusion protein constructs)









Fusion proteins of B-Site
















Construct
Sall-

Signal


Viral antigen


Sall-


#
Site
PR
peptide
Adjuvant
Linker
unit, N-Protein
Tag
TR
Site





B3
Sall
PR4
OmpA
hBD1
EAAAK
aa 217-231, L,
T7
TR2
Sall








aa 249-371, L,











aa 361-371, L ,











aa 361-371





B5
Sall
PR4
OmpA
hBD1
EAAAK
aa 258-361
T7
TR2
Sall








(dimerization











region)





B7
Sall
PR4
Bla
hBD1
EAAAK
aa 258-361
T7
TR2
Sall








(dimerization











region)





B9
Sall
PR4
Bla
hBD2
EAAAK
aa 258-361
T7
TR2
Sall








(dimerization











region)





B10
Sall
PR3
OmpA

EAAAK
aa 258-361
His
T0
Sall








(dimerization











region)





B11
Sall
PR3
OmpA
hBD2
EAAAK
aa 258-361
His
T0
Sall








(dimerization











region)





B12
Sall
PR3
OmpA
hBD2
EAAAK

His
T0
Sall


B13
Sall
PR3
OmpA
CtxB
EAAAK

His
T0
Sall


B14
Sall
PR3
OmpA
CtxB
EAAAK
aa 258-361
His
T0
Sall








(dimerization











region)





B15
Sall
PR3
OmpA

EAAAK
aa 217-231, L,
His
T0
Sall








aa 249-371, L,











aa 361-371, L,











aa 361-371





B16
Sall
PR3
OmpA
CtxB
EAAAK
aa 217-231, L,
His
T0
Sall








aa 249-371, L,











aa 361-371, L ,











aa 361-371





Schematic structure of selected fusion proteins of the A-Site (aa = amino acid; L = Linker sequence, VOC: variants of concern, VOI: variants of interest, VOM: variant under monitoring, PR: Promotor region; PR4: SEQ ID NO: 36; PR3: SEQ ID NO: 35; TR: Terminator region; TR 2 (SEQ ID NO: 43): TR T0: BBA_K864600 T0-TERMINATOR (SEQ ID NO: 44).













TABLE 6







Plasmids with codon optimized synthetic antigen fragments in accordance with the invention









Plasmids
Relevant characteristics
Source/Manufacturer





Plasmids with




synthetic Nsil-




fragments for




cloning into A-site




of our vaccine




plasmids




Nsil 1 in pMK-RQ
Standard delivery vector Geneart,
Thermo Fisher Scientific GENEART



KanR
GmbH



carrying Nsil-Fragment Nsil 1 (->A1)



Nsil 2 in pMK-RQ
Standard delivery vector Geneart,
Thermo Fisher Scientific GENEART



KanR
GmbH



carrying Nsil-Fragment Nsil 2 (->A3)



A11 in pMK-RQ
Standard delivery vector Geneart,
Thermo Fisher Scientific GENEART



KanR
GmbH



carrying Nsil-Fragment A11 (->A11)



A12 in pMK-RQ
Standard delivery vector Geneart,
Thermo Fisher Scientific GENEART



KanR
GmbH



carrying Nsil-Fragment A12 (->A12)



A13 in pMK-RQ
Standard delivery vector Geneart,
Thermo Fisher Scientific GENEART



KanR
GmbH



carrying Nsil-Fragment A13 (->A13)



A14 in pMK-RQ
Standard delivery vector Geneart,
Thermo Fisher Scientific GENEART



KanR
GmbH



carrying Nsil-Fragment A14 (->A14)



A15 in pMK-RQ
Standard delivery vector Geneart,
Thermo Fisher Scientific GENEART



KanR
GmbH



carrying Nsil-Fragment A15 (->A15)



A16 in pMA-RQ
Standard delivery vector Geneart,
Thermo Fisher Scientific GENEART



AmpR
GmbH



carrying Nsil-Fragment A16 (->A16)



A17 in in pMK-RQ
Standard delivery vector Geneart,
Thermo Fisher Scientific GENEART



KanR
GmbH



carrying Nsil-Fragment A17 (->A17)



Nsil_18 In pMA-RQ
Standard delivery vector Geneart,
Thermo Fisher Scientific GENEART



AmpR
GmbH



carrying Nsil-Fragment Nsil_18 (->




A18)



Nsil_19 In pMA-RQ
Standard delivery vector Geneart,
Thermo Fisher Scientific GENEART



AmpR
GmbH



carrying Nsil-Fragment Nsil_19 (->




A19)



Plasmids with




synthetic Sall-




fragments for




cloning into B-site




of our vaccine




plasmids




Sall3 in pMK-RQ
Standard delivery vector Geneart,
Thermo Fisher Scientific GENEART



KanR
GmbH



carrying Sall-Fragment Sall3 (->B3)



Sall5 in pMK-RQ
Standard delivery vector Geneart,
Thermo Fisher Scientific GENEART



KanR
GmbH



carrying Sall-Fragment Sall5 (->B5)



Sall7 in pMA-RQ
Standard delivery vector Geneart,
Thermo Fisher Scientific GENEART



AmpR
GmbH



carrying Sall-Fragment Sall7 (->B7)



Sall-9 in pMK-RQ
Standard delivery vector Geneart,
Thermo Fisher Scientific GENEART



KanR
GmbH



carrying Sall-Fragment Sall-9 (->B9)



Sall-Nr_B10 in
Standard delivery vector Geneart,
Thermo Fisher Scientific GENEART


pMK-RQ
KanR
GmbH



carrying Sall-Fragment Sall-Nr_B10




(->B10)



Sall-Nr_B11 in
Standard delivery vector Geneart,
Thermo Fisher Scientific GENEART


pMK-RQ
KanR
GmbH



carrying Sall-Fragment Sall-Nr_B11




(->B11)



Sall-Nr_B12 in
Standard delivery vector Geneart,
Thermo Fisher Scientific GENEART


pMK-RQ
KanR
GmbH



carrying Sall-Fragment Sall-Nr_B12




(->B12)



Sall-Nr_B13 in
Standard delivery vector Geneart,
Thermo Fisher Scientific GENEART


pMK-RQ
KanR
GmbH



carrying Sall-Fragment Sall-Nr_B13




(->B13)



Sall-Nr_614 in
Standard delivery vector Geneart,
Thermo Fisher Scientific GENEART


pMK-RQ
KanR
GmbH



carrying Sall-Fragment Sall-Nr_B14




(->B14)



B15_PR3_Linker in
Standard delivery vector Geneart,
Thermo Fisher Scientific GENEART


pMA-RQ
AmpR
GmbH



carrying Sall-Fragment




B15_PR3_Linker (->B15)



B16_PR3_Linker in
Standard delivery vector Geneart,
Thermo Fisher Scientific GENEART


pMA-RQ
AmpR
GmbH



carrying Sall-Fragment




B16_PR3_Linker (->B16)



Plasmid with




synthetic Spel-




fragment for




cloning into Spel-




Site of our vaccine




plasmids




Spel-Nr_1 in pMA-
Standard delivery vector Geneart,
Thermo Fisher Scientific GENEART


RQ
AmpR
GmbH



carrying Spel-Fragment Spel-Nr_1




with




PlacltyrS-HisTag-T0-Expression cassette




(improved DNA)
















TABLE 7A







Plasmids









Plasmids
Relevant characteristics
Source/Reference





pCP20
helper plasmid, AmpR, CmR bla cat
(Cherepanov et al, 1995)



cl857 lPR flp pSC101 oriTS



pKD46
Helper plasmid, AmpR, encoding the
Datsenko and Wanner



Red recombinase Expresses g, b and
(2000)



exo from the arabinose-inducible




ParaB promoter



pKD3
helper plasmid, bla FRT cat FRT PS1
Datsenko and Wanner



PS2 oriR6K
(2000)


pKD3-SpeI
helper plasmid, bla FRT BcuI-site cat
Diessner (2009)



FRT PSI PS2 oriR6K



pKD3-SpeI tyrS HisTag-s
helper plasmid, bla FRT PWT
Diessner (2009)



tyrSx6His, cat FRT PS1 PS2 oriR6K



pMKhly1
FRT KanR FRT, hlyR, hlyC, hlyAs
Fensterle et al. (2008)



(encoding the hemolysin secretion




signal), hlyB, hlyD



pMKhly-CtxB
FRT KanR FRT, derivate of pMKhly-
Fensterle et al. (2008)



CtxB, encoding CtxB-hlyAs-fusion



pMKhly-CtxB-PSA
FRT KanR FRT, derivate of pMKhly-
Fensterle et al. (2008)



CtxB, encoding a CtxB-PSA-HlyAs




fusion



pMKhlyΔIS2-CtxB-PSA
derivate of pMKhly-CtxB-PSA:
(Diessner, 2009)



deletion of IS2-like fragment and




creation of single Spel-site



pMKhlyΔIS2Placl-liketyrS
derivate of pMKhlyΔIS2-CtxB-PSA:
(Gesser, 2010)


CtxB-PSA
integration of an Placl-like tyrSx6His




expression cassette into single Spel-




site
















TABLE 7B







Primers for the construction of S. enterica serovar Typhi Ty21a ΔtyrS (tyrS Cm)


(Diessner, 2009) and pMKhlyΔIS2 PlacI-liketyrS CtxB-PSA (Gesser 2010)










Name
SEQ ID NO:
Sequence (5'->3')
Note





Mut-pKD3-SpeI-
185
GTG ATC TTC CGT CAC TAG TAG
BcuI-site


forward

GCG CGC CGA AG






Mut-pKD3-SpeI-
186
CTT CGG CG GCC TAC TAG TGA
BcuI-site


reverse

CGG AAG ATC AC






SpeI-tyrS-EPK-
187
AAA AAA ACT AGT GTT CCC TGT
BcuI-site


forward

ATA AAA ACC AGG GGG






tyrS-EPK-SpeI-
188
TTT TTT ACT AGT GTA AAT TCC TGG
BcuI-site


reverse

AGC TGA AGC AGA AG






Ter-HisTag-1-
189
CCC CCT TTC CAC TTA ATG CAT TAG
x6HisTag


forward


TGA TGG TGA TGGTGA TGT TTC






CAG CAA ATC AGA CAG TAA TTC






SpeI-Ter-HisTag-2-
190
AAA AAA ACT AGT GTT CCC TGT
BcuI-site


forward

ATA AAA ACC AGG GGG AGT GAT





TTC TCA CTC CCC CTT TCC ACT TAA





TGC ATT AG






tyrS-HisTag-reverse
191

CAT CAC CAT CAC CAT CAC GCA

x6HisTag




AGC AGT AAC TTG ATT AAA






knockout-forward
192

GTG TAC CGG CAA AGG TGC AGT







CGT TTT ATA CAT GGA GAT TTT







GAT GGC A
GT GTA GGC TGG AGC







TGC TTC







knockout-reverse
193

GAT AGT GAC AGC GTT GGA GGC







GAT AGT CTT ACG CGC CTG ACC







ACG TGA CGGATG GG A ATT AGC







CAT GGT CC







SpeI-IS2-Deletion-
194
AAA AACTAG TGA TAA TGG TTC
BcuI-site


forward

ATG CTA CCG GGC GAA TG






IS2-Deletion-
195
GTT TTG GGA TCC ACC CTG ATG
BamHI-site


BamHI-reverse

GCT CTG






LacI-Prom.for
196
AAA AGT CGA CTA GTG CTA GCG
SalI/SpeI-




ACA CCA TCG AAT GGC GCA AAC
sites




CTT TCG CGG TAT GGC ATG ATA





GCG CCC GAA GTC GTG TAC CGG






CAA AGG TGA GTC G







LacI-Ter-rev
197
AAA AAA GTC GAC TAG TGG TAC
SalI/SpeI-




CAA AAT GCC GCC AGC CCA AAC
sites




TGG CGG CCG TGG ATT AGT GAT






GGT GAT GGT GAT GTT TCC AGC







pMO-tyrS-screen-
198
CCC TGA ATC TCC AGA CAA CCA
screening


forward

ATA TCA






pMO-tyrS-screen-
199
CCC GTA CAA ATT CTA CCA GTT
screening


forward

CTG GA
















TABLE 8







Primers for screening and sequencing










Primer

Sequence (5′→3′)



No.
Name
(SEQ ID NO)
Used in PCR-Analysis of





 4
5 HlyA N-ter_screen
GCCAACAATAACCACTGC
A-Site



forward 1
(SEQ ID NO: 45)






 6
HlyA signal_screen
GCTACCTGCAGCTGAAATG
A-Site



reverse 1
(SEQ ID NO: 46)






17
pdxH-forward
GAAGTGCCGTTACCCAGCTTCT
Chromosomal tyrS-region




G (SEQ ID NO: 47)






18
pdxY reverse
GGGACTGGATAGCGAGGATAT
Chromosomal tyrS-region




TC (SEQ ID NO: 48)






21
SalI-Site forward
CTCAACGGCCTCAACCTACTAC
B-Site




(SEQ ID NO: 49)






22
SalI-Site reverse
GTCATAAGTGCGGCGACGATA
B-Site




G (SEQ ID NO: 50)






23
RBD-S-P_screen
CGCGTGGAACTCCAACAAC
A-Site



forward 1
(SEQ ID NO: 51)






34
TR-SalI-reverse
CGACGGTGCCTAATGAGTGAG
B-Site




CTAACTCAC (SEQ ID NO: 52)






37
37_FRT-Kan-for
CCAATGCTTAATCAGTGAGGCA
Kanamycin resistance




CC (SEQ ID NO: 53)
region





38
38_FRT-Kan-rev
CCGCTCATGAGACAATAACCCT
Kanamycin resistance




G (SEQ ID NO: 54)
region





39
39_SalI-Site for 2
CATCTCCTTGCATGCACCATTCC
B-Site




TTG (SEQ ID NO: 55)






40
40_SalI-Site rev 2
CATAAGTGCGGCGACGATAGTC
B-Site




ATGC (SEQ ID NO: 56)






45
45_CtxB_SalVac_rev
GCTTTTTTCTGGGAGTCGATG
A-Site




(SEQ ID NO: 57)






59
59_SalI-site for 3
CTTGTTTCGGCGTGGGTATGGT
B-Site




GG (SEQ ID NO: 58)






68
68_5 HlyA N-
GCCAACAATAACCACTGCAC
A-Site



ter_screen forward 2
(SEQ ID NO: 59)






69
69_HlyA
GAAGCTACCTGCAGCTGAAATG
A-Site



signal_screen reverse
(SEQ ID NO: 60)




2







 7
DhF
GCTTAATGTCCAAGATGCCTAC
Multiplex-PCR-Primer for




(SEQ ID NO: 61)
Strain identification


 8
DhR
GAGCAACGCCAGTACCATCTG
(Kumar et al., 2006)




(SEQ ID NO: 62)



 9
InvAF
CGAGCAGCCGCTTAGTATTGAG





(SEQ ID NO: 63)



10
InvAR
CCATCAAATTAGCGGAGGCTTC





(SEQ ID NO: 64)



11
PrtF
CGTTTGGGTTCCTTGGATCACG





(SEQ ID NO: 65)



12
PrtR
CTATAATGGCGGCGGCGAGTTC





(SEQ ID NO: 66)



13
ViaBF
CACGCACCATCATTTCACCG





(SEQ ID NO: 67)



14
ViaBR
AACAGGCTGTAGCGATTT





AGG (SEQ ID NO: 68)
















TABLE 9







Plasmids of the JMU-SalVac-100 series used in the invention









Plasmids
Relevant characteristics
Features/notes





pSalVac 001 A0_B0
pMKhlyΔIS2 PlacI-like tyrS,
First basic plasmid of the


KanR
hlyR, hlyC, hlyAs (encoding the hemolysin
JMU-SalVac-100 series



secretion signal) hlyB, hlyD, FRT KanR
cloning vector



FRT
Negative control plasmid



contains two separate expressions sites:




single NsiII-site, located within the hly




gene cluster




->A-Site




and single Sall site located outside the hly




gene cluster:




->B-Site



pSalVac001 A0_B0
pSalVac 001 A0_B0 KanR-Derivat



ΔKanR
BLS-stabilized in JMU-SalVac-101



Vaccine plasmids




of the JMU-SalVac




100-Series




pSalVac 101 Ax_By
pMKhlyΔIS2 PlacI-like tyrS HisTag,
Schematic structure of


KanR
hlyR, hlyC, hlyB, hlyD, FRT KanR FRT
plasmids of the



A-Site encodes fusion protein Ax-hlyAs
JMU-SalVac-



B-Site contains promotor region, CDS of B-
100 series



Site fusion protein and terminator region,



pSalVac 101 Ax_By
pMKhlyΔIS2 PlacI-like tyrS HisTag,
Schematic structure of


ΔKanR
hlyR, hlyC, hlyB, hlyD FRT,
plasmids



A-Site encodes fusion protein Ax-hlyAs
JMU-SalVac-100



B-Site contains promotor region, CDS of B-
series after final



Site fusion protein and terminator region
elimination




of antibiotic




resistance gene


pSalVac 101 A1_B0
pSalVac 001 A0_B0 KanR-Derivat
First set of Plasmid


KanR
Fragment NsiI 1 in NsiI-Site of A-Site,
constructs



contains CDS of fusion protein A1
SARS-Cov-2



KanR
Wuhan-Hu-1




Isolate


pSalVac 101 A1_B0
pSalVac 001 A0_B0 KanR-Derivat



ΔKanR
Fragment NsiI 1 in NsiI-Site of A-Site,




contains CDS of fusion protein A1




BLS-stabilized in JMU-SalVac-102



pSalVac 101 A3_B0
pSalVac 001 A0_B0 KanR-Derivat



KanR
Fragment NsiI 2 in NsiI-Site of A-Site,




contains CDS of fusion protein A3




KanR



pSalVac 101 A3_B0
pSalVac 001 A0_B0 KanR-Derivat



ΔKanR
Fragment NsiI 2 in NsiI-Site of A-Site,




contains CDS of fusion protein A3




BLS-stabilized in JMU-SalVac-103



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat



A1_B3f KanR
Fragment NsiI 1 in NsiI-Site of A-Site,




Fragment Sall3 in SalI-Site of B-Site,




forward.




contains CDS of fusion proteins A1 and B3




KanR



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat



A1_B3f ΔKanR
Fragment NsiI 1 in NsiI-Site of A-Site,




Fragment Sall3 in SalI-Site of B-Site,




forward,




contains CDS of fusion proteins A1 and B3,




BLS-stabilized in JMU-SalVac-104



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat



A3_B3f KanR
Fragment NsiI 2 in NsiI-Site of A-Site,




Fragment Sall3 in SalI-Site of B-Site,




forward,




contains CDS of fusion proteins A3 and B3,




KanR



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat



A3_B3f ΔKanR
Fragment NsiI 2 in NsiI-Site of A-Site,




Fragment Sall3 in SalI-Site of B-Site,




forward,




contains CDS of fusion proteins A3 and B3,




BLS-stabilized in JMU-SalVac-105



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat



A1_B5f KanR
Fragment NsiI 1 in NsiI-Site of A-Site,




Fragment Sall5 in SalI-Site of B-Site,




forward,




contains CDS of fusion proteins A1 and B5,




KanR



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat



A1_B5f 6,KanR
Fragment NsiI 1 in NsiI-Site of A-Site,




Fragment Sall5 in SalI-Site of B-Site,




forward,




contains CDS of fusion proteins A1 and B5,




BLS-stabilized in JMU-SalVac-106



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat



A1_B7r KanR
Fragment NsiI 1 in NsiI-Site of A-Site,




Fragment Sall7 in SalI-Site of B-Site,




reverse,




contains CDS of fusion proteins A1 and B7,




KanR



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat



A1_B7r ΔKanR
Fragment NsiI 1 in NsiI-Site of A-Site,




Fragment Sall7 in SalI-Site of B-Site,




reverse,




contains CDS of fusion proteins A1 and B7,




BLS-stabilized in JMU-SalVac-107



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat



A1_B9f KanR
Fragment NsiI 1 in NsiI-Site of A-Site,




Fragment Sall9 in SalI-Site of B-Site,




forward,




contains CDS of fusion proteins A1 and B9,




KanR



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat



A1_B9f ΔKanR
Fragment NsiI 1 in NsiI-Site of A-Site,




Fragment Sall9 in SalI-Site of B-Site,




forward,




contains CDS of fusion proteins A1 and B5,




BLS-stabilized in JMU-SalVac-108



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat



A1_B10f KanR
Fragment NsiI 1 in NsiI-Site of A-Site,




Fragment Sall10 in SalI-Site of B-Site,




forward,




contains CDS of fusion proteins A1 and




B10,




KanR



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat



A1_B10f ΔKanR
Fragment NsiI 1 in NsiI-Site of A-Site,




Fragment Sall10 in SalI-Site of B-Site,




forward,




contains CDS of fusion proteins A1 and




B10,




BLS-stabilized in JMU-SalVac-109



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat
Wuhan-Hu-1 Isolate


A0_B3f KanR
Fragment Sall3 in SalI-Site of B-Site,




forward.




contains CDS of fusion proteins B3




KanR



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat



A0_B3f ΔKanR
Fragment Sall3 in SalI-Site of B-Site,




forward.




contains CDS of fusion proteins B3




BLS-stabilized



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat
Wuhan-Hu-1 Isolate


A0_B9f KanR
Fragment Sall9 in SalI-Site of B-Site,




forward.




contains CDS of fusion proteins B9




KanR



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat



A0_B9f ΔKanR
Fragment Sall9 in SalI-Site of B-Site,




forward.




contains CDS of fusion proteins B9




BLS-stabilized



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat
Wuhan-Hu-1 Isolate


A0_B5f KanR
Fragment Sall5 in SalI-Site of B-Site,




forward.




contains CDS of fusion proteins B5




KanR



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat



A0_B5f ΔKanR
Fragment Sall5 in SalI-Site of B-Site,




forward.




contains CDS of fusion proteins B5




BLS-stabilized



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat
Wuhan-Hu-1 Isolate


A1_B14f KanR
Fragment NsiI 1 in NsiI-Site of A-Site,




Fragment SalI-Nr_B14 in SalI-Site of B-




Site, forward,




contains CDS of fusion proteins A1 and




B14,




KanR



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat



A1_B14f ΔKanR
Fragment NsiI 1 in NsiI-Site of A-Site,




Fragment SalI-Nr_B14 in SalI-Site of B-




Site, forward,




contains CDS of fusion proteins A1 and




B14,




BLS-stabilized



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat
Wuhan-Hu-1 Isolate


A1_B15f KanR
Fragment NsiI 1 in NsiI-Site of A-Site,




Fragment B15_PR3_Linker in SalI-Site of




B-Site, forward,




contains CDS of fusion proteins A1 and




B15, KanR



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat



A1_B15f ΔKanR
Fragment NsiI 1 in NsiI-Site of A-Site,




Fragment B15_PR3_Linker in SalI-Site of




B-Site, forward,




contains CDS of fusion proteins A1 and




B15,




BLS-stabilized



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat
Wuhan-Hu-1 Isolate


A1_B16f KanR
Fragment NsiI 1 in NsiI-Site of A-Site,




Fragment B16_PR3_Linker in SalI-Site of




B-Site, forward,




contains CDS of fusion proteins A1 and




B16,




KanR



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat



A1_B16f ΔKanR
Fragment NsiI 1 in NsiI-Site of A-Site,




Fragment B16_PR3_Linker in SalI-Site of




B-Site, forward,




contains CDS of fusion proteins A1 and




B16,




BLS-stabilized



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat
RBD S-Protein


A11_B3f KanR
Fragment A11 in NsiI-Site of A-Site,
variant B.1.1.7,



Fragment Sall3 in SalI-Site of B-Site,
Alpha



forward.




contains CDS of fusion proteins A11 and




B3,




KanR



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat



A11_B3 ΔKanR
Fragment A11 in NsiI-Site of A-Site,




Fragment Sall3 in SalI-Site of B-Site,




forward.




contains CDS of fusion proteins A12 and




B3,




BLS-stabilized in JMU-SalVac-110



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat
RBD S-Protein,


A12_B3f KanR
Fragment A12 in NsiI-Site of A-Site,
variant B.1.1.7



Fragment Sall3 in SalI-Site of B-Site,
plus E484K



forward.




contains CDS of fusion proteins A12 and




B3,




KanR



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat



A12_B3f ΔKanR
Fragment A12 in NsiI-Site of A-Site,




Fragment Sall3 in SalI-Site of B-Site,




forward.




contains CDS of fusion proteins A12 and




B3,




BLS-stabilized in JMU-SalVac-111



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat
RBD S-Protein,


A13_B3f KanR
Fragment A13 in NsiI-Site of A-Site,
variant



Fragment Sall3 in SalI-Site of B-Site,
B.1.351, Beta



forward.




contains CDS of fusion proteins A13 and




B3,




KanR



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat



A13_B3f ΔKanR
Fragment A13 in NsiI-Site of A-Site,




Fragment Sall3 in SalI-Site of B-Site,




forward.




contains CDS of fusion proteins A13 and




B3,




BLS-stabilized in JMU-SalVac-112



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat
RBD S-Protein,


A15_B3f KanR
Fragment A15 in NsiI-Site of A-Site,
variant P.1,



Fragment Sall3 in SalI-Site of B-Site,
Gamma



forward.




contains CDS of fusion proteins A13 and




B3,




KanR



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat



A15_B3f ΔKanR
Fragment A15 in NsiI-Site of A-Site,




Fragment Sall3 in SalI-Site of B-Site,




forward.




contains CDS of fusion proteins A15 and




B3,




BLS-stabilized in JMU-SalVac-113



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat
RBD S-Protein


A19_B3f KanR
Fragment A19 in NsiI-Site of A-Site,
variant



Fragment Sall3 in SalI-Site of B-Site,
B.1.617.2, Delta



forward.




contains CDS of fusion proteins A15 and




B3,




KanR



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat



A19_B3f ΔKanR
Fragment A19 in NsiI-Site of A-Site,




Fragment Sall3 in SalI-Site of B-Site,




forward.




contains CDS of fusion proteins A19 and




B3,




BLS-stabilized in JMU-SalVac-114



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat
RBD S-Protein


A19_B10f KanR
Fragment A19 in NsiI-Site of A-Site,
variant



Fragment Sall10 in SalI-Site of B-Site,
B.1.617.2, Delta



forward,




contains CDS of fusion proteins A19 and




B10,




KanR



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat



A19_B10f ΔKanR
Fragment A19 in NsiI-Site of A-Site,




Fragment Sall10 in SalI-Site of B-Site,




forward,




contains CDS of fusion proteins A19 and




B10,




BLS-stabilized in JMU-SalVac-115



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat
RBD S-Protein


A19_B14f KanR
Fragment A19 in NsiI-Site of A-Site,
variant



Fragment SalI-Nr_B14 in SalI-Site of B-
B.1.617.2, Delta



Site, forward,




contains CDS of fusion proteins A19 and




B14,




KanR



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat



A19_B14f ΔKanR
Fragment A19 in NsiI-Site of A-Site,




Fragment SalI-Nr_B14 in SalI-Site of B-




Site, forward,




contains CDS of fusion proteins A19 and




B14,




BLS-stabilized in JMU-SalVac-116



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat
RBD S-Protein


A19_B15f KanR
Fragment A19 in NsiI-Site of A-Site,
variant



Fragment B15_PR3_Linker in SalI-Site of
B.1.617.2, Delta



B-Site, forward,




contains CDS of fusion proteins A19 and




B15, KanR



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat



A19_B15f ΔKanR
Fragment A19 inNsiI-Site of A-site,




Fragment B15_PR3_Linker in SalI-Site of




B-Site, forward,




contains CDS of fusion proteins A19 and




B15,




BLS-stabilized BLS-stabilized in JMIU-




SalVac-117



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat
RBD S-Protein


A19_B16f KanR
Fragment A19 in NsiI-Site of A-Site,
variant



Fragment B16_PR3_Linker in SalI-Site of
B.1.617.2, Delta



B-Site, forward,




contains CDS of fusion proteins A1 and




B16,




KanR



pSalVac 101
pSalVac 001 A0_B0 KanR-Derivat



A19_B16f ΔKanR
Fragment A19 in NsiI-Site of A-Site,




Fragment B16_PR3_Linker in SalI-Site of




B-Site, forward,




contains CDS of fusion proteins A1 and




B10,




BLS-stabilized BLS-stabilized in JMU-




SalVac-118
















TABLE 10







BLS intermediate strains


BLS-relevant bacterial intermediate strains in this study









Strain
Plasmid(s)
Feature(s)





S. enterica serovar Typhi
pCP20
BLS-(R) recipient


Ty21a ΔtyrS

strain, CmR, AmpR


(tyrS Cm)+,




clone 1




S. enterica serovar Typhi

BLS-(R) recipient strain


Ty21a @deltatyrS

Depletion of pCP20 by


(tyrS Cm)+,

incubation at 37° C.


clone 1

overnight in liquid LB,




vegetal (Roth) (-> BLS-




R ΔpCP20)



S. enterica serovar Typhi

pCP20, pSalVac
Schematic structure of BLS-


Ty21a ΔtyrS
Ax_By KanR
intermediate strains


(tyrS Cm)+,

CmR, AmpR, KanR


clone 1
















TABLE 11







BLS vaccine strains used in the invention


BLS stabilized final vaccine strains and control strain:









Strain
Plasmid(s)
Feature(s)






S. enterica serovar Typhi

pSalVac 101 Ax_By
Schematic structure of JMU-SalVac-100


Ty21a ΔtyrS
ΔKanR
Vaccine Strains


JMU-SalVac-101
pSalVac 001 A0_B0
Control strain



ΔKanR



JMU-SalVac-102
pSalVac 101 A1_B0
SARS-Cov-2 Wuhan-Hu-1 Isolate



ΔKanR



JMU-SalVac-103
pSalVac 101 A3_B0
SARS-Cov-2 Wuhan-Hu-1 Isolate



ΔKanR



JMU-SalVac-104
pSalVac 101 A1_B3f
SARS-Cov-2 Wuhan-Hu-1 Isolate



ΔKanR



JMU-SalVac-105
pSalVac 101 A3_B3f
SARS-Cov-2 Wuhan-Hu-1 Isolate



ΔKanR



JMU-SalVac-106
pSalVac 101 A1_B5f
SARS-Cov-Wuhan-Hu-1 Isolate



ΔKanR



JMU-SalVac-107
pSalVac 101 A1_B7r
SARS-Cov-2 Wuhan-Hu-1 Isolate



ΔKanR



JMU-SalVac-108
pSalVac 101 A1_B9f
SARS-Cov-2 Wuhan-Hu-1 Isolate



ΔKanR



JMU-SalVac-109
pSalVac 101 A1_B10
SARS-Cov-2 Wuhan-Hu-1 Isolate



ΔKanR



JMU-SalVac-110
pSalVac 101 A11_Bf3
RBD S-Protein ,variant B.1.1.7 Alpha



ΔKanR



JMU-SalVac-111
pSalVac 101 A12_B3f
RBD S-Protein, variant B.1.1.7 plus E484K



ΔKanR



JMU-SalVac-112
pSalVac 101 A13_B3f
RBD S-Protein, variant B.1.351 Beta



ΔKanR



JMU-SalVac-113
pSalVac 101 A15_B3f
RBD S-Protein, variant P.1 Gamma



ΔKanR



JMU-SalVac-114
pSalVac 101 A19_B3f
RBD S-Protein variant B.1.617.2, Delta



ΔKanR



JMU-SalVac-115
pSalVac 101 A19_B10f
RBD S-Protein variant B.1.617.2, Delta



ΔKanR



JMU-SalVac-116
pSalVac 101 A19_B14f
RBD S-Protein variant B.1.617.2, Delta



ΔKanR



JMU-SalVac-117
pSalVac 101 A19_B15f
RBD S-Protein variant B.1.617.2, Delta



ΔKanR



JMU-SalVac-118
pSalVac 101 A19_B16f
RBD S-Protein variant B.1.617.2, Delta



ΔKanR
















TABLE 12







primers for qPCR-Analysis










Primer

Sequence (5′→3′)



No.
Name
(SEQ ID NO)
qPCR-Analysis








For detection of mRNA


 4
5 HlyA N-ter_screen
GCCAACAATAA
With 4 or 68: 278 bp-hlyA-Fragment



forward 1
CCACTGC (SEQ
templates: pSalVac A0_B0 or




ID NO: 69)
pMKhly1


43
43_HlyAsignal_
CTGATGTGGTC
Detection of mRNA of HlyA Nter-HlyA



reverse
AGGGTTATTG
signal-fusion




(SEQ ID NO: 70)






44
44_CtxB_AEZS120_
GTTGACTACCT
With 4 or 68: 269 bp-fragment template:



rev
GGTACTTCTAC
pMKhly1-CtxB-PSA




(SEQ ID NO: 71)
Detection of mRNA CtxB-PSA-HlyAs





fusion





45
45_CtxB_SalVac_
GCTTTTTTCTGG
with 4 or 68: 309 bp-ctxB-Fragment



rev
GAGTCGATG
templates: pSalVac Ax_By with CtxB as




(SEQ ID NO: 72)
adjuvant unit





Detection of mRNA of A-Site fusion





protein





51
51_16S-for
GAGCCCGGGGA
housekeeping gene, control




TTTCACATC





(SEQ ID NO: 73)






52
52_16S-rev
CGGGGAGGAAG
housekeeping gene, control




GTGTTGTG (SEQ
With 51: 178 bp 16S-fragment




ID NO: 74)






53
53_165_rev2
CAGACTCCTAC
housekeeping gene, control




GGGAGGCAG
With 51: 286 bp 16S-fragment




(SEQ ID NO: 75)






57
57_Dimer_for
CGGAAGCGTCC
303 bp, detection of mRNA of B-Site




AAAAAACCGC
fusion protein (Binding dimerization region




(SEQ ID NO: 76)
N-Protein)


58
58_Dimer_rev
GCAGGATAACC





TGGTCTTTGAA





G (SEQ ID NO: 77)






62
62_HlyB for
CCATAACGTCT
301 bp-Fragment, detection of mRNA of




CTGTTAACCCG
HlyB




GAAG (SEQ ID





NO: 78)



63
63_HlyB rev
CCCCTGATATA





ACGCCTCAAAC





TCAG (SEQ ID





NO: 79)






64
64_HlyD for
GAATTCTTACCC
321 bp-Fragment, detection of mRNA of




GCTCATCTGG
HlyD




(SEQ ID NO: 80)



65
65_HlyD rev
GGCCTGTAACA





GTGATGACTGT





G (SEQ ID NO: 81)






66
66_tyrS for
CCATTGTTATGC
310 bp-Fragment, detection of mRNA of




CTGAAACGCTT
TyrS




CCAGC (SEQ ID





NO: 82)



67
67_tyrS rev
CCGCTTCTTTGT





TGATCATCTGGT





TAACGG (SEQ ID





NO: 83)









For determination of plasmid Copy





number


73
73_SlyB-for
GGTTTTATTCAT
with 74 or 75 detection SlyB (control)




TGCGCTCTGGA





CGC





(SEQ ID NO: 84)






74
74_SlyB-rev 113
GATTCCTCGGC
with 73: 113 bp-fragment




AACACTATCGG





(SEQ ID NO: 85)






75
75_SlyB-rev 302
CACTGATGGGG
with 73: 302 bp-fragment




TTATCCTTAGCT





GGG





(SEQ ID NO: 86)






62
62_HlyB for
CCATAACGTCT
104 bp-Fragment




CTGTTAACCCG





GAAG (SEQ ID





NO: 87)



76
76_HlyB rev 104
GTTCTAAAGAT





TTCGCAGCAAG





CAAC (SEQ ID





NO: 88)






62
62_HlyB for
CCATAACGTCT
301 bp-Fragment




CTGTTAACCCG





GAAG (SEQ ID





NO: 89)



63
63_HlyB rev
CCCCTGATATA





ACGCCTCAAAC





TCAG (SEQ ID





NO: 90)
















TABLE 13







optimized CDS and amino acid (aa) sequences of fusion proteins of A-site in


accordance with the invention











DNA-sequence: 5′→3




NsiI-Sites: ATGCAT




DNA with optimized codon usage: underlined




CDS of RBD, respectively BetaCoV S1-CTD and fusions of RBD plus




regions of N-Protein (A22, A23) in bold




Amino acid-sequence: Start→end




Amino acids (aa) with optimized codon usage: underlined


Fusion
SEQ
RBD, respectively BetaCoV S1-CTD and fusions of RBD plus regions of N-


Protein
ID
Protein (A22, A23) in bold





A1
SEQ ID
ATGCCAACAATAACCACTGCACAAATTAAAAGCACACTGCAGTCTGCAAAGCAATCCG


CDS
NO:
CTGCAAATAAATTGCACTCAGCAGGACAAAGCACGAAAGATGCATCAGAAGCGGCG



32

GCGAAAACCCCGCAGAACATCACCGACCTGTGCGCGGAATACCACAACACCCAGATC






CACACCCTGAACGACAAAATCTTCTCCTACACCGAATCCCTGGCGGGCAAACGTGAAA






TGGCGATCATCACCTTCAAAAACGGCGCGACCTTCCAGGTTGAAGTTCCGGGCTCCCA






GCACATCGACTCCCAGAAAAAAGCGATCGAACGTATGAAAGACACCCTGCGTATCGC






GTACCTGACCGAAGCGAAAGTTGAAAAACTGTGCGTTTGGAACAACAAAACCCCGCA






CGCGATCGCGGCGATCTCCATGGCGAACGAAGCGGCGGCGAAACGTGTTCAGCCGA







CCGAATCCATAGTTAGGTTCCCGAACATCACTAACCTGTGTCCGTTTGGCGAAGTGTT








CAACGCGACCCGTTTTGCGTCCGTCTACGCCTGGAACCGTAAACGTATCTCCAACTGC








GTTGCGGACTACTCCGTTCTGTACAACTCCGCGTCCTTCTCCACCTTCAAATGCTACG








GCGTTTCCCCGACCAAACTGAACGACCTGTGCTTCACCAACGTTTACGCGGACTCCTT








CGTTATCCGTGGCGACGAAGTTCGTCAGATCGCGCCGGGCCAGACCGGCAAAATCG








CGGACTACAACTACAAACTGCCGGACGACTTCACCGGCTGCGTTATCGCGTGGAACT








CCAACAACCTGGACTCCAAAGTTGGCGGCAACTACAACTACCTGTACCGTCTGTTCC








GTAAATCCAACCTGAAACCGTTCGAACGTGACATCTCCACCGAAATCTACCAGGCGG








GCTCCACCCCGTGCAACGGCGTTGAAGGCTTCAACTGCTACTTCCCGCTGCAGTCCTA








CGGCTTCCAGCCGACCAACGGCGTTGGCTACCAGCCGTACCGTGTTGTTGTTCTGTCC








TTCGAACTGCTGCACGCGCCGGCGACCGTTTGCGGCCCGAAAAAATCCACCAACCTG








GTTAAAAACAAATGCGTTAACTTCGACTACAAAGACGACGACGACAAAGAAGCGGC







GGCGAAACATGCATTAGCCTATGGAAGTCAGGGTGATCTTAATCCATTAATTAATGAA





ATCAGCAAAATCATTTCAGCTGCAGGTAGCTTCGATGTTAAAGAGGAAAGAACTGCA




GCTTCTTTATTGCAGTTGTCCGGTAATGCCAGTGATTTTTCATATGGACGGAACTCAAT




AACCCTGACCACATCAGCA





A1
SEQ ID
MPTITTAQIKSTLQSAKQSAANKLHSAGQSTKDASEAAAKTPQNITDLCAEYHNTQIHTLN


aa
NO:

DKIFSYTESLAGKREMAIITFKNGATFQVEVPGSQHIDSQKKAIERMKDTLRIAYLTEAKVE




30

KLCVWNNKTPHAIAAISMANEAAAKRVQPTESIVRFPNITNLCPFGEVFNATRFASVYA







WNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAP








GQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEI








YQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKS








TNLVKNKCVNFDYKDDDDKEAAAK
HALAYGSQGDLNPLINEISKIISAAGSFDVKEERTAA





SLLQLSGNASDFSYGRNSITLTTSA





A3
SEQ ID
ATGCCAACAATAACCACTGCACAAATTAAAAGCACACTGCAGTCTGCAAAGCAATCCG


CDS
NO:
CTGCAAATAAATTGCACTCAGCAGGACAAAGCACGAAAGATGCATCAGAAGCGGCG



91

GCGAAAACCCCGCAGAACATCACCGACCTGTGCGCGGAATACCACAACACCCAGATC






CACACCCTGAACGACAAAATCTTCTCCTACACCGAATCCCTGGCGGGCAAACGTGAAA






TGGCGATCATCACCTTCAAAAACGGCGCGACCTTCCAGGTTGAAGTTCCGGGCTCCCA






GCACATCGACTCCCAGAAAAAAGCGATCGAACGTATGAAAGACACCCTGCGTATCGC






GTACCTGACCGAAGCGAAAGTTGAAAAACTGTGCGTTTGGAACAACAAAACCCCGCA






CGCGATCGCGGCGATCTCCATGGCGAACGAAGCGGCGGCGAAAAACCTGTGTCCGTT







TGGCGAAGTGTTCAACGCGACCCGTTTTGCGTCCGTCTACGCCTGGAACCGTAAACG








TATCTCCAACTGCGTTGCGGACTACTCCGTTCTGTACAACTCCGCGTCCTTCTCCACCT








TCAAATGCTACGGCGTTTCCCCGACCAAACTGAACGACCTGTGCTTCACCAACGTTTA








CGCGGACTCCTTCGTTATCCGTGGCGACGAAGTTCGTCAGATCGCGCCGGGCCAGAC








CGGCAAAATCGCGGACTACAACTACAAACTGCCGGACGACTTCACCGGCTGCGTTAT








CGCGTGGAACTCCAACAACCTGGACTCCAAAGTTGGCGGCAACTACAACTACCTGTA








CCGTCTGTTCCGTAAATCCAACCTGAAACCGTTCGAACGTGACATCTCCACCGAAATC








TACCAGGCGGGCTCCACCCCGTGCAACGGCGTTGAAGGCTTCAACTGCTACTTCCCG








CTGCAGTCCTACGGCTTCCAGCCGACCAACGGCGTTGGCTACCAGCCGTACCGTGTT








GTTGTTCTGTCCTTCGAACTGCTGCACGCGCCGGCGACCGTTTGCGGCCCGGACTACA







AAGACGACGACGACAAAGAAGCGGCGGCGAAACATGCATTAGCCTATGGAAGTCAG





GGTGATCTTAATCCATTAATTAATGAAATCAGCAAAATCATTTCAGCTGCAGGTAGCTT




CGATGTTAAAGAGGAAAGAACTGCAGCTTCTTTATTGCAGTTGTCCGGTAATGCCAGT




GATTTTTCATATGGACGGAACTCAATAACCCTGACCACATCAGCATAA





A3
SEQ ID
MPTITTAQIKSTLQSAKQSAANKLHSAGQSTKDASEAAAKTPQNITDLCAEYHNTQIHTLN


aa
NO:

DKIFSYTESLAGKREMAIITFKNGATFQVEVPGSQHIDSQKKAIERMKDTLRIAYLTEAKVE




92

KLCVWNNKTPHAIAAISMANEAAAKNLCPFGEVFNATRFASVYAWNRKRISNCVADYS







VLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLP








DDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEG








FNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPDYKDDDDKEAAAK
HAL





AYGSQGDLNPLINEISKIISAAGSFDVKEERTAASLLQLSGNASDFSYGRNSITLTTSA*





A11
SEQ ID
ATGCCAACAATAACCACTGCACAAATTAAAAGCACACTGCAGTCTGCAAAGCAATCCG


CDS
NO:
CTGCAAATAAATTGCACTCAGCAGGACAAAGCACGAAAGATGCATCAGAAGCGGCG



93

GCGAAAACCCCGCAGAACATCACCGACCTGTGCGCGGAATACCACAACACCCAGATC






CACACCCTGAACGACAAAATCTTCTCCTACACCGAATCCCTGGCGGGCAAACGTGAAA






TGGCGATCATCACCTTCAAAAACGGCGCGACCTTCCAGGTTGAAGTTCCGGGCTCCCA






GCACATCGACTCCCAGAAAAAAGCGATCGAACGTATGAAAGACACCCTGCGTATCGC






GTACCTGACCGAAGCGAAAGTTGAAAAACTGTGCGTTTGGAACAACAAAACCCCGCA






CGCGATCGCGGCGATCTCCATGGCGAACGAAGCGGCGGCGAAACGTGTTCAGCCGA







CCGAATCCATAGTTAGGTTCCCGAACATCACTAACCTGTGTCCGTTTGGCGAAGTGTT








CAACGCGACCCGTTTTGCGTCCGTCTACGCCTGGAACCGTAAACGTATCTCCAACTGC








GTTGCGGACTACTCCGTTCTGTACAACTCCGCGTCCTTCTCCACCTTCAAATGCTACG








GCGTTTCCCCGACCAAACTGAACGACCTGTGCTTCACCAACGTTTACGCGGACTCCTT








CGTTATCCGTGGCGACGAAGTTCGTCAGATCGCGCCGGGCCAGACCGGCAAAATCG








CGGACTACAACTACAAACTGCCGGACGACTTCACCGGCTGCGTTATCGCGTGGAACT








CCAACAACCTGGACTCCAAAGTTGGCGGCAACTACAACTACCTGTACCGTCTGTTCC








GTAAATCCAACCTGAAACCGTTCGAACGTGACATCTCCACCGAAATCTACCAGGCGG








GCTCCACCCCGTGCAACGGCGTTGAAGGCTTCAACTGCTACTTCCCGCTGCAGTCCTA








CGGCTTCCAGCCGACCTACGGCGTTGGCTACCAGCCGTACCGTGTTGTTGTTCTGTCC








TTCGAACTGCTGCACGCGCCGGCGACCGTTTGCGGCCCGAAAAAATCCACCAACCTG








GTTAAAAACAAATGCGTTAACTTCGACTACAAAGACGACGACGACAAAGAAGCGGC







GGCGAAACATGCATTAGCCTATGGAAGTCAGGGTGATCTTAATCCATTAATTAATGAA





ATCAGCAAAATCATTTCAGCTGCAGGTAGCTTCGATGTTAAAGAGGAAAGAACTGCA




GCTTCTTTATTGCAGTTGTCCGGTAATGCCAGTGATTTTTCATATGGACGGAACTCAAT




AACCCTGACCACATCAGCATAA





A11
SEQ ID
MPTITTAQIKSTLQSAKQSAANKLHSAGQSTKDASEAAAKTPQNITDLCAEYHNTQIHTLN


aa
NO:

DKIFSYTESLAGKREMAIITFKNGATFQVEVPGSQHIDSQKKAIERMKDTLRIAYLTEAKVE




94

KLCVWNNKTPHAIAAISMANEAAAKRVQPTESIVRFPNITNLCPFGEVFNATRFASVYA







WNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAP








GQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEI








YQAGSTPCNGVEGFNCYFPLQSYGFQPTYGVGYQPYRVVVLSFELLHAPATVCGPKKST








NLVKNKCVNFDYKDDDDKEAAAK
HALAYGSQGDLNPLINEISKIISAAGSFDVKEERTAAS





LLQLSGNASDFSYGRNSITLTTSA*





A12
SEQ ID
ATGCCAACAATAACCACTGCACAAATTAAAAGCACACTGCAGTCTGCAAAGCAATCCG


CDS
NO:
CTGCAAATAAATTGCACTCAGCAGGACAAAGCACGAAAGATGCATCAGAAGCGGCG



95

GCGAAAACCCCGCAGAACATCACCGACCTGTGCGCGGAATACCACAACACCCAGATC






CACACCCTGAACGACAAAATCTTCTCCTACACCGAATCCCTGGCGGGCAAACGTGAAA






TGGCGATCATCACCTTCAAAAACGGCGCGACCTTCCAGGTTGAAGTTCCGGGCTCCCA






GCACATCGACTCCCAGAAAAAAGCGATCGAACGTATGAAAGACACCCTGCGTATCGC






GTACCTGACCGAAGCGAAAGTTGAAAAACTGTGCGTTTGGAACAACAAAACCCCGCA






CGCGATCGCGGCGATCTCCATGGCGAACGAAGCGGCGGCGAAACGTGTTCAGCCGA







CCGAATCCATAGTTAGGTTCCCGAACATCACTAACCTGTGTCCGTTTGGCGAAGTGTT








CAACGCGACCCGTTTTGCGTCCGTCTACGCCTGGAACCGTAAACGTATCTCCAACTGC








GTTGCGGACTACTCCGTTCTGTACAACTCCGCGTCCTTCTCCACCTTCAAATGCTACG








GCGTTTCCCCGACCAAACTGAACGACCTGTGCTTCACCAACGTTTACGCGGACTCCTT








CGTTATCCGTGGCGACGAAGTTCGTCAGATCGCGCCGGGCCAGACCGGCAAAATCG








CGGACTACAACTACAAACTGCCGGACGACTTCACCGGCTGCGTTATCGCGTGGAACT








CCAACAACCTGGACTCCAAAGTTGGCGGCAACTACAACTACCTGTACCGTCTGTTCC








GTAAATCCAACCTGAAACCGTTCGAACGTGACATCTCCACCGAAATCTACCAGGCGG








GCTCCACCCCGTGCAACGGCGTTAAAGGCTTCAACTGCTACTTCCCGCTGCAGTCCTA








CGGCTTCCAGCCGACCTACGGCGTTGGCTACCAGCCGTACCGTGTTGTTGTTCTGTCC








TTCGAACTGCTGCACGCGCCGGCGACCGTTTGCGGCCCGAAAAAATCCACCAACCTG








GTTAAAAACAAATGCGTTAACTTCGACTACAAAGACGACGACGACAAAGAAGCGGC







GGCGAAACATGCATTAGCCTATGGAAGTCAGGGTGATCTTAATCCATTAATTAATGAA





ATCAGCAAAATCATTTCAGCTGCAGGTAGCTTCGATGTTAAAGAGGAAAGAACTGCA




GCTTCTTTATTGCAGTTGTCCGGTAATGCCAGTGATTTTTCATATGGACGGAACTCAAT




AACCCTGACCACATCAGCATAA





A12
SEQ ID
MPTITTAQIKSTLQSAKQSAANKLHSAGQSTKDASEAAAKTPQNITDLCAEYHNTQIHTLN


aa
NO:

DKIFSYTESLAGKREMAIITFKNGATFQVEVPGSQHIDSQKKAIERMKDTLRIAYLTEAKVE




96

KLCVWNNKTPHAIAAISMANEAAAKRVQPTESIVRFPNITNLCPFGEVFNATRFASVYA







WNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAP








GQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEI








YQAGSTPCNGVKGFNCYFPLQSYGFQPTYGVGYQPYRVVVLSFELLHAPATVCGPKKST








NLVKNKCVNFDYKDDDDKEAAAK
HALAYGSQGDLNPLINEISKIISAAGSFDVKEERTAAS





LLQLSGNASDFSYGRNSITLTTSA*





A13
SEQ ID
ATGCCAACAATAACCACTGCACAAATTAAAAGCACACTGCAGTCTGCAAAGCAATCCG


CDS
NO:
CTGCAAATAAATTGCACTCAGCAGGACAAAGCACGAAAGATGCATCAGAAGCGGCG



97

GCGAAAACCCCGCAGAACATCACCGACCTGTGCGCGGAATACCACAACACCCAGATC






CACACCCTGAACGACAAAATCTTCTCCTACACCGAATCCCTGGCGGGCAAACGTGAAA






TGGCGATCATCACCTTCAAAAACGGCGCGACCTTCCAGGTTGAAGTTCCGGGCTCCCA






GCACATCGACTCCCAGAAAAAAGCGATCGAACGTATGAAAGACACCCTGCGTATCGC






GTACCTGACCGAAGCGAAAGTTGAAAAACTGTGCGTTTGGAACAACAAAACCCCGCA






CGCGATCGCGGCGATCTCCATGGCGAACGAAGCGGCGGCGAAACGTGTTCAGCCGA







CCGAATCCATAGTTAGGTTCCCGAACATCACTAACCTGTGTCCGTTTGGCGAAGTGTT








CAACGCGACCCGTTTTGCGTCCGTCTACGCCTGGAACCGTAAACGTATCTCCAACTGC








GTTGCGGACTACTCCGTTCTGTACAACTCCGCGTCCTTCTCCACCTTCAAATGCTACG








GCGTTTCCCCGACCAAACTGAACGACCTGTGCTTCACCAACGTTTACGCGGACTCCTT








CGTTATCCGTGGCGACGAAGTTCGTCAGATCGCGCCGGGCCAGACCGGCAACATCG








CGGACTACAACTACAAACTGCCGGACGACTTCACCGGCTGCGTTATCGCGTGGAACT








CCAACAACCTGGACTCCAAAGTTGGCGGCAACTACAACTACCTGTACCGTCTGTTCC








GTAAATCCAACCTGAAACCGTTCGAACGTGACATCTCCACCGAAATCTACCAGGCGG








GCTCCACCCCGTGCAACGGCGTTAAAGGCTTCAACTGCTACTTCCCGCTGCAGTCCTA








CGGCTTCCAGCCGACCTACGGCGTTGGCTACCAGCCGTACCGTGTTGTTGTTCTGTCC








TTCGAACTGCTGCACGCGCCGGCGACCGTTTGCGGCCCGAAAAAATCCACCAACCTG








GTTAAAAACAAATGCGTTAACTTCGACTACAAAGACGACGACGACAAAGAAGCGGC







GGCGAAACATGCATTAGCCTATGGAAGTCAGGGTGATCTTAATCCATTAATTAATGAA





ATCAGCAAAATCATTTCAGCTGCAGGTAGCTTCGATGTTAAAGAGGAAAGAACTGCA




GCTTCTTTATTGCAGTTGTCCGGTAATGCCAGTGATTTTTCATATGGACGGAACTCAAT




AACCCTGACCACATCAGCATAA





A13
SEQ ID
MPTITTAQIKSTLQSAKQSAANKLHSAGQSTKDASEAAAKTPQNITDLCAEYHNTQIHTLN


aa
NO:

DKIFSYTESLAGKREMAIITFKNGATFQVEVPGSQHIDSQKKAIERMKDTLRIAYLTEAKVE




98

KLCVWNNKTPHAIAAISMANEAAAKRVQPTESIVRFPNITNLCPFGEVFNATRFASVYA







WNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAP








GQTGNIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTE








IYQAGSTPCNGVKGFNCYFPLQSYGFQPTYGVGYQPYRVVVLSFELLHAPATVCGPKKS








TNLVKNKCVNFDYKDDDDK
EAAAKHALAYGSQGDLNPLINEISKIISAAGSFDVKEERTAA





SLLQLSGNASDFSYGRNSITLTTSA*





A14
SEQ ID
ATGCCAACAATAACCACTGCACAAATTAAAAGCACACTGCAGTCTGCAAAGCAATCCG


CDS
NO:
CTGCAAATAAATTGCACTCAGCAGGACAAAGCACGAAAGATGCATCAGAAGCGGCG



99

GCGAAAACCCCGCAGAACATCACCGACCTGTGCGCGGAATACCACAACACCCAGATC






CACACCCTGAACGACAAAATCTTCTCCTACACCGAATCCCTGGCGGGCAAACGTGAAA






TGGCGATCATCACCTTCAAAAACGGCGCGACCTTCCAGGTTGAAGTTCCGGGCTCCCA






GCACATCGACTCCCAGAAAAAAGCGATCGAACGTATGAAAGACACCCTGCGTATCGC






GTACCTGACCGAAGCGAAAGTTGAAAAACTGTGCGTTTGGAACAACAAAACCCCGCA






CGCGATCGCGGCGATCTCCATGGCGAACGAAGCGGCGGCGAAACGTGTTCAGCCGA







CCGAATCCATAGTTAGGTTCCCGAACATCACTAACCTGTGTCCGTTTGGCGAAGTGTT








CAACGCGACCCGTTTTGCGTCCGTCTACGCCTGGAACCGTAAACGTATCTCCAACTGC








GTTGCGGACTACTCCGTTCTGTACAACTCCGCGTCCTTCTCCACCTTCAAATGCTACG








GCGTTTCCCCGACCAAACTGAACGACCTGTGCTTCACCAACGTTTACGCGGACTCCTT








CGTTATCCGTGGCGACGAAGTTCGTCAGATCGCGCCGGGCCAGACCGGCAACATCG








CGGACTACAACTACAAACTGCCGGACGACTTCACCGGCTGCGTTATCGCGTGGAACT








CCAACAACCTGGACTCCAAAGTTGGCGGCAACTACAACTACCTGTACCGTCTGTTCC








GTAAATCCAACCTGAAACCGTTCGAACGTGACATCTCCACCGAAATCTACCAGGCGG








GCTCCACCCCGTGCAACGGCGTTAAAGGCTTCAACTGCTACTTCCCGCTGCAGTCCTA








CGGCTTCCAGCCGACCTACGGCGTTGGCTACCAGCCGTACCGTGTTGTTGTTCTGTCC








TTCGAACTGCTGCACGCGCCGGCGACCGTTTGCGGCCCGAAAAAATCCACCAACCTG








GTTAAAAACAAATGCGTTAACTTCCGTGTTCAGCCGACCGAATCCATAGTTAGGTTC








CCGAACATCACTAACCTGTGTCCGTTTGGCGAAGTGTTCAACGCGACCCGTTTTGCGT








CCGTCTACGCCTGGAACCGTAAACGTATCTCCAACTGCGTTGCGGACTACTCCGTTCT








GTACAACTCCGCGTCCTTCTCCACCTTCAAATGCTACGGCGTTTCCCCGACCAAACTG








AACGACCTGTGCTTCACCAACGTTTACGCGGACTCCTTCGTTATCCGTGGCGACGAA








GTTCGTCAGATCGCGCCGGGCCAGACCGGCAAAATCGCGGACTACAACTACAAACT








GCCGGACGACTTCACCGGCTGCGTTATCGCGTGGAACTCCAACAACCTGGACTCCAA








AGTTGGCGGCAACTACAACTACCTGTACCGTCTGTTCCGTAAATCCAACCTGAAACC








GTTCGAACGTGACATCTCCACCGAAATCTACCAGGCGGGCTCCACCCCGTGCAACGG








CGTTGAAGGCTTCAACTGCTACTTCCCGCTGCAGTCCTACGGCTTCCAGCCGACCTAC








GGCGTTGGCTACCAGCCGTACCGTGTTGTTGTTCTGTCCTTCGAACTGCTGCACGCGC








CGGCGACCGTTTGCGGCCCGAAAAAATCCACCAACCTGGTTAAAAACAAATGCGTT








AACTTCGACTACAAAGACGACGACGACAAAGAAGCGGCGGCGAAA
CATGCATTAGC





CTATGGAAGTCAGGGTGATCTTAATCCATTAATTAATGAAATCAGCAAAATCATTTCA




GCTGCAGGTAGCTTCGATGTTAAAGAGGAAAGAACTGCAGCTTCTTTATTGCAGTTGT




CCGGTAATGCCAGTGATTTTTCATATGGACGGAACTCAATAACCCTGACCACATCAGC




ATAA





A14
SEQ ID
MPTITTAQIKSTLQSAKQSAANKLHSAGQSTKDASEAAAKTPQNITDLCAEYHNTQIHTLN


aa
NO:

DKIFSYTESLAGKREMAIITFKNGATFQVEVPGSQHIDSQKKAIERMKDTLRIAYLTEAKVE




100

KLCVWNNKTPHAIAAISMANEAAAKRVQPTESIVRFPNITNLCPFGEVFNATRFASVYA







WNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAP








GQTGNIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTE








IYQAGSTPCNGVKGFNCYFPLQSYGFQPTYGVGYQPYRVVVLSFELLHAPATVCGPKKS








TNLVKNKCVNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYS








VLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLP








DDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEG








FNCYFPLQSYGFQPTYGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFDYK







DDDDKEAAAKHALAYGSQGDLNPLINEISKIISAAGSFDVKEERTAASLLQLSGNASDFSYG





RNSITLTTSA*





A15
SEQ ID
ATGCCAACAATAACCACTGCACAAATTAAAAGCACACTGCAGTCTGCAAAGCAATCCG


CDS
NO:
CTGCAAATAAATTGCACTCAGCAGGACAAAGCACGAAAGATGCATCAGAAGCGGCG



101

GCGAAAACCCCGCAGAACATCACCGACCTGTGCGCGGAATACCACAACACCCAGATC






CACACCCTGAACGACAAAATCTTCTCCTACACCGAATCCCTGGCGGGCAAACGTGAAA






TGGCGATCATCACCTTCAAAAACGGCGCGACCTTCCAGGTTGAAGTTCCGGGCTCCCA






GCACATCGACTCCCAGAAAAAAGCGATCGAACGTATGAAAGACACCCTGCGTATCGC






GTACCTGACCGAAGCGAAAGTTGAAAAACTGTGCGTTTGGAACAACAAAACCCCGCA






CGCGATCGCGGCGATCTCCATGGCGAACGAAGCGGCGGCGAAACGTGTTCAGCCGA







CCGAATCCATAGTTAGGTTCCCGAACATCACTAACCTGTGTCCGTTTGGCGAAGTGTT








CAACGCGACCCGTTTTGCGTCCGTCTACGCCTGGAACCGTAAACGTATCTCCAACTGC








GTTGCGGACTACTCCGTTCTGTACAACTCCGCGTCCTTCTCCACCTTCAAATGCTACG








GCGTTTCCCCGACCAAACTGAACGACCTGTGCTTCACCAACGTTTACGCGGACTCCTT








CGTTATCCGTGGCGACGAAGTTCGTCAGATCGCGCCGGGCCAGACCGGCACCATCG








CGGACTACAACTACAAACTGCCGGACGACTTCACCGGCTGCGTTATCGCGTGGAACT








CCAACAACCTGGACTCCAAAGTTGGCGGCAACTACAACTACCTGTACCGTCTGTTCC








GTAAATCCAACCTGAAACCGTTCGAACGTGACATCTCCACCGAAATCTACCAGGCGG








GCTCCACCCCGTGCAACGGCGTTAAAGGCTTCAACTGCTACTTCCCGCTGCAGTCCTA








CGGCTTCCAGCCGACCTACGGCGTTGGCTACCAGCCGTACCGTGTTGTTGTTCTGTCC








TTCGAACTGCTGCACGCGCCGGCGACCGTTTGCGGCCCGAAAAAATCCACCAACCTG








GTTAAAAACAAATGCGTTAACTTCGACTACAAAGACGACGACGACAAAGAAGCGGC







GGCGAAACATGCATTAGCCTATGGAAGTCAGGGTGATCTTAATCCATTAATTAATGAA





ATCAGCAAAATCATTTCAGCTGCAGGTAGCTTCGATGTTAAAGAGGAAAGAACTGCA




GCTTCTTTATTGCAGTTGTCCGGTAATGCCAGTGATTTTTCATATGGACGGAACTCAAT




AACCCTGACCACATCAGCATAA





A15
SEQ ID
MPTITTAQIKSTLQSAKQSAANKLHSAGQSTKDASEAAAKTPQNITDLCAEYHNTQIHTLN


aa
NO:

DKIFSYTESLAGKREMAIITFKNGATFQVEVPGSQHIDSQKKAIERMKDTLRIAYLTEAKVE




102

KLCVWNNKTPHAIAAISMANEAAAKRVQPTESIVRFPNITNLCPFGEVFNATRFASVYA







WNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAP








GQTGTIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEI








YQAGSTPCNGVKGFNCYFPLQSYGFQPTYGVGYQPYRVVVLSFELLHAPATVCGPKKST








NLVKNKCVNFDYKDDDDKEAAAK
HALAYGSQGDLNPLINEISKIISAAGSFDVKEERTAAS





LLQLSGNASDFSYGRNSITLTTSA*





A16
SEQ ID
ATGCCAACAATAACCACTGCACAAATTAAAAGCACACTGCAGTCTGCAAAGCAATCCG


CDS
NO:
CTGCAAATAAATTGCACTCAGCAGGACAAAGCACGAAAGATGCATCAGAAGCGGCG



103

GCGAAAACCCCGCAGAACATCACCGACCTGTGCGCGGAATACCACAACACCCAGATC






CACACCCTGAACGACAAAATCTTCTCCTACACCGAATCCCTGGCGGGCAAACGTGAAA






TGGCGATCATCACCTTCAAAAACGGCGCGACCTTCCAGGTTGAAGTTCCGGGCTCCCA






GCACATCGACTCCCAGAAAAAAGCGATCGAACGTATGAAAGACACCCTGCGTATCGC






GTACCTGACCGAAGCGAAAGTTGAAAAACTGTGCGTTTGGAACAACAAAACCCCGCA






CGCGATCGCGGCGATCTCCATGGCGAACGAAGCGGCGGCGAAAGACTACAAAGACG






ACGACGACAAAGAAGCGGCGGCGAAACATGCATTAGCCTATGGAAGTCAGGGTGAT





CTTAATCCATTAATTAATGAAATCAGCAAAATCATTTCAGCTGCAGGTAGCTTCGATGT




TAAAGAGGAAAGAACTGCAGCTTCTTTATTGCAGTTGTCCGGTAATGCCAGTGATTTT




TCATATGGACGGAACTCAATAACCCTGACCACATCAGCATAA





A16
SEQ ID
MPTITTAQIKSTLQSAKQSAANKLHSAGQSTKDASEAAAKTPQNITDLCAEYHNTQIHTLN


aa
NO:

DKIFSYTESLAGKREMAIITFKNGATFQVEVPGSQHIDSQKKAIERMKDTLRIAYLTEAKVE




104

KLCVWNNKTPHAIAAISMANEAAAKDYKDDDDKEAAAKHALAYGSQGDLNPLINEISKIIS





AAGSFDVKEERTAASLLQLSGNASDFSYGRNSITLTTSA*





A17
SEQ ID
ATGCCAACAATAACCACTGCACAAATTAAAAGCACACTGCAGTCTGCAAAGCAATCCG


CDS
NO:
CTGCAAATAAATTGCACTCAGCAGGACAAAGCACGAAAGATGCATCAGAAGCGGCG



105

GCGAAACGTGTTCAGCCGACCGAATCCATAGTTAGGTTCCCGAACATCACTAACCTG







TGTCCGTTTGGCGAAGTGTTCAACGCGACCCGTTTTGCGTCCGTCTACGCCTGGAACC








GTAAACGTATCTCCAACTGCGTTGCGGACTACTCCGTTCTGTACAACTCCGCGTCCTT








CTCCACCTTCAAATGCTACGGCGTTTCCCCGACCAAACTGAACGACCTGTGCTTCACC








AACGTTTACGCGGACTCCTTCGTTATCCGTGGCGACGAAGTTCGTCAGATCGCGCCG








GGCCAGACCGGCAAAATCGCGGACTACAACTACAAACTGCCGGACGACTTCACCGG








CTGCGTTATCGCGTGGAACTCCAACAACCTGGACTCCAAAGTTGGCGGCAACTACAA








CTACCTGTACCGTCTGTTCCGTAAATCCAACCTGAAACCGTTCGAACGTGACATCTCC








ACCGAAATCTACCAGGCGGGCTCCACCCCGTGCAACGGCGTTGAAGGCTTCAACTGC








TACTTCCCGCTGCAGTCCTACGGCTTCCAGCCGACCAACGGCGTTGGCTACCAGCCGT








ACCGTGTTGTTGTTCTGTCCTTCGAACTGCTGCACGCGCCGGCGACCGTTTGCGGCCC








GAAAAAATCCACCAACCTGGTTAAAAACAAATGCGTTAACTTCGACTACAAAGACGA







CGACGACAAAGAAGCGGCGGCGAAACATGCATTAGCCTATGGAAGTCAGGGTGATC





TTAATCCATTAATTAATGAAATCAGCAAAATCATTTCAGCTGCAGGTAGCTTCGATGTT




AAAGAGGAAAGAACTGCAGCTTCTTTATTGCAGTTGTCCGGTAATGCCAGTGATTTTT




CATATGGACGGAACTCAATAACCCTGACCACATCAGCATAA





A17
SEQ ID
MPTITTAQIKSTLQSAKQSAANKLHSAGQSTKDASEAAAKRVQPTESIVRFPNITNLCPFG


aa
NO:


EVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYAD





106


SFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFR








KSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFEL








LHAPATVCGPKKSTNLVKNKCVNFDYKDDDDKEAAAK
HALAYGSQGDLNPLINEISKIISA





AGSFDVKEERTAASLLQLSGNASDFSYGRNSITLTTSA*





A18
SEQ ID
ATGCCAACAATAACCACTGCACAAATTAAAAGCACACTGCAGTCTGCAAAGCAATCCG


CDS
NO:
CTGCAAATAAATTGCACTCAGCAGGACAAAGCACGAAAGATGCATCAGAAGCGGCG



107

GCGAAAACCCCGCAGAACATCACCGACCTGTGCGCGGAATACCACAACACCCAGATC






CACACCCTGAACGACAAAATCTTCTCCTACACCGAATCCCTGGCGGGCAAACGTGAAA






TGGCGATCATCACCTTCAAAAACGGCGCGACCTTCCAGGTTGAAGTTCCGGGCTCCCA






GCACATCGACTCCCAGAAAAAAGCGATCGAACGTATGAAAGACACCCTGCGTATCGC






GTACCTGACCGAAGCGAAAGTTGAAAAACTGTGCGTTTGGAACAACAAAACCCCGCA






CGCGATCGCGGCGATCTCCATGGCGAACGAAGCGGCGGCGAAACGTGTTCAGCCGA







CCGAATCCATAGTTAGGTTCCCGAACATCACTAACCTGTGTCCGTTTGGCGAAGTGTT








CAACGCGACCCGTTTTGCGTCCGTCTACGCCTGGAACCGTAAACGTATCTCCAACTGC








GTTGCGGACTACTCCGTTCTGTACAACTCCGCGTCCTTCTCCACCTTCAAATGCTACG








GCGTTTCCCCGACCAAACTGAACGACCTGTGCTTCACCAACGTTTACGCGGACTCCTT








CGTTATCCGTGGCGACGAAGTTCGTCAGATCGCGCCGGGCCAGACCGGCAAAATCG








CGGACTACAACTACAAACTGCCGGACGACTTCACCGGCTGCGTTATCGCGTGGAACT








CCAACAACCTGGACTCCAAAGTTGGCGGCAACTACAACTACCGTTACCGTCTGTTCC








GTAAATCCAACCTGAAACCGTTCGAACGTGACATCTCCACCGAAATCTACCAGGCGG








GCTCCACCCCGTGCAACGGCGTTCAGGGCTTCAACTGCTACTTCCCGCTGCAGTCCTA








CGGCTTCCAGCCGACCAACGGCGTTGGCTACCAGCCGTACCGTGTTGTTGTTCTGTCC








TTCGAACTGCTGCACGCGCCGGCGACCGTTTGCGGCCCGAAAAAATCCACCAACCTG








GTTAAAAACAAATGCGTTAACTTCGACTACAAAGACGACGACGACAAAGAAGCGGC







GGCGAAACATGCATTAGCCTATGGAAGTCAGGGTGATCTTAATCCATTAATTAATGAA





ATCAGCAAAATCATTTCAGCTGCAGGTAGCTTCGATGTTAAAGAGGAAAGAACTGCA




GCTTCTTTATTGCAGTTGTCCGGTAATGCCAGTGATTTTTCATATGGACGGAACTCAAT




AACCCTGACCACATCAGCATAA





A18
SEQ ID
MPTITTAQIKSTLQSAKQSAANKLHSAGQSTKDASEAAAKTPQNITDLCAEYHNTQIHTLN


aa
NO:

DKIFSYTESLAGKREMAIITFKNGATFQVEVPGSQHIDSQKKAIERMKDTLRIAYLTEAKVE




108

KLCVWNNKTPHAIAAISMANEAAAKRVQPTESIVRFPNITNLCPFGEVFNATRFASVYA







WNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAP








GQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYRYRLFRKSNLKPFERDISTE








IYQAGSTPCNGVQGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKK








STNLVKNKCVNFDYKDDDDKEAAAK
HALAYGSQGDLNPLINEISKIISAAGSFDVKEERTA





ASLLQLSGNASDFSYGRNSITLTTSA*





A19
SEQ ID
ATGCCAACAATAACCACTGCACAAATTAAAAGCACACTGCAGTCTGCAAAGCAATCCG


CDS
NO:
CTGCAAATAAATTGCACTCAGCAGGACAAAGCACGAAAGATGCATCAGAAGCGGCG



109

GCGAAAACCCCGCAGAACATCACCGACCTGTGCGCGGAATACCACAACACCCAGATC






CACACCCTGAACGACAAAATCTTCTCCTACACCGAATCCCTGGCGGGCAAACGTGAAA






TGGCGATCATCACCTTCAAAAACGGCGCGACCTTCCAGGTTGAAGTTCCGGGCTCCCA






GCACATCGACTCCCAGAAAAAAGCGATCGAACGTATGAAAGACACCCTGCGTATCGC






GTACCTGACCGAAGCGAAAGTTGAAAAACTGTGCGTTTGGAACAACAAAACCCCGCA






CGCGATCGCGGCGATCTCCATGGCGAACGAAGCGGCGGCGAAACGTGTTCAGCCGA







CCGAATCCATAGTTAGGTTCCCGAACATCACTAACCTGTGTCCGTTTGGCGAAGTGTT








CAACGCGACCCGTTTTGCGTCCGTCTACGCCTGGAACCGTAAACGTATCTCCAACTGC








GTTGCGGACTACTCCGTTCTGTACAACTCCGCGTCCTTCTCCACCTTCAAATGCTACG








GCGTTTCCCCGACCAAACTGAACGACCTGTGCTTCACCAACGTTTACGCGGACTCCTT








CGTTATCCGTGGCGACGAAGTTCGTCAGATCGCGCCGGGCCAGACCGGCAAAATCG








CGGACTACAACTACAAACTGCCGGACGACTTCACCGGCTGCGTTATCGCGTGGAACT








CCAACAACCTGGACTCCAAAGTTGGCGGCAACTACAACTACCGTTACCGTCTGTTCC








GTAAATCCAACCTGAAACCGTTCGAACGTGACATCTCCACCGAAATCTACCAGGCGG








GCTCCAAACCGTGCAACGGCGTTGAAGGCTTCAACTGCTACTTCCCGCTGCAGTCCT








ACGGCTTCCAGCCGACCAACGGCGTTGGCTACCAGCCGTACCGTGTTGTTGTTCTGT








CCTTCGAACTGCTGCACGCGCCGGCGACCGTTTGCGGCCCGAAAAAATCCACCAACC








TGGTTAAAAACAAATGCGTTAACTTCGACTACAAAGACGACGACGACAAAGAAGCG







GCGGCGAAACATGCATTAGCCTATGGAAGTCAGGGTGATCTTAATCCATTAATTAATG





AAATCAGCAAAATCATTTCAGCTGCAGGTAGCTTCGATGTTAAAGAGGAAAGAACTG




CAGCTTCTTTATTGCAGTTGTCCGGTAATGCCAGTGATTTTTCATATGGACGGAACTCA




ATAACCCTGACCACATCAGCATAA





A19
SEQ ID
MPTITTAQIKSTLQSAKQSAANKLHSAGQSTKDASEAAAKTPQNITDLCAEYHNTQIHTLN


aa
NO:

DKIFSYTESLAGKREMAIITFKNGATFQVEVPGSQHIDSQKKAIERMKDTLRIAYLTEAKVE




110

KLCVWNNKTPHAIAAISMANEAAAKRVQPTESIVRFPNITNLCPFGEVFNATRFASVYA







WNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAP








GQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYRYRLFRKSNLKPFERDISTE








IYQAGSKPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKS








TNLVKNKCVNFDYKDDDDKEAAAK
HALAYGSQGDLNPLINEISKIISAAGSFDVKEERTAA





SLLQLSGNASDFSYGRNSITLTTSA*





A20
SEQ ID
ATGCCAACAATAACCACTGCACAAATTAAAAGCACACTGCAGTCTGCAAAGCAATCCG


CDS
NO:
CTGCAAATAAATTGCACTCAGCAGGACAAAGCACGAAAGATGCATCAGAAGCGGCG



111

GCGAAAACCCCGCAGAACATCACCGACCTGTGCGCGGAATACCACAACACCCAGATC






CACACCCTGAACGACAAAATCTTCTCCTACACCGAATCCCTGGCGGGCAAACGTGAAA






TGGCGATCATCACCTTCAAAAACGGCGCGACCTTCCAGGTTGAAGTTCCGGGCTCCCA






GCACATCGACTCCCAGAAAAAAGCGATCGAACGTATGAAAGACACCCTGCGTATCGC






GTACCTGACCGAAGCGAAAGTTGAAAAACTGTGCGTTTGGAACAACAAAACCCCGCA






CGCGATCGCGGCGATCTCCATGGCGAACGAAGCGGCGGCGAAACGTGTTCAGCCGA







CCGAATCCATAGTTAGGTTCCCGAACATCACTAACCTGTGTCCGTTTGGCGAAGTGTT








CAACGCGACCCGTTTTGCGTCCGTCTACGCCTGGAACCGTAAACGTATCTCCAACTGC








GTTGCGGACTACTCCGTTCTGTACAACTCCGCGTCCTTCTCCACCTTCAAATGCTACG








GCGTTTCCCCGACCAAACTGAACGACCTGTGCTTCACCAACGTTTACGCGGACTCCTT








CGTTATCCGTGGCGACGAAGTTCGTCAGATCGCGCCGGGCCAGACCGGCAACATCG








CGGACTACAACTACAAACTGCCGGACGACTTCACCGGCTGCGTTATCGCGTGGAACT








CCAACAACCTGGACTCCAAAGTTGGCGGCAACTACAACTACCGTTACCGTCTGTTCC








GTAAATCCAACCTGAAACCGTTCGAACGTGACATCTCCACCGAAATCTACCAGGCGG








GCTCCAAACCGTGCAACGGCGTTGAAGGCTTCAACTGCTACTTCCCGCTGCAGTCCT








ACGGCTTCCAGCCGACCAACGGCGTTGGCTACCAGCCGTACCGTGTTGTTGTTCTGT








CCTTCGAACTGCTGCACGCGCCGGCGACCGTTTGCGGCCCGAAAAAATCCACCAACC








TGGTTAAAAACAAATGCGTTAACTTCGACTACAAAGACGACGACGACAAAGAAGCG







GCGGCGAAACATGCATTAGCCTATGGAAGTCAGGGTGATCTTAATCCATTAATTAATG





AAATCAGCAAAATCATTTCAGCTGCAGGTAGCTTCGATGTTAAAGAGGAAAGAACTG




CAGCTTCTTTATTGCAGTTGTCCGGTAATGCCAGTGATTTTTCATATGGACGGAACTCA




ATAACCCTGACCACATCAGCATAA





A20
SEQ ID
MPTITTAQIKSTLQSAKQSAANKLHSAGQSTKDASEAAAKTPQNITDLCAEYHNTQIHTLN


aa
NO:

DKIFSYTESLAGKREMAIITFKNGATFQVEVPGSQHIDSQKKAIERMKDTLRIAYLTEAKVE




112

KLCVWNNKTPHAIAAISMANEAAAKRVQPTESIVRFPNITNLCPFGEVFNATRFASVYA







WNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAP








GQTGNIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYRYRLFRKSNLKPFERDISTE








IYQAGSKPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKS








TNLVKNKCVNFDYKDDDDKEAAAK
HALAYGSQGDLNPLINEISKIISAAGSFDVKEERTAA





SLLQLSGNASDFSYGRNSITLTTSA*





A21
SEQ ID
ATGCCAACAATAACCACTGCACAAATTAAAAGCACACTGCAGTCTGCAAAGCAATCCG


CDS
NO:
CTGCAAATAAATTGCACTCAGCAGGACAAAGCACGAAAGATGCATCAGAAGCGGCG



113

GCGAAAACCCCGCAGAACATCACCGACCTGTGCGCGGAATACCACAACACCCAGATC






CACACCCTGAACGACAAAATCTTCTCCTACACCGAATCCCTGGCGGGCAAACGTGAAA






TGGCGATCATCACCTTCAAAAACGGCGCGACCTTCCAGGTTGAAGTTCCGGGCTCCCA






GCACATCGACTCCCAGAAAAAAGCGATCGAACGTATGAAAGACACCCTGCGTATCGC






GTACCTGACCGAAGCGAAAGTTGAAAAACTGTGCGTTTGGAACAACAAAACCCCGCA






CGCGATCGCGGCGATCTCCATGGCGAACGAAGCGGCGGCGAAACGTGTTCAGCCGA







CCGAATCCATAGTTAGGTTCCCGAACATCACTAACCTGTGTCCGTTTGGCGAAGTGTT








CAACGCGACCCGTTTTGCGTCCGTCTACGCCTGGAACCGTAAACGTATCTCCAACTGC








GTTGCGGACTACTCCGTTCTGTACAACTCCGCGTCCTTCTCCACCTTCAAATGCTACG








GCGTTTCCCCGACCAAACTGAACGACCTGTGCTTCACCAACGTTTACGCGGACTCCTT








CGTTATCCGTGGCGACGAAGTTCGTCAGATCGCGCCGGGCCAGACCGGCAAAATCG








CGGACTACAACTACAAACTGCCGGACGACTTCACCGGCTGCGTTATCGCGTGGAACT








CCAACAACCTGGACTCCAAAGTTGGCGGCAACTACAACTACCAGTACCGTCTGTTCC








GTAAATCCAACCTGAAACCGTTCGAACGTGACATCTCCACCGAAATCTACCAGGCGG








GCTCCACCCCGTGCAACGGCGTTGAAGGCTTCAACTGCTACTCCCCGCTGCAGTCCTA








CGGCTTCCAGCCGACCAACGGCGTTGGCTACCAGCCGTACCGTGTTGTTGTTCTGTCC








TTCGAACTGCTGCACGCGCCGGCGACCGTTTGCGGCCCGAAAAAATCCACCAACCTG








GTTAAAAACAAATGCGTTAACTTCGACTACAAAGACGACGACGACAAAGAAGCGGC







GGCGAAACATGCATTAGCCTATGGAAGTCAGGGTGATCTTAATCCATTAATTAATGAA





ATCAGCAAAATCATTTCAGCTGCAGGTAGCTTCGATGTTAAAGAGGAAAGAACTGCA




GCTTCTTTATTGCAGTTGTCCGGTAATGCCAGTGATTTTTCATATGGACGGAACTCAAT




AACCCTGACCACATCAGCATAA





A21
SEQ ID
MPTITTAQIKSTLQSAKQSAANKLHSAGQSTKDASEAAAKTPQNITDLCAEYHNTQIHTLN


aa
NO:
DKIFSYTESLAGKREMAIITFKNGATFQVEVPGSQHIDSQKKAIERMKDTLRIAYLTEAKVE



114
KLCVWNNKTPHAIAAISMANEAAAKRVQPTESIVRFPNITNLCPFGEVFNATRFASVYA






WNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAP








GQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYQYRLFRKSNLKPFERDISTE








IYQAGSTPCNGVEGFNCYSPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKS








TNLVKNKCVNFDYKDDDDKEAAAK
HALAYGSQGDLNPLINEISKIISAAGSFDVKEERTAA





SLLQLSGNASDFSYGRNSITLTTSA*





A22
SEQ ID
ATGCCAACAATAACCACTGCACAAATTAAAAGCACACTGCAGTCTGCAAAGCAATCCG


CDS
NO:
CTGCAAATAAATTGCACTCAGCAGGACAAAGCACGAAAGATGCATCAGAAGCGGCG



115

GCGAAAACCCCGCAGAACATCACCGACCTGTGCGCGGAATACCACAACACCCAGATC






CACACCCTGAACGACAAAATCTTCTCCTACACCGAATCCCTGGCGGGCAAACGTGAAA






TGGCGATCATCACCTTCAAAAACGGCGCGACCTTCCAGGTTGAAGTTCCGGGCTCCCA






GCACATCGACTCCCAGAAAAAAGCGATCGAACGTATGAAAGACACCCTGCGTATCGC






GTACCTGACCGAAGCGAAAGTTGAAAAACTGTGCGTTTGGAACAACAAAACCCCGCA






CGCGATCGCGGCGATCTCCATGGCGAACGAAGCGGCGGCGAAACGTGTTCAGCCGA







CCGAATCCATAGTTAGGTTCCCGAACATCACTAACCTGTGTCCGTTTGGCGAAGTGTT








CAACGCGACCCGTTTTGCGTCCGTCTACGCCTGGAACCGTAAACGTATCTCCAACTGC








GTTGCGGACTACTCCGTTCTGTACAACTCCGCGTCCTTCTCCACCTTCAAATGCTACG








GCGTTTCCCCGACCAAACTGAACGACCTGTGCTTCACCAACGTTTACGCGGACTCCTT








CGTTATCCGTGGCGACGAAGTTCGTCAGATCGCGCCGGGCCAGACCGGCAAAATCG








CGGACTACAACTACAAACTGCCGGACGACTTCACCGGCTGCGTTATCGCGTGGAACT








CCAACAACCTGGACTCCAAAGTTGGCGGCAACTACAACTACCGTTACCGTCTGTTCC








GTAAATCCAACCTGAAACCGTTCGAACGTGACATCTCCACCGAAATCTACCAGGCGG








GCTCCAAACCGTGCAACGGCGTTGAAGGCTTCAACTGCTACTTCCCGCTGCAGTCCT








ACGGCTTCCAGCCGACCAACGGCGTTGGCTACCAGCCGTACCGTGTTGTTGTTCTGT








CCTTCGAACTGCTGCACGCGCCGGCGACCGTTTGCGGCCCGAAAAAATCCACCAACC








TGGTTAAAAACAAATGCGTTAACTTCCCGCGTCAGAAACGTACCGCGACCAAAGCG








TACAACGTTACCCAGGCGTTCGGCCGTCGTGGCCCGGAACAGACCCAGGGCAACTTC








GGCGACCAGGAACTGATCCGTCAGGGCACCGACTACAAACACTGGCCGCAGATCGC








GCAGTTCGCGCCGTCCGCGTCCGCGTTCTTCGGCATGTCCCGTATCGGCATGGAAGT








TACCCCGTCCGGCACCTGGCTGACCTACACCGGCGCGATCAAACTGGACGACAAAG








ACCCGAACTTCAAAGACCAGGTTATCCTGCTGAACAAACACATCGACGCGTACAAA







GACTACAAAGACGACGACGACAAAGAAGCGGCGGCGAAACATGCATTAGCCTATGG





AAGTCAGGGTGATCTTAATCCATTAATTAATGAAATCAGCAAAATCATTTCAGCTGCA




GGTAGCTTCGATGTTAAAGAGGAAAGAACTGCAGCTTCTTTATTGCAGTTGTCCGGTA




ATGCCAGTGATTTTTCATATGGACGGAACTCAATAACCCTGACCACATCAGCATAA





A22
SEQ ID
MPTITTAQIKSTLQSAKQSAANKLHSAGQSTKDASEAAAKTPQNITDLCAEYHNTQIHTLN


aa
NO:
DKIFSYTESLAGKREMAIITFKNGATFQVEVPGSQHIDSQKKAIERMKDTLRIAYLTEAKVE



116
KLCVWNNKTPHAIAAISMANEAAAKRVQPTESIVRFPNITNLCPFGEVFNATRFASVYA






WNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAP








GQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYRYRLFRKSNLKPFERDISTE








IYQAGSKPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKS








TNLVKNKCVNFPRQKRTATKAYNVTQAFGRRGPEQTQGNFGDQELIRQGTDYKHWP








QIAQFAPSASAFFGMSRIGMEVTPSGTWLTYTGAIKLDDKDPNFKDQVILLNKHIDAYK







DYKDDDDKEAAAKHALAYGSQGDLNPLINEISKIISAAGSFDVKEERTAASLLQLSGNASDF





SYGRNSITLTTSA*





A23
SEQ ID
ATGCCAACAATAACCACTGCACAAATTAAAAGCACACTGCAGTCTGCAAAGCAATCCG


CDS
NO:
CTGCAAATAAATTGCACTCAGCAGGACAAAGCACGAAAGATGCATCAGAAGCGGCG



117

GCGAAAACCCCGCAGAACATCACCGACCTGTGCGCGGAATACCACAACACCCAGATC






CACACCCTGAACGACAAAATCTTCTCCTACACCGAATCCCTGGCGGGCAAACGTGAAA






TGGCGATCATCACCTTCAAAAACGGCGCGACCTTCCAGGTTGAAGTTCCGGGCTCCCA






GCACATCGACTCCCAGAAAAAAGCGATCGAACGTATGAAAGACACCCTGCGTATCGC






GTACCTGACCGAAGCGAAAGTTGAAAAACTGTGCGTTTGGAACAACAAAACCCCGCA






CGCGATCGCGGCGATCTCCATGGCGAACGAAGCGGCGGCGAAACGTGTTCAGCCGA







CCGAATCCATAGTTAGGTTCCCGAACATCACTAACCTGTGTCCGTTTGGCGAAGTGTT








CAACGCGACCCGTTTTGCGTCCGTCTACGCCTGGAACCGTAAACGTATCTCCAACTGC








GTTGCGGACTACTCCGTTCTGTACAACTCCGCGTCCTTCTCCACCTTCAAATGCTACG








GCGTTTCCCCGACCAAACTGAACGACCTGTGCTTCACCAACGTTTACGCGGACTCCTT








CGTTATCCGTGGCGACGAAGTTCGTCAGATCGCGCCGGGCCAGACCGGCAAAATCG








CGGACTACAACTACAAACTGCCGGACGACTTCACCGGCTGCGTTATCGCGTGGAACT








CCAACAACCTGGACTCCAAAGTTGGCGGCAACTACAACTACCGTTACCGTCTGTTCC








GTAAATCCAACCTGAAACCGTTCGAACGTGACATCTCCACCGAAATCTACCAGGCGG








GCTCCAAACCGTGCAACGGCGTTGAAGGCTTCAACTGCTACTTCCCGCTGCAGTCCT








ACGGCTTCCAGCCGACCAACGGCGTTGGCTACCAGCCGTACCGTGTTGTTGTTCTGT








CCTTCGAACTGCTGCACGCGCCGGCGACCGTTTGCGGCCCGAAAAAATCCACCAACC








TGGTTAAAAACAAATGCGTTAACTTCGCGGCGCTGGCGCTGCTGCTGCTGGACCGTC








TGAACCAGCTGGAATCCAAAATGTCCGGCAAAGGCCAGCAGCAGCAGGGCCAGAC








CGTTACCAAAAAATCCGCGGCGGAAGCGTCCAAAAAACCGCGTCAGAAACGTACCG








CGACCAAAGCGTACAACGTTACCCAGGCGTTCGGCCGTCGTGGCCCGGAACAGACC








CAGGGCAACTTCGGCGACCAGGAACTGATCCGTCAGGGCACCGACTACAAACACTG








GCCGCAGATCGCGCAGTTCGCGCCGTCCGCGTCCGCGTTCTTCGGCATGTCCCGTATC








GGCATGGAAGTTACCCCGTCCGGCACCTGGCTGACCTACACCGGCGCGATCAAACTG








GACGACAAAGACCCGAACTTCAAAGACCAGGTTATCCTGCTGAACAAACACATCGA








CGCGTACAAAACCTTCCCGCCGACCGAACCGAAAGACTACAAAGACGACGACGACA







AAGAAGCGGCGGCGAAACATGCATTAGCCTATGGAAGTCAGGGTGATCTTAATCCAT





TAATTAATGAAATCAGCAAAATCATTTCAGCTGCAGGTAGCTTCGATGTTAAAGAGGA




AAGAACTGCAGCTTCTTTATTGCAGTTGTCCGGTAATGCCAGTGATTTTTCATATGGAC




GGAACTCAATAACCCTGACCACATCAGCATAA





A23
SEQ ID
MPTITTAQIKSTLQSAKQSAANKLHSAGQSTKDASEAAAKTPQNITDLCAEYHNTQIHTLN


aa
NO:
DKIFSYTESLAGKREMAIITFKNGATFQVEVPGSQHIDSQKKAIERMKDTLRIAYLTEAKVE



118
KLCVWNNKTPHAIAAISMANEAAAKRVQPTESIVRFPNITNLCPFGEVFNATRFASVYA






WNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAP








GQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYRYRLFRKSNLKPFERDISTE








IYQAGSKPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKS








TNLVKNKCVNFAALALLLLDRLNQLESKMSGKGQQQQGQTVTKKSAAEASKKPRQKR








TATKAYNVTQAFGRRGPEQTQGNFGDQELIRQGTDYKHWPQIAQFAPSASAFFGMS








RIGMEVTPSGTWLTYTGAIKLDDKDPNFKDQVILLNKHIDAYKTFPPTEPKDYKDDDDK







EAAAKHALAYGSQGDLNPLINEISKIISAAGSFDVKEERTAASLLQLSGNASDFSYGRNSITL





TTSA*





Note that the end of the translated sequence is denoted by an asterisk (*).













TABLE 14







optimized CDS and amino acid sequences (aa) of viral antigen units in fusion proteins


of A-site in accordance with the invention









Viral




antigen
SEQ
DNA-sequence: 5′→3


unit in
ID
Amino acid-sequence: Start→end





A1
SEQ ID
CGTGTTCAGCCGACCGAATCCATAGTTAGGTTCCCGAACATCACTAACCTGTG


CDS
NO:
TCCGTTTGGCGAAGTGTTCAACGCGACCCGTTTTGCGTCCGTCTACGCCTGGA



119
ACCGTAAACGTATCTCCAACTGCGTTGCGGACTACTCCGTTCTGTACAACTCCG




CGTCCTTCTCCACCTTCAAATGCTACGGCGTTTCCCCGACCAAACTGAACGACC




TGTGCTTCACCAACGTTTACGCGGACTCCTTCGTTATCCGTGGCGACGAAGTTC




GTCAGATCGCGCCGGGCCAGACCGGCAAAATCGCGGACTACAACTACAAACT




GCCGGACGACTTCACCGGCTGCGTTATCGCGTGGAACTCCAACAACCTGGACT




CCAAAGTTGGCGGCAACTACAACTACCTGTACCGTCTGTTCCGTAAATCCAACC




TGAAACCGTTCGAACGTGACATCTCCACCGAAATCTACCAGGCGGGCTCCACC




CCGTGCAACGGCGTTGAAGGCTTCAACTGCTACTTCCCGCTGCAGTCCTACGG




CTTCCAGCCGACCAACGGCGTTGGCTACCAGCCGTACCGTGTTGTTGTTCTGTC




CTTCGAACTGCTGCACGCGCCGGCGACCGTTTGCGGCCCGAAAAAATCCACCA




ACCTGGTTAAAAACAAATGCGTTAACTTC





A1
SEQ
RVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASF


aa
ID
STFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFT



NO:
GCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGF



120
NCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNF





A3
SEQ ID
AACCTGTGTCCGTTTGGCGAAGTGTTCAACGCGACCCGTTTTGCGTCCGTCTAC


CDS
NO:
GCCTGGAACCGTAAACGTATCTCCAACTGCGTTGCGGACTACTCCGTTCTGTA



121
CAACTCCGCGTCCTTCTCCACCTTCAAATGCTACGGCGTTTCCCCGACCAAACT




GAACGACCTGTGCTTCACCAACGTTTACGCGGACTCCTTCGTTATCCGTGGCG




ACGAAGTTCGTCAGATCGCGCCGGGCCAGACCGGCAAAATCGCGGACTACAA




CTACAAACTGCCGGACGACTTCACCGGCTGCGTTATCGCGTGGAACTCCAACA




ACCTGGACTCCAAAGTTGGCGGCAACTACAACTACCTGTACCGTCTGTTCCGT




AAATCCAACCTGAAACCGTTCGAACGTGACATCTCCACCGAAATCTACCAGGC




GGGCTCCACCCCGTGCAACGGCGTTGAAGGCTTCAACTGCTACTTCCCGCTGC




AGTCCTACGGCTTCCAGCCGACCAACGGCGTTGGCTACCAGCCGTACCGTGTT




GTTGTTCTGTCCTTCGAACTGCTGCACGCGCCGGCGACCGTTTGCGGCCCG





A3
SEQ
NLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLND


aa
ID
LCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSK



NO:
VGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPT



122
NGVGYQPYRVVVLSFELLHAPATVCGP





A11
SEQ ID
CGTGTTCAGCCGACCGAATCCATAGTTAGGTTCCCGAACATCACTAACCTGTG


CDS
NO:
TCCGTTTGGCGAAGTGTTCAACGCGACCCGTTTTGCGTCCGTCTACGCCTGGA



123
ACCGTAAACGTATCTCCAACTGCGTTGCGGACTACTCCGTTCTGTACAACTCCG




CGTCCTTCTCCACCTTCAAATGCTACGGCGTTTCCCCGACCAAACTGAACGACC




TGTGCTTCACCAACGTTTACGCGGACTCCTTCGTTATCCGTGGCGACGAAGTTC




GTCAGATCGCGCCGGGCCAGACCGGCAAAATCGCGGACTACAACTACAAACT




GCCGGACGACTTCACCGGCTGCGTTATCGCGTGGAACTCCAACAACCTGGACT




CCAAAGTTGGCGGCAACTACAACTACCTGTACCGTCTGTTCCGTAAATCCAACC




TGAAACCGTTCGAACGTGACATCTCCACCGAAATCTACCAGGCGGGCTCCACC




CCGTGCAACGGCGTTGAAGGCTTCAACTGCTACTTCCCGCTGCAGTCCTACGG




CTTCCAGCCGACCTACGGCGTTGGCTACCAGCCGTACCGTGTTGTTGTTCTGTC




CTTCGAACTGCTGCACGCGCCGGCGACCGTTTGCGGCCCGAAAAAATCCACCA




ACCTGGTTAAAAACAAATGCGTTAACTTC





A11
SEQ
RVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASF


aa
ID
STFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFT



NO:
GCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGF



124
NCYFPLQSYGFQPTYGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNF





A12
SEQ ID
CGTGTTCAGCCGACCGAATCCATAGTTAGGTTCCCGAACATCACTAACCTGTG


CDS
NO:
TCCGTTTGGCGAAGTGTTCAACGCGACCCGTTTTGCGTCCGTCTACGCCTGGA



125
ACCGTAAACGTATCTCCAACTGCGTTGCGGACTACTCCGTTCTGTACAACTCCG




CGTCCTTCTCCACCTTCAAATGCTACGGCGTTTCCCCGACCAAACTGAACGACC




TGTGCTTCACCAACGTTTACGCGGACTCCTTCGTTATCCGTGGCGACGAAGTTC




GTCAGATCGCGCCGGGCCAGACCGGCAAAATCGCGGACTACAACTACAAACT




GCCGGACGACTTCACCGGCTGCGTTATCGCGTGGAACTCCAACAACCTGGACT




CCAAAGTTGGCGGCAACTACAACTACCTGTACCGTCTGTTCCGTAAATCCAACC




TGAAACCGTTCGAACGTGACATCTCCACCGAAATCTACCAGGCGGGCTCCACC




CCGTGCAACGGCGTTAAAGGCTTCAACTGCTACTTCCCGCTGCAGTCCTACGG




CTTCCAGCCGACCTACGGCGTTGGCTACCAGCCGTACCGTGTTGTTGTTCTGTC




CTTCGAACTGCTGCACGCGCCGGCGACCGTTTGCGGCCCGAAAAAATCCACCA




ACCTGGTTAAAAACAAATGCGTTAACTTC





A12
SEQ
RVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASF


aa
ID
STFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFT



NO:
GCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVKGF



126
NCYFPLQSYGFQPTYGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNF





A13
SEQ ID
CGTGTTCAGCCGACCGAATCCATAGTTAGGTTCCCGAACATCACTAACCTGTG


CDS
NO:
TCCGTTTGGCGAAGTGTTCAACGCGACCCGTTTTGCGTCCGTCTACGCCTGGA



127
ACCGTAAACGTATCTCCAACTGCGTTGCGGACTACTCCGTTCTGTACAACTCCG




CGTCCTTCTCCACCTTCAAATGCTACGGCGTTTCCCCGACCAAACTGAACGACC




TGTGCTTCACCAACGTTTACGCGGACTCCTTCGTTATCCGTGGCGACGAAGTTC




GTCAGATCGCGCCGGGCCAGACCGGCAACATCGCGGACTACAACTACAAACT




GCCGGACGACTTCACCGGCTGCGTTATCGCGTGGAACTCCAACAACCTGGACT




CCAAAGTTGGCGGCAACTACAACTACCTGTACCGTCTGTTCCGTAAATCCAACC




TGAAACCGTTCGAACGTGACATCTCCACCGAAATCTACCAGGCGGGCTCCACC




CCGTGCAACGGCGTTAAAGGCTTCAACTGCTACTTCCCGCTGCAGTCCTACGG




CTTCCAGCCGACCTACGGCGTTGGCTACCAGCCGTACCGTGTTGTTGTTCTGTC




CTTCGAACTGCTGCACGCGCCGGCGACCGTTTGCGGCCCGAAAAAATCCACCA




ACCTGGTTAAAAACAAATGCGTTAACTTC





A13
SEQ
RVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASF


aa
ID
STFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGNIADYNYKLPDDFT



NO:
GCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVKGF



128
NCYFPLQSYGFQPTYGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNF





A14
SEQ ID
CGTGTTCAGCCGACCGAATCCATAGTTAGGTTCCCGAACATCACTAACCTGTG


CDS
NO:
TCCGTTTGGCGAAGTGTTCAACGCGACCCGTTTTGCGTCCGTCTACGCCTGGA



129
ACCGTAAACGTATCTCCAACTGCGTTGCGGACTACTCCGTTCTGTACAACTCCG




CGTCCTTCTCCACCTTCAAATGCTACGGCGTTTCCCCGACCAAACTGAACGACC




TGTGCTTCACCAACGTTTACGCGGACTCCTTCGTTATCCGTGGCGACGAAGTTC




GTCAGATCGCGCCGGGCCAGACCGGCAACATCGCGGACTACAACTACAAACT




GCCGGACGACTTCACCGGCTGCGTTATCGCGTGGAACTCCAACAACCTGGACT




CCAAAGTTGGCGGCAACTACAACTACCTGTACCGTCTGTTCCGTAAATCCAACC




TGAAACCGTTCGAACGTGACATCTCCACCGAAATCTACCAGGCGGGCTCCACC




CCGTGCAACGGCGTTAAAGGCTTCAACTGCTACTTCCCGCTGCAGTCCTACGG




CTTCCAGCCGACCTACGGCGTTGGCTACCAGCCGTACCGTGTTGTTGTTCTGTC




CTTCGAACTGCTGCACGCGCCGGCGACCGTTTGCGGCCCGAAAAAATCCACCA




ACCTGGTTAAAAACAAATGCGTTAACTTCCGTGTTCAGCCGACCGAATCCATA




GTTAGGTTCCCGAACATCACTAACCTGTGTCCGTTTGGCGAAGTGTTCAACGC




GACCCGTTTTGCGTCCGTCTACGCCTGGAACCGTAAACGTATCTCCAACTGCGT




TGCGGACTACTCCGTTCTGTACAACTCCGCGTCCTTCTCCACCTTCAAATGCTA




CGGCGTTTCCCCGACCAAACTGAACGACCTGTGCTTCACCAACGTTTACGCGG




ACTCCTTCGTTATCCGTGGCGACGAAGTTCGTCAGATCGCGCCGGGCCAGACC




GGCAAAATCGCGGACTACAACTACAAACTGCCGGACGACTTCACCGGCTGCG




TTATCGCGTGGAACTCCAACAACCTGGACTCCAAAGTTGGCGGCAACTACAAC




TACCTGTACCGTCTGTTCCGTAAATCCAACCTGAAACCGTTCGAACGTGACATC




TCCACCGAAATCTACCAGGCGGGCTCCACCCCGTGCAACGGCGTTGAAGGCTT




CAACTGCTACTTCCCGCTGCAGTCCTACGGCTTCCAGCCGACCTACGGCGTTG




GCTACCAGCCGTACCGTGTTGTTGTTCTGTCCTTCGAACTGCTGCACGCGCCG




GCGACCGTTTGCGGCCCGAAAAAATCCACCAACCTGGTTAAAAACAAATGCGT




TAACTTC





A14
SEQ
RVOPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASF


aa
ID
STFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGNIADYNYKLPDDFT



NO:
GCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVKGF



130
NCYFPLQSYGFQPTYGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNF




RVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASF




STFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFT




GCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGF




NCYFPLQSYGFQPTYGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNF





A15
SEQ ID
CGTGTTCAGCCGACCGAATCCATAGTTAGGTTCCCGAACATCACTAACCTGTG


CDS
NO:
TCCGTTTGGCGAAGTGTTCAACGCGACCCGTTTTGCGTCCGTCTACGCCTGGA



131
ACCGTAAACGTATCTCCAACTGCGTTGCGGACTACTCCGTTCTGTACAACTCCG




CGTCCTTCTCCACCTTCAAATGCTACGGCGTTTCCCCGACCAAACTGAACGACC




TGTGCTTCACCAACGTTTACGCGGACTCCTTCGTTATCCGTGGCGACGAAGTTC




GTCAGATCGCGCCGGGCCAGACCGGCACCATCGCGGACTACAACTACAAACT




GCCGGACGACTTCACCGGCTGCGTTATCGCGTGGAACTCCAACAACCTGGACT




CCAAAGTTGGCGGCAACTACAACTACCTGTACCGTCTGTTCCGTAAATCCAACC




TGAAACCGTTCGAACGTGACATCTCCACCGAAATCTACCAGGCGGGCTCCACC




CCGTGCAACGGCGTTAAAGGCTTCAACTGCTACTTCCCGCTGCAGTCCTACGG




CTTCCAGCCGACCTACGGCGTTGGCTACCAGCCGTACCGTGTTGTTGTTCTGTC




CTTCGAACTGCTGCACGCGCCGGCGACCGTTTGCGGCCCGAAAAAATCCACCA




ACCTGGTTAAAAACAAATGCGTTAACTTC





A15
SEQ
RVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASF


aa
ID
STFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGTIADYNYKLPDDFT



NO:
GCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVKGF



132
NCYFPLQSYGFQPTYGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNF





A16
none none



CDS







A16
none none



aa







A17
SEQ ID
CGTGTTCAGCCGACCGAATCCATAGTTAGGTTCCCGAACATCACTAACCTGTG


CDS
NO:
TCCGTTTGGCGAAGTGTTCAACGCGACCCGTTTTGCGTCCGTCTACGCCTGGA



119
ACCGTAAACGTATCTCCAACTGCGTTGCGGACTACTCCGTTCTGTACAACTCCG




CGTCCTTCTCCACCTTCAAATGCTACGGCGTTTCCCCGACCAAACTGAACGACC




TGTGCTTCACCAACGTTTACGCGGACTCCTTCGTTATCCGTGGCGACGAAGTTC




GTCAGATCGCGCCGGGCCAGACCGGCAAAATCGCGGACTACAACTACAAACT




GCCGGACGACTTCACCGGCTGCGTTATCGCGTGGAACTCCAACAACCTGGACT




CCAAAGTTGGCGGCAACTACAACTACCTGTACCGTCTGTTCCGTAAATCCAACC




TGAAACCGTTCGAACGTGACATCTCCACCGAAATCTACCAGGCGGGCTCCACC




CCGTGCAACGGCGTTGAAGGCTTCAACTGCTACTTCCCGCTGCAGTCCTACGG




CTTCCAGCCGACCAACGGCGTTGGCTACCAGCCGTACCGTGTTGTTGTTCTGTC




CTTCGAACTGCTGCACGCGCCGGCGACCGTTTGCGGCCCGAAAAAATCCACCA




ACCTGGTTAAAAACAAATGCGTTAACTTC





A17
SEQ
RVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASF


aa
ID
STFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFT



NO:
GCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGF



120
NCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNF





A18
SEQ ID
CGTGTTCAGCCGACCGAATCCATAGTTAGGTTCCCGAACATCACTAACCTGTG


CDS
NO:
TCCGTTTGGCGAAGTGTTCAACGCGACCCGTTTTGCGTCCGTCTACGCCTGGA



133
ACCGTAAACGTATCTCCAACTGCGTTGCGGACTACTCCGTTCTGTACAACTCCG




CGTCCTTCTCCACCTTCAAATGCTACGGCGTTTCCCCGACCAAACTGAACGACC




TGTGCTTCACCAACGTTTACGCGGACTCCTTCGTTATCCGTGGCGACGAAGTTC




GTCAGATCGCGCCGGGCCAGACCGGCAAAATCGCGGACTACAACTACAAACT




GCCGGACGACTTCACCGGCTGCGTTATCGCGTGGAACTCCAACAACCTGGACT




CCAAAGTTGGCGGCAACTACAACTACCGTTACCGTCTGTTCCGTAAATCCAACC




TGAAACCGTTCGAACGTGACATCTCCACCGAAATCTACCAGGCGGGCTCCACC




CCGTGCAACGGCGTTCAGGGCTTCAACTGCTACTTCCCGCTGCAGTCCTACGG




CTTCCAGCCGACCAACGGCGTTGGCTACCAGCCGTACCGTGTTGTTGTTCTGTC




CTTCGAACTGCTGCACGCGCCGGCGACCGTTTGCGGCCCGAAAAAATCCACCA




ACCTGGTTAAAAACAAATGCGTTAACTTC





A18
SEQ
RVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASF


aa
ID
STFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFT



NO:
GCVIAWNSNNLDSKVGGNYNYRYRLFRKSNLKPFERDISTEIYQAGSTPCNGVQG



134
FNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVN




F





A19
SEQ ID
CGTGTTCAGCCGACCGAATCCATAGTTAGGTTCCCGAACATCACTAACCTGTG


CDS
NO:
TCCGTTTGGCGAAGTGTTCAACGCGACCCGTTTTGCGTCCGTCTACGCCTGGA



135
ACCGTAAACGTATCTCCAACTGCGTTGCGGACTACTCCGTTCTGTACAACTCCG




CGTCCTTCTCCACCTTCAAATGCTACGGCGTTTCCCCGACCAAACTGAACGACC




TGTGCTTCACCAACGTTTACGCGGACTCCTTCGTTATCCGTGGCGACGAAGTTC




GTCAGATCGCGCCGGGCCAGACCGGCAAAATCGCGGACTACAACTACAAACT




GCCGGACGACTTCACCGGCTGCGTTATCGCGTGGAACTCCAACAACCTGGACT




CCAAAGTTGGCGGCAACTACAACTACCGTTACCGTCTGTTCCGTAAATCCAACC




TGAAACCGTTCGAACGTGACATCTCCACCGAAATCTACCAGGCGGGCTCCAAA




CCGTGCAACGGCGTTGAAGGCTTCAACTGCTACTTCCCGCTGCAGTCCTACGG




CTTCCAGCCGACCAACGGCGTTGGCTACCAGCCGTACCGTGTTGTTGTTCTGTC




CTTCGAACTGCTGCACGCGCCGGCGACCGTTTGCGGCCCGAAAAAATCCACCA




ACCTGGTTAAAAACAAATGCGTTAACTTC





A19
SEQ ID
RVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASF


aa
NO:
STFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFT



136
GCVIAWNSNNLDSKVGGNYNYRYRLFRKSNLKPFERDISTEIYQAGSKPCNGVEG




FNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVN




F





A20
SEQ ID
CGTGTTCAGCCGACCGAATCCATAGTTAGGTTCCCGAACATCACTAACCTGTG


CDS
NO:
TCCGTTTGGCGAAGTGTTCAACGCGACCCGTTTTGCGTCCGTCTACGCCTGGA



137
ACCGTAAACGTATCTCCAACTGCGTTGCGGACTACTCCGTTCTGTACAACTCCG




CGTCCTTCTCCACCTTCAAATGCTACGGCGTTTCCCCGACCAAACTGAACGACC




TGTGCTTCACCAACGTTTACGCGGACTCCTTCGTTATCCGTGGCGACGAAGTTC




GTCAGATCGCGCCGGGCCAGACCGGCAACATCGCGGACTACAACTACAAACT




GCCGGACGACTTCACCGGCTGCGTTATCGCGTGGAACTCCAACAACCTGGACT




CCAAAGTTGGCGGCAACTACAACTACCGTTACCGTCTGTTCCGTAAATCCAACC




TGAAACCGTTCGAACGTGACATCTCCACCGAAATCTACCAGGCGGGCTCCAAA




CCGTGCAACGGCGTTGAAGGCTTCAACTGCTACTTCCCGCTGCAGTCCTACGG




CTTCCAGCCGACCAACGGCGTTGGCTACCAGCCGTACCGTGTTGTTGTTCTGTC




CTTCGAACTGCTGCACGCGCCGGCGACCGTTTGCGGCCCGAAAAAATCCACCA




ACCTGGTTAAAAACAAATGCGTTAACTTC





A20
SEQ
RVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASF


aa
ID
STFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGNIADYNYKLPDDFT



NO:
GCVIAWNSNNLDSKVGGNYNYRYRLFRKSNLKPFERDISTEIYQAGSKPCNGVEG



138
FNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVN




F





A21
SEQ ID
CGTGTTCAGCCGACCGAATCCATAGTTAGGTTCCCGAACATCACTAACCTGTG


CDS
NO:
TCCGTTTGGCGAAGTGTTCAACGCGACCCGTTTTGCGTCCGTCTACGCCTGGA



139
ACCGTAAACGTATCTCCAACTGCGTTGCGGACTACTCCGTTCTGTACAACTCCG




CGTCCTTCTCCACCTTCAAATGCTACGGCGTTTCCCCGACCAAACTGAACGACC




TGTGCTTCACCAACGTTTACGCGGACTCCTTCGTTATCCGTGGCGACGAAGTTC




GTCAGATCGCGCCGGGCCAGACCGGCAAAATCGCGGACTACAACTACAAACT




GCCGGACGACTTCACCGGCTGCGTTATCGCGTGGAACTCCAACAACCTGGACT




CCAAAGTTGGCGGCAACTACAACTACCAGTACCGTCTGTTCCGTAAATCCAAC




CTGAAACCGTTCGAACGTGACATCTCCACCGAAATCTACCAGGCGGGCTCCAC




CCCGTGCAACGGCGTTGAAGGCTTCAACTGCTACTCCCCGCTGCAGTCCTACG




GCTTCCAGCCGACCAACGGCGTTGGCTACCAGCCGTACCGTGTTGTTGTTCTG




TCCTTCGAACTGCTGCACGCGCCGGCGACCGTTTGCGGCCCGAAAAAATCCAC




CAACCTGGTTAAAAACAAATGCGTTAACTTC





A21
SEQ
RVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASF


aa
ID
STFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFT



NO:
GCVIAWNSNNLDSKVGGNYNYQYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEG



140
FNCYSPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVN




F





A22
SEQ ID
CGTGTTCAGCCGACCGAATCCATAGTTAGGTTCCCGAACATCACTAACCTGTGTCCGTT


CDS
NO:
TGGCGAAGTGTTCAACGCGACCCGTTTTGCGTCCGTCTACGCCTGGAACCGTAAACGT



141
ATCTCCAACTGCGTTGCGGACTACTCCGTTCTGTACAACTCCGCGTCCTTCTCCACCTTC




AAATGCTACGGCGTTTCCCCGACCAAACTGAACGACCTGTGCTTCACCAACGTTTACG




CGGACTCCTTCGTTATCCGTGGCGACGAAGTTCGTCAGATCGCGCCGGGCCAGACCG




GCAAAATCGCGGACTACAACTACAAACTGCCGGACGACTTCACCGGCTGCGTTATCGC




GTGGAACTCCAACAACCTGGACTCCAAAGTTGGCGGCAACTACAACTACCGTTACCGT




CTGTTCCGTAAATCCAACCTGAAACCGTTCGAACGTGACATCTCCACCGAAATCTACCA




GGCGGGCTCCAAACCGTGCAACGGCGTTGAAGGCTTCAACTGCTACTTCCCGCTGCA




GTCCTACGGCTTCCAGCCGACCAACGGCGTTGGCTACCAGCCGTACCGTGTTGTTGTT




CTGTCCTTCGAACTGCTGCACGCGCCGGCGACCGTTTGCGGCCCGAAAAAATCCACCA




ACCTGGTTAAAAACAAATGCGTTAACTTCCCGCGTCAGAAACGTACCGCGACCAAAGC




GTACAACGTTACCCAGGCGTTCGGCCGTCGTGGCCCGGAACAGACCCAGGGCAACTT




CGGCGACCAGGAACTGATCCGTCAGGGCACCGACTACAAACACTGGCCGCAGATCGC




GCAGTTCGCGCCGTCCGCGTCCGCGTTCTTCGGCATGTCCCGTATCGGCATGGAAGTT




ACCCCGTCCGGCACCTGGCTGACCTACACCGGCGCGATCAAACTGGACGACAAAGAC




CCGAACTTCAAAGACCAGGTTATCCTGCTGAACAAACACATCGACGCGTACAAA





A22
SEQ
RVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCY


aa
ID
GVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNN



NO:
LDSKVGGNYNYRYRLFRKSNLKPFERDISTEIYQAGSKPCNGVEGFNCYFPLQSYGFQPTN



142
GVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFPRQKRTATKAYNVTQAFGRR




GPEQTQGNFGDQELIRQGTDYKHWPQIAQFAPSASAFFGMSRIGMEVTPSGTWLTYTG




AIKLDDKDPNFKDQVILLNKHIDAYK





A23
SEQ ID
CGTGTTCAGCCGACCGAATCCATAGTTAGGTTCCCGAACATCACTAACCTGTGTCCGTT


CDS
NO:
TGGCGAAGTGTTCAACGCGACCCGTTTTGCGTCCGTCTACGCCTGGAACCGTAAACGT



143
ATCTCCAACTGCGTTGCGGACTACTCCGTTCTGTACAACTCCGCGTCCTTCTCCACCTTC




AAATGCTACGGCGTTTCCCCGACCAAACTGAACGACCTGTGCTTCACCAACGTTTACG




CGGACTCCTTCGTTATCCGTGGCGACGAAGTTCGTCAGATCGCGCCGGGCCAGACCG




GCAAAATCGCGGACTACAACTACAAACTGCCGGACGACTTCACCGGCTGCGTTATCGC




GTGGAACTCCAACAACCTGGACTCCAAAGTTGGCGGCAACTACAACTACCGTTACCGT




CTGTTCCGTAAATCCAACCTGAAACCGTTCGAACGTGACATCTCCACCGAAATCTACCA




GGCGGGCTCCAAACCGTGCAACGGCGTTGAAGGCTTCAACTGCTACTTCCCGCTGCA




GTCCTACGGCTTCCAGCCGACCAACGGCGTTGGCTACCAGCCGTACCGTGTTGTTGTT




CTGTCCTTCGAACTGCTGCACGCGCCGGCGACCGTTTGCGGCCCGAAAAAATCCACCA




ACCTGGTTAAAAACAAATGCGTTAACTTCGCGGCGCTGGCGCTGCTGCTGCTGGACC




GTCTGAACCAGCTGGAATCCAAAATGTCCGGCAAAGGCCAGCAGCAGCAGGGCCAG




ACCGTTACCAAAAAATCCGCGGCGGAAGCGTCCAAAAAACCGCGTCAGAAACGTACC




GCGACCAAAGCGTACAACGTTACCCAGGCGTTCGGCCGTCGTGGCCCGGAACAGACC




CAGGGCAACTTCGGCGACCAGGAACTGATCCGTCAGGGCACCGACTACAAACACTGG




CCGCAGATCGCGCAGTTCGCGCCGTCCGCGTCCGCGTTCTTCGGCATGTCCCGTATCG




GCATGGAAGTTACCCCGTCCGGCACCTGGCTGACCTACACCGGCGCGATCAAACTGG




ACGACAAAGACCCGAACTTCAAAGACCAGGTTATCCTGCTGAACAAACACATCGACG




CGTACAAAACCTTCCCGCCGACCGAACCGAAA





A23
SEQ
RVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCY


aa
ID
GVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNN



NO:
LDSKVGGNYNYRYRLFRKSNLKPFERDISTEIYQAGSKPCNGVEGFNCYFPLQSYGFQPTN



144
GVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFAALALLLLDRLNQLESKMSG




KGQQQQGQTVTKKSAAEASKKPRQKRTATKAYNVTQAFGRRGPEQTQGNFGDQELIRQ




GTDYKHWPQIAQFAPSASAFFGMSRIGMEVTPSGTWLTYTGAIKLDDKDPNFKDQVILL




NKHIDAYKTFPPTEPK
















TABLE 15







Sequences of Sall-fragments, optimized CDS and amino acid sequences (aa) of fusion


proteins of B-site in accordance with the invention











DNA-sequence: 5′→3




Sal-Sites: GTCATG




Promotor and Terminator regions: not underlined




CDS with optimized codon usage: underlined


Sal-

CDS of viral antigenic unit (inclusive internal Linker) in bold


fragment/

Amino acid-sequence: Start→end


fusion
SEQ
Amino acids (aa) with optimized codon usage: underlined


proteins
ID
CDS of viral antigenic unit (inclusive Linker) in bold





B3
SEQ ID
GTCGACCCTGCATGACCGCTTTTTGTACCAGCGTGAAAATGATGCGTGGAAGA


CDS
NO:
TTGATCGTCTTGCACCCTGAAAAGATGCAAAAATCTTGCTTTAATCGCTGGTAC



145
TCCTGATTCTGGCACTTTATTCTATGTCTCTTTCGCATCTGGCGAAAAGTCGTGT




ACCGGCAAAGGTGCAGTCGTTATATACATGGAGATTTTGATGAAAAAAACCG





CGATCGCGATCGCGGTTGCGCTGGCGGGCTTCGCGACCGTTGCGCAGGCGGG






CAACTTCCTGACCGGCCTGGGCCACCGTTCCGACCACTACAACTGCGTTTCCTC






CGGCGGCCAGTGCCTGTACTCCGCGTGCCCGATCTTCACCAAAATCCAGGGCA






CCTGCTACCGTGGCAAAGCGAAATGCTGCAAAGAAGCGGCGGCGAAAGCGG







CGCTGGCGCTGCTGCTGCTGGACCGTCTGAACCAGCTGGAAGGCCCGGGCCC








GGGCAAATCCGCGGCGGAAGCGTCCAAAAAACCGCGTCAGAAACGTACCGC








GACCAAAGCGTACAACGTTACCCAGGCGTTCGGCCGTCGTGGCCCGGAACA








GACCCAGGGCAACTTCGGCGACCAGGAACTGATCCGTCAGGGCACCGACTA








CAAACACTGGCCGCAGATCGCGCAGTTCGCGCCGTCCGCGTCCGCGTTCTTC








GGCATGTCCCGTATCGGCATGGAAGTTACCCCGTCCGGCACCTGGCTGACCT








ACACCGGCGCGATCAAACTGGACGACAAAGACCCGAACTTCAAAGACCAGG








TTATCCTGCTGAACAAACACATCGACGCGTACAAAACCTTCCCGCCGACCGA








ACCGAAAAAAGCGGCGTACAAAACCTTCCCGCCGACCGAACCGAAAAAAGC








GGCGTACAAAACCTTCCCGCCGACCGAACCGAAAAAAGCGGCGTACATGGC







GTCCATGACCGGCGGCCAGCAGATGGGCTAATGACGCAACGCAATTAATGTG





AGTTAGCTCACTCATTAGGCACCGTCGAC





B3
SEQ

MKKTAIAIAVALAGFATVAQAGNFLTGLGHRSDHYNCVSSGGQCLYSACPIFTKIQ



aa
ID

GTCYRGKAKCCKEAAAKAALALLLLDRLNQLEGPGPGKSAAEASKKPRQKRTAT




NO:


KAYNVTQAFGRRGPEQTQGNFGDQELIRQGTDYKHWPQIAQFAPSASAFFG





146


MSRIGMEVTPSGTWLTYTGAIKLDDKDPNFKDQVILLNKHIDAYKTFPPTEPKK








AAYKTFPPTEPKKAAYKTFPPTEPKKAAYMASMTGGQQMG
*






B5
SEQ ID
GTCGACCCTGCATGACCGCTTTTTGTACCAGCGTGAAAATGATGCGTGGAAGA


CDS
NO:
TTGATCGTCTTGCACCCTGAAAAGATGCAAAAATCTTGCTTTAATCGCTGGTAC



147
TCCTGATTCTGGCACTTTATTCTATGTCTCTTTCGCATCTGGCGAAAAGTCGTGT




ACCGGCAAAGGTGCAGTCGTTATATACATGGAGATTTTGATGAAAAAAACCG





CGATCGCGATCGCGGTTGCGCTGGCGGGCTTCGCGACCGTTGCGCAGGCGGG






CAACTTCCTGACCGGCCTGGGCCACCGTTCCGACCACTACAACTGCGTTTCCTC






CGGCGGCCAGTGCCTGTACTCCGCGTGCCCGATCTTCACCAAAATCCAGGGCA






CCTGCTACCGTGGCAAAGCGAAATGCTGCAAAGAAGCGGCGGCGAAACCGC







GTCAGAAACGTACCGCGACCAAAGCGTACAACGTTACCCAGGCGTTCGGCC








GTCGTGGCCCGGAACAGACCCAGGGCAACTTCGGCGACCAGGAACTGATCC








GTCAGGGCACCGACTACAAACACTGGCCGCAGATCGCGCAGTTCGCGCCGTC








CGCGTCCGCGTTCTTCGGCATGTCCCGTATCGGCATGGAAGTTACCCCGTCCG








GCACCTGGCTGACCTACACCGGCGCGATCAAACTGGACGACAAAGACCCGA








ACTTCAAAGACCAGGTTATCCTGCTGAACAAACACATCGACGCGTACAAAGC







GGCGTACATGGCGTCCATGACCGGCGGCCAGCAGATGGGCTAATGACGCAAC





GCAATTAATGTGAGTTAGCTCACTCATTAGGCACCGTCGAC





B5
SEQ

MKKTAIAIAVALAGFATVAQAGNFLTGLGHRSDHYNCVSSGGQCLYSACPIFTKIQ



Aa
ID

GTCYRGKAKCCKEAAAKPRQKRTATKAYNVTQAFGRRGPEQTQGNFGDGELIR




NO:


QGTDYKHWPQIAQFAPSASAFFGMSRIGMEVTPSGTWLTYTGAIKLDDKDPN





148


FKDQVILLNKHIDAYKAAYMASMTGGQQMG
*






B7
SEQ ID
GTCGACCCTGCATGACCGCTTTTTGTACCAGCGTGAAAATGATGCGTGGAAGA


CDS
NO:
TTGATCGTCTTGCACCCTGAAAAGATGCAAAAATCTTGCTTTAATCGCTGGTAC



149
TCCTGATTCTGGCACTTTATTCTATGTCTCTTTCGCATCTGGCGAAAAGTCGTGT




ACCGGCAAAGGTGCAGTCGTTATATACATGGAGATTTTGATGTCCATCCAGCA





CTTCCGTGTTGCGCTGATCCCGTTCTTCGCGGCGTTCTGTCTCCCGGTATTCGC






CCACCCGGAAACCCTGGTTAAAGTTAAAGACGCGGAAGCGGCGGCGAAAGG






CAACTTCCTGACCGGCCTGGGCCACCGTTCCGACCACTACAACTGCGTTTCCTC






CGGCGGCCAGTGCCTGTACTCCGCGTGCCCGATCTTCACCAAAATCCAGGGCA






CCTGCTACCGTGGCAAAGCGAAATGCTGCAAAGAAGCGGCGGCGAAACCGC







GTCAGAAACGTACCGCGACCAAAGCGTACAACGTTACCCAGGCGTTCGGCC








GTCGTGGCCCGGAACAGACCCAGGGCAACTTCGGCGACCAGGAACTGATCC








GTCAGGGCACCGACTACAAACACTGGCCGCAGATCGCGCAGTTCGCGCCGTC








CGCGTCCGCGTTCTTCGGCATGTCCCGTATCGGCATGGAAGTTACCCCGTCCG








GCACCTGGCTGACCTACACCGGCGCGATCAAACTGGACGACAAAGACCCGA








ACTTCAAAGACCAGGTTATCCTGCTGAACAAACACATCGACGCGTACAAAGC







GGCGTACATGGCGTCCATGACCGGCGGCCAGCAGATGGGCTAATGACGCAAC






GCAATTAATGTGAGTTAGCTCACTCATTAGGCACCGTCGAC






B7
SEQ

MSIQHFRVALIPFFAAFCLPVFAHPETLVKVKDAEAAAKGNFLTGLGHRSDHYNC



aa
ID

VSSGGQCLYSACPIFTKIQGTCYRGKAKCCKEAAAKPRQKRTATKAYNVTQAFGR




NO:


RGPEQTQGNFGDQELIRQGTDYKHWPQIAQFAPSASAFFGMSRIGMEVTPSG





150


TWLTYTGAIKLDDKDPNFKDQVILLNKHIDAYKAAYMASMTGGQQMG
*






B9
SEQ ID
GTCGACCCTGCATGACCGCTTTTTGTACCAGCGTGAAAATGATGCGTGGAAGA


CDS
NO:
TTGATCGTCTTGCACCCTGAAAAGATGCAAAAATCTTGCTTTAATCGCTGGTAC



151
TCCTGATTCTGGCACTTTATTCTATGTCTCTTTCGCATCTGGCGAAAAGTCGTGT




ACCGGCAAAGGTGCAGTCGTTATATACATGGAGATTTTGATGTCCATCCAGCA





CTTCCGTGTTGCGCTGATCCCGTTCTTCGCGGCGTTCTGTCTCCCGGTATTCGC






CCACCCGGAAACCCTGGTTAAAGTTAAAGACGCGGAAGCGGCGGCGAAAGG






CATCGGCGACCCGGTTACCTGCCTGAAATCCGGCGCGATCTGCCACCCGGTTT






TCTGCCCGCGTCGTTACAAACAGATCGGCACCTGCGGCCTGCCGGGCACCAAA






TGCTGCAAAAAACCGGAAGCGGCGGCGAAACCGCGTCAGAAACGTACCGCG







ACCAAAGCGTACAACGTTACCCAGGCGTTCGGCCGTCGTGGCCCGGAACAG








ACCCAGGGCAACTTCGGCGACCAGGAACTGATCCGTCAGGGCACCGACTAC








AAACACTGGCCGCAGATCGCGCAGTTCGCGCCGTCCGCGTCCGCGTTCTTCG








GCATGTCCCGTATCGGCATGGAAGTTACCCCGTCCGGCACCTGGCTGACCTA








CACCGGCGCGATCAAACTGGACGACAAAGACCCGAACTTCAAAGACCAGGT








TATCCTGCTGAACAAACACATCGACGCGTACAAAGCGGCGTACATGGCGTCC







ATGACCGGCGGCCAGCAGATGGGCTAATGACGCAACGCAATTAATGTGAGTT





AGCTCACTCATTAGGCACCGTCGAC





B9
SEQ

MSIQHFRVALIPFFAAFCLPVFAHPETLVKVKDAEAAAKGIGDPVTCLKSGAICHPV



aa
ID

FCPRRYKQIGTCGLPGTKCCKKPEAAAKPRQKRTATKAYNVTQAFGRRGPEQTQ




NO:


GNFGDQELIRQGTDYKHWPQIAQFAPSASAFFGMSRIGMEVTPSGTWLTYTG





152


AIKLDDKDPNFKDQVILLNKHIDAYKAAYMASMTGGQQMG*







B10
SEQ ID
GTCGACGTAAATTCCTGGAGCTGAAGCAGAAGTTTCAACAGGGCGAAGTGCC


CDS
NO:
ATTGCCGAGCTTTTGGGGCGGTTTTCGCGTCAGCCTTGAACAGATTGAGTTCT



153
GGCAGGGTGGTGAGCATCGCCTGCATGACCGCTTTTTGTACCAGCGTGAAAA




TGATGCGTGGAAGATTGATCGTCTTGCACCCTGAAAAGATGCAAAAATCTTGC




TTTAATCGCTGGTACTCCTGATTCTGGCACTTTATTCTATGTCTCTTTCGCATCT




GGCGAAAAGTCGTGTACCGGCAAAGGTGCAGTCGTTATATACATGGAGATTT




TGATGAAAAAAACCGCGATCGCGATCGCGGTTGCGCTGGCGGGCTTCGCGAC





CGTTGCGCAGGCGCCGCGTCAGAAACGTACCGCGACCAAAGCGTACAACGT







TACCCAGGCGTTCGGCCGTCGTGGCCCGGAACAGACCCAGGGCAACTTCGGC








GACCAGGAACTGATCCGTCAGGGCACCGACTACAAACACTGGCCGCAGATC








GCGCAGTTCGCGCCGTCCGCGTCCGCGTTCTTCGGCATGTCCCGTATCGGCAT








GGAAGTTACCCCGTCCGGCACCTGGCTGACCTACACCGGCGCGATCAAACTG








GACGACAAAGACCCGAACTTCAAAGACCAGGTTATCCTGCTGAACAAACAC








ATCGACGCGTACAAACACCACCACCACCACCACTAA
TTGTTCAGAACGCTCGG





TCTTGCACACCGGGCGTTTTTTCTTTGTGAGTCCAGTCGAC





B10
SEQ

MKKTAIAIAVALAGFATVAQAPRQKRTATKAYNVTQAFGRRGPEQTQGNFGD



aa
ID


QELIRQGTDYKHWPQIAQFAPSASAFFGMSRIGMEVTPSGTWLTYTGAIKLDD





NO:


KDPNFKDQVILLNKHIDAYKHHHHHH
*




154






B11
SEQ ID
GTCGACGTAAATTCCTGGAGCTGAAGCAGAAGTTTCAACAGGGCGAAGTGCC


CDS
NO:
ATTGCCGAGCTTTTGGGGCGGTTTTCGCGTCAGCCTTGAACAGATTGAGTTCT



155
GGCAGGGTGGTGAGCATCGCCTGCATGACCGCTTTTTGTACCAGCGTGAAAA




TGATGCGTGGAAGATTGATCGTCTTGCACCCTGAAAAGATGCAAAAATCTTGC




TTTAATCGCTGGTACTCCTGATTCTGGCACTTTATTCTATGTCTCTTTCGCATCT




GGCGAAAAGTCGTGTACCGGCAAAGGTGCAGTCGTTATATACATGGAGATTT




TGATGAAAAAAACCGCGATCGCGATCGCGGTTGCGCTGGCGGGCTTCGCGAC





CGTTGCGCAGGCGGGCATCGGCGACCCGGTTACCTGCCTGAAATCCGGCGCG






ATCTGCCACCCGGTTTTCTGCCCGCGTCGTTACAAACAGATCGGCACCTGCGG






CCTGCCGGGCACCAAATGCTGCAAAAAACCGGAAGCGGCGGCGAAACCGCGT







CAGAAACGTACCGCGACCAAAGCGTACAACGTTACCCAGGCGTTCGGCCGTC








GTGGCCCGGAACAGACCCAGGGCAACTTCGGCGACCAGGAACTGATCCGTC








AGGGCACCGACTACAAACACTGGCCGCAGATCGCGCAGTTCGCGCCGTCCGC








GTCCGCGTTCTTCGGCATGTCCCGTATCGGCATGGAAGTTACCCCGTCCGGCA








CCTGGCTGACCTACACCGGCGCGATCAAACTGGACGACAAAGACCCGAACTT








CAAAGACCAGGTTATCCTGCTGAACAAACACATCGACGCGTACAAACACCAC







CACCACCACCACTAATTGTTCAGAACGCTCGGTCTTGCACACCGGGCGTTTTTT





CTTTGTGAGTCCAGTCGAC





B11
SEQ

MKKTAIAIAVALAGFATVAQAGIGDPVTCLKSGAICHPVFCPRRYKQIGTCGLPGT



aa
ID

KCCKKPEAAAKPRQKRTATKAYNVTGAFGRRGPEQTQGNFGDQELIRQGTDYK




NO:


HINPQIAQFAPSASAFFGMSRIGMEVTPSGTWLTYTGAIKLDDKDPNFKDQVIL





156


LNKHIDAYKHHHHHH*







B12
SEQ ID
GTCGACGTAAATTCCTGGAGCTGAAGCAGAAGTTTCAACAGGGCGAAGTGCC


CDS
NO:
ATTGCCGAGCTTTTGGGGCGGTTTTCGCGTCAGCCTTGAACAGATTGAGTTCT



157
GGCAGGGTGGTGAGCATCGCCTGCATGACCGCTTTTTGTACCAGCGTGAAAA




TGATGCGTGGAAGATTGATCGTCTTGCACCCTGAAAAGATGCAAAAATCTTGC




TTTAATCGCTGGTACTCCTGATTCTGGCACTTTATTCTATGTCTCTTTCGCATCT




GGCGAAAAGTCGTGTACCGGCAAAGGTGCAGTCGTTATATACATGGAGATTT




TGATGAAAAAAACCGCGATCGCGATCGCGGTTGCGCTGGCGGGCTTCGCGAC





CGTTGCGCAGGCGGGCATCGGCGACCCGGTTACCTGCCTGAAATCCGGCGCG






ATCTGCCACCCGGTTTTCTGCCCGCGTCGTTACAAACAGATCGGCACCTGCGG






CCTGCCGGGCACCAAATGCTGCAAAAAACCGGAAGCGGCGGCGAAACACCAC






CACCACCACCACTAATTGTTCAGAACGCTCGGTCTTGCACACCGGGCGTTTTTT





CTTTGTGAGTCCAGTCGAC





B12
SEQ

MKKTAIAIAVALAGFATVAQAGIGDPVTCLKSGAICHPVFCPRRYKQIGTCGLPGT



aa
ID

KCCKKPEAAAKHHHHHH*




NO:




158






B13
SEQ ID
GTCGACGTAAATTCCTGGAGCTGAAGCAGAAGTTTCAACAGGGCGAAGTGCC


CDS
NO:
ATTGCCGAGCTTTTGGGGCGGTTTTCGCGTCAGCCTTGAACAGATTGAGTTCT



159
GGCAGGGTGGTGAGCATCGCCTGCATGACCGCTTTTTGTACCAGCGTGAAAA




TGATGCGTGGAAGATTGATCGTCTTGCACCCTGAAAAGATGCAAAAATCTTGC




TTTAATCGCTGGTACTCCTGATTCTGGCACTTTATTCTATGTCTCTTTCGCATCT




GGCGAAAAGTCGTGTACCGGCAAAGGTGCAGTCGTTATATACATGGAGATTT




TGATGAAAAAAACCGCGATCGCGATCGCGGTTGCGCTGGCGGGCTTCGCGAC





CGTTGCGCAGGCGACCCCGCAGAACATCACCGACCTGTGCGCGGAATACCAC






AACACCCAGATCCACACCCTGAACGACAAAATCTTCTCCTACACCGAATCCCTG






GCGGGCAAACGTGAAATGGCGATCATCACCTTCAAAAACGGCGCGACCTTCC






AGGTTGAAGTTCCGGGCTCCCAGCACATCGACTCCCAGAAAAAAGCGATCGA






ACGTATGAAAGACACCCTGCGTATCGCGTACCTGACCGAAGCGAAAGTTGAA






AAACTGTGCGTTTGGAACAACAAAACCCCGCACGCGATCGCGGCGATCTCCAT






GGCGAACGAAGCGGCGGCGAAACACCACCACCACCACCACTAATTGTTCAGA





ACGCTCGGTCTTGCACACCGGGCGTTTTTTCTTTGTGAGTCCAGTCGAC





B13
SEQ

MKKTAIAIAVALAGFATVAQATPQNITDLCAEYHNTQIHTLNDKIFSYTESLAGKRE



aa
ID

MAIITFKNGATFQVEVPGSQHIDSQKKAIERMKDTLRIAYLTEAKVEKLCVWNNK




NO:

TPHAIAAISMANEAAAKHHHHHH*




160






B14
SEQ ID
GTCGACGTAAATTCCTGGAGCTGAAGCAGAAGTTTCAACAGGGCGAAGTGCC


CDS
NO:
ATTGCCGAGCTTTTGGGGCGGTTTTCGCGTCAGCCTTGAACAGATTGAGTTCT



161
GGCAGGGTGGTGAGCATCGCCTGCATGACCGCTTTTTGTACCAGCGTGAAAA




TGATGCGTGGAAGATTGATCGTCTTGCACCCTGAAAAGATGCAAAAATCTTGC




TTTAATCGCTGGTACTCCTGATTCTGGCACTTTATTCTATGTCTCTTTCGCATCT




GGCGAAAAGTCGTGTACCGGCAAAGGTGCAGTCGTTATATACATGGAGATTT




TGATGAAAAAAACCGCGATCGCGATCGCGGTTGCGCTGGCGGGCTTCGCGAC





CGTTGCGCAGGCGACCCCGCAGAACATCACCGACCTGTGCGCGGAATACCAC






AACACCCAGATCCACACCCTGAACGACAAAATCTTCTCCTACACCGAATCCCTG






GCGGGCAAACGTGAAATGGCGATCATCACCTTCAAAAACGGCGCGACCTTCC






AGGTTGAAGTTCCGGGCTCCCAGCACATCGACTCCCAGAAAAAAGCGATCGA






ACGTATGAAAGACACCCTGCGTATCGCGTACCTGACCGAAGCGAAAGTTGAA






AAACTGTGCGTTTGGAACAACAAAACCCCGCACGCGATCGCGGCGATCTCCAT






GGCGAACGAAGCGGCGGCGAAACCGCGTCAGAAACGTACCGCGACCAAAGC







GTACAACGTTACCCAGGCGTTCGGCCGTCGTGGCCCGGAACAGACCCAGGG








CAACTTCGGCGACCAGGAACTGATCCGTCAGGGCACCGACTACAAACACTG








GCCGCAGATCGCGCAGTTCGCGCCGTCCGCGTCCGCGTTCTTCGGCATGTCCC








GTATCGGCATGGAAGTTACCCCGTCCGGCACCTGGCTGACCTACACCGGCGC








GATCAAACTGGACGACAAAGACCCGAACTTCAAAGACCAGGTTATCCTGCTG








AACAAACACATCGACGCGTACAAACACCACCACCACCACCACTAA
TTGTTCAG





AACGCTCGGTCTTGCACACCGGGCGTTTTTTCTTTGTGAGTCCAGTCGA





B14
SEQ

MKKTAIAIAVALAGFATVAQATPQNITDLCAEYHNTQIHTLNDKIFSYTESLAGKRE



aa
ID

MAIITFKNGATFQVEVPGSQHIDSQKKAIERMKDTLRIAYLTEAKVEKLCVWNNK




NO:

TPHAIAAISMANEAAAKPRQKRTATKAYNVTGAFGRRGPEQTQGNFGDQELIR




162


QGTDYKHWPQIAQFAPSASAFFGMSRIGMEVTPSGTWLTYTGAIKLDDKDPN








FKDQVILLNKHIDAYKHHHHHH*







B15
SEQ ID
GTCGACGTAAATTCCTGGAGCTGAAGCAGAAGTTTCAACAGGGCGAAGTGCC


CDS
NO:
ATTGCCGAGCTTTTGGGGCGGTTTTCGCGTCAGCCTTGAACAGATTGAGTTCT



163
GGCAGGGTGGTGAGCATCGCCTGCATGACCGCTTTTTGTACCAGCGTGAAAA




TGATGCGTGGAAGATTGATCGTCTTGCACCCTGAAAAGATGCAAAAATCTTGC




TTTAATCGCTGGTACTCCTGATTCTGGCACTTTATTCTATGTCTCTTTCGCATCT




GGCGAAAAGTCGTGTACCGGCAAAGGTGCAGTCGTTATATACATGGAGATTT




TGATGAAAAAAACCGCGATCGCGATCGCGGTTGCGCTGGCGGGCTTCGCGAC





CGTTGCGCAGGCGGCGGCGCTGGCGCTGCTGCTGCTGGACCGTCTGAACCAG







CTGGAAGGCCCGGGCCCGGGCAAATCCGCGGCGGAAGCGTCCAAAAAACC








GCGTCAGAAACGTACCGCGACCAAAGCGTACAACGTTACCCAGGCGTTCGG








CCGTCGTGGCCCGGAACAGACCCAGGGCAACTTCGGCGACCAGGAACTGAT








CCGTCAGGGCACCGACTACAAACACTGGCCGCAGATCGCGCAGTTCGCGCCG








TCCGCGTCCGCGTTCTTCGGCATGTCCCGTATCGGCATGGAAGTTACCCCGTC








CGGCACCTGGCTGACCTACACCGGCGCGATCAAACTGGACGACAAAGACCC








GAACTTCAAAGACCAGGTTATCCTGCTGAACAAACACATCGACGCGTACAAA








ACCTTCCCGCCGACCGAACCGAAAAAAGCGGCGTACAAAACCTTCCCGCCGA








CCGAACCGAAAAAAGCGGCGTACAAAACCTTCCCGCCGACCGAACCGAAAA








AAGCGGCGTACCACCACCACCACCACCACTAA
TTGTTCAGAACGCTCGGTCTT





GCACACCGGGCGTTTTTTCTTTGTGAGTCCAGTCGAC





B15
SEQ

MKKTAIAIAVALAGFATVAQAAALALLLLDRLNQLEGPGPGKSAAEASKKPRQK



aa
ID


RTATKAYNVTQAFGRRGPEQTQGNFGDGELIRQGTDYKHWPGIAQFAPSASA





NO:


FFGMSRIGMEVTPSGTWLTYTGAIKLDDKDPNFKDQVILLNKHIDAYKTFPPTE





164


PKKAAYKTFPPTEPKKAAYKTFPPTEPKKAAYHHHHHH*







B16
SEQ ID
GTCGACGTAAATTCCTGGAGCTGAAGCAGAAGTTTCAACAGGGCGAAGTGCC


CDS
NO:
ATTGCCGAGCTTTTGGGGCGGTTTTCGCGTCAGCCTTGAACAGATTGAGTTCT



165
GGCAGGGTGGTGAGCATCGCCTGCATGACCGCTTTTTGTACCAGCGTGAAAA




TGATGCGTGGAAGATTGATCGTCTTGCACCCTGAAAAGATGCAAAAATCTTGC




TTTAATCGCTGGTACTCCTGATTCTGGCACTTTATTCTATGTCTCTTTCGCATCT




GGCGAAAAGTCGTGTACCGGCAAAGGTGCAGTCGTTATATACATGGAGATTT




TGATGAAAAAAACCGCGATCGCGATCGCGGTTGCGCTGGCGGGCTTCGCGAC





CGTTGCGCAGGCGACCCCGCAGAACATCACCGACCTGTGCGCGGAATACCAC






AACACCCAGATCCACACCCTGAACGACAAAATCTTCTCCTACACCGAATCCCTG






GCGGGCAAACGTGAAATGGCGATCATCACCTTCAAAAACGGCGCGACCTTCC






AGGTTGAAGTTCCGGGCTCCCAGCACATCGACTCCCAGAAAAAAGCGATCGA






ACGTATGAAAGACACCCTGCGTATCGCGTACCTGACCGAAGCGAAAGTTGAA






AAACTGTGCGTTTGGAACAACAAAACCCCGCACGCGATCGCGGCGATCTCCAT






GGCGAACGAAGCGGCGGCGAAAGCGGCGCTGGCGCTGCTGCTGCTGGACCG







TCTGAACCAGCTGGAAGGCCCGGGCCCGGGCAAATCCGCGGCGGAAGCGTC








CAAAAAACCGCGTCAGAAACGTACCGCGACCAAAGCGTACAACGTTACCCA








GGCGTTCGGCCGTCGTGGCCCGGAACAGACCCAGGGCAACTTCGGCGACCA








GGAACTGATCCGTCAGGGCACCGACTACAAACACTGGCCGCAGATCGCGCA








GTTCGCGCCGTCCGCGTCCGCGTTCTTCGGCATGTCCCGTATCGGCATGGAA








GTTACCCCGTCCGGCACCTGGCTGACCTACACCGGCGCGATCAAACTGGACG








ACAAAGACCCGAACTTCAAAGACCAGGTTATCCTGCTGAACAAACACATCGA








CGCGTACAAAACCTTCCCGCCGACCGAACCGAAAAAAGCGGCGTACAAAAC








CTTCCCGCCGACCGAACCGAAAAAAGCGGCGTACAAAACCTTCCCGCCGACC








GAACCGAAAAAAGCGGCGTACCACCACCACCACCACCACTAA
TTGTTCAGAA





CGCTCGGTCTTGCACACCGGGCGTTTTTTCTTTGTGAGTCCAGTCGA





B16
SEQ

MKKTAIAIAVALAGFATVAQATPQNITDLCAEYHNTQIHTLNDKIFSYTESLAGKRE



aa
ID

MAIITFKNGATFQVEVPGSQHIDSQKKAIERMKDTLRIAYLTEAKVEKLCVWNNK




NO:

TPHAIAAISMANEAAAKAALALLLLDRLNQLEGPGPGKSAAEASKKPRQKRTAT




166


KAYNVTQAFGRRGPEQTQGNFGD
I
ELIRQGTDYKHWPQ
I
AQFAPSASAFFG








MSRIGMEVTPSGTWLTYTGAIKLDDKDPNFKDQVILLNKHIDAYKTFPPTEPKK








AAYKTFPPTEPKKAAYKTFPPTEPKKAAYHHHHHH
*






Note that the end of the translated sequence is denoted by an asterisk (*).













TABLE 16







optimized CDS inclusive internal linker (underlined) and amino


acid sequences (aa) inclusive internal linker (underlined) of 


viral antigen units in fusion proteins of B-site in accordance


with the invention









Viral




antigen

DNA-sequence: 5′-> 3


unit in
SEQ ID
Amino acid-sequence: Start -> end





B3
SEQ ID
GCGGCGCTGGCGCTGCTGCTGCTGGACCGTCTGAACCAGCTGGAAGGCCC


CDS
NO:

GGGCCCGGGCAAATCCGCGGCGGAAGCGTCCAAAAAACCGCGTCAGAAAC




167
GTACCGCGACCAAAGCGTACAACGTTACCCAGGCGTTCGGCCGTCGTGGCC




CGGAACAGACCCAGGGCAACTTCGGCGACCAGGAACTGATCCGTCAGGGC




ACCGACTACAAACACTGGCCGCAGATCGCGCAGTTCGCGCCGTCCGCGTCC




GCGTTCTTCGGCATGTCCCGTATCGGCATGGAAGTTACCCCGTCCGGCACCT




GGCTGACCTACACCGGCGCGATCAAACTGGACGACAAAGACCCGAACTTCA




AAGACCAGGTTATCCTGCTGAACAAACACATCGACGCGTACAAAACCTTCCC




GCCGACCGAACCGAAAAAAGCGGCGTACAAAACCTTCCCGCCGACCGAACC




GAAAAAAGCGGCGTACAAAACCTTCCCGCCGACCGAACCGAAAAAA





B3
SEQ ID
AALALLLLDRLNQLEGPGPGKSAAEASKKPRQKRTATKAYNVTQAFGRRGPEQ


aa
NO:
TQGNFGDQELIRQGTDYKHWPQIAQFAPSASAFFGMSRIGMEVTPSGTWLTY



168
TGAIKLDDKDPNFKDQVILLNKHIDAYKTFPPTEPKKAAYKTFPPTEPKKAAY




KTFPPTEPKK





B5
SEQ ID
CCGCGTCAGAAACGTACCGCGACCAAAGCGTACAACGTTACCCAGGCGTTC


CDS
NO:
GGCCGTCGTGGCCCGGAACAGACCCAGGGCAACTTCGGCGACCAGGAACT



169
GATCCGTCAGGGCACCGACTACAAACACTGGCCGCAGATCGCGCAGTTCGC




GCCGTCCGCGTCCGCGTTCTTCGGCATGTCCCGTATCGGCATGGAAGTTACC




CCGTCCGGCACCTGGCTGACCTACACCGGCGCGATCAAACTGGACGACAAA




GACCCGAACTTCAAAGACCAGGTTATCCTGCTGAACAAACACATCGACGCG




TACAAA





B5
SEQ ID
PRQKRTATKAYNVTQAFGRRGPEQTQGNFGDQELIRQGTDYKHWPQIAQFA


Aa
NO:
PSASAFFGMSRIGMEVTPSGTWLTYTGAIKLDDKDPNFKDQVILLNKHIDAYK



170






B7
SEQ ID
CCGCGTCAGAAACGTACCGCGACCAAAGCGTACAACGTTACCCAGGCGTTC


CDS
NO:
GGCCGTCGTGGCCCGGAACAGACCCAGGGCAACTTCGGCGACCAGGAACT



169
GATCCGTCAGGGCACCGACTACAAACACTGGCCGCAGATCGCGCAGTTCGC




GCCGTCCGCGTCCGCGTTCTTCGGCATGTCCCGTATCGGCATGGAAGTTACC




CCGTCCGGCACCTGGCTGACCTACACCGGCGCGATCAAACTGGACGACAAA




GACCCGAACTTCAAAGACCAGGTTATCCTGCTGAACAAACACATCGACGCG




TACAAA





B7
SEQ ID
PRQKRTATKAYNVTQAFGRRGPEQTQGNFGDQELIRQGTDYKHWPQIAQFA


aa
NO:
PSASAFFGMSRIGMEVTPSGTWLTYTGAIKLDDKDPNFKDQVILLNKHIDAYK



170






B9
SEQ ID
CCGCGTCAGAAACGTACCGCGACCAAAGCGTACAACGTTACCCAGGCGTTC


CDS
NO:
GGCCGTCGTGGCCCGGAACAGACCCAGGGCAACTTCGGCGACCAGGAACT



169
GATCCGTCAGGGCACCGACTACAAACACTGGCCGCAGATCGCGCAGTTCGC




GCCGTCCGCGTCCGCGTTCTTCGGCATGTCCCGTATCGGCATGGAAGTTACC




CCGTCCGGCACCTGGCTGACCTACACCGGCGCGATCAAACTGGACGACAAA




GACCCGAACTTCAAAGACCAGGTTATCCTGCTGAACAAACACATCGACGCG




TACAAA





B9
SEQ ID
PRQKRTATKAYNVTQAFGRRGPEQTQGNFGDQELIRQGTDYKHWPQIAQFA


aa
NO:
PSASAFFGMSRIGMEVTPSGTWLTYTGAIKLDDKDPNFKDQVILLNKHIDAYK



170






B10
SEQ ID
CCGCGTCAGAAACGTACCGCGACCAAAGCGTACAACGTTACCCAGGCGTTC


CDS
NO:
GGCCGTCGTGGCCCGGAACAGACCCAGGGCAACTTCGGCGACCAGGAACT



169
GATCCGTCAGGGCACCGACTACAAACACTGGCCGCAGATCGCGCAGTTCGC




GCCGTCCGCGTCCGCGTTCTTCGGCATGTCCCGTATCGGCATGGAAGTTACC




CCGTCCGGCACCTGGCTGACCTACACCGGCGCGATCAAACTGGACGACAAA




GACCCGAACTTCAAAGACCAGGTTATCCTGCTGAACAAACACATCGACGCG




TACAAA





B10
SEQ ID
PRQKRTATKAYNVTQAFGRRGPEQTQGNFGDQELIRQGTDYKHWPQIAQFA


aa
NO:
PSASAFFGMSRIGMEVTPSGTWLTYTGAIKLDDKDPNFKDQVILLNKHIDAYK



170






B11
SEQ ID
CCGCGTCAGAAACGTACCGCGACCAAAGCGTACAACGTTACCCAGGCGTTC


CDS
NO:
GGCCGTCGTGGCCCGGAACAGACCCAGGGCAACTTCGGCGACCAGGAACT



SEQ ID
GATCCGTCAGGGCACCGACTACAAACACTGGCCGCAGATCGCGCAGTTCGC



NO:
GCCGTCCGCGTCCGCGTTCTTCGGCATGTCCCGTATCGGCATGGAAGTTACC



169
CCGTCCGGCACCTGGCTGACCTACACCGGCGCGATCAAACTGGACGACAAA




GACCCGAACTTCAAAGACCAGGTTATCCTGCTGAACAAACACATCGACGCG




TACAAA





B11
SEQ ID
PRQKRTATKAYNVTQAFGRRGPEQTQGNFGDQELIRQGTDYKHWPQIAQFA


aa
NO:
PSASAFFGMSRIGMEVTPSGTWLTYTGAIKLDDKDPNFKDQVILLNKHIDAYK



170






B12
none
none


CDS







B12
none
none


aa







B13
none
none


CDS







B13
none
none


aa







B14
SEQ ID
CCGCGTCAGAAACGTACCGCGACCAAAGCGTACAACGTTACCCAGGCGTTC


CDS
NO:
GGCCGTCGTGGCCCGGAACAGACCCAGGGCAACTTCGGCGACCAGGAACT



169
GATCCGTCAGGGCACCGACTACAAACACTGGCCGCAGATCGCGCAGTTCGC




GCCGTCCGCGTCCGCGTTCTTCGGCATGTCCCGTATCGGCATGGAAGTTACC




CCGTCCGGCACCTGGCTGACCTACACCGGCGCGATCAAACTGGACGACAAA




GACCCGAACTTCAAAGACCAGGTTATCCTGCTGAACAAACACATCGACGCG




TACAAA





B14
SEQ ID
PRQKRTATKAYNVTQAFGRRGPEQTQGNFGDQELIRQGTDYKHWPQIAQFA


aa
NO:
PSASAFFGMSRIGMEVTPSGTWLTYTGAIKLDDKDPNFKDQVILLNKHIDAYK



170






B15
SEQ ID
GCGGCGCTGGCGCTGCTGCTGCTGGACCGTCTGAACCAGCTGGAAGGCCC


CDS
NO:

GGGCCCGGGCAAATCCGCGGCGGAAGCGTCCAAAAAACCGCGTCAGAAAC




167
GTACCGCGACCAAAGCGTACAACGTTACCCAGGCGTTCGGCCGTCGTGGCC




CGGAACAGACCCAGGGCAACTTCGGCGACCAGGAACTGATCCGTCAGGGC




ACCGACTACAAACACTGGCCGCAGATCGCGCAGTTCGCGCCGTCCGCGTCC




GCGTTCTTCGGCATGTCCCGTATCGGCATGGAAGTTACCCCGTCCGGCACCT




GGCTGACCTACACCGGCGCGATCAAACTGGACGACAAAGACCCGAACTTCA




AAGACCAGGTTATCCTGCTGAACAAACACATCGACGCGTACAAAACCTTCCC




GCCGACCGAACCGAAAAAAGCGGCGTACAAAACCTTCCCGCCGACCGAACC




GAAAAAAGCGGCGTACAAAACCTTCCCGCCGACCGAACCGAAAAAA





B15
SEQ ID
AALALLLLDRLNQLEGPGPGKSAAEASKKPRQKRTATKAYNVTQAFGRRGPEQ


aa
NO:
TQGNFGDQELIRQGTDYKHWPQIAQFAPSASAFFGMSRIGMEVTPSGTWLTY



168
TGAIKLDDKDPNFKDQVILLNKHIDAYKTFPPTEPKKAAYKTFPPTEPKKAAY




KTFPPTEPKK





B16
SEQ ID
GCGGCGCTGGCGCTGCTGCTGCTGGACCGTCTGAACCAGCTGGAAGGCCC


CDS
NO:

GGGCCCGGGCAAATCCGCGGCGGAAGCGTCCAAAAAACCGCGTCAGAAAC




167
GTACCGCGACCAAAGCGTACAACGTTACCCAGGCGTTCGGCCGTCGTGGCC




CGGAACAGACCCAGGGCAACTTCGGCGACCAGGAACTGATCCGTCAGGGC




ACCGACTACAAACACTGGCCGCAGATCGCGCAGTTCGCGCCGTCCGCGTCC




GCGTTCTTCGGCATGTCCCGTATCGGCATGGAAGTTACCCCGTCCGGCACCT




GGCTGACCTACACCGGCGCGATCAAACTGGACGACAAAGACCCGAACTTCA




AAGACCAGGTTATCCTGCTGAACAAACACATCGACGCGTACAAAACCTTCCC




GCCGACCGAACCGAAAAAAGCGGCGTACAAAACCTTCCCGCCGACCGAACC




GAAAAAAGCGGCGTACAAAACCTTCCCGCCGACCGAACCGAAAAAA





B16
SEQ ID
AALALLLLDRLNQLEGPGPGKSAAEASKKPRQKRTATKAYNVTQAFGRRGPEQ


aa
NO:
TQGNFGDQELIRQGTDYKHWPQIAQFAPSASAFFGMSRIGMEVTPSGTWLTY



168
TGAIKLDDKDPNFKDQVILLNKHIDAYKTFPPTEPKKAAYKTFPPTEPKKAAY




KTFPPTEPKK
















TABLE 17







TyrS expression cassettes (EPC) used in accordance with the invention











DNA-sequence: 5′-> 3




Spel-Sites: ACTAGT




DNA with optimized codon usage: underlined




CDS in bold


Expression
SEQ
Amino acid-sequence: Start -> end


cassettes
ID
Amino acids (aa) with optimized codon usage: underlined





Placl-like tyrS
SEQ
ACTAGTGCTAGCGACACCATCGAATGGCGCAAACCTTTCGCGGTATGGCATG


EPC
ID
ATAGCGCCCGAAGTCGTGTACCGGCAAAGGTGAGTCGTTATATACATGGAG



NO:
ATTTTGATGGCAAGCAGTAACTTGATTAAACAATTGCAAGAGCGGGGGCT



171

GGTAGCCCAGGTGACGGACGAGGAAGCGTTAGCAGAGCGACTGGCGCAA






GGCCCGATCGCGCTCTATTGCGGCTTCGATCCTACCGCTGACAGCTTGCATT






TGGGGCATCTTGTTCCATTGTTATGCCTGAAACGCTTCCAGCAGGCGGGCC






ACAAGCCGGTTGCGCTGGTAGGCGGCGCGACGGGTCTGATTGGCGACCCG






AGCTTCAAAGCTGCCGAGCGTAAGCTGAACACCGAAGAAACTGTTCAGGA






GTGGGTGGACAAAATCCGTAAGCAGGTTGCCCCGTTCCTCGATTTCGACTG






TGGAGAAAACTCTGCTATCGCGGCGAACAACTATGACTGGTTCGGCAATAT






GAATGTGCTGACCTTCCTGCGCGATATTGGCAAACACTTCTCCGTTAACCAG






ATGATCAACAAAGAAGCGGTTAAGCAGCGTCTCAACCGTGAAGATCAGGG






GATTTCGTTCACTGAGTTTTCCTACAACCTGTTGCAGGGTTATGACTTCGCC






TGTCTGAACAAACAGTACGGTGTGGTGCTGCAAATTGGTGGTTCTGACCAG






TGGGGTAACATCACTTCTGGTATCGACCTGACCCGTCGTCTGCATCAGAATC






AGGTGTTTGGCCTGACCGTTCCGCTGATCACTAAAGCAGATGGCACCAAAT






TTGGTAAAACTGAAGGCGGCGCAGTCTGGTTGGATCCGAAGAAAACCAGC






CCGTACAAATTCTACCAGTTCTGGATCAACACTGCGGATGCCGACGTTTACC






GCTTCCTGAAGTTCTTCACCTTTATGAGCATTGAAGAGATCAACGCCCTGG






AAGAAGAAGATAAAAACAGCGGTAAAGCACCGCGCGCCCAGTATGTACT






GGCGGAGCAGGTGACTCGTCTGGTTCACGGTGAAGAAGGTTTACAGGCGG






CAAAACGTATTACCGAATGCCTGTTCAGCGGTTCTTTGAGTGCGCTGAGTG






AAGCGGACTTCGAACAGCTGGCGCAGGACGGCGTACCGATGGTTGAGATG






GAAAAGGGCGCAGACCTGATGCAGGCACTGGTCGATTCTGAACTGCAACC






TTCCCGTGGTCAGGCACGTAAAACTATCGCCTCCAATGCCATCACCATTAAC






GGTGAAAAACAGTCCGATCCTGAATACTTCTTTAAAGAAGAAGATCGTCTG






TTTGGTCGTTTTACCTTACTGCGTCGCGGTAAAAAGAATTACTGTCTGATTT






GCTGGAAACATCACCATCACCATCACTAATCCACGGCCGCCAGTTTGGGCT





GGCGGCATTTTGGTACCACTAGT





Placl-like
SEQ
MASSNLIKQLQERGLVAQVTDEEALAERLAQGPIALYCGFDPTADSLHLGHLVP


tyrS EPC
ID
LLCLKRFQQAGHKPVALVGGATGLIGDPSFKAAERKLNTEETVQEWVDKIRKQV


aa
NO:
APFLDFDCGENSAIAANNYDWFGNMNVLTFLRDIGKHFSVNQMINKEAVKQR



172
LNREDQGISFTEFSYNLLQGYDFACLNKQYGVVLQIGGSDQWGNITSGIDLTRRL




HQNQVFGLTVPLITKADGTKFGKTEGGAVWLDPKKTSPYKFYQFWINTADADV




YRFLKFFTFMSIEEINALEEEDKNSGKAPRAQYVLAEQVTRLVHGEEGLQAAKRI




TECLFSGSLSALSEADFEQLAQDGVPMVEMEKGADLMQALVDSELQPSRGQA




RKTIASNAITINGEKQSDPEYFFKEEDRLFGRFTLLRRGKKNYCLICWKHHHHHH




*





Placl-like tyrS
SEQ
ACTAGTGCTAGCGACACCATCGAATGGCGCAAACCTTTCGCGGTATGGCATG


EPC
ID
ATAGCGCCCGAAGTCGTGTACCGGCAAAGGTGAGTCGTTATATACATGGAG


With T0
NO:
ATTTTGATGGCAAGCAGTAACTTGATTAAACAATTGCAAGAGCGGGGGCT



173

GGTAGCCCAGGTGACGGACGAGGAAGCGTTAGCAGAGCGACTGGCGCAA






GGCCCGATCGCGCTCTATTGCGGCTTCGATCCTACCGCTGACAGCTTGCATT






TGGGGCATCTTGTTCCATTGTTATGCCTGAAACGCTTCCAGCAGGCGGGCC






ACAAGCCGGTTGCGCTGGTAGGCGGCGCGACGGGTCTGATTGGCGACCCG






AGCTTCAAAGCTGCCGAGCGTAAGCTGAACACCGAAGAAACTGTTCAGGA






GTGGGTGGACAAAATCCGTAAGCAGGTTGCCCCGTTCCTCGATTTCGACTG






TGGAGAAAACTCTGCTATCGCGGCGAACAACTATGACTGGTTCGGCAATAT






GAATGTGCTGACCTTCCTGCGCGATATTGGCAAACACTTCTCCGTTAACCAG






ATGATCAACAAAGAAGCGGTTAAGCAGCGTCTCAACCGTGAAGATCAGGG






GATTTCGTTCACTGAGTTTTCCTACAACCTGTTGCAGGGTTATGACTTCGCC






TGTCTGAACAAACAGTACGGTGTGGTGCTGCAAATTGGTGGTTCTGACCAG






TGGGGTAACATCACTTCTGGTATCGACCTGACCCGTCGTCTGCATCAGAATC






AGGTGTTTGGCCTGACCGTTCCGCTGATCACTAAAGCAGATGGCACCAAAT






TTGGTAAAACTGAAGGCGGCGCAGTCTGGTTGGATCCGAAGAAAACCAGC






CCGTACAAATTCTACCAGTTCTGGATCAACACTGCGGATGCCGACGTTTACC






GCTTCCTGAAGTTCTTCACCTTTATGAGCATTGAAGAGATCAACGCCCTGG






AAGAAGAAGATAAAAACAGCGGTAAAGCACCGCGCGCCCAGTATGTACT






GGCGGAGCAGGTGACTCGTCTGGTTCACGGTGAAGAAGGTTTACAGGCGG






CAAAACGTATTACCGAATGCCTGTTCAGCGGTTCTTTGAGTGCGCTGAGTG






AAGCGGACTTCGAACAGCTGGCGCAGGACGGCGTACCGATGGTTGAGATG






GAAAAGGGCGCAGACCTGATGCAGGCACTGGTCGATTCTGAACTGCAACC






TTCCCGTGGTCAGGCACGTAAAACTATCGCCTCCAATGCCATCACCATTAAC






GGTGAAAAACAGTCCGATCCTGAATACTTCTTTAAAGAAGAAGATCGTCTG






TTTGGTCGTTTTACCTTACTGCGTCGCGGTAAAAAGAATTACTGTCTGATTT






GCTGGAAACATCACCATCACCATCACTAATTGTTCAGAACGCTCGGTCTTGC





ACACCGGGCGTTTTTTCTTTGTGAGTCCAACTAGT





Placl-like tyrS
SEQ
MASSNLIKQLQERGLVAQVTDEEALAERLAQGPIALYCGFDPTADSLHLGHLVP


EPC
ID
LLCLKRFQQAGHKPVALVGGATGLIGDPSFKAAERKLNTEETVQEWVDKIRKQV


aa
NO:
APFLDFDCGENSAIAANNYDWFGNMNVLTFLRDIGKHFSVNQMINKEAVKQR


With T0
172
LNREDQGISFTEFSYNLLQGYDFACLNKQYGVVLQIGGSDQWGNITSGIDLTRRL




HQNQVFGLTVPLITKADGTKFGKTEGGAVWLDPKKTSPYKFYQFWINTADADV




YRFLKFFTFMSIEEINALEEEDKNSGKAPRAQYVLAEQVTRLVHGEEGLQAAKRI




TECLFSGSLSALSEADFEQLAQDGVPMVEMEKGADLMQALVDSELQPSRGQA




RKTIASNAITINGEKQSDPEYFFKEEDRLFGRFTLLRRGKKNYCLICWKHHHHHH




*





Placl-tyrS EPC
SEQ
ACTAGTGACACCATCGAATGGCGCAAAACCTTTCGCGGTATGGCATGATAGC


With T0
ID
GCCCGGAAGTCGTGTACCGGCAAAGGTGCAGTCGTTATATACATGGAGATT



NO:
TTGATGGCAAGCAGTAACTTGATTAAACAATTGCAAGAGCGGGGGCTGGT



174

AGCCCAGGTGACGGACGAGGAAGCGTTAGCAGAGCGACTGGCGCAAGGC






CCGATCGCGCTCTATTGCGGCTTCGATCCTACCGCTGACAGCTTGCATTTGG






GGCATCTTGTTCCATTGTTATGCCTGAAACGCTTCCAGCAGGCGGGCCACA






AGCCGGTTGCGCTGGTAGGCGGCGCGACGGGTCTGATTGGCGACCCGAGC






TTCAAAGCTGCCGAGCGTAAGCTGAACACCGAAGAAACTGTTCAGGAGTG






GGTGGACAAAATCCGTAAGCAGGTTGCCCCGTTCCTCGATTTCGACTGTGG






AGAAAACTCTGCTATCGCGGCGAACAACTATGACTGGTTCGGCAATATGA






ATGTGCTGACCTTCCTGCGCGATATTGGCAAACACTTCTCCGTTAACCAGAT






GATCAACAAAGAAGCGGTTAAGCAGCGTCTCAACCGTGAAGATCAGGGG






ATTTCGTTCACTGAGTTTTCCTACAACCTGTTGCAGGGTTATGACTTCGCCT






GTCTGAACAAACAGTACGGTGTGGTGCTGCAAATTGGTGGTTCTGACCAGT






GGGGTAACATCACTTCTGGTATCGACCTGACCCGTCGTCTGCATCAGAATC






AGGTGTTTGGCCTGACCGTTCCGCTGATCACTAAAGCAGATGGCACCAAAT






TTGGTAAAACTGAAGGCGGCGCAGTCTGGTTGGATCCGAAGAAAACCAGC






CCGTACAAATTCTACCAGTTCTGGATCAACACTGCGGATGCCGACGTTTACC






GCTTCCTGAAGTTCTTCACCTTTATGAGCATTGAAGAGATCAACGCCCTGG






AAGAAGAAGATAAAAACAGCGGTAAAGCACCGCGCGCCCAGTATGTACT






GGCGGAGCAGGTGACTCGTCTGGTTCACGGTGAAGAAGGTTTACAGGCGG






CAAAACGTATTACCGAATGCCTGTTCAGCGGTTCTTTGAGTGCGCTGAGTG






AAGCGGACTTCGAACAGCTGGCGCAGGACGGCGTACCGATGGTTGAGATG






GAAAAGGGCGCAGACCTGATGCAGGCACTGGTCGATTCTGAACTGCAACC






TTCCCGTGGTCAGGCACGTAAAACTATCGCCTCCAATGCCATCACCATTAAC






GGTGAAAAACAGTCCGATCCTGAATACTTCTTTAAAGAAGAAGATCGTCTG






TTTGGTCGTTTTACCTTACTGCGTCGCGGTAAAAAGAATTACTGTCTGATTT






GCTGGAAACATCACCATCACCATCACTAATTGTTCAGAACGCTCGGTCTTGC





ACACCGGGCGTTTTTTCTTTGTGAGTCCAACTAGT





Placl- tyrS EPC
SEQ
MASSNLIKQLQERGLVAQVTDEEALAERLAQGPIALYCGFDPTADSLHLGHLVP


aa
ID
LLCLKRFQQAGHKPVALVGGATGLIGDPSFKAAERKLNTEETVQEWVDKIRKQV


With T0
NO:
APFLDFDCGENSAIAANNYDWFGNMNVLTFLRDIGKHFSVNQMINKEAVKQR



172
LNREDQGISFTEFSYNLLQGYDFACLNKQYGVVLQIGGSDQWGNITSGIDLTRRL




HQNQVFGLTVPLITKADGTKFGKTEGGAVWLDPKKTSPYKFYQFWINTADADV




YRFLKFFTFMSIEEINALEEEDKNSGKAPRAQYVLAEQVTRLVHGEEGLQAAKRI




TECLFSGSLSALSEADFEQLAQDGVPMVEMEKGADLMQALVDSELQPSRGQA




RKTIASNAITINGEKQSDPEYFFKEEDRLFGRFTLLRRGKKNYCLICWKHHHHHH




*





PlacltyrS EPC
SEQ
ACTAGTGACACCATCGAATGGCGCAAAACCTTTCGCGGTATGGCATGATAGC


With T0
ID
GCCCGGAAGTCGTGTACCGGCAAAGGTGCAGTCGTTATATACATGGAGATT


And
NO:
TTGATGGCGTCCTCCAACCTGATCAAACAGCTGCAGGAACGTGGCCTGGTT


optimized
175


GCGCAGGTTACCGACGAAGAAGCGCTGGCGGAACGTCTGGCGCAGGGCC








CGATCGCGCTGTACTGCGGCTTCGACCCGACCGCGGACTCCCTGCACCTGG








GCCACCTGGTTCCGCTGCTGTGCCTGAAACGTTTCCAGCAGGCGGGCCACA








AACCGGTTGCGCTGGTTGGCGGCGCGACCGGCCTGATCGGCGACCCGTCCT








TCAAAGCGGCGGAACGTAAACTGAACACCGAAGAAACCGTTCAGGAATG








GGTTGACAAAATCCGTAAACAGGTTGCGCCGTTCCTGGACTTCGACTGCGG








CGAAAACTCCGCGATCGCGGCGAACAACTACGACTGGTTCGGCAACATGA








ACGTTCTGACCTTCCTGCGTGACATCGGCAAACACTTCTCCGTTAACCAGAT








GATCAACAAAGAAGCGGTTAAACAGCGTCTGAACCGTGAAGACCAGGGC








ATCTCCTTCACCGAATTCTCCTACAACCTGCTGCAGGGCTACGACTTCGCGT








GCCTGAACAAACAGTACGGCGTTGTTCTGCAGATCGGCGGCTCCGACCAGT








GGGGCAACATCACCTCCGGCATCGACCTGACCCGTCGTCTGCACCAAAATC








AGGTGTTCGGGCTGACCGTTCCGCTGATCACCAAAGCGGACGGCACCAAA








TTCGGCAAAACCGAAGGCGGCGCGGTTTGGCTGGACCCGAAAAAAACCTC








CCCGTACAAATTCTACCAGTTCTGGATCAACACAGCGGACGCGGACGTATA








CAGATTCCTGAAATTCTTCACCTTCATGTCCATCGAAGAAATCAACGCGCTG








GAAGAAGAAGACAAAAACTCCGGCAAAGCGCCGCGTGCGCAGTACGTTCT








GGCGGAACAGGTTACCCGTCTGGTTCACGGCGAAGAAGGCCTGCAGGCGG








CGAAACGTATCACCGAATGCCTGTTCTCCGGCTCCCTGTCCGCGCTGTCCGA








AGCGGACTTCGAACAGCTGGCGCAGGACGGCGTTCCGATGGTTGAAATGG








AAAAAGGCGCGGACCTGATGCAGGCGCTGGTTGACTCCGAACTGCAGCCG








TCCCGTGGCCAGGCGCGTAAAACCATCGCGTCCAACGCGATCACCATCAAC








GGCGAAAAACAGTCCGACCCGGAATACTTCTTCAAAGAAGAAGACCGTCT








GTTCGGCCGTTTCACCCTGCTGCGTCGTGGCAAAAAAAACTACTGCCTGAT








CTGCTGGAAACACCACCACCACCACCACTAA
TTGTTCAGAACGCTCGGTCTT





GCACACCGGGCGTTTTTTCTTTGTGAGTCCAACTAGT





PlacltyrS EPC
SEQ
MASSNLIKQLQERGLVAQVTDEEALAERLAQGPIALYCGFDPTADSLHLGHLVP


1
ID
LLCLKRFQQAGHKPVALVGGATGLIGDPSFKAAERKLNTEETVQEWVDKIRKQV


aa
NO:
APFLDFDCGENSAIAANNYDWFGNMNVLTFLRDIGKHFSVNQMINKEAVKQR



172
LNREDQGISFTEFSYNLLQGYDFACLNKQYGVVLQIGGSDQWGNITSGIDLTRRL




HQNQVFGLTVPLITKADGTKFGKTEGGAVWLDPKKTSPYKFYQFWINTADADV




YRFLKFFTFMSIEEINALEEEDKNSGKAPRAQYVLAEQVTRLVHGEEGLQAAKRI




TECLFSGSLSALSEADFEQLAQDGVPMVEMEKGADLMQALVDSELQPSRGQA




RKTIASNAITINGEKQSDPEYFFKEEDRLFGRFTLLRRGKKNYCLICWKHHHHHH




*





Note that the end of the translated sequence is denoted by an asterisk (*).














CDS of CtxB - mature protein - AAC34728.1



(SEQ ID NO: 176)



ACACCTCAAAATATTACTGATTTGTGTGCAGAATACCACAACACACAAATACATACGCTA






AATGATAAGATATTTTCGTATACAGAATCTCTAGCTGGAAAAAGAGAGATGGCTATCATT





ACTTTTAAGAATGGTGCAACTTTTCAAGTAGAAGTACCAGGTAGTCAACATATAGATTCA





CAAAAAAAAGCGATTGAAAGGATGAAGGATACCCTGAGGATTGCATATCTTACTGAAGC





TAAAGTCGAAAAGTTATGTGTATGGAATAATAAAACGCCTCATGCGATTGCCGCAATTAG





TATGGCAAAT





CDS CtxB unit in JMU-SalVac-100 System (improved DNA)


(SEQ ID NO: 177)



ACCCCGCAGAACATCACCGACCTGTGCGCGGAATACCACAACACCCAGATCCACACCCTG






AACGACAAAATCTTCTCCTACACCGAATCCCTGGCGGGCAAACGTGAAATGGCGATCATC





ACCTTCAAAAACGGCGCGACCTTCCAGGTTGAAGTTCCGGGCTCCCAGCACATCGACTCC





CAGAAAAAAGCGATCGAACGTATGAAAGACACCCTGCGTATCGCGTACCTGACCGAAGC





GAAAGTTGAAAAACTGTGCGTTTGGAACAACAAAACCCCGCACGCGATCGCGGCGATCT





CCATGGCGAAC





S-Protein Wuhan Hu-1, GeneID 43740568 - NC_045512.2, Us


converrted to Ts


(SEQ ID NO: 178)



ATGTTTGTTTTTCTTGTTTTATTGCCACTAGTCTCTAGTCAGTGTGTTAATCTTACAACCAG






AACTCAATTACCCCCTGCATACACTAATTCTTTCACACGTGGTGTTTATTACCCTGACAAA





GTTTTCAGATCCTCAGTTTTACATTCAACTCAGGACTTGTTCTTACCTTTCTTTTCCAATGT





TACTTGGTTCCATGCTATACATGTCTCTGGGACCAATGGTACTAAGAGGTTTGATAACCCT





GTCCTACCATTTAATGATGGTGTTTATTTTGCTTCCACTGAGAAGTCTAACATAATAAGAG





GCTGGATTTTTGGTACTACTTTAGATTCGAAGACCCAGTCCCTACTTATTGTTAATAACGC





TACTAATGTTGTTATTAAAGTCTGTGAATTTCAATTTTGTAATGATCCATTTTTGGGTGTTT





ATTACCACAAAAACAACAAAAGTTGGATGGAAAGTGAGTTCAGAGTTTATTCTAGTGCGA





ATAATTGCACTTTTGAATATGTCTCTCAGCCTTTTCTTATGGACCTTGAAGGAAAACAGGG





TAATTTCAAAAATCTTAGGGAATTTGTGTTTAAGAATATTGATGGTTATTTTAAAATATAT





TCTAAGCACACGCCTATTAATTTAGTGCGTGATCTCCCTCAGGGTTTTTCGGCTTTAGAAC





CATTGGTAGATTTGCCAATAGGTATTAACATCACTAGGTTTCAAACTTTACTTGCTTTACA





TAGAAGTTATTTGACTCCTGGTGATTCTTCTTCAGGTTGGACAGCTGGTGCTGCAGCTTAT





TATGTGGGTTATCTTCAACCTAGGACTTTTCTATTAAAATATAATGAAAATGGAACCATTA





CAGATGCTGTAGACTGTGCACTTGACCCTCTCTCAGAAACAAAGTGTACGTTGAAATCCT





TCACTGTAGAAAAAGGAATCTATCAAACTTCTAACTTTAGAGTCCAACCAACAGAATCTA





TTGTTAGATTTCCTAATATTACAAACTTGTGCCCTTTTGGTGAAGTTTTTAACGCCACCAG





ATTTGCATCTGTTTATGCTTGGAACAGGAAGAGAATCAGCAACTGTGTTGCTGATTATTCT





GTCCTATATAATTCCGCATCATTTTCCACTTTTAAGTGTTATGGAGTGTCTCCTACTAAATT





AAATGATCTCTGCTTTACTAATGTCTATGCAGATTCATTTGTAATTAGAGGTGATGAAGTC





AGACAAATCGCTCCAGGGCAAACTGGAAAGATTGCTGATTATAATTATAAATTACCAGAT





GATTTTACAGGCTGCGTTATAGCTTGGAATTCTAACAATCTTGATTCTAAGGTTGGTGGTA





ATTATAATTACCTGTATAGATTGTTTAGGAAGTCTAATCTCAAACCTTTTGAGAGAGATAT





TTCAACTGAAATCTATCAGGCCGGTAGCACACCTTGTAATGGTGTTGAAGGTTTTAATTGT





TACTTTCCTTTACAATCATATGGTTTCCAACCCACTAATGGTGTTGGTTACCAACCATACA





GAGTAGTAGTACTTTCTTTTGAACTTCTACATGCACCAGCAACTGTTTGTGGACCTAAAAA





GTCTACTAATTTGGTTAAAAACAAATGTGTCAATTTCAACTTCAATGGTTTAACAGGCACA





GGTGTTCTTACTGAGTCTAACAAAAAGTTTCTGCCTTTCCAACAATTTGGCAGAGACATTG





CTGACACTACTGATGCTGTCCGTGATCCACAGACACTTGAGATTCTTGACATTACACCATG





TTCTTTTGGTGGTGTCAGTGTTATAACACCAGGAACAAATACTTCTAACCAGGTTGCTGTT





CTTTATCAGGATGTTAACTGCACAGAAGTCCCTGTTGCTATTCATGCAGATCAACTTACTC





CTACTTGGCGTGTTTATTCTACAGGTTCTAATGTTTTTCAAACACGTGCAGGCTGTTTAAT





AGGGGCTGAACATGTCAACAACTCATATGAGTGTGACATACCCATTGGTGCAGGTATATG





CGCTAGTTATCAGACTCAGACTAATTCTCCTCGGCGGGCACGTAGTGTAGCTAGTCAATC





CATCATTGCCTACACTATGTCACTTGGTGCAGAAAATTCAGTTGCTTACTCTAATAACTCT





ATTGCCATACCCACAAATTTTACTATTAGTGTTACCACAGAAATTCTACCAGTGTCTATGA





CCAAGACATCAGTAGATTGTACAATGTACATTTGTGGTGATTCAACTGAATGCAGCAATC





TTTTGTTGCAATATGGCAGTTTTTGTACACAATTAAACCGTGCTTTAACTGGAATAGCTGT





TGAACAAGACAAAAACACCCAAGAAGTTTTTGCACAAGTCAAACAAATTTACAAAACAC





CACCAATTAAAGATTTTGGTGGTTTTAATTTTTCACAAATATTACCAGATCCATCAAAACC





AAGCAAGAGGTCATTTATTGAAGATCTACTTTTCAACAAAGTGACACTTGCAGATGCTGG





CTTCATCAAACAATATGGTGATTGCCTTGGTGATATTGCTGCTAGAGACCTCATTTGTGCA





CAAAAGTTTAACGGCCTTACTGTTTTGCCACCTTTGCTCACAGATGAAATGATTGCTCAAT





ACACTTCTGCACTGTTAGCGGGTACAATCACTTCTGGTTGGACCTTTGGTGCAGGTGCTGC





ATTACAAATACCATTTGCTATGCAAATGGCTTATAGGTTTAATGGTATTGGAGTTACACAG





AATGTTCTCTATGAGAACCAAAAATTGATTGCCAACCAATTTAATAGTGCTATTGGCAAA





ATTCAAGACTCACTTTCTTCCACAGCAAGTGCACTTGGAAAACTTCAAGATGTGGTCAAC





CAAAATGCACAAGCTTTAAACACGCTTGTTAAACAACTTAGCTCCAATTTTGGTGCAATTT





CAAGTGTTTTAAATGATATCCTTTCACGTCTTGACAAAGTTGAGGCTGAAGTGCAAATTG





ATAGGTTGATCACAGGCAGACTTCAAAGTTTGCAGACATATGTGACTCAACAATTAATTA





GAGCTGCAGAAATCAGAGCTTCTGCTAATCTTGCTGCTACTAAAATGTCAGAGTGTGTAC





TTGGACAATCAAAAAGAGTTGATTTTTGTGGAAAGGGCTATCATCTTATGTCCTTCCCTCA





GTCAGCACCTCATGGTGTAGTCTTCTTGCATGTGACTTATGTCCCTGCACAAGAAAAGAA





CTTCACAACTGCTCCTGCCATTTGTCATGATGGAAAAGCACACTTTCCTCGTGAAGGTGTC





TTTGTTTCAAATGGCACACACTGGTTTGTAACACAAAGGAATTTTTATGAACCACAAATC





ATTACTACAGACAACACATTTGTGTCTGGTAACTGTGATGTTGTAATAGGAATTGTCAAC





AACACAGTTTATGATCCTTTGCAACCTGAATTAGACTCATTCAAGGAGGAGTTAGATAAA





TATTTTAAGAATCATACATCACCAGATGTTGATTTAGGTGACATCTCTGGCATTAATGCTT





CAGTTGTAAACATTCAAAAAGAAATTGACCGCCTCAATGAGGTTGCCAAGAATTTAAATG





AATCTCTCATCGATCTCCAAGAACTTGGAAAGTATGAGCAGTATATAAAATGGCCATGGT





ACATTTGGCTAGGTTTTATAGCTGGCTTGATTGCCATAGTAATGGTGACAATTATGCTTTG





CTGTATGACCAGTTGCTGTAGTTGTCTCAAGGGCTGTTGTTCTTGTGGATCCTGCTGCAAA





TTTGATGAAGACGACTCTGAGCCAGTGCTCAAAGGAGTCAAATTACATTACACATAA,





CDS RBD Gene ID 43740568 - NC_045512.2


(SEQ ID NO: 179)



AGAGTCCAACCAACAGAATCTATTGTTAGATTTCCTAATATTACAAACTTGTGCCCTTTTG






GTGAAGTTTTTAACGCCACCAGATTTGCATCTGTTTATGCTTGGAACAGGAAGAGAATCA





GCAACTGTGTTGCTGATTATTCTGTCCTATATAATTCCGCATCATTTTCCACTTTTAAGTGT





TATGGAGTGTCTCCTACTAAATTAAATGATCTCTGCTTTACTAATGTCTATGCAGATTCAT





TTGTAATTAGAGGTGATGAAGTCAGACAAATCGCTCCAGGGCAAACTGGAAAGATTGCTG





ATTATAATTATAAATTACCAGATGATTTTACAGGCTGCGTTATAGCTTGGAATTCTAACAA





TCTTGATTCTAAGGTTGGTGGTAATTATAATTACCTGTATAGATTGTTTAGGAAGTCTAAT





CTCAAACCTTTTGAGAGAGATATTTCAACTGAAATCTATCAGGCCGGTAGCACACCTTGT





AATGGTGTTGAAGGTTTTAATTGTTACTTTCCTTTACAATCATATGGTTTCCAACCCACTA





ATGGTGTTGGTTACCAACCATACAGAGTAGTAGTACTTTCTTTTGAACTTCTACATGCACC





AGCAACTGTTTGTGGACCTAAAAAGTCTACTAATTTGGTTAAAAACAAATGTGTCAATTT





C





CDS S-Protein Wuhan-Hu-1 (Wuhan-Hu-1) (improved DNA)


(SEQ ID NO: 180)



ATGTTCGTTTTCCTGGTTCTGCTGCCGCTGGTTTCCTCCCAGTGCGTTAACCTGACCACCCG






TACCCAGCTGCCGCCGGCGTACACCAACTCCTTCACTCGTGGCGTATACTACCCGGACAA





AGTTTTCCGTTCCTCCGTTCTGCACTCCACCCAGGACCTGTTCCTGCCGTTCTTCTCCAACG





TTACCTGGTTCCACGCTATACACGTAAGCGGCACCAACGGCACCAAACGTTTCGACAACC





CGGTTCTGCCATTCAATGACGGCGTGTACTTCGCGAGCACCGAAAAATCCAACATCATCC





GTGGCTGGATCTTCGGCACCACCCTGGACTCCAAAACCCAGTCCCTGCTGATCGTTAACA





ACGCGACCAACGTAGTTATCAAAGTCTGCGAATTCCAGTTCTGCAACGACCCGTTTCTCG





GCGTGTACTACCACAAAAACAACAAATCCTGGATGGAGTCCGAGTTCCGGGTGTACAGCT





CCGCGAACAACTGCACCTTCGAATACGTTTCCCAGCCGTTCCTGATGGACCTGGAAGGCA





AACAGGGCAACTTCAAAAACCTGCGTGAATTCGTTTTCAAAAACATCGACGGCTACTTCA





AAATCTACTCCAAACACACCCCGATCAACCTGGTTCGTGACCTGCCGCAGGGCTTCTCCG





CGCTGGAACCGCTGGTTGACCTGCCGATCGGCATCAACATCACCCGTTTCCAGACCCTGC





TGGCGCTGCACCGTTCCTACCTGACCCCGGGCGACTCCTCCTCCGGCTGGACCGCGGGCG





CGGCGGCGTACTACGTTGGCTACCTGCAGCCGCGTACCTTCCTGCTGAAATACAACGAAA





ACGGCACCATCACCGACGCGGTTGACTGCGCGCTGGACCCGCTGTCCGAAACCAAATGCA





CCCTGAAATCCTTCACCGTTGAAAAAGGCATCTACCAGACCTCCAACTTCCGTGTTCAGCC





GACCGAATCCATAGTTAGGTTCCCGAACATCACTAACCTGTGTCCGTTTGGCGAAGTGTTC





AACGCGACCCGTTTTGCGTCCGTCTACGCCTGGAACCGTAAACGTATCTCCAACTGCGTTG





CGGACTACTCCGTTCTGTACAACTCCGCGTCCTTCTCCACCTTCAAATGCTACGGCGTTTC





CCCGACCAAACTGAACGACCTGTGCTTCACCAACGTTTACGCGGACTCCTTCGTTATCCGT





GGCGACGAAGTTCGTCAGATCGCGCCGGGCCAGACCGGCAAAATCGCGGACTACAACTA





CAAACTGCCGGACGACTTCACCGGCTGCGTTATCGCGTGGAACTCCAACAACCTGGACTC





CAAAGTTGGCGGCAACTACAACTACCTGTACCGTCTGTTCCGTAAATCCAACCTGAAACC





GTTCGAACGTGACATCTCCACCGAAATCTACCAGGCGGGCTCCACCCCGTGCAACGGCGT





TGAAGGCTTCAACTGCTACTTCCCGCTGCAGTCCTACGGCTTCCAGCCGACCAACGGCGTT





GGCTACCAGCCGTACCGTGTTGTTGTTCTGTCCTTCGAACTGCTGCACGCGCCGGCGACCG





TTTGCGGCCCGAAAAAATCCACCAACCTGGTTAAAAACAAATGCGTTAACTTCAACTTCA





ACGGCCTGACCGGCACCGGCGTTCTGACCGAATCCAACAAAAAATTCCTGCCGTTCCAGC





AGTTCGGCCGTGACATCGCGGACACCACCGACGCGGTTCGTGACCCGCAGACCCTGGAAA





TCCTGGACATCACCCCGTGCTCGTTCGGCGGCGTGAGCGTTATCACCCCGGGCACCAACA





CCTCCAACCAGGTTGCGGTTCTGTACCAGGACGTTAACTGCACCGAAGTTCCGGTTGCGA





TCCACGCGGACCAGCTGACCCCGACCTGGCGTGTTTACTCCACCGGCTCCAACGTTTTCCA





GACCCGTGCGGGCTGCCTGATCGGCGCGGAACACGTTAACAACTCCTACGAATGCGACAT





CCCGATCGGCGCGGGCATCTGCGCGTCCTACCAGACCCAGACCAACTCCCCGCGTCGTGC





GCGTTCCGTTGCGTCCCAGTCCATCATCGCGTACACCATGTCCCTGGGCGCGGAAAACTC





CGTTGCGTACTCCAACAACTCCATCGCGATCCCGACCAACTTCACCATCTCCGTTACCACC





GAAATCCTGCCGGTTTCCATGACCAAAACCTCCGTTGACTGCACCATGTACATCTGCGGC





GACTCCACCGAATGCTCCAACCTGCTGCTGCAGTACGGCTCCTTCTGCACCCAGCTGAAC





CGTGCGCTGACCGGCATCGCGGTTGAACAGGACAAAAACACCCAGGAAGTTTTCGCGCA





GGTTAAACAGATCTACAAAACCCCGCCGATCAAAGACTTCGGCGGCTTCAACTTCTCCCA





GATCCTGCCGGACCCGTCCAAACCGTCCAAACGTTCCTTCATCGAAGACCTGCTGTTCAA





CAAAGTTACCCTGGCGGACGCGGGCTTCATCAAACAGTACGGCGACTGCCTGGGCGACAT





CGCGGCGCGTGACCTGATCTGCGCGCAGAAATTCAACGGCCTGACCGTTCTGCCGCCGCT





GCTGACCGACGAAATGATCGCGCAGTACACCTCCGCGCTGCTGGCGGGCACCATCACCTC





CGGCTGGACCTTCGGCGCGGGCGCGGCGTTACAGATCCCGTTCGCGATGCAGATGGCGTA





CAGGTTCAACGGCATCGGCGTTACCCAGAACGTTCTGTACGAAAACCAGAAACTGATCGC





GAACCAGTTCAACTCCGCGATCGGCAAAATCCAGGACTCCCTGTCCTCCACCGCGTCCGC





GCTGGGCAAACTGCAGGACGTTGTTAACCAGAACGCGCAGGCGCTGAACACCCTGGTTA





AACAGCTGTCCTCCAACTTCGGCGCGATCTCCTCCGTTCTGAACGACATCCTGTCCCGTCT





GGACAAAGTTGAAGCGGAAGTTCAGATCGACCGTCTGATCACCGGCCGTCTGCAGTCCCT





GCAGACCTACGTTACCCAGCAGCTGATCCGTGCGGCGGAAATCCGTGCGTCCGCGAACCT





GGCGGCGACCAAAATGTCCGAATGCGTTCTGGGCCAGTCCAAACGTGTTGACTTCTGCGG





CAAAGGCTACCACCTGATGTCCTTCCCGCAGTCCGCTCCGCACGGCGTTGTGTTCCTGCAC





GTAACCTACGTTCCGGCGCAGGAAAAAAACTTCACCACCGCGCCGGCGATCTGCCACGAC





GGCAAAGCGCACTTCCCGCGTGAGGGCGTCTTCGTATCCAACGGCACCCACTGGTTCGTT





ACCCAGCGTAACTTCTACGAACCGCAGATCATCACCACCGACAACACCTTCGTTTCCGGC





AACTGCGACGTTGTTATCGGCATCGTAAATAACACCGTGTACGACCCCCTGCAGCCGGAA





CTGGACTCCTTCAAAGAAGAACTGGACAAATACTTCAAAAACCACACCTCCCCGGACGTT





GACCTGGGCGACATCTCCGGCATCAACGCGTCCGTTGTTAACATCCAGAAAGAAATCGAC





CGTCTGAACGAAGTTGCGAAAAACCTGAACGAATCCCTGATCGACCTGCAGGAACTGGG





CAAATACGAACAGTACATCAAATGGCCGTGGTACATCTGGCTGGGCTTCATCGCGGGCCT





GATCGCGATCGTTATGGTTACCATCATGCTGTGCTGCATGACCTCCTGCTGCTCCTGCCTG





AAAGGCTGCTGCTCCTGCGGCTCCTGCTGCAAATTCGACGAAGACGACTCCGAACCGGTT





CTGAAAGGCGTTAAACTGCACTACACC





CDS N-Protein NC_045512.2, GeneID: 43740575, Us converted to


Ts


(SEQ ID NO: 181)



ATGTCTGATAATGGACCCCAAAATCAGCGAAATGCACCCCGCATTACGTTTGGTGGACCC






TCAGATTCAACTGGCAGTAACCAGAATGGAGAACGCAGTGGGGCGCGATCAAAACAACG





TCGGCCCCAAGGTTTACCCAATAATACTGCGTCTTGGTTCACCGCTCTCACTCAACATGGC





AAGGAAGACCTTAAATTCCCTCGAGGACAAGGCGTTCCAATTAACACCAATAGCAGTCCA





GATGACCAAATTGGCTACTACCGAAGAGCTACCAGACGAATTCGTGGTGGTGACGGTAA





AATGAAAGATCTCAGTCCAAGATGGTATTTCTACTACCTAGGAACTGGGCCAGAAGCTGG





ACTTCCCTATGGTGCTAACAAAGACGGCATCATATGGGTTGCAACTGAGGGAGCCTTGAA





TACACCAAAAGATCACATTGGCACCCGCAATCCTGCTAACAATGCTGCAATCGTGCTACA





ACTTCCTCAAGGAACAACATTGCCAAAAGGCTTCTACGCAGAAGGGAGCAGAGGCGGCA





GTCAAGCCTCTTCTCGTTCCTCATCACGTAGTCGCAACAGTTCAAGAAATTCAACTCCAGG





CAGCAGTAGGGGAACTTCTCCTGCTAGAATGGCTGGCAATGGCGGTGATGCTGCTCTTGC





TTTGCTGCTGCTTGACAGATTGAACCAGCTTGAGAGCAAAATGTCTGGTAAAGGCCAACA





ACAACAAGGCCAAACTGTCACTAAGAAATCTGCTGCTGAGGCTTCTAAGAAGCCTCGGCA





AAAACGTACTGCCACTAAAGCATACAATGTAACACAAGCTTTCGGCAGACGTGGTCCAGA





ACAAACCCAAGGAAATTTTGGGGACCAGGAACTAATCAGACAAGGAACTGATTACAAAC





ATTGGCCGCAAATTGCACAATTTGCCCCCAGCGCTTCAGCGTTCTTCGGAATGTCGCGCAT





TGGCATGGAAGTCACACCTTCGGGAACGTGGTTGACCTACACAGGTGCCATCAAATTGGA





TGACAAAGATCCAAATTTCAAAGATCAAGTCATTTTGCTGAATAAGCATATTGACGCATA





CAAAACATTCCCACCAACAGAGCCTAAAAAGGACAAAAAGAAGAAGGCTGATGAAACTC





AAGCCTTACCGCAGAGACAGAAGAAACAGCAAACTGTGACTCTTCTTCCTGCTGCAGATT





TGGATGATTTCTCCAAACAATTGCAACAATCCATGAGCAGTGCTGACTCAACTCAGGCCT





AA





CDS DR (N-Protein) GeneID: 43740575 - NC_045512.2


(SEQ ID NO: 182)



CCTCGGCAAAAACGTACTGCCACTAAAGCATACAATGTAACACAAGCTTTCGGCAGACGT






GGTCCAGAACAAACCCAAGGAAATTTTGGGGACCAGGAACTAATCAGACAAGGAACTGA





TTACAAACATTGGCCGCAAATTGCACAATTTGCCCCCAGCGCTTCAGCGTTCTTCGGAATG





TCGCGCATTGGCATGGAAGTCACACCTTCGGGAACGTGGTTGACCTACACAGGTGCCATC





AAATTGGATGACAAAGATCCAAATTTCAAAGATCAAGTCATTTTGCTGAATAAGCATATT





GACGCATACAAA





CDS N-Protein, whole Protein (improved DNA)


(SEQ ID NO: 183)



ATGTCCGACAACGGCCCGCAGAACCAGCGTAACGCGCCGCGTATCACCTTCGGCGGCCCG






TCCGACTCCACCGGCTCCAACCAGAACGGCGAACGTTCCGGCGCGCGTTCCAAACAGCGT





CGTCCGCAGGGCCTGCCGAACAACACCGCGTCCTGGTTCACCGCGCTGACCCAGCACGGC





AAAGAAGACCTGAAATTCCCGCGTGGCCAGGGCGTTCCGATCAACACCAACTCCTCCCCG





GACGACCAGATCGGCTACTACCGTCGTGCGACCCGTCGTATCCGTGGCGGCGACGGCAAA





ATGAAAGACCTGTCCCCGCGTTGGTACTTCTACTACCTGGGCACCGGCCCGGAAGCGGGC





CTGCCGTACGGCGCGAACAAAGACGGCATCATCTGGGTTGCGACCGAAGGCGCGCTGAA





CACCCCGAAAGACCACATCGGCACCCGTAACCCGGCGAACAACGCGGCGATCGTTCTGC





AGCTGCCGCAGGGCACCACCCTGCCGAAAGGCTTCTACGCGGAAGGCTCCCGTGGCGGCT





CCCAGGCGTCCTCCCGTTCCTCCTCCCGTTCCCGTAACTCCTCCCGTAACTCCACCCCGGG





CTCCTCCCGTGGCACCTCCCCGGCGCGTATGGCGGGCAACGGCGGCGACGCGGCGCTGGC





GCTGCTGCTGCTGGACCGTCTGAACCAGCTGGAATCCAAAATGTCCGGCAAAGGCCAGCA





GCAGCAGGGCCAGACCGTTACCAAAAAATCCGCGGCGGAAGCGTCCAAAAAACCGCGTC





AGAAACGTACCGCGACCAAAGCGTACAACGTTACCCAGGCGTTCGGCCGTCGTGGCCCG





GAACAGACCCAGGGCAACTTCGGCGACCAGGAACTGATCCGTCAGGGCACCGACTACAA





ACACTGGCCGCAGATCGCGCAGTTCGCGCCGTCCGCGTCCGCGTTCTTCGGCATGTCCCGT





ATCGGCATGGAAGTTACCCCGTCCGGCACCTGGCTGACCTACACCGGCGCGATCAAACTG





GACGACAAAGACCCGAACTTCAAAGACCAGGTTATCCTGCTGAACAAACACATCGACGC





GTACAAAACCTTCCCGCCGACCGAACCGAAAAAAGACAAAAAAAAAAAAGCGGACGAA





ACCCAGGCGCTGCCGCAGCGTCAGAAAAAACAGCAGACCGTTACCCTGCTGCCGGCGGC





GGACCTGGACGACTTCTCCAAACAGCTGCAGCAGTCCATGTCCTCCGCGGACTCCACCCA





GGCG






INDUSTRIAL APPLICABILITY

The bacterium, combination product and vaccine of the present invention are susceptible of industrial application. The invention can be manufactured for use in the medical and healthcare industry. In particular, the invention can be used to provide patients with an active adaptive immunity towards members of the coronavirus family.


The invention is exemplified by the following non-limiting Examples:


EXAMPLES
Example 1: Antigenic Plots

Antigenic plots of SEQ ID NO: 30 and SEQ ID NO: 41 were generated using the method disclosed in Kolaskar & Tongaonkar, 1990. FEBS Lett. 276(1-2):172-4. These plots are provided in FIGS. 4 and 5.


According to the antigenic plots, the herein disclosed fusion proteins have the potential to induce an immune response in a subject. Thus, they have the potential to function as a vaccine.


Further, antigenic plots were used to identify SARS-CoV-2 antigens with an antigenic propensity score of greater than 0.9. All the SARS-CoV-2 antigens disclosed herein have an antigenic propensity score of greater than 0.9.


Example 2: Plasmid

The constructs disclosed herein can be introduced into a Ty21a Salmonella strain via the pSalVac plasmid. The pSalVac 001 A0_B0 plasmid is depicted in FIG. 1. Sequences encoding fusion proteins can be inserted at the SalI recognition site and/or at the NsiI recognition site.


The sequence of the pSalVac 001 A0_B0 KanR plasmid is provided in SEQ ID NO: 42:










GAATTCCAAGCGAAGTCCATCCCCCTCCCTCTTGATTACAAGGGTGATAATTATTATTCGC






ATTTGTGTGGTAATGGGATAGAAAGGAATGGATAGAAAAAGAACAAAATTAGTATAGCA





ATAGATATGCCCACTGCATTGAATACTTACAGGGCATTATTTTATTATGTTTAAATTGAAG





TGGTCTCTGGTTTGATTTATTTGTTATTCAAGGGGGCTGTTTGGAGATCGGAAAATTCTGT





ACGTTAAGTGTATTATTTAACCAGTTTCGATGCGTAACAGATTGATTTTGCGTCAGCGGTT





ATCGCTTTTAAGTTGTTGCTCTTGCGCTATCGCGTTTAGGTTATCCGATTAAAGTCAAATTT





CCTGAAAATGCTGTATAGCGCGGGAGTGCACCTTATAGCTGTAGGTAAGTATGTTCAAAA





AATAGTCTTGCCGTACAATAATTTTCCATATCCAAACTCACTCCTTCAAGATTCTGGTCCC





GGTTTACGGGTAGTTTCCGGAAGGGCGGTAGCATGCTGATTCAAACTGCAAGATGAAACA





TTGTCGGAGTTGGATGGAATTAAGTCATGGCTATAGCATTTGGGCGTGCATAACAAAATT





GGTCCTCATATTTTAGAGTATGATTGCATATTCACTAATATTTTTACTTTCTGATGCGTGGT





GGCATCATGCTTTATGAGATAAACAATCCTGGTAGACTAGCCCCCTGAATCTCCAGACAA





CCAATATCACTTATTTAAGTGATAGTCTTAATACTAGTGCTAGCGACACCATCGAATGGC





GCAAACCTTTCGCGGTATGGCATGATAGCGCCCGAAGTCGTGTACCGGCAAAGGTGCAGT





CGTTATATACATGGAGATTTTGATGGCAAGCAGTAACTTGATTAAACAATTGCAAGAGCG





GGGGCTGGTAGCCCAGGTGACGGACGAGGAAGCGTTAGCAGAGCGACTGGCGCAAGGCC





CGATCGCGCTCTATTGCGGCTTCGATCCTACCGCTGACAGCTTGCATTTGGGGCATCTTGT





TCCATTGTTATGCCTGAAACGCTTCCAGCAGGCGGGCCACAAGCCGGTTGCGCTGGTAGG





CGGCGCGACGGGTCTGATTGGCGACCCGAGCTTCAAAGCTGCCGAGCGTAAGCTGAACA





CCGAAGAAACTGTTCAGGAGTGGGTGGACAAAATCCGTAAGCAGGTTGCCCCGTTCCTCG





ATTTCGACTGTGGAGAAAACTCTGCTATCGCGGCGAACAACTATGACTGGTTCGGCAATA





TGAATGTGCTGACCTTCCTGCGCGATATTGGCAAACACTTCTCCGTTAACCAGATGATCAA





CAAAGAAGCGGTTAAGCAGCGTCTCAACCGTGAAGATCAGGGGATTTCGTTCACTGAGTT





TTCCTACAACCTGTTGCAGGGTTATGACTTCGCCTGTCTGAACAAACAGTACGGTGTGGTG





CTGCAAATTGGTGGTTCTGACCAGTGGGGTAACATCACTTCTGGTATCGACCTGACCCGTC





GTCTGCATCAGAATCAGGTGTTTGGCCTGACCGTTCCGCTGATCACTAAAGCAGATGGCA





CCAAATTTGGTAAAACTGAAGGCGGCGCAGTCTGGTTGGATCCGAAGAAAACCAGCCCG





TACAAATTCTACCAGTTCTGGATCAACACTGCGGATGCCGACGTTTACCGCTTCCTGAAGT





TCTTCACCTTTATGAGCATTGAAGAGATCAACGCCCTGGAAGAAGAAGATAAAAACAGC





GGTAAAGCACCGCGCGCCCAGTATGTACTGGCGGAGCAGGTGACTCGTCTGGTTCACGGT





GAAGAAGGTTTACAGGCGGCAAAACGTATTACCGAATGCCTGTTCAGCGGTTCTTTGAGT





GCGCTGAGTGAAGCGGACTTCGAACAGCTGGCGCAGGACGGCGTACCGATGGTTGAGAT





GGAAAAGGGCGCAGACCTGATGCAGGCACTGGTCGATTCTGAACTGCAACCTTCCCGTGG





TCAGGCACGTAAAACTATCGCCTCCAATGCCATCACCATTAACGGTGAAAAACAGTCCGA





TCCTGAATACTTCTTTAAAGAAGAAGATCGTCTGTTTGGTCGTTTTACCTTACTGCGTCGC





GGTAAAAAGAATTACTGTCTGATTTGCTGGAAACATCACCATCACCATCACTAATCCACG





GCCGCCAGTTTGGGCTGGCGGCATTTTGGTACCACTAGTGATAATGGTTCATGCTACCGG





GCGAATGAAACACGTCAGTTCGCCAGGATGTTGGGACTTGAACCGAAGAACACGGCAGT





GCGGAGTCCGGAGAGTAACGGAATAACAGAGAGCTTCGTGAAAACGATAAAGCGTGATT





ACATAAGTATCATGCCCAAACCAGACGGGTTAACGGCAGCAAAGAACCTTGCAGAGGCG





TTCGAGCATTATAACGAATGGCATCCGCATAGTGCGCTGGGTTATCGCTCGCCACGGGAA





TATCTGCGGCAGCGGGCCAGTAATGGGTTAAGTGATAACAGGTATCTGGAAATATAGGG





GCAAATCCACCTGGTCATTATCTGGAATTTGACGAAGTGTGATAACTGGTATAGCCAGAT





TAATCTAAACCTTTGTCTGACAAAATCAGATAAAGAAGAGTAGTTCAAAAGACAACTCGT





GGACTCTCATTCAGAGAGATAGGCGTTACCAAAATTTGTTTGGAACTGAACAAGAAAATT





GTATTTGTGTAACTATAATCTTAATGTAAAATAAAAGACACCAGTTCTGTAGAATATGCTT





ATTGAAGAGAGTGTAATAATAATTTTATATAGATGTTGTACAAAGAACAGGAATGAGTAA





TTATTTATGCTTGATGTTTTTTGACTCTTGCTTTTTATAGTTATTATTTTTAAGTTAGTCAGC





GCAATAAAAACTTGCTTTTAATATTAATGCGAGTTATGACATTAAACGGAAGAAACATAA





AGGCATATTTTTGCCACAATATTTAATCATATAATTTAAGTTGTAGTGAGTTTATTATGAA





TATAAACAAACCATTAGAGATTCTTGGGCATGTATCCTGGCTATGGGCCAGTTCTCCACTA





CACAGAAACTGGCCAGTATCTTTGTTTGCAATAAATGTATTACCCGCAATACAGGCTAAC





CAATATGTTTTATTAACCCGGGATGATTACCCTGTCGCGTATTGTAGTTGGGCTAATTTAA





GTTTAGAAAATGAAATTAAATATCTTAATGATGTTACCTCATTAGTTGCAGAAGACTGGA





CTTCAGGTGATCGTAAATGGTTCATTGACTGGATTGCTCCTTTCGGGGATAACGGTGCCCT





GTACAAATATATGCGAAAAAAATTCCCTGATGAACTATTCAGAGCCATCAGGGTGGATCC





CAAAACTCATGTTGGTAAAGTATCAGAATTTCATGGAGGTAAAATTGATAAACAGTTAGC





GAATAAAATTTTTAAACAATATCACCACGAGTTAATAACTGAAGTAAAAAGAAAGTCAG





ATTTTAATTTTTCATTAACTGGTTAAGAGGTAATTAAATGCCAACAATAACCACTGCACAA





ATTAAAAGCACACTGCAGTCTGCAAAGCAATCCGCTGCAAATAAATTGCACTCAGCAGGA





CAAAGCACGAAAGATGCATTAGCCTATGGAAGTCAGGGTGATCTTAATCCATTAATTAAT





GAAATCAGCAAAATCATTTCAGCTGCAGGTAGCTTCGATGTTAAAGAGGAAAGAACTGC





AGCTTCTTTATTGCAGTTGTCCGGTAATGCCAGTGATTTTTCATATGGACGGAACTCAATA





ACCCTGACCACATCAGCATAATATATTAATTTAAATGATAGCAATCTTACTGGGCTGTGCC





ACATAAGATTGCTATTTTTTTTGGAGTCATAATGGATTCTTGTCATAAAATTGATTATGGG





TTATACGCCCTGGAGATTTTAGCCCAATACCATAACGTCTCTGTTAACCCGGAAGAAATT





AAACATAGATTTGATACAGACGGGACAGGTCTGGGATTAACGTCATGGTTGCTTGCTGCG





AAATCTTTAGAACTAAAGGTAAAACAGGTAAAAAAAACAATTGATCGATTAAACTTTATT





TTTCTGCCCGCATTAGTCTGGAGAGAGGATGGACGTCATTTTATTCTGACTAAAATCAGCA





AAGAAGTAAACAGATATCTTATTTTTGATTTGGAGCAGCGAAATCCCCGTGTTCTCGAAC





AGTCTGAGTTTGAGGCGTTATATCAGGGGCATATTATTCTTATTACTTCCCGTTCTTCTGTT





ACCGGGAAACTGGCAAAATTTGACTTTACCTGGTTTATTCCTGCCATTATAAAATACAGG





AGAATATTTATTGAAACCCTTGTTGTATCTGTTTTTTTACAATTATTTGCATTAATAACCCC





CCTTTTTTTCCAGGTGGTTATGGACAAAGTATTAGTGCACAGGGGGTTTTCAACCCTTAAT





GTTATTACTGTTGCATTATCTGTTGTAGTGGTGTTTGAGATTATACTCAGCGGTTTAAGAA





CTTACATTTTTGCACATAGTACAAGTCGGATTGATGTTGAGTTGGGTGCCAAACTCTTCCG





GCATTTACTGGCGCTACCGATCTCTTATTTTGAGAGTCGTCGTGTTGGTGATACTGTTGCG





AGGGTAAGAGAATTAGACCAGATCCGTAATTTTCTGACAGGACAGGCATTAACATCTGTT





TTGGACTTATTATTTTCACTCATATTTTTTGCGGTAATGTGGTATTACAGCCCAAAGCTTAC





TCTGGTGATCTTATTTTCGCTGCCTTGTTATGCTGCATGGTCTGTTTTTATTAGCCCCATTT





TGCGACGTCGCCTTGATGATAAGTTTTCACGGAATGCGGATAATCAATCTTTCCTGGTGGA





ATCAGTAACGGCGATTAACACTATAAAAGCTATGGCAGTCTCACCTCAGATGACGAACAT





ATGGGACAAACAATTGGCAGGATATGTTGCTGCAGGCTTTAAAGTGACAGTATTAGCAAC





CATTGGTCAACAAGGAATACAGTTAATACAAAAGACTGTTATGATCATCAACCTATGGTT





GGGAGCACACCTGGTTATTTCCGGGGATTTAAGTATTGGTCAGTTAATTGCTTTTAATATG





CTTGCTGGTCAGATTGTTGCACCGGTTATTCGCCTTGCACAAATCTGGCAGGATTTCCAGC





AGGTTGGTATATCAGTTACCCGCCTTGGTGATGTGCTTAACTCTCCAACTGAAAGTTATCA





TGGGAAACTGACATTGCCGGAAATTAATGGTGATATCACTTTTCGTAATATCCGGTTTCGC





TATAAACCTGATTCTCCGGTTATTTTGGACAATATCAATCTTAGTATTAAGCAGGGGGAG





GTTATTGGTATTGTCGGACGTTCTGGTTCAGGAAAAAGCACATTAACTAAATTAATTCAA





CGTTTTTATATTCCTGAAAATGGCCAGGTATTAATTGATGGACATGATCTTGCGTTGGCTG





ATCCTAACTGGTTACGTCGTCAGGTGGGGGTTGTGTTGCAGGACAATGTGCTGCTTAATC





GCAGTATTATTGATAATATTTCACTGGCTAATCCTGGCATGTCCGTCGAAAAAGTTATTTA





TGCAGCGAAATTAGCAGGCGCTCATGATTTTATTTCTGATTTGCGTGAGGGGTATAACAC





CATTGTCGGGGAACAGGGGGCAGGATTATCCGGAGGTCAACGTCAACGCATCGCAATTG





CAAGGGCGCTGGTGAACAACCCTAAAATACTCATTTTTGATGAAGCAACCAGTGCTCTGG





ATTATGAGTCGGAGCATGTCATCATGCGCAATATGCACAAAATATGTAAGGGCAGAACG





GTTATAATCATTGCTCATCGTCTGTCTACAGTAAAAAATGCAGACCGCATTATTGTCATGG





AAAAAGGGAAAATTGTTGAACAGGGTAAACATAAGGAGCTGCTTTCTGAACCGGAAAGT





TTATACAGTTACTTATATCAGTTACAGTCAGACTAACAGAAAGAACAGAAGAATATGAAA





ACATGGTTAATGGGGTTCAGCGAGTTCCTGTTGCGCTATAAACTTGTCTGGAGTGAAACA





TGGAAAATCCGGAAGCAATTAGATACTCCGGTACGTGAAAAGGACGAAAATGAATTCTT





ACCCGCTCATCTGGAATTAATTGAAACGCCAGTATCCAGACGGCCGCGTCTGGTTGCTTA





TTTTATTATGGGGTTTCTGGTTATTGCTTTTATTTTATCTGTTTTAGGCCAAGTGGAAATTG





TTGCCACTGCAAATGGGAAATTAACACACAGTGGGCGTAGTAAAGAAATTAAACCTATTG





AAAACTCAATAGTTAAAGAAATTATCGTAAAAGAAGGAGAGTCAGTCCGGAAAGGGGAT





GTGTTATTAAAGCTTACAGCACTGGGAGCTGAAGCTGATACGTTAAAAACACAGTCATCA





CTGTTACAGGCCAGGCTGGAACAAACTCGGTATCAAATTCTGAGCAGGTCAATTGAATTA





AATAAACTACCTGAACTAAAGCTTCCTGATGAGCCTTATTTTCAGAATGTATCTGAAGAG





GAAGTACTGCGTTTAACTTCTTTGATAAAAGAACAGTTTTCCACATGGCAAAATCAGAAG





TATCAAAAAGAACTGAATTTGGATAAGAAAAGAGCAGAGCGATTAACAGTACTTGCCCG





TATAAACCGTTATGAAAATTTATCAAGGGTTGAAAAAAGCCGTCTGGATGATTTCAGTAG





TTTATTGCATAAACAGGCAATTGCAAAACATGCTGTACTTGAGCAGGAGAATAAATATGT





CGAAGCAGTAAATGAATTACGAGTTTATAAATCACAACTGGAGCAAATTGAGAGTGAGA





TATTGTCTGCAAAAGAAGAATATCAGCTTGTTACGCAGCTTTTTAAAAATGAAATTTTAG





ATAAGCTAAGACAAACAACAGACAACATTGGGTTATTAACTCTGGAATTAGCGAAAAAT





GAAGAGCGTCAACAGGCTTCAGTAATCAGGGCCCCAGTTTCGGGAAAAGTTCAGCAACT





GAAGGTTCATACTGAAGGTGGGGTTGTTACAACAGCGGAAACACTGATGGTCATCGTTCC





GGAAGATGACACGCTGGAGGTTACTGCTCTGGTACAAAATAAAGATATTGGTTTTATTAA





CGTCGGGCAGAATGCCATCATTAAAGTGGAGGCATTTCCTTATACACGATATGGTTATCT





GGTGGGTAAGGTGAAAAATATAAATTTAGATGCAATAGAAGACCAGAGACTGGGACTTG





TTTTTAATGTTATTATTTCTATTGAAGAGAATTGTTTGTCAACCGGGAATAAAAACATTCC





ATTAAGCTCGGGTATGGCAGTCACTGCAGAAATAAAGACAGGTATGCGAAGTGTAATCA





GTTATCTTCTTAGTCCTTTAGAAGAGTCAGTAACAGAAAGTTTACGTGAGCGTTAAGTTTC





AGAAGTCCAGTATTTGCTGCTATACGTGCTGCGTGGCACTTGCCGTCTGAACGGCATTGAT





CCGGAAGCCAAGTCAAACAACAGCGTGATGAGCGTCAGGGCAAAACACCAAGGCTCTCT





CGATGACACCAGAACAAATTGAAATACGTGAGCTGAGGAAAAAGCTACCGAGTTCTTGA





TGTTGGACTCCCTGAACAGTTCTCTGTAATCGGGAAACTCAGGACGCGTTATCCTGTGGTC





ACACTCTGCCATGTGTTTAGGGTTCATCACAGCAGCTACAGATACTGGTAAAACCGTCCT





GAAAAACCAGACGGCAGACGGGCTGTATTACGTAGTCAGGTACTTGAGCTACATGGCATC





AGTCACGGTTTGGCCGGAGCAAGACGTATCACCACAATGGCAACCCGGAGAGGTGTCAG





CGCCAGTGATATAAGACGGTTAACGGTTAAAAATCGTGGCGTTGACAACATCCCAGTGGA





CTGAGGTCACACAGGCCTGGCAGCATTCCTCTTCCGGCCGGATGACCCGGATTTCACGGG





GAAAGTACGCCGATAACAGTTTACGGGCTGAAGATTGGCGTAGGGAGGATAGCAGACGT





TTTGCCGCCCCCATTGTCTGGAGTTGGGTGAGAAGGCATCATTTCACCAACACCAACATTT





CACAGTTACACCCCACAGCTACATGAAGCGCTTCCATGAATTATCGCTTTGATTTATCATG





TTAAAATAGCTCTACACGGTTGGTTCAGGATTGCGCACCGAAACCCTCTAAAATCCACTG





ACGCGCCTGCGAATTATCCAGCACCGCGCCTTTCGAGATCCTCTACGCCGGACGCATCGT





GGCCGGCATCACCGGCGCCACAGGTGCGGTTGCTGGCGCCTATATCGCCGACATCACCGA





TGGGGAAGATCGGGCTCGCCACTTCGGGCTCATGAGCGCTTGTTTCGGCGTGGGTATGGT





GGCAGGCCCCGTGGCCGGGGGACTGTTGGGCGCCATCTCCTTGCATGCACCATTCCTTGC





GGCGGCGGTGCTCAACGGCCTCAACCTACTACTGGGCTGCTTCCTAATGCAGGAGTCGCA





TAAGGGAGAGCGTCGACCGATGCCCTTGAGAGCCTTCAACCCAGTCAGCTCCTTCCGGTG





GGCGCGGGGCATGACTATCGTCGCCGCACTTATGACTGTCTTCTTTATCATGCAACTCGTA





GGACAGGTGCCGGCAGCGCTCTGGGTCATTTTCGGCGAGGACCGCTTTCGCTGGAGCGCG





ACGATGATCGGCCTGTCGCTTGCGGTATTCGGAATCTTGCACGCCCTCGCTCAAGCCTTCG





TCACTGGTCCCGCCACCAAACGTTTCGGCGAGAAGCAGGCCATTATCGCCGGCATGGCGG





CCGACGCGCTGGGCTACGTCTTGCTGGCGTTCGCGACGCGAGGCTGGATGGCCTTCCCCA





TTATGATTCTTCTCGCTTCCGGCGGCATCGGGATGCCCGCGTTGCAGGCCATGCTGTCCAG





GCAGGTAGATGACGACCATCAGGGACAGCTTCAAGGATCGCTCGCGGCTCTTACCAGCCT





AACTTCGATCATTGGACCGCTGATCGTCACGGCGATTTATGCCGCCTCGGCGAGCACATG





GAACGGGTTGGCATGGATTGTAGGCGCCGCCCTATACCTTGTCTGCCTCCCCGCGTTGCGT





CGCGGTGCATGGAGCCGGGCCACCTCGACCTGAATGGAAGCCGGCGGCACCTCGCTAAC





GGATTCACCACTCCAAGAATTGGAGCCAATCAATTCTTGCGGAGAACTGTGAATGCGCAA





ACCAACCCTTGGCAGAACATATCCATCGCGTCCGCCATCTCCAGCAGCCGCACGCGGCGC





ATCTCGGGCAGCGTTGGGTCCTGGCCACGGGTGCGCATGATCGTGCTCCTGTCGTTGAGG





ACCCGGCTAGGCTGGCGGGGTTGCCTTACTGGTTAGCAGAATGAATCACCGATACGCGAG





CGAACGTGAAGCGACTGCTGCTGCAAAACGTCTGCGACCTGAGCAACAACATGAATGGT





CTTCGGTTTCCGTGTTTCGTAAAGTCTGGAAACGCGGAAGTCAGCGCCCTGCACCATTATG





TTCCGGATCTGCATCGCAGGATGCTGCTGGCTACCCTGTGGAACACCTACATCTGTATTAA





CGAAGCGCTGGCATTGACCCTGAGTGATTTTTCTCTGGTCCCGCCGCATCCATACCGCCAG





TTGTTTACCCTCACAACGTTCCAGTAACCGGGCATGTTCATCATCAGTAACCCGTATCGTG





AGCATCCTCTCTCGTTTCATCGGTATCATTACCCCCATGAACAGAAATCCCCCTTACACGG





AGGCATCAGTGACCAAACAGGAAAAAACCGCCCTTAACATGGCCCGCTTTATCAGAAGC





CAGACATTAACGCTTCTGGAGAAACTCAACGAGCTGGACGCGGATGAACAGGCAGACAT





CTGTGAATCGCTTCACGACCACGCTGATGAGCTTTACCGCAGCTGCCTCGCGCGTTTCGGT





GATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAA





GCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCG





GGGCGCAGCCATGACCCAGTCACGTAGCGATAGCGGAGTGTATACTGGCTTAACTATGCG





GCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATGC





GTAAGGAGAAAATACCGCATCAGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGC





TCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCC





ACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCA





GGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGC





ATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATAC





CAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCG





GATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAG





GTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTT





CAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACAC





GACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGG





CGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATT





TGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCC





GGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGC





AGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGG





AACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAG





ATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGT





CTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTC





ATCCATAGTTGCCTGACTCCCCATATGAATATCCTCCTTAGTTCCTATTCCGAAGTTCCTAT





TCTCTAGAAAGTATAGGAACTTCAGAGCGCTTTTGAAGCTGGGGTGGGCGAAGAACTCCA





GCATGAGATCCCCGCGCTGGAGGATCATCCAGCCGGCGTCCCGGAAAACGATTCCGAAG





CCCAACCTTTCATAGAAGGCGGCGGTGGAATCGAAATCTCGTGATGGCAGGTTGGGCGTC





GCTTGGTCGGTCATTTCGAACCCCAGAGTCCCGCTCAGAAGAACTCGTCAAGAAGGCGAT





AGAAGGCGATGCGCTGCGAATCGGGAGCGGCGATACCGTAAAGCACGAGGAAGCGGTCA





GCCCATTCGCCGCCAAGCTCTTCAGCAATATCACGGGTAGCCAACGCTATGTCCTGATAG





CGGTCCGCCACACCCAGCCGGCCACAGTCGATGAATCCAGAAAAGCGGCCATTTTCCACC





ATGATATTCGGCAAGCAGGCATCGCCATGGGTCACGACGAGATCCTCGCCGTCGGGCATG





CGCGCCTTGAGCCTGGCGAACAGTTCGGCTGGCGCGAGCCCCTGATGCTCTTCGTCCAGA





TCATCCTGATCGACAAGACCGGCTTCCATCCGAGTACGTGCTCGCTCGATGCGATGTTTCG





CTTGGTGGTCGAATGGGCAGGTAGCCGGATCAAGCGTATGCAGCCGCCGCATTGCATCAG





CCATGATGGATACTTTCTCGGCAGGAGCAAGGTGAGATGACAGGAGATCCTGCCCCGGCA





CTTCGCCCAATAGCAGCCAGTCCCTTCCCGCTTCAGTGACAACGTCGAGCACAGCTGCGC





AAGGAACGCCCGTCGTGGCCAGCCACGATAGCCGCGCTGCCTCGTCCTGCAGTTCATTCA





GGGCACCGGACAGGTCGGTCTTGACAAAAAGAACCGGGCGCCCCTGCGCTGACAGCCGG





AACACGGCGGCATCAGAGCAGCCGATTGTCTGTTGTGCCCAGTCATAGCCGAATAGCCTC





TCCACCCAAGCGGCCGGAGAACCTGCGTGCAATCCATCTTGTTCAATCATGCGAAACGAT





CCTCATCCTGTCTCTTGATCAGATCTTGATCCCCTGCGCCATCAGATCCTTGGCGGCAAGA





AAGCCATCCAGTTTACTTTGCAGGGCTTCCCAACCTTACCAGAGGGCGCCCCAGCTGGCA





ATTCCGGTTCGCTTGCTGTCCATAAAACCGCCCAGTCTAGCTATCGCCATGTAAGCCCACT





GCAAGCTACCTGCTTTCTCTTTGCGCTTGCGTTTTCCCTTGTCCAGATAGCCCAGTAGCTG





ACATTCATCCGGGGTCAGCACCGTTTCTGCGGACTGGCTTTCTACGTGTTCCGCTTCCTTT





AGCAGCCCTTGCGCCCTGAGTGCTTGCGGCAGCGTGGGGGATCTTGAAGTTCCTATTCCG





AAGTTCCTATTCTCTAGAAAGTATAGGAACTTCGAAGCAGCTCCAGCCTACACCAAAAAA





GGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGA





AGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATA





AACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCA





TTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTTCAAGA





ATTCTCATGTTTGACAGCTTATCATCGATGGACATTATTTTTGTGGAGCCGGAGGAAACAG





ACCAGACGGTTCAGATGAGGCGCTTACCACCAGAACCGCTGTTGTCCCACCATTCTGGCG





ATTCCCAAACGCTATTTGGATAAAAAGTAGCCTTAACGTGGTTTATTTTCC






Methods for inserting plasmids into S. typhi strains are known in the art (see Callaghan & Charbit, 1990. Mol Gen Genet. 223(1):156-8).


Example 3: Preparation and Testing of Vaccines According to the Invention

1. Materials


1.1 Bacterial Strains


Bacterial strains are depicted in table 1 (E. coli, Salmonella initial strains), table 10 (Salmonella intermediate and recipient strains) and table 11 (BLS vaccine strains).


1.2 Plasmids


Plasmids are listed in table 6 (codon optimized synthetic antigen fragments in delivery plasmids by manufacturer), table 7A, and table 9 (plasmids for the construction of BLS strains and the JMU SalVac-100 series).


1.3 Primers


Primes are listed in table 7B (construction of BLS strains), table 8 (sequencing and PCR) and table 12 (qPCR).


1.4 Media


For strain construction purposes:

    • LB-Broth
    • 20 g Luria Bertani (LB) broth (Lennox) vegetal, animal-free (Roth)
    • ad 1000 ml Roti-Cell water, CELLPURE sterile
    • LB-Agar
    • 35 g LB-Agar (Lennox) vegetal, animal-free (Roth)
    • ad 1000 ml Roti-Cell water, CELLPURE sterile


For quality control and characterization purposes:

    • TS-Broth (TSM)
    • 30 g Tryptic Soy Broth (Sigma-Aldrich)
    • ad 1000 ml dest. Water
    • TS-Agar (TSA)
    • 30 g Tryptic Soy Broth (Sigma-Aldrich)
    • 15 g Agar (BD)
    • ad 1000 ml dest. Water


Media for bacterial culture were autoclaved for 20 min at 121° C. Antibiotics and other temperature sensitive supplements were added after autoclaving and cooling of the media.


1.5 Chemicals


Unless otherwise stated, all chemicals were obtained from Sigma-Aldrich, Difco, Roth and Applichem.


1.6 Buffers and Solutions


50×TAE Buffer:

242 g Tris


100 ml 0.5 M EDTA pH 8.0


57.1 ml acetic acid


Ad 1000 ml ddH2O


1×TBE (Tris-Borat-EDTA):

100 ml 10×TBE-Puffer (ThermoFisher)


Ad to 1000 ml ddH2O


2× Laemmli:

10 ml 1.5 M Tris/HCl pH 6.8


40 ml 10% SDS


30 ml Glycerol


5 mg Bromophenol blue


1.5 ml β-mercaptoethanol


Ad to 100 ml ddH2O


Lower Buffer:

90.85 g Tris


20 mil 10% SDS


Ad 500 ml ddH2O


Set pH to 8.8


Upper Buffer:

30.3 g Tris


20 mil 10% SDS


Ad 500 ml ddH2O


Set pH to 6.8


10% Separating Gel:

4.15 ml millipore H2O


2.5 ml lower buffer


3.35 ml Rotiphorese Gel 30 (37.5:1)


75 μl 10% APS


7.5 μl TEMED


3.75% Stacking Gel:

6.25 ml millipore H2O


2.5 ml upper buffer


1.25 ml Rotiphorese Gel 30 (37.5:1)


100 μl 10% APS


20 μl TEMED


10×SDS Running Buffer:

10 g SDS


30.3 g Tris


144.1 g Glycine


Ad 1 1 ddH2O


10× Semi-Dry Transfer Buffer:

77.5 g Glycine


100 ml 10% SDS


250 ml 1 M Tris pH 7.5-8.0


Ad 1 1 ddH2O


Set pH to 8.3


10×Tbs-T Buffer:

60.5 g Tris


87.6 g NaCl


Ad 1 1 ddH2O


Set pH to 7.5


5 ml Tween-20


ECL-Solution 1:

5 ml 1 M Tris/HCl pH 8.5


500 μl 250 mM Luminol in DMSO


220 μl 90 mM cumeric acid in DMSO


Add to 50 ml ddH2O


ECL-Solution 2:

5 ml 1 M Tris/HCl pH 8.5


32 μl 35% H2O2


Add to 50 ml ddH2O


2. Methods


2.1 Bacterial Strains and Media



E. coli DH5α (Invitrogen) were utilized for subcloning, plasmid amplification and maintenance. S. enterica serovar Typhi strain Ty21a and its ΔtyrS derivative were used as the basis for the generation of human vaccine strains. S. enterica serovar Typhimurium ΔaroA strain SL7207 was utilized for oral immunization studies in mice (Table 1). Unless otherwise stated, bacterial strains were grown aerobically in LB broth (Lennox) vegetal (Roth) at 37° C. with rigorous shaking (180-200 rpm), or on LB-Agar (Lennox) vegetal (Roth). Unless otherwise stated, antibiotic selection, as if necessary, was carried out using ampicillin (Sigma-Aldrich), kanamycin (Sigma-Aldrich) and chloramphenicol (Sigma-Aldrich) at final concentrations of 100, 25 and 20 μg/ml, respectively. For characterization experiments Salmonella spp. were grown in tryptic soy (TS) broth (Sigma-Aldrich) supplemented with appropriate antibiotics, if necessary. All strains were stored as glycerol (Roth) stock cultures (25-40%) at −80° C. For preparation of immunization aliquots, S. enterica serovar Typhi Ty21a ΔtyrS vaccine strains were grown in tryptic soy broth supplemented with 0.001% galactose (Merck).


2.2 in Silico Design of Antigen Selection


For vaccine construction, we have selected the structural proteins of SARS-CoV-2. The protein sequences of SARS-CoV-2 and the protein sequences of the adjuvant proteins for vaccine development were retrieved from UniProt database (https://www.uniprot.org/). Each of these protein sequences was screened for their average antigenic propensity using the antigenic peptides prediction tool (http://imed.med.ucm.es/Tools/antigenic.pl) (Kolaskar et al., 1990).


In silico cloning was performed using the SnapGene Viewer 5.3 and SnapGene 5.3.1. The optimized sequences of the NsiI- and SalI-fragments were synthesized by Invitrogen GeneArt Gene Synthesis (ThermoFisher scientific) and then cloned into one of their Standard GeneArt delivery vectors with ampicillin or kanamycin resistance markers (pMA respectively pMK)(Table 6). The DNA was delivered as 5 μg lyophilized plasmid DNA in microcentrifuge tube. After resolving in 50 μg Roti-CELL water (Roth) plasmid DNA was stored at −20° C.


2.3 Molecular Cloning


2.3.1. Standard Techniques.


All standard molecular methods were performed following published protocols (Sambroock and Russell, 2001). PCR-products and digests were purified either with QIAquick PCR Purification Kit (Qiagen) or the QIAquick Gel Extraction Kit (Qiagen) following the manufacturer's recommendations.


Restriction enzymes (FastDigest Mph1103I, FastDigest SalI) and T4 DNA ligase were purchased from Thermo Fisher Scientific. Oligonucleotides were synthesized by Sigma-Aldrich Chemie GmbH. PCR was performed with Biometra T3 Thermocycler Triple Block Laboratory PCR Thermal Cycler.


2.3.2 DNA Isolation.


Plasmids were purified with QIAprep Spin Miniprep Kit (Qiagen) and QIAGEN Plasmid Midi Kit (Qiagen) following the manufacturer's instructions. Chromosomal DNA was isolated using QIAamp DNA Mini Ki (Qiagen) following the manufacturer's instructions. The amount of DNA was measured using NanoDrop (Peglab, ND-1000).


2.3.3 Electroporation.



E. coli and Salmonella spp. strains were electroporated with recombinant plasmids using standard techniques. In brief, electrocompetent cultures were generated by harvesting them at an OD600 of 0.6-1.2 by centrifugation. Pellets were washed three times with ice-cold 10% glycerol (Roth), concentrated 100× in 10% glycerol and stored at −80° C. For electroporation, cells were thawed on ice. Subsequently, 0.1-1 μg of DNA was mixed with 40 to 100 μl cell suspension and incubated on ice for approximately 1 min. DNA was introduced into the bacteria by using a Bio-Rad MicroPulser following the manufacturer's recommendations. For electroporation, 0.1 cm or 0.2 cm cuvettes (VWR) were used. After pulsing, the bacteria were incubated in SOB-broth (Roth) supplemented with 20 mM Glucose (Roth) for 1 h at 37° C., respectively at 30° C. when the cells were harboring the temperature-sensitive plasmid pCP20. After 1 h the bacteria were plated out on LB-Agar plates with the appropriate antibiotic selection.


2.3.4 PCR.


DNA templates were prepared by different methods.


For screening purposes, DNA was obtained from the supernatant after heat-inactivation of bacteria at 100° C. for 5 min and a following centrifugation step for 2 min at ≥10.000 rpm, 4° C. in a microcentrifuge. After the centrifugation step the lysate was cooled on ice and 1 to 2 μl were used as template for the PCR reactions using MyTaq HS Red Mix (Bioline, cat. BIO-25048, lot. PM348-BO82870).


For sequencing, chromosomal DNA of selected strains was isolated using QIAamp DNA Mini Ki (Quiagen) following the manufacturer's instructions and used as template in PCR-Reactions using primers flanking the tyrS-region in the chromosome (primer pair No 17 and 18, see table 8) using Phusion Plus DNA polymerase (ThermoFisher Scientific) following the manufacturer's instructions.


PCR cycle program:

    • 12.5 μl Polymerase Mix
    • 0.25 μl Primer forward (10 μM)
    • 0.25 μl Primer reverse (10 μM)
    • 2 μl DNA
    • 10 μl H2O ultrapure


Program:

    • Denaturation: 94° C. for 3 minutes
    • Cycling Stage (35 cycles): 94° C. for 45 seconds
      • 50-70° C. for 30 seconds
      • 72° C. for 2 minutes
    • Final Elongation: 72° C. for 5 minutes
    • Holding Stage: 4° C.


2.3.5 Agarose Gel Electrophoresis.


DNA fragments, if necessary and PCR products were mixed with 5× GelPilot DNA Loading Dye (Qiagen) and loaded on 1% agarose gels for subsequent control of PCR reactions and purification of desired DNA fragments. DNA bands of interest were excised from agarose gels and purified by GeneJET Gel Extraction Kit (ThermoFisher Scientific) or QIAquick Gel Extraction Kit (Quiagen) according to manufacturer's instructions.


Electrophoresis was performed with 1% agarose gels with 10 μl of the samples, 1×TAE buffer and at 110 V for around 30 minutes.


2.4 Construction of the Balanced-Lethal-System (BLS) for Plasmid Stabilization


Antibiotics are commonly used and are effective in providing plasmid stability under selective conditions. However, their use to stabilize plasmids in live vaccines is usually not applicable. Thus, without the selective pressure of antibiotics, plasmids might become unstable leading to their segregational loss. This in consequence leads to a sub-optimal efficacy of any bacterial live vector vaccine due to insufficient expression and presentation of the vaccine antigen to the human immune system (Spreng et al., 2005). The plasmid maintenance system the inventors previously designed to stabilize plasmids without any antibiotic selection pressure is made up of the chromosomal knockout of the gene tyrS encoding for the tyrosyl-tRNA-synthetase and the in trans complementation of this gene on the respective antigen-delivery-plasmid (Diessner, 2009).


2.4.1 Construction of the Chromosomal tyrS-Knockout-Strains


For the construction of the chromosomal tyrS knockout the inventors modified the method of “one-step inactivation of chromosomal genes using PCR products” which was described by Datsenko and Wanner, (Datsenko et al., 2000). As tyrS is an essential gene, this approach had to be adapted to avoid the lethal knockout of a gene without genetic complementation. A functionally active TyrS-expression cassette was therefore inserted into the PCR-template-plasmid pKD3. The TyrS expression cassette is located upstream of the promoter of the chloramphenicol resistance gene (cat) within the two FRT-sites. Hence the chromosomal tyrS was replaced by a fragment encoding for the antibiotic resistance and the gene encoding E. coli tyrS.


In brief, the FRT-flanked knock in fragment was amplified by PCR. The purified PCR-fragment was electroporated into S. typhi Ty21a, harbouring the temperature-sensitive easily curable Red helper plasmid pKD46 which carries the Red recombination system with the phage a Red recombinase under the control of an arabinose-inducible promoter. The chromosomal tyrS sequence was then replaced by the knock-in fragment by Red-mediated recombination in the flanking homologies (H1 and H2-region) resulting in strain S. enterica serovar Typhi Ty21a ΔtyrS (tyrS Cm)+ (Diessner, 2009).


This strain (clone 120) was transformed with the helper plasmid pCP20. The resulting strain is designated Ty21a-BLS-R (recipient) strain. The respective tyrS-complementing antigen delivery plasmids of the pSalVac Ax_By series was then electroporation. As a last step, all regions flanked by FRT-sites are eliminated by thermal induction of the pCP20 encoded flippase (Flp). The heat-induction simultaneously cured the strains from plasmid pCP20 due to its temperature-sensitive replication (Cherepanov et al., 1995). This generated the final antibiotic resistance gene free vaccine strain of the JMU-SalVac-100 series (S. enterica serovar Typhi Ty21a ΔtyrS pSalVac Ax_By ΔKanR.


2.4.2 Construction of Template Plasmid pKD3-SpeI-tyrS-HisTag-s (Diessner, 2009)


The E. coli strain used for pKD3-derivate constructions was the pir-positive E. coli strain CC118 λpir (Herrero et al., 1990). In brief, first a SpeI-(BcuI)-restriction site was introduced into plasmid pKD3 by PCR using QuickChange Site-directed Mutagenesis Kit (Stratagene) according to manufacturers' instructions.


The oligonucleotides used for mutagenesis were Mut-pKD3-SpeI-forward and Mut-pKD3-SpeI-reverse (see table 7B)


The DNA was then transformed into electrocompetent cells of pir-positive E. coli strain CC118 λpir. After 1 h incubation at 37° C., the entire transformation reaction was plated on LB agar plates containing the appropriate antibiotics. The plates were incubated at 37° C. for >16 h. Plasmid DNA of several colonies was isolated and screened for positive clones by SpeI restriction analysis. One positive clone of putative pKD3-SpeI was selected and further confirmed by sequencing.


For construction of template plasmid pKD3-SpeI-tyrS-HisTag-s, E. coli DH5α chromosomal DNA was used as template to create the tyrS×6His expression cassette (tyrS EPC). The tyrS EPC in which the tyrS gene is under control of its native 5′-flanking DNA region (PWT) was constructed as follows: first, a 1638 bp fragment was amplified with Pfu-Polymerase (Stratagene) by PCR using the forward primer tyrS-EPK-SpeI-reverse which binds 313-288 bp upstream from start codon of tyrS introducing a SpeI site and the reverse primer Ter-HisTag-1-forward 5′ which introduce a 6×His-tag upstream of the stop codon of the tyrS gene. The amplified DNA-fragment was then used as template in a second PCR using the same forward primer but a different reverse primer, namely SpeI-Ter-HisTag-2-forward which prolongs the template at the 3′-end to overall 1688 bp. Furthermore, the primer contains a SpeI recognition site. The resulting SpeI-PWTtyrS6×his-fragment included 313 bp flanking the open reading frame (ORF) of the tyrS gene at its 5′ end, as well as 58 bp following the stop codon of this gene. After digestion with the SpeI restriction enzyme the DNA fragment was inserted into the single SpeI site of the template vector pKD3-SpeI resulting in plasmid pKD3-SpeI-tyrS-HisTag-s which bears the tyrS gene in the same orientation as the cat gene. The correct clone was confirmed by sequencing.


2.4.3 Chromosomal Integration of the (FRT-tyrS CmR-FRT)-PCR-Fragment into S. typhi Ty21a


Disruption of chromosomal tyrS by integration of a FRT-tyrS CmR-FRT-knock-in PCR fragment was performed following the method of Datsenko and Wanner (2000) but with modifications.


Briefly, S. typhi Ty21a was transformed with the temperature-sensitive Red recombinase helper plasmid pKD46. Transformants were grown in LB at 30° C. supplemented with ampicillin and 0.2% L-(+)-arabinose and then made electrocompetent as described by Datsenko and Wanner (2000). The plasmid pKD46 express the Red system under control of an arabinose-inducible promoter conferring the ability for homologous recombination with linear PCR under inducing conditions (Datsenko and Wanner, 2000).


The knock-in PCR fragment to disrupt chromosomal tyrS in S. typhi Ty21a was generated by amplifying the FRT site flanked tyrS-CmR cassette on plasmid pKD3-SpeI tyrS HisTag-s using BioTherm™ Taq polymerase (Genecraft). To minimize possible polar effects on downstream gene expression, primer were designed to yield in the final step of the procedure a tyrS in-frame deletion to begin 6 bp downstream of the translation start site and end 168 bp upstream of the stop codon. Design of primers were based on the published sequences S. enterica subsp. enterica serovar Typhi Ty2 (GenBank accession no. NC_004631). The primer knockout-forward 5′ has a 49 nt extension that is homologous to the 5′-region adjacent to tyrS (H1), including the start codon and the first codon of the gene as well as 20 nt homologous priming site 1 (P1) of template plasmid pKD3-SpeI tyrS HisTag-s. The primer knockout-reverse (Table 7B) binds to priming site 2 (P2) of the template plasmid and has a 51 nt extension that is homologous to region 1108-1158 bp downstream the start codon of tyrS (H2). The knock-in-PCR-product has an overall length of 2803 bp. The PCR products were gel-purified, digested with DpnI, repurified, and suspended in elution buffer (10 mM Tris, pH 8.0). Subsequently, the PCR products were transformed into S. typhi Ty21a harbouring pKD46. After one hour incubation at 30° C. in TS medium clones were selected on TS agar plates containing 5 μg/ml chloramphenicol and 0.2% arabinose. Following primary selection at 30° C., mutants were maintained on TS medium without selection. Single colonies were then grown on TS agar without antibiotics at 37° C. and then tested for ampicillin sensitivity to confirm the loss of the helper plasmid pKD46 (Datsenko and Wanner, 2000). Correct insertion of the knock-in PCR-product into the chromosomal tyrS gene of S. typhi Ty21 was investigated by PCR analysis. Subsequently clone 120 of S. enterica serovar Typhi Ty21a ΔtyrS (tyrS Cm)+ (clone 120) was selected and confirmed by sequencing (Diessner, 2009).


2.4.4 Cloning of PlacI-like tyrS expression cassette in pMKhlyAIS2-CtxB-PSA (Gesser, 2010)


The plasmid pKD3 PWT tyrS EPC was digested with the SpeI restriction enzyme. Subsequently the DNA-Fragment carrying the SpeI-PWTtyrS EPC-fragment was inserted into the single SpeI site of pMKhlyAIS2 CtxB-PSA resulting in the plasmid pMKhlyAIS2 PWTtyrS CtxB-PSA which bears the tyrS gene in the same orientation as the recombinant Hly gene cluster. The correct clone was confirmed by sequencing.


In E. coli, the LacI repressor which regulates expression of the lactose metabolic genes by binding to the lacO operator sequence (Lewis, 2005) is synthesized constitutively at a very low level, approximately 5 to 10 copies per cell (Gilbert et al., 1966, Muller-Hill et al., 1968). Thus, to reduce the expression on each single plasmid and therefore to favour the regulation of expression towards a higher plasmid copy number the tyrS×6his-coding sequence was cloned under the control of a lacI-derived promoter and integrated into the single SpeI-site of pMKhlyAIS2-CtxB-PSA. First, a PCR was performed using pMKhly CtxB-PSA PWT tyrS EPC as template. The forward primer LacI-Prom.for binds to the region 48 nt to 21 nt upstream the start codon of the tyrS coding sequence. The Primer has an extension of 70 nt containing a lacI derived promoter sequence (PlacI-like) and moreover a SalI plus a SpeI-restriction-site at the 5′-end. The reverse primer LacI-Ter-rev spans the terminal 29 nucleotides including the stop codon of the tyrS6×His coding sequence. The 55 nt-extension of the primer contains a transcription terminator sequence and a SalI plus a SpeI-restriction-site at the 5′-end. The PCR-product was cleaved with SpeI and cloned into the SpeI-site of pMKhlyAIS2 CtxB-PSA. In the resulting plasmid the orientation of the putative tyrS EPC is likewise the same as that of the recombinant hly gene cluster of the vector resulting in plasmid pMKhlyAIS2 Plac-liketyrS CtxB-PSA (Gesser, 2010).


2.5 SDS-PAGE of Cell-Associated and Secreted Proteins.


Bacterial lysates were prepared from mid-log cultures grown in trypticase soy broth or LB medium containing appropriate antibiotics (if applicable). 0.5-2 ml of this culture were harvested by centrifugation and the supernatant was removed. The cell pellets were stored at −20° C. For SDS-PAGE, the pellets were resuspended in 100 to 200 μl of 1× Laemmli buffer with β-mercaptoethanol (Laemmli, 1970), boiled for 5 min and stored at −20° C. for SDS polyacrylamide gel electrophoresis (PAGE) analysis (->cell-associated proteins).


Periplasmic proteins were isolated by osmotic shock as previously described (Ludwig et al., 1999) with only slight modifications. In brief, the bacteria from a defined culture volume were centrifuged (Hereaus Megafuge, 30 min, 4° C., 6,000 rpm), washed with 10 mM Tris-HCl (pH 8.0) and resuspended in 0.25 volume (compared to the starting culture volume) of a solution containing 20% sucrose, 30 mM Tris-HCl (pH 8.0) and 1 mM Na-EDTA (shock buffer). After the addition of 2 μl 500 mM Na-EDTA, pH 8.0 per ml shock buffer, the mixture was incubated for 10 min at room temperature under gentle shaking. Subsequently, the bacteria were pelleted (Hereaus Megafuge, 30 min, 4° C., 6,000 rpm) and resuspended in 1 vol. of ice-cold H2O. After incubation on ice for 10 min, bacteria were pelleted (Hereaus Megafuge, 30 min, 4° C., 6,000 rpm). The supernatant was used as periplasmic protein extract. For the analysis by SDS-PAGE, periplasmic proteins were precipitated by addition of ice-cold trichloroacetic acid (final concentration: 10%) and carefully resuspended in appropriate volume of 1× Laemmli buffer with β-mercaptoethanol by rinsing the walls of the centrifugation tube. Finally, the pH was neutralized by adding 10 μl of saturated Tris solution.


Supernatant proteins were obtained by precipitating proteins from the culture medium of bacteria grown as described above. Bacteria were pelleted from 12 to 50 ml of culture medium by centrifugation (Hereaus Megafuge, 30 min, 4° C., 6,000 rpm). 10 to 45 ml of the supernatant was transferred to a fresh tube and proteins were precipitated with ice-cold 10% trichloric acid (Applichem) overnight at 4° C. The next day, the precipitates were collected by centrifugation (Hereaus Megafuge, 30 min, 4° C., 6,000 rpm), washed with 1 ml ice-cold acetone p.a. (Applichem), air-dried and carefully resuspended in 250 to 450 μl 1× Laemmli buffer with β-mercaptoethanol (Laemmli, 1970) by rinsing the walls of the centrifugation tube. Finally, the pH was neutralized by adding 10 μl of saturated Tris solution. Alternatively, the pellets were resuspended in 250 to 450 μl native sample buffer (BioRad) following manufacturer's instructions.


Unless otherwise stated, SDS-PAGE was performed using the PerfectBlue Vertical Double Gel System from Peqlab. For one gel, 4 ml of 10% separating gel and 2.5 ml of 3.75% stacking gel was used. After gel polymerization and addition of 1×SDS running buffer to the chamber, the gel was loaded with the samples and 5 μl PageRuler Prestained Protein Ladder 10-180 kDa (ThermoFisher, cat. 26617). SDS-PAGE was performed at 90V for 20 min and then increased to 135V for another 2 h depending on the desired separation. The gel was then used for Coomassie staining using Bio-Safe™ Coomassie Stain (BioRAD, cat. 1610786) according to the manufacturer's protocol or by Western blotting.


2.6 Western Blot Analysis.


Unless otherwise stated, Western blotting was performed using the PerfectBlue Semi-Dry Blotter from Peqlab. For the transfer, 3 Whatman paper (Hartenstein, cat. GB33, 580×600, 330 g/m3) were cut to the size of 6×9 cm and, unless otherwise stated, 1 PVDF membrane (Roche, cat. 03010040001, lot. 46099200) were used. The membrane was activated in MeOH for 1 min and the Whatman papers were soaked in 1× Semi-Dry transfer buffer and finally assembled in the following order in the Blotter: 1 Whatman paper, membrane, gel, 2 Whatman paper. The transfer was achieved by applying 1 mA/cm2 gel for 2 h. Transfer was controlled by staining the membranes with Ponceau-S solution (BioMol, cat. MB-072-0500) according to the manufacturer's instructions. Then the membrane was blocked in 5% milk for 1 h at RT and then rinsed 3 times with 1×TBS-T.


The primary antibody was then added overnight at 4° C. in TBS-T. The following day, the membrane was washed 3× for 5 min in 1×TBS-T. Afterwards, the membrane was incubated in the according secondary antibody in 5% milk for 1 h at RT and then washed again 3× for 5 min in 1×TBS-T. For detection, ECL solution 1 and 2 were mixed 1:1 and added to the membrane. If appropriate, Pierce™ ECL Plus Western Blotting Substrate (ThermoFisher scientific) was used according to manufacturer's instructions. Detection was performed using an Intas Chemiluminescence Imager.


Primary antibodies used for Western blotting: α-SARS-CoV-II Spike (Invitrogen, RBD, cat. PA5-114551, lot. WA3165784B, polyclonal rabbit), α-Flag (Sigma Aldrich, cat. F7425, polyclonal rabbit), α-CtxB (CytoMed Systems, cat. 203-1542, lot. 13031207, polyclonal rabbit), α-His (Novagen, cat. 70796_4, lot. 3290351, monoclonal mouse).


Secondary antibodies used: Mouse IgG HRP (Santa Cruz, cat. sc-2005), rabbit IgG HRP (Santa Cruz, cat. sc-2004).


2.7 Sequence Analysis.


Relevant regions of chromosomal or plasmid DNA were analyzed by PCR using appropriate primers (table 8) and/or sequenced. Sequencing was performed by Microsynth following manufacturer's recommendations. (Primer sequences for PCR analysis and for sequencing see table 8).



E coli NightSeq (Only for Screening Purposes)


In brief, clearly visible colonies were picked into E coli NightSeq® tubes (Microsynth) and also streaked out on LB-Agar plates containing appropriate antibiotic, if necessary, for preserving. Tubes were then sent to Microsynth and probes were sequenced by Sanger Sequencing.


Microsynth Single-Tube Sequencing, Economy Run (Sequence Validation)

Purified or gel-extracted PCR-Products and Plasmid DNA of selected positive clones were isolated (QIAprep Spin Miniprep Kit, Quiagen and QIAGEN Plasmid Midi Kit, Quiagen) and relevant regions were sequenced by Microsynth Single-Tube Sequencing, economy run, following manufacturer's recommendations.


PCR products were loaded on 1% agarose gels and purified by GeneJET Gel Extraction Kit (ThermoFisher Scientific). Finally, concentration of gel extracted products were measured via NanoDrop and prepared for Microsynth Single-Tube Sequencing, economy run. See also methods 2.3.5.


Next Generation Sequencing (Plasmid and Genome Sequencing)

Furthermore, selected plasmids as well as the genome of BLS-R-strain, clone 1 was sequenced (Microsynth).


In brief, BLS-R-strain harboring pCP20, clone 1 was cultured overnight in liquid LB broth without any antibiotic pressure at 37° C. with shaking. This strain was then grown on LB-Agar plates to obtain single colonies. Depletion of pCP20 was confirmed by picking colonies on TS-Agar with and without 100 μg/ml ampicillin and incubation at 30° C. for two days. No growth was detected on TS-Agar containing ampicillin. In parallel, colonies were picked on TS-Agar plates containing 20 μg/ml chloramphenicol to confirm chromosomal chloramphenicol resistance. A colony that fulfilled all requirements (chloramphenicol resistant, ampicillin sensitive) was taken from the LB-Agar plate and preserved (BLS-R, clone 1, ΔpCP20).


For sequencing chromosomal DNA was isolated using QIAamp DNA Mini Ki (Quiagen) following the manufacturer's instructions and then prepared according to Microsynths recommendations.


2.8 Confirmation of Strain Identity by Multiplex PCR.


JMU-SalVac-100 strain identity was confirmed by Multiplex PCR of genomic DNA according to a protocol published by Kumar et al. (2006)(Kumar et al., 2006) with slight modifications.


In brief, Multiplex PCR was performed using MyTaq HS Red Mix (Bioline, cat. BIO-25048, lot. PM348-BO82870). PCR primer see table 8.

    • 12.5 μl MyTaq Mix
    • 0.25 μl Primer #7 (10 μM)
    • 0.25 μl Primer #8 (10 μM)
    • 0.25 μl Primer #9 (10 μM)
    • 0.25 μl Primer #10 (10 μM)
    • 0.25 μl Primer #11 (10 μM)
    • 0.25 μl Primer #12 (10 μM)
    • 0.25 μl Primer #13 (10 μM)
    • 0.25 μl Primer #14 (10 μM)
    • 2 μl DNA
    • 8.5 μl H2O


Program:

    • Denaturation Stage: 94° C. for 3 minutes
    • Cycling Stage (35 cycles): 94° C. for 45 seconds
      • 50-70° C. for 30 seconds
      • 72° C. for 2 minutes
    • Final Elongation: 72° C. for 5 minutes
    • Holding Stage: 4° C.


Strain identification:



Salmonella Typhy Ty21a: 4 bands



Salmonella Typhimurium: 1 band


2.9 Bacterial Growth


Bacterial strains were plated on LB agar plates with appropriate antibiotics if required from glycerol stocks. Plates were incubated over night at 37° C. for at least 24 h. The bacteria were then transferred to TSA plates containing appropriate antibiotics and grown for another 24 h at 37° C. At the day of growth measurements, bacteria were suspended in 1 ml of TS medium and vortexed several times until the bacterial suspension was homogenous. Bacteria were then diluted 1:10 with TS medium in semi-micro cuvettes to determine the optical density (OD) at 600 nm wavelength. Subsequently bacterial solutions were diluted to yield an OD600 of 0.1/ml. Finally, 300 μl of the diluted solutions were transferred to a 48-well cell culture dish in triplicates and growth was eventually measured by the TECAN MPlex software iControl 2.0.


2.10 Detection of mRNA Expression by qPCR.


Unless otherwise stated, bacterial pellets of 1 ml mid-log culture were used for RNA isolation with the miRNeasy micro Kit (50) (Qiagen, cat. 1071023, lot 166024980) following the manufacture's protocol. Amount of RNA was measured using NanoDrop (Peglab, ND-1000).


For cDNA synthesis, the RevertAid First Strand cDNA Synthesis Kit (ThermoFisher, cat. K1622) was used. One pg RNA was added to 1 μl Random Hexamer Primer and add RNase-free water to a total volume of 12 μl. After an incubation for 5 min at 65° C., 8 μl of the following master mix was added:

    • 4 μl 5× reaction buffer
    • 1 μl Ribolock RI (20 U/μl)
    • 2 μl dNTP-Mix (10 mM)
    • 1 μl RevertAid Reverse Transcriptase (200 U/μl)


The cDNA synthesis was performed by incubation for 5 min at 25° C., 60 min at 42° C. and 5 min at 70° C., and finally diluted 1:5 with RNase-free water.


5 μl of the diluted cDNA was added to 21 μl of the following master mix:

    • 0.5 μl Primer forward (10 μM)
    • 0.5 μl Primer reverse (10 μM)
    • 10 μl 10×SyBrGreen
    • 10 μl H2O


qPCR was then performed in a One step Thermo Fisher and the following program was used:

    • Holding Stage: 95° C. for 10 minutes
    • Cycling Stage (40 cycles): 95° C. for 15 seconds
      • 60° C. for 1 minute
    • Melt Curve Stage: 95° C. for 15 seconds
      • 60° C. for 1 minute
      • +0.3° C. up to 95° C. for 15 seconds


Primers used for qPCR are listed in table 12.


2.11. Method to Determine Plasmid Stability and Copy Number.


Plasmid maintenance in vitro was determined by serial passage of bacteria without any selective pressure. A “Generation 0” was generated from several strains and these bacteria were grown over 5 consecutive days in the absence of antibiotics. Each day and from each strain, at least 100 individual colonies were tested for the presence of the plasmid.


2.11.1 Production of “Generation 0”, the Starting Cultures for Plasmid Stability Testing.


Bacteria with plasmids stabilized by the BLS or antibiotic selection were plated from frozen stocks on TS-Agar or on TS-Agar supplemented with 25 μg/ml kanamycin and incubated at 37° C. overnight. The next day bacteria from each strain were transferred into 25 ml TS medium. After mixing by vortexing, the optical density OD600 (Eppendorf Biophotometer) was adjusted in TS-Medium to about 0.05 to 0.1 in a final volume of about 120 ml TS medium with or without 25 μg/ml kanamycin. The cultures were incubated aerobically in 500 ml culture media flasks DURAN®, baffled, at 37° C. under rigorous shaking (180 rpm). After reaching an OD600 of about 1.5 (mid-logarithmic phase), each culture was cooled at least for 15 min on ice to stop bacterial growth. These cultures were the starting point (Generation 0) to determine the kinetics of plasmid loss or maintenance.


2.11.2 Serial Passage and Plasmid Stability Testing and Copy Number Determination


The bacteria were transferred at 1:1000 to 1:2500 dilutions into fresh liquid medium (TS-Medium) and cultured to stationary phase (25% filling in flasks DURAN®, baffled at 37° C., 180 rpm). In the same way, bacterial cultures were passaged up to 5 times. Each day, serial dilutions of the strains harboring plasmids with kanamycin resistance gene were plated on TS agar plates without antibiotic selection and incubated at 37° C. for 18-24 h to obtain single colonies. At least 100 colonies per day and strain harboring plasmids with kanamycin resistance gene were selected randomly and grown on a fresh TS-agar plates containing 25 μg/ml kanamycin and on TS Agar without antibiotics for growth control, preserving and further testing. In case of the investigated BLS-stabilized vaccine strains cultures of day 5 were serial diluted and plated on TS agar plates. After incubation overnight at 37° C. at least 100 colonies of each strain were picked on TS agar for preserving and further testing. The presence of the BLS-stabilized plasmid (ΔKanR) in the investigated strains was monitored by PCR amplification assays using plasmid specific primers. In brief, bacterial material of each colony were transferred in 50 μl sterile water, lysed by boiling at 100° C. for 5 min, and cooled on ice. After centrifugation at 13,000 rpm for 2 min, 2 μl of the lysates were used as a template in PCR reactions using primer pairs 4/6, 6/23 and/or 68/69. Additionally, some PCR reactions were performed with primer pair 17/18 to confirm chromosomal deletion of tyrS.


For copy number determination, qPCR was performed (2.10) with the primers 62 and 63 (hlyB) for the quantification of the plasmid and primers 73 and 75 (slyB) for normalization against a single copy genomic gene.


2.11.3 Stability of Antigen Expression and Secretion


5×2 ml and 4×1 ml culture were transferred into Eppendorf tubes. After a centrifugation step of at least 1 min, 4° C., 20,817 rcf, (Eppendorf centrifuge 5174R), the supernatants were removed quantitatively and the cell pellets were stored at −20° C. until further analysis were performed (see Western blotting, qPCR, plasmid copy number determination). Unless otherwise stated, from each culture 2×47 ml were collected for preparation of extracellular proteins by TCA-precipitation of proteins from culture supernatant) (see 3.7.1 SDS-PAGE of bacterial lysates and secreted proteins).


2.12. Methods to Measure the Immune Response Elicited by JMU-SalVac-100 Strains


2.12.1 Preparation of Immunization Aliquots


Immunization aliquots of S. typhi Ty21a ΔtyrS-strains harboring one of the pSalVac Ax_By ΔKan vaccine plasmids were prepared as follows: Bacteria were cultivated in 500 ml TS-Medium (2 liter flask Duran, baffled) supplemented with 0.001% Galactose (Merck) at 37° C. with shaking until they reach mid-log phase (OD600: about 1.5, Eppendorf BioPhotometer). Subsequently, strains were cooled down on ice for 30 min and then harvested by centrifugation in a Beckmann-Coulter centrifuge, JA 10 Rotor, 4° C., 30 min, 10,000 rpm. The pellets were resuspended and washed with approximately 40 ml 1× in ice-cold 1×DPBS (Gibco): 100% Glycerin (Roth) (4:1). The bacterial suspensions were then transferred into 50 ml Greiner tubes and centrifuged for 30 min, 4° C. (Hereaus, Megafuge 1.0). Subsequently, the cell pellets were resuspended in 5 ml 1×DPBS (Gibco): 100% Glycerin (Roth) (4:1) (concentration factor: about 100-fold) and aliquoted in 500-1000 ml portions for storage at −80° C.


Immunization aliquots of S. typhimurium SL7207 strains harboring one of our pSalVac Ax_By KanR vaccine plasmids were prepared as follows: Bacteria were cultivated in 500 ml TS-Medium (2 liter flask Duran, baffled) containing appropriate antibiotics for at least 12 h at 37° C. with shaking until they reach late-log phase (OD600: about 5, Eppendorf BioPhotometer). Subsequently, strains were cooled down on ice for 30 min and then harvested by centrifugation in a Beckmann-Coulter centrifuge, JA 10 Rotor, 4° C., 30 min, 10,000 rpm. The Pellets were resuspended and washed with approximately 40 ml 1× in ice-cold 1×DPBS (Gibco): 100% Glycerin (Roth) (4:1). The bacterial suspensions were then transferred into 50 ml Greiner tubes and centrifuged for 30 min, 4° (Hereaus, Megafuge 1.0). Subsequently, the cell pellets were resuspended in 5 ml 1×DPBS (Gibco): 100% Glycerin (Roth) (4:1) (concentration factor: about 100-fold) and aliquoted in 500-1000 ml portions for storage at −80° C.


Aliquots were stored at −80° C. for at least 24 h before the CFU was determined by plating serial dilutions on BHI agar plates. The number of live colonies was determined by plating 100 μl of serial dilutions (10−6 to 10−8, each in duplicate) on TS agar plates without any antibiotic selection. Plating was performed using a sterile Drigalski-spatule. After incubation o/n at 37° C. colonies were counted. For counting, at least two agar-plates per serial dilution were counted, where the colony number is between 20 and 500 colonies. The CFU per ml per dilution series were calculated using the formula: CFU=(counts*dilution factor)×10.


2.12.2 Tolerability Study in Mice


Adult female BALB/c mice were randomly allocated to experimental groups and allowed to acclimatise for one week. The vaccine strains of Salmonella typhi and Salmonella typhimurium were prepared directly from the glycerol stocks as described (2.12.1). The adequate number of cryotubes of respective strains were thawed on ice, with each tube vortexed for 5 seconds at full speed every 30 seconds. Once fully thawed, the samples were vortexed again for 5 seconds. Immediately afterwards the adequate volumes of bacterial stocks were pipetted into a new, sterile 1.5 ml Eppendorf Safe-Lock Tube which were subsequently centrifuged at 14,000 rpm, 2 min, 4° C. Supernatants were discarded quantitatively by pipetting and pellets resuspended in an initial volume of 1×PBS by pipetting up and down at least 10 times. The exact volume of bacterial suspension was determined with the pipette and, if required, additional 1×PBS was added to achieve the desired bacterial concentration. Bacterial suspension was vortexed again at full speed for 5 seconds before being administered. For Salmonella typhi strains 30 μl of the suspension was applied intranasally per mouse (15 μl per nare). For Salmonella typhimurium, 200 μl were applied per oral per mouse. The remaining bacterial suspension was used to determine the actual dose by carrying out back plating. Serial dilutions were set up in duplicates for each of the bacterial strains.


All animals were observed for signs of ill health throughout the study. From Day 0 until the end of the experiment, animals were weighed three times each week. Animals with a bodyweight loss greater than fifteen percent (15%) of their initial (Day 0) bodyweight were culled.


2.12.3 Immunization of Mice


Intranasal Immunization with S. typhi Ty21a ΔtyrS Vaccine Strains.


The frozen immunization aliquots of S. typhi Ty21a ΔtyrS vaccine strains were thawed on ice, centrifuged, resuspended in PBS and adjusted to 1×107 CFU per 30 μl. For intranasal immunization, adult BALB/c mice were anesthetized with isoflurane. Under the magnifying lamp, 10 μl of inoculant solution containing 1×107 CFU of the S. typhi Ty21a ΔtyrS vaccine strain were applied to the nostrils of the mouse using a 20 μl pipette. To avoid aspiration of the infectious solution, the mouse was not returned to the cage until it has awakened.


Oral Immunization with S. typhimurium aroA SL7207 Vaccine Strains.


The frozen immunization aliquots of S. typhimurium aroA SL7207 vaccine strains were thawed on ice, centrifuged, resuspended in PBS and adjusted to 5×1010 CFU per 200 μl. This solution was first placed on ice and taken up into a 1 ml syringe and administered by gavage (22 G feeding needle).


At termination, bronchoalveolar lavage (BAL) and terminal blood samples were taken. Blood was processed to serum, and serum and BAL were analyzed by ELISA with antigens: Salmonella LPS (positive control), SARS-CoV-2: S-protein, N-protein.


2.12.4 ELISA


ELISA was used to detect IgM and IgG antibodies directed against the SARS-CoV 2 Spike 1 receptor binding domain (RBD) and the Nucleocapsid N Protein by ELISA kits (Alpha Diagnostic International). Samples were thawed on ice diluted with working sample solution. Immunoassays were performed according to the manufacturer's instructions and plates were analyzed on a microplate reader (TECAN MPlex) at wavelength 405 nm.


2.13.5 ELISpot


The ELISpot assay was used to determine the number of interferon-gamma (IFN-γ) secreting T cells from a given number of splenic leukocytes. The spleen cells of immunized and sham-immunized mice were restimulated with appropriate vaccine protein in vitro and thus used to demonstrate the formation of IFN-γ. This was demonstrated by a specific color reaction of the IFN-γ producing cells (spots) on a support membrane. PHA-M or PMA/Ionomycin was used as positive control for ELISpot readout, SARS-CoV-2 S-protein and N-protein as specific stimuli. Cell were left unstimulated as negative control for ELISpot readout.


3. Results


3.1 in Silico Design of Vaccine Antigens


Predictions for SARS-CoV-2 antigens and adjuvants were performed as described (2.2) and the results are shown in table 2 and table 3, respectively. Proteins (full length, partial) with an average antigenic propensity score of greater than 0.9 were considered for vaccine construction. The various fusion protein subunits were designed by adding an adjuvant and an antigenic unit connected by specific linkers to provide adequate separation. EAAAK linker (Srivastava et al., 2020) was used to join the adjuvant and the adjacent sequence to facilitates domain formation and improve the adjuvant effect. If applicable, intra HTL, CTL, and B-cell epitopes were joined using GPGPG, AAY, and KK (Kalita et al., 2020), respectively to provide adequate separation of epitopes in vivo. (FIG. 3A, Table 4, A site; FIG. 3B, Table 5, B site). The average antigenic propensity of the antigens expressed in the A- and B-site is shown in FIGS. 4 and 5, respectively.


Java Codon Adaptation Tool (JCAT) (http://www.jcat.de/) (Grote et al., 2005) was used for codon optimization of the NsiI- and SalI-fragments to S. enterica Typhi (strain ATCC 700931/Ty2). The codon-optimized sequence for the CtxB adjuvant and the S-protein RBD are shown in FIGS. 7 and 8, respectively.


3.2 Generation of the Basic Vector pSalVac 001 A0_B0 KanR


For the generation of pSalVac 001 A0_B0 KanR, the plasmid pMKhly1ΔIS2 Plac-liketyrS CtxB-PSA (Gesser, 2010) was digested with NsiI (FastDigest Mph1103I, Thermo Fisher Scientific). The 1017 bp-CtxB-PSA-NsiI-Fragment was cut out and the remaining plasmid backbone pMKhly1ΔIS2 Plac-liketyrS was religated resulting in pSalVac 001 A0_B0 KanR (Table 9).


pSalVac 001 A0_B0 KanR, clone 2 was isolated from E. coli DH5 α and the correct sequence was confirmed by PCR using primer pair Nr. 4 and 6 (Table 8). DNA sequence of the entire plasmid was further analysed by sequencing (Microsynth). The map of the plasmid is shown in FIG. 1.


3.3 Generation of Plasmids of the pSalVac Ax_By-100 Series


pSalVac 001 A0_B0 KanR provides the basis of our various antigen delivery plasmids of the pSalVac Ax_By-100 series. It is derived from pBR322 and has a pMB1 origin of replication. For selection in vitro it has a kanamycin resistance expression cassette (KanR) that is flanked by two sites of flippase recognition targets (FRT-Sites).


Functional features of the pSalVac Ax_By plasmid 100 series are two independent expression cassettes for the expression of different combinations of adjuvant-antigen-fusion proteins.


The first expression cassette, named A-Site consists of the transcription enhancer sequence hlyR, the structural genes hlyC, hlyB and hlyD and two short residual sequences of the hlyA gene separated by an NsiI-restriction site (FIG. 2, FIG. 9).


The second expression cassette for Adjuvant-Antigen-fusion proteins, named B-site, is integrated into the unique SalI site of pSalVac 001 A0_B0 KanR.


For the generation of the different plasmids of the pSalVac Ax_By-100 series the NsiI-fragments were cloned into the A-(NsiI)-expression site, whereas the SalI-fragments were cloned into the B-(SalI)-expression site of the pSalVac 001 A0_B0 KanR vector.


In brief, the pSalVac 001 A0_B0 KanR vector or its derivates were digested with either NsiI (FastDigest Mph1103I, ThermoFisher Scientific) or with SalI (FastDigest SalI, ThermoFisher Scientific). Successful linearization of the plasmid was confirmed by agarose gel electrophoresis. Subsequently, Thermo Scientific™ FastAP™ Thermosensitive Alkaline Phosphatase (Thermo Fisher Scientific) was added for dephosphorylation of the vector DNA to prevent recircularization during ligation.


The respective pMK or pMA-Vector carrying the synthetic NsiI-fragments, respectively SalI-fragments (Table 6) (GeneArt Gene Synthesis, ThermoFisher scientific) were also digested with NsiI (FastDigest Mph1103I, ThermoFisher Scientific), respective with SalI (FastDigest SalI, ThermoFisher Scientific). After separation by agarose (Agarose NEEO ultra-quality, Roth) gel electrophoresis the fragments were cut out and purified with QIAquick Gel Extraction Kit (Qiagen) following the manufacturer's recommendations. The purified NsiI-, respective SalI-fragments were then ligated into the NsiI-, respectively SalI-digested, AP-treated vector plasmid. For ligation, T4 DNA-Ligase from ThermoFisher Scientific was used following manufacturer's instructions.


Clones were screened by PCR using priming pairs 4/6, 4/45, 68/69 and/or 6/23 for integration and orientation of NsiI-fragments into the A-site (FIG. 2). For integration and determination of orientation in the B-site, following primer pairs were used 21/22, 59/22, 21/34 and/or 39/40. Positive clones were further confirmed by sequencing (Microsynth) relevant regions (primer sequences for PCR analysis and for sequencing see Table 8). The plasmid pSalVac 101_A1_B3f ΔKanR is shown as an example in FIG. 9A, a list of generated pSalVac plasmids is shown in table 9.


3.4 Generation of the Balanced-Lethal Stabilized Vaccine Strains


In pSalVac 001/101 Ax_By KanR-plasmids, the kanamycin resistance gene is flanked by two Flippase (FLP) recognition target sites (FRT)-sites. This feature allows the excision by the site-specific enzyme FLP recombinase, which acts on the direct repeats of the FRT-sites. The FLP recombinase is encoded on the temperature-sensitive helper plasmid pCP20 and its temporal synthesis is induced by temperature. The vector that is inherited stably at temperatures of 30° C. and lower contains furthermore an ampicillin and chloramphenicol resistance gene for selection (Cherepanov et al., 1995, Datsenko et al., 2000).


For generation of the balanced-lethal stabilized vaccine strains, the flp-encoding helper plasmid pCP20 was electroporated into electrocompetent cells of S. typhi Ty21a (ΔtyrS (tyrS Cm)+, clone 120 and incubated for 2 days at 30° C. Subsequently a single clone (clone 1) was selected and used to make electrocompetent cells. This clone represents our BLS-(R)-recipient strain (Table 10).


Electrocompetent cells of BLS-R were then transformed with one of our tyrS-complementing antigen expressing plasmids of the pSalVac Ax_By KanR-100 series. After 1 h incubation at 30° C. in LB broth without antibiotic pressure, kanamycin/ampicillin/chloramphenicol triple resistant transformants were selected at 30° C. on LB agar plates containing 25 μg/ml kanamycin and 100 μg/ml ampicillin.


In contrast to the method described by Datsenko and Wanner (Datsenko et al., 2000) not only the FRT-flanking fragment in the chromosome but also the FRT-flanking kanamycin resistance gene fragment in the plasmid had to be eliminated. To assure elimination of all FRT flanked sequences we established a modified protocol for the elimination step.


In brief, BLS-intermediate strains (e.g. S. enterica serovar Typhi Ty21a ΔtyrS (tyrS Cm)+ harbouring pCP20 and one of our pSalVac 001/101 Ax_By KanR plasmids) were cultivated at 30° C. with rigorous shaking (180-200 rpm) in LB-broth containing 25 μg/ml kanamycin and 100 μg/ml ampicillin. The next day, the cultures were diluted 1:1000 into fresh LB-broth containing 100 μg/ml ampicillin to ensure selective pressure on the maintenance of the FLP helper plasmid pCP20. The diluted cultures were then subjected to temperature shifts starting with 1 h at 37° C. (flippase expression and induction), 1 min on ice and then 1 h at 30° C. (to allow replication of FLP helper plasmid pCP20). These temperature shifts were repeated 4 times resulting in an overall incubation time of about 8 h. After the last incubation step at 30° C., the cultures were grown on LB-agar plates supplemented with 100 μg/ml ampicillin to obtain single colonies. The plates were incubated at 30° C. until colonies were clearly visible. Then 4 to 10 single colonies were individually transferred to fresh LB-agar plates supplemented with 100 μg/ml ampicillin and incubated at 30° C. The same colonies were tested in parallel for the loss of the kanamycin resistance gene by growing them on TS-Agar supplemented with 25 μg/ml kanamycin and on TS-Agar-plates without any antibiotic as growth control. The TS-Agar plates were incubated over night at 37° C. Kanamycin sensitive (loss of resistance on pSalVac 001/101 Ax_By plasmid; FIG. 9A,C), ampicillin resistant (positive for helper plasmid) colonies were then grown in LB-broth without any antibiotics and incubated under rigorous shaking at 37° C. overnight to get deplete the temperature-sensitive helper plasmid pCP20. The next day cultures were grown on LB-agar plates without any antibiotic pressure to receive single colonies. About 5 colonies of each strain were then tested for sensitivity towards kanamycin, chloramphenicol and ampicillin: Chloramphenicol to test for loss of chromosomal integrated tyrS/CmR knock-in fragment, kanamycin to test for loss of resistance encoded on antigen delivery plasmid and furthermore ampicillin to test for loss of antibiotic resistance encoded on helper plasmid pCP20 and therefore for loss of pCP20 itself. All tested clones were also grown on LB-Agar plates without any antibiotic pressure for preserving and further characterization of each clone. Antibiotic sensitive clones were selected and the correct deletions of the FRT-intervening regions were further confirmed by PCR using primers flanking the deleted tyrS-Cm knock-in fragment on the chromosome (primer pair No 17 and 18, see Table 8) and also with primers flanking the kanamycin resistance gene on the plasmid (primer pair No 37 and 38, Table 8). Positive clones were further confirmed by complete or partial sequencing (Microsynth). The final strains without antibiotics resistance genes were designated JMU-SalVac-100 and numbered consecutively (-101, -102 etc.)(see Table 11).


3.5 Characterization of the Vaccine Strains


3.5.1. Expression of Antigens


The expression of antigens was tested by SDS-PAGE and Western blotting of bacterial lysates and supernatants (see 2.5 and 2.6). All strains of the JMU-SalVac-102 to 108 expressed the adjuvant-antigen fusions of the A site (FIG. 11A). However, strains with the designed A1 cassette secreted the fusion protein with high, those with the A3 cassette with low efficiency (FIG. 11A), since only the A1 antigen was detected in high amounts in the supernatant. From the vaccine adjuvant-antigen fusion proteins expressed in the B site only the B3f cassette was detectable (FIG. 11B). The inventors therefore selected JMU-SalVac-104 as initial candidate for further testing.


Expression of the antigens in the A- and B-sites was also determined by qRT-PCR (method 2.10; FIG. 12).


These results show that the bacteria of the invention can be used to achieve high antigen expression, which is expected to be advantageous for effective immunization in humans.


3.5.2. Growth Behavior of JMU-SalVac 100 Strains


Since the JMU-SalVac 100 strains produced large amounts of antigen the growth behavior was tested as described (2.9). There was no significant difference in growth behavior of the strains that produced the different antigens indicating that antigen production has no adverse effect on the Salmonella vaccine stains (FIG. 13).


3.5.3. Stability of the JMU-SalVac 100 plasmids


The stability of JMU-SalVac 100 plasmids was tested in the absence of antibiotics selection as described (2.11). There was a clear difference between the strains harboring plasmids with antibiotic resistance genes but without BLS and those with only the BLS and without antibiotics genes (FIG. 14A-C). Without stabilization by the BLS, the respective plasmid was retained in the experimental time frame of 5 days in less than 3% of the bacteria. But 100% of the strains JMU-SalVac-101 and JMU-SalVac-104 replicated the plasmids stabilized by BLS. As a result, the BLS-stabilized vaccine plasmids have a high degree of stability without antibiotics selection (FIG. 14A,B). A similar result was obtained when the copy number of the plasmid was determined on day 1 and day 5 in strains with and without BLS (FIG. 14E). The high stability of the plasmids was surprising and is expected to contribute to effective immunization by using the vaccines of the invention, while retaining an advantageous safety profile.


3.5.4. Characterization of the Selected Vaccine Strains


Based on the antigen expression (3.5.1.), bacterial growth (3.5.2.), and plasmid stability studies (3.5.3.), the S. typhi Ty21a vaccine strains JMU-SalVac-101 (control), JMU-SalVac-102 and JMU-SalVac-104 as well as S. typhimurium SL7207 with the respective plasmids pSalVac 001 A0_B0 (STM-pSalVac 001 A0_B0 KanR), pSalVac 101 A1_B0 KanR (STM-pSalVac 101 A1_B0) and pSalVac 101 A1_B3 KanR (STM-pSalVac 101 A1_B3) were selected for efficacy testing in mouse models. Immunization aliquots were prepared (2.12.1) and tested for expression and secretion of antigens. All strains expressed and secreted antigens as expected (FIG. 15).


3.6 Tolerability Study with the Vaccine Strains in Mouse Models


Following acclimatization, the animals were treated according to the schedule found below.














Treatments










Groups
Dose (ul or CFU)
Route
Regimen














1

Salmonella
typhimurium SL7207

5 × 1010 CFU
PO
D0, D7



pSalVac 001 A0_B0 KanR






(vector control)





2

Salmonella
typhimurium SL7207

5 × 1010 CFU
PO




pSalVac 101 A1_B0 KanR





3

Salmonella
typhimurium SL7207

5 × 1010 CFU
PO




pSalVac 101 A1_B3f KanR





4

Salmonella
typhimurium SL7207

5 × 1010 CFU
PO




pSalVac 101 A1_B5f KanR





5
JMU-SalVac-101 (control)
106 CFU
IN
D0, D7


6
JMU-SalVac-101 (control)
107 CFU
IN



7
JMU-SalVac-104
106 CFU
IN



8
JMU-SalVac-104
107 CFU
IN









Following administrations of bacterial strains, animals were monitored for any signs of adverse effects for 10 days. Oral treatments with Salmonella typhimurium showed no adverse effects, with the proposed dose of 5×1010 well tolerated (FIG. 14A). Based on initial testing results, the intranasal application of S. typhi was performed with two different doses. The protocol identified doses of 1×106 and 1×107 of S. typhi were equally well tolerated (FIG. 14B).


The tolerated doses reported in the present Example indicate that the vaccines of the present invention are safe in mice. Furthermore, combined oral and intranasal testing of attenuated Salmonella-based vaccines in mice is an accepted tolerability test with predictive value for the safety of such vaccines in humans (see, for instance, Reddy et al., 2021). The tolerated doses which are reported in the present application indicate that the vaccines of the invention are also safe in humans, at doses which are expected to be efficacious in humans.


3.7 Humoral and Cellular Immune Response to JMU-SalVac 100 Strains


S. Tm SL7207 pSalVac 101 A0_B0 (vector control), S. Tm SL7207 pSalVac 101 A1_B0, S. Tm SL7207 pSalVac 101 A1_B3f, and S. Tm SL7207 pSalVac 101 A1_B5f were used for peroral immunization as described in chapter 2.12.3 In addition, JMU-SalVac 101 (A0_B0), -102 (A1_B0), -104 (A1_B3f) and -106 (A1_B5f) were applied intranasally as described in 2.12.3 All the strains expressing the RBD of the S-protein elicited a significant IgG response as measured by ELISA (2.12.4). The response against the N-protein was higher against the B3f antigen compared to the B5f antigen (e.g. strains S. Tm SL7207 pSalVac 101 A1_B3f: JMU-SalVac 104).


ELISpot assays revealed increased IFN-7 responses in S- and N-protein stimulated splenocytes in mice immunized with antigen-expressing S. typhimurium and S. typhi strains, indicative of a T cell response.


In view of these results, it is expected that the vaccines of the invention will provide effective protection against the respective corona viruses in humans.


REFERENCES



  • Arakawa, T., Yu, J., Chong, D. K., Hough, J., Engen, P. C. and Langridge, W. H. (1998). A plant-based cholera toxin B subunit-insulin fusion protein protects against the development of autoimmune diabetes. Nat Biotechnol 16, 934-938.

  • Cheminay, C. and Hensel, M. (2008). Rational design of Salmonella recombinant vaccines. Int J Med Microbiol 298, 87-98.

  • Chen, Y., Liu, Q. and Guo, D. (2020). Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol 92, 418-423.

  • Cherepanov, P. P. and Wackernagel, W. (1995). Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158, 9-14.

  • Condor Capcha, J. M., Lambert, G., Dykxhoorn, D. M., Salerno, A. G., Hare, J. M., Whitt, M. A., et al. (2020). Generation of SARS-CoV-2 Spike Pseudotyped Virus for Viral Entry and Neutralization Assays: A 1-Week Protocol. Front Cardiovasc Med 7, 618651.

  • Datsenko, K. A. and Wanner, B. L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97, 6640-6645.

  • Diessner, E. J. (2009) Construction of a balanced lethal systems for Salmonella typhi Ty21a. In Dissertation

  • Fensterle, J., Bergmann, B., Yone, C. L., Hotz, C., Meyer, S. R., Spreng, S., et al. (2008). Cancer immunotherapy based on recombinant Salmonella enterica serovar Typhimurium aroA strains secreting prostate-specific antigen and cholera toxin subunit B. Cancer Gene Ther 15, 85-93.

  • Galan, J. E., Nakayama, K. and Curtiss, R., 3rd (1990). Cloning and characterization of the asd gene of Salmonella typhimurium: use in stable maintenance of recombinant plasmids in Salmonella vaccine strains. Gene 94, 29-35.

  • Gao, W., Tamin, A., Soloff, A., D'Aiuto, L., Nwanegbo, E., Robbins, P. D., et al. (2003). Effects of a SARS-associated coronavirus vaccine in monkeys. Lancet 362, 1895-1896.

  • Gentschev, I., Mollenkopf, H., Sokolovic, Z., Hess, J., Kaufmann, S. H. and Goebel, W. (1996). Development of antigen-delivery systems, based on the Escherichia coli hemolysin secretion pathway. Gene 179, 133-140.

  • Germanier, R. and Fuer, E. (1975). Isolation and characterization of Gal E mutant Ty 21a of Salmonella typhi: a candidate strain for a live, oral typhoid vaccine. J Infect Dis 131, 553-558.

  • Gesser, M. B. A. (2010). Optimierung eines Balanced Lethal Systems für Salmonella typhi Ty21a. Dissertation

  • Gilbert, W. and Muller-Hill, B. (1966). Isolation of the lac repressor. Proc Natl Acad Sci USA 56, 1891-1898.

  • Gomez-Duarte, O. G., Pasetti, M. F., Santiago, A., Sztein, M. B., Hoffman, S. L. and Levine, M. M. (2001). Expression, extracellular secretion, and immunogenicity of the Plasmodium falciparum sporozoite surface protein 2 in Salmonella vaccine strains. Infect Immun 69, 1192-1198.

  • Grote, A., Hiller, K., Scheer, M., Munch, R., Nortemann, B., Hempel, D. C. and Jahn, D. (2005). JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res 33, W526-531.

  • Herrero, M., de Lorenzo, V. and Timmis, K. N. (1990). Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol 172, 6557-6567.

  • Hess, J., Gentschev, I., Miko, D., Welzel, M., Ladel, C., Goebel, W. and Kaufmann, S. H. (1996). Superior efficacy of secreted over somatic antigen display in recombinant Salmonella vaccine induced protection against listeriosis. Proc Natl Acad Sci USA 93, 1458-1463.

  • Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kruger, N., Herrler, T., Erichsen, S., et al. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 181, 271-280 e278.

  • Hoiseth, S. K. and Stocker, B. A. (1981). Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature 291, 238-239.

  • Holmgren, J., Adamsson, J., Anjuere, F., Clemens, J., Czerkinsky, C., Eriksson, K., et al. (2005). Mucosal adjuvants and anti-infection and anti-immunopathology vaccines based on cholera toxin, cholera toxin B subunit and CpG DNA. Immunol Lett 97, 181-188.

  • Kalita, P., Padhi, A. K., Zhang, K. Y. J. and Tripathi, T. (2020). Design of a peptide-based subunit vaccine against novel coronavirus SARS-CoV-2. Microb Pathog 145, 104236.

  • Kim, T. W., Lee, J. H., Hung, C. F., Peng, S., Roden, R., Wang, M. C., et al. (2004). Generation and characterization of DNA vaccines targeting the nucleocapsid protein of severe acute respiratory syndrome coronavirus. J Virol 78, 4638-4645.

  • Kolaskar, A. S. and Tongaonkar, P. C. (1990). A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett 276, 172-174.

  • Kopecko, D. J., Sieber, H., Ures, J. A., Furer, A., Schlup, J., Knof, U., et al. (2009). Genetic stability of vaccine strain Salmonella typhi Ty21a over 25 years. Int J Med Microbiol 299, 233-246.

  • Kumar, S., Balakrishna, K. and Batra, H. V. (2006). Detection of Salmonella enterica serovar Typhi (S. Typhi) by selective amplification of invA, viaB, fliC-d and prt genes by polymerase chain reaction in multiplex format. Lett Appl Microbiol 42, 149-154.

  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.

  • Letko, M., Marzi, A. and Munster, V. (2020). Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 5, 562-569.

  • Lewis, M. (2005). The lac repressor. C R Biol 328, 521-548.

  • Ludwig, A., Bauer, S., Benz, R., Bergmann, B. and Goebel, W. (1999). Analysis of the SlyA-controlled expression, subcellular localization and pore-forming activity of a 34 kDa haemolysin (ClyA) from Escherichia coli K-12. Mol Microbiol 31, 557-567.

  • Lycke, N. (2005). Targeted vaccine adjuvants based on modified cholera toxin. Curr Mol Med 5, 591-597.

  • Muller-Hill, B., Crapo, L. and Gilbert, W. (1968). Mutants that make more lac repressor. Proc Natl Acad Sci USA 59, 1259-1264.

  • Ou, X., Liu, Y., Lei, X., Li, P., Mi, D., Ren, L., et al. (2020). Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 11, 1620.

  • Sadeghi, H., Bregenholt, S., Wegmann, D., Petersen, J. S., Holmgren, J. and Lebens, M. (2002). Genetic fusion of human insulin B-chain to the B-subunit of cholera toxin enhances in vitro antigen presentation and induction of bystander suppression in vivo. Immunology 106, 237-245.

  • Spreng, S. and Viret, J. F. (2005). Plasmid maintenance systems suitable for GMO-based bacterial vaccines. Vaccine 23, 2060-2065.

  • Srivastava, S., Verma, S., Kamthania, M., Kaur, R., Badyal, R. K., Saxena, A. K., et al. (2020). Structural Basis for Designing Multiepitope Vaccines Against COVID-19 Infection: In Silico Vaccine Design and Validation. JMIR Bioinform Biotech 1, e19371.

  • Suthar, M. S., Zimmerman, M. G., Kauffman, R. C., Mantus, G., Linderman, S. L., Hudson, W. H., et al. (2020). Rapid Generation of Neutralizing Antibody Responses in COVID-19 Patients. Cell Rep Med 1, 100040.

  • To, K. K., Tsang, O. T., Leung, W. S., Tam, A. R., Wu, T. C., Lung, D. C., et al. (2020). Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis 20, 565-574.

  • Wan, Y., Shang, J., Graham, R., Baric, R. S. and Li, F. (2020). Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol 94.

  • Xu, D., Cisar, J. O., Poly, F., Yang, J., Albanese, J., Dharmasena, M., et al. (2013). Genome Sequence of Salmonella enterica Serovar Typhi Oral Vaccine Strain Ty21a. Genome Announc 1.

  • Yuki, Y., Byun, Y., Fujita, M., Izutani, W., Suzuki, T., Udaka, S., et al. (2001). Production of a recombinant hybrid molecule of cholera toxin-B-subunit and proteolipid-protein-peptide for the treatment of experimental encephalomyelitis. Biotechnol Bioeng 74, 62-69.

  • Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., et al. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270-273.


Claims
  • 1. A live-attenuated bacterium of the genus Salmonella comprising a recombinant plasmid encoding a fusion protein, wherein the fusion protein comprises: (i) a coronavirus antigen; and(ii) an adjuvant peptide.
  • 2. The bacterium of claim 1, wherein the bacterium is of the species Salmonella enterica.
  • 3. The bacterium of claim 1, wherein the bacterium is a Salmonella enterica serovar Typhi strain.
  • 4. The bacterium of claim 3, wherein the bacterium is the Ty21 a strain.
  • 5. The bacterium of claim 1, wherein the adjuvant is a (i) mucosal adjuvant, or (ii) a toll-like receptor agonist or β-defensin.
  • 6. The bacterium of claim 1, wherein the plasmid encodes a first fusion protein and a second fusion protein, wherein each fusion protein comprises: (i) a coronavirus antigen; and(ii) an adjuvant peptide.
  • 7. The bacterium of claim 6, wherein the first fusion protein comprises: (i) a coronavirus antigen; and(ii) a mucosal adjuvant peptide.
  • 8. The bacterium of claim 7, wherein the second fusion protein comprises: (i) a coronavirus antigen; and(ii) a toll-like receptor agonist or β-defensin.
  • 9. The bacterium of claim 5, wherein the mucosal adjuvant is an interleukin-2 or a cholera toxin B subunit.
  • 10. The bacterium of claim 5, wherein the toll-like receptor agonist is a Neisseria PorB or 50 s ribosomal protein L7/L12.
  • 11. The bacterium of claim 5, wherein the β-defensin is human β-defensin 1, human β-defensin 2, human β-defensin 3 or human β-defensin 4.
  • 12. The bacterium of claim 1, wherein the coronavirus antigen is a SARS-CoV-2 antigen.
  • 13. The bacterium of claim 1, wherein the coronavirus antigen is selected from any one of SEQ ID NOs: 11-18, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 168, or 170 or is an antigenic fragment of any one of SEQ ID NOs: 11-18, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 168, or 170.
  • 14. The bacterium of claim 1, wherein the coronavirus antigen is SEQ ID NO: 11 or an antigenic fragment thereof.
  • 15. The bacterium of claim 1, wherein the coronavirus antigen is SEQ ID NO: 12 or an antigenic fragment thereof.
  • 16. The bacterium of claim 1, wherein the coronavirus antigen is SEQ ID NO: 13 or an antigenic fragment thereof.
  • 17. The bacterium of claim 1, wherein the coronavirus antigen is SEQ ID NO: 14 or an antigenic fragment thereof.
  • 18. The bacterium of claim 1, wherein the coronavirus antigen is SEQ ID NO: 15 or an antigenic fragment thereof.
  • 19. The bacterium of claim 1, wherein the coronavirus antigen is SEQ ID NO: 16 or an antigenic fragment thereof.
  • 20. The bacterium of claim 1, wherein the coronavirus antigen is SEQ ID NO: 17 or an antigenic fragment thereof.
  • 21. The bacterium of claim 1, wherein the coronavirus antigen is SEQ ID NO: 18 or an antigenic fragment thereof.
  • 22. The bacterium of claim 1, wherein the fusion protein further comprises a secretion signal peptide.
  • 23. The bacterium of claim 22, wherein the secretion signal peptide is the hemolysin A secretion signal peptide, and the plasmid further encodes HlyB and HlyD.
  • 24. The bacterium of claim 23, wherein the plasmid further encodes HlyC and/or HlyR.
  • 25. The bacterium of claim 1, wherein the bacterium and/or plasmid does not comprise an antibiotic marker.
  • 26. The bacterium of claim 1, wherein the bacterium is a ΔtyrS strain and the plasmid further encodes tyrS.
  • 27. The bacterium of claim 1, wherein the plasmid is integrated into the chromosome of the bacterium or replicates independently of the chromosome of the bacterium.
  • 28. A combination product comprising: (a) the bacterium of claim 1; and(b) at least one of the one or more fusion proteins encoded by the plasmid of said bacterium.
  • 29. A vaccine comprising the bacterium of claim 1.
  • 30. (canceled)
  • 31. A method of treating a disease or disorder caused by a member of the coronavirus family, the method comprising administering to a subject in need thereof the bacterium of claim 1.
  • 32. The method of claim 31, wherein the disease or disorder is COVID-19.
  • 33. A kit comprising: (a) a live-attenuated bacterium of the genus Salmonella; and(b) a recombinant plasmid encoding a fusion protein, wherein the fusion protein comprises:(i) a coronavirus antigen; and(ii) an adjuvant peptide.
  • 34. The kit of claim 33, wherein the live-attenuated bacterium and the recombinant plasmid are according to claim 1.
Priority Claims (1)
Number Date Country Kind
20 191 142.7 Aug 2020 EP regional