The diagnosis of diseases through analysis of human breath has long been practiced in medicine. For example, by smell alone, various volatile components of breath such as acetone, ammonia or sulfur compounds can be detected and provide information used to evaluate conditions such as diabetes, liver impairment and kidney dysfunction. Gas chromatography and mass spectrometry also have been applied to evaluate exposure to toxic substances, liver disease and lung cancer.
Thus, the measurement of exhaled substances may be useful as a diagnostic and prognostic tool for a wide variety of medical conditions. Often, it is of interest when assessing pulmonary function to measure one or more of a variety of exhaled substances. These include endogenous gases (i.e., oxygen, carbon dioxide and nitric oxide), exogenous gases used to test pulmonary diffusing capacity (i.e., carbon monoxide, acetylene, argon and helium), volatile substances (i.e., ethane and pentane) and non-volatile substances (i.e., proteins such as surfactants, DNA and hydrogen peroxide) often found by sampling the liquid present in exhaled breath (i.e., breath condensate).
One exhaled substance of particular interest is exhaled endogenous nitric oxide (“NO”). Nitric oxide is now known to be a central mediator in biological systems and, therefore, endogenous exhaled nitric oxide is thus potentially of interest in the diagnosis and monitoring of pulmonary function and various pulmonary diseases. Nitric oxide can be measured in the exhaled breath of animal and human subjects and shows particular promise as a diagnostic tool useful in evaluating inflammatory airway diseases, in particular bronchial asthma, and also in evaluating bronchiectasis and lung transplant rejection and other pulmonary conditions.
For example, asthmatic patients have relatively high exhaled NO levels as compared to normal subjects and these levels decrease rapidly after the institution of anti-inflammatory therapy. Thus, measuring exhaled NO in conjunction with existing tests may aid in the diagnosis and assessment of asthma, and also be an index of the response to therapy, or patient compliance in therapy. In view of the importance of asthma as a major health problem, the commercial potential is great for tests that can help diagnose asthma severity and ascertain the response to therapy.
This disclosure describes an apparatus and method for measuring analytes in exhaled air. As discussed in greater detail below, the disclosure describes a monitoring device having an inlet tube though which a patient using the device, inhales and exhales air. The device contains a tube having a number of different paths running throughout the device, with various paths supplying the exhaled air to different components. According to an embodiment, at least one portion of the tube is configured in a non-linear fashion. This particular portion of the tube may be used to temporarily store a sample of the exhaled air. Alternatively, the tube may be straight. In either embodiment, the tube has uniform diameter so ambient air that is drawn into the tube is minimally mixed with the sample. A pump is also included in the device and is configured to circulate the exhaled air through the tube. The device also contains a converter configured to partially convert an analyte in the exhaled breath from a first state to a second state. The tube and corresponding paths are arranged in such a manner whereby the exhaled air can be re-circulated and passed through the converter multiple times. An analyte sensor is also included to measure the levels of the converted analyte in the exhaled breath. One or more valves may also be included in the device to direct the flow of the exhaled air through the device to the various components.
In another embodiment, an apparatus is disclosed for measuring an analyte in exhaled air. In an embodiment the apparatus contains an inlet through which the exhaled air is received. A tube, having a number of different paths that provide the exhaled air to various components of the device, may be coupled to the inlet. One or more valves are coupled to the tube and control the flow of the exhaled air to the different paths of the tube. The tube may also contain a non-linear tube portion that is used to temporarily store a sample of the exhaled air. Alternatively, the tube may also be straight. In either embodiment, the tube has a relatively small diameter which mostly prevents ambient air from mixing with the sample air. The device also includes a pump that is configured to control the flow of the exhaled air through the device. In an embodiment the device contains a converter configured to receive the exhaled air at least a first time and a second time. The first time the exhaled air is received, the converter partially converts an analyte contained in the exhaled air from a first state to a second state. When the air has been re-circulated and passes through the converter a second time, the analyte is further converted from the first state to the second state.
Also disclosed herein is a method for measuring an analyte in exhaled air. According to an embodiment, exhaled air is received into an inlet. Once the air is received, the air is circulated through a tube having a plurality of paths. One portion of the tube is arranged in a non-linear configuration into which the exhaled air may flow and be temporarily stored. The exhaled air is then passed through a converter, which partially converts an analyte in the exhaled air from a first state to a second state. The converted analyte is then passed to an analyte sensor.
In yet another embodiment an apparatus is disclosed having an inlet through which exhaled air is received into the device. A tube is coupled to the inlet, the tube having a non-linear portion configured to store the exhaled air. The device also contains an analyte sensor for measuring an analyte contained in the exhaled air.
Although the examples and claims herein refer to converting an analyte from a first state to a second state, the term state as used herein means converting one compound into a second compound. For example, the converter may be configured to convert nitric oxide (“NO”) to nitrogen dioxide (“NO2”). Although this specific implementation is set forth, it is contemplated that a variety of other analytes and components present in exhaled breath can be converted from one state to another (if necessary) and measured by the disclosed apparatus. Such analytes may include, but are not limited to, carbon dioxide, oxygen, nitrogen, nitrogen dioxide, hydrogen peroxide, proteins, surfactants, DNA, acetone, ammonia, sulfur compounds, acetylene, carbon monoxide, ethane and pentane. Although the aforementioned analytes may not need to be converted from a first state to a second state, the device as described herein may be configured to bypass the conversion component and send the analyte directly to an analyte sensor.
These and various other features as well as advantages which characterize the disclosed systems and methods will be apparent from a reading of the following detailed description and a review of the associated drawings. Additional features of the device and methods described herein are set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the technology. The benefits and features will be realized and attained by the structure particularly pointed out in the written description and claims as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the disclosed technology as claimed.
The following drawing figures, which form a part of this application, are illustrative of disclosed technology and are not meant to limit the scope of the description in any manner, which scope shall be based on the claims appended hereto.
This disclosure describes an apparatus and method for measuring analytes in exhaled air. As discussed in greater detail below, the disclosure describes a monitoring device having an inlet tube though which a patient using the device, inhales and exhales air. The device contains a tube having a number of different paths running throughout the device, with various paths supplying the exhaled air to different components. According to an embodiment, at least one portion of the tube is configured in a non-linear fashion. This particular portion of the tube may be used to temporarily store a sample of the exhaled air. A pump is also included in the device and is configured to circulate the exhaled air through the tube. The device also contains a converter configured to partially convert an analyte in the exhaled breath from a first state to a second state. The tube and corresponding paths are arranged in such a manner whereby the exhaled air can be re-circulated and passed through the converter multiple times. An analyte sensor is also included to measure the levels of the converted analyte in the exhaled breath. One or more valves may also be included in the device to direct the flow of the exhaled air through the device to the various components.
Although the device and method described below are in the context of an apparatus used for converting nitric oxide in exhaled air to nitrogen dioxide, it is contemplated that such an apparatus as described herein may be implemented to detect, measure and convert (if necessary) a variety of analytes present in exhaled breath.
According to an embodiment, the device 100 includes a mouthpiece 105. Mouthpiece 105 may be used by a patient to inhale and exhale air. As the patient inhales ambient air, the incoming air passes through a scrubber 110 which removes particles and other unwanted materials from the air. In an embodiment, the scrubber 110 is an NO scrubber which removes particles and NO from the ambient air as it is inhaled. As a result of being passed through the scrubber 110, the inhaled air is NO free air 115 which is inhaled and subsequently exhaled by the patient. The NO free air 115 may also be delivered directly to the sampling circuit via tube 113 to purge the system prior a sample from the patient. The exhaled air now contains only NO that was present in the patient's lungs. In an embodiment, the scrubber 110 may be any conventional NO scrubber having an inlet, outlet and a filter filled with suitable filtering matter. The mouthpiece may also be configured to contain an antimicrobial filter (not shown) to further ensure that both the inhaled air and exhaled air are clean and free from bacteria and other particles.
The air is exhaled through the mouthpiece 105 and passed to a tube 117. As shown in
Device 100 also includes a pump 120 configured to circulate the exhaled air though the tube 117. In an embodiment, pump 120 may be configured to pump the exhaled air through the tube 117 at various flow rates. The flow rates may be determined on the type of components (e.g., sensor and converter) the device 100 has and how the particular components handle various flow rates.
As the exhaled air is circulated through the tube 117 via the pump 120, a portion of the exhaled air may pass through or be stored in a sample storage tube 125. In an embodiment, the sample storage tube 125 is part of the tube 117 but is configured in a non-linear fashion. For example, the sample storage tube 125 may be configured as a coil as shown in
According to embodiments, the length and diameter of the sample storage tube depends on the required flow rate and exposure time of the particular sensor used. The following table shows examples of tube length and diameter based on a 10 second minimum sensor exposure time requiring a 10 cc/second sample flow with a 100 cc minimum.
Although specific values are expressed in the above tables, other volumes, tube lengths and tube diameters may also be used. For example, some sensors may exhaust the analyte in the exhaled breath sample as it flows across the sensor, while other sensors don't. Therefore, a tube with a smaller length may be used when the exhaled breath is recirculated across the sensor multiple times.
Once the exhaled air is stored in the sample storage tube 125, the exhaled air may pass through the tube 117 to valve 150. Valve 150 may be configured to permit the air to pass either to converter 130 or sensor 135. According to an embodiment, the flow path may change at valve 150 depending on whether the analyte is to be converted from one state to another prior to passing through the sensor, or alternatively, whether the sensor is going to receive the exhaled air without the analyte first passing through the converter 130.
When it is determined that the exhaled air is to be passed to converter 130, the valve 150 may open the path to the converter while closing the path to the sensor 135. As the exhaled air passes through the converter 130, the analyte in the exhaled air is partially converted to a different compound or state. In an embodiment, the converter 130 is a catalytic converter configured to convert NO to NO2. In embodiments such as this, the conversion may be necessary because an analyte sensor, such as for example, sensor 135 may be configured to only measure certain compounds (e.g., configured to measure NO2 instead of NO). As the exhaled air is re-circulated through the device 100 and passes through the converter 130, the conversion from the first state to the second state continues.
As can be seen in
As explained above, each time the analyte in the exhaled air passes through the converter 130, a fraction of the NO is converted to NO2. Thus, the device 100 does not have a need for a high efficiency converter, nor is one required. Because the exhaled air is passed through the device a number of times, a lower efficiency converter can perform the same quality of conversions as the higher efficiency converter.
According to an embodiment, and as stated above, each time the air passes through the converter 130 a fraction of the NO contained in the exhaled air is converted to NO2. This is demonstrated by the formula: F=(1−(1−e)n) where “e” is the fractional efficiency of the converter and “n” is the number of times the gas is circulated through the converter. For example, if the converter efficiency is 70% and the exhaled air is circulated three times through the device 100, then amount of NO converted to NO2 is 97.3%.
In an embodiment, once the exhaled air has passed through the converter 130 a predetermined number of times, or alternatively, once the exhaled air has been circulating through the device for a minimum or maximum amount of time, valve 150 may be configured to allow flow to pass to sensor 135 while restricting flow to the converter 130. Sensor 135 then measures the levels of the converted analyte in the exhaled breath. In an alternative embodiment, the converted air may be stored in the sample storage tube 125 and then sent to sensor 135 when the sensor is ready to receive the sample. In an alternative embodiment, the valve 150 may restrict flow to the converter 130 when the exhaled air is first received and the flow of the air may proceed directly to the sensor 135.
Although the sensor described herein is configured to detect NO2, it is contemplated that the sensor, and the device, may be configured to convert and/or detect other analytes such as NO, CO2, NH3, H2, CO and the like. Regardless of the analyte being sampled, the sample may be sent to the sensor at a controlled rate, thus providing improved measurement accuracy. In an embodiment, once the sensor has completed the reading, data representing the reading be transmitted to a display device (not shown). The display device may be a physically present on the device 100, such as for example, on an LCD screen (not shown), or alternatively, the data may be transmitted, either by a direct connection or wirelessly to a peripheral display device (not shown).
When the device is finished with the exhaled air, the exhaled air may be discharged through the discharge tube 140.
As shown in
In an alternative embodiment, the sensor 135 may be placed directly behind the converter 130 with valve 150 being removed. Such an embodiment still provides for the air to be circulated and converted from NO to NO2 as described above but an immediate reading of the analyte is obtained.
According to an embodiment, step 210 provides that exhaled air is received through an inlet tube or mouthpiece. According to an embodiment, the inlet tube or mouthpiece may be the mouthpiece 105 as described above with respect to
Step 230 provides that the circulated air is stored in a sample storage tube. According to an embodiment the sample storage tube may be configured in a coil and have the capability to store the exhaled air for a period of time. In an embodiment the period of time may be determined by the efficiency rate of the converter and/or a rate at which the sensor can detect the analyte in the exhaled air.
Flow then passes to step 240 which provides that an analyte contained in the exhaled air is partially converted from a first state to a second state. For example, the exhaled air may contain NO. However, the sensor may be configured to only detect NO2. As the exhaled air passes through the converter, the converter changes a fraction of the NO to NO2 thus enabling the sensor to take the desired measurements.
Flow then passes to step 250 where it is determined whether the exhaled air is to be re-circulated. If it is determined that the exhaled air is to be re-circulated, steps 220, 230 and 240 are repeated again with the analyte being further converted from the first state to the second state each time the air passes through the converter.
For example, if on the first cycle, 20% of the analyte is converted from NO to NO2. A determination may be made that the sensor needs a concentration of NO2 to be above a certain threshold (e.g., 90%) before the sensor takes the requested measurement. If it is determined in step 250 that the analyte needs to be further converted, steps 220, 230 and 240 are performed a second, third, or fourth time if necessary. When the re-circulated exhaled air reaches step 240 again, the conversion process continues (e.g., the conversion of the analyte from NO to NO2 is now at 45%).
Once an appropriate threshold has been reached, the decision block 250 branches to “No” and the exhaled air, with the converted analyte, is delivered to the sensor. If however, it is determined that the air must be circulated again, flow passes to “Yes” and the air is delivered to the converter for further conversions.
Step 260 provides that the sample is delivered to the sensor. According to an embodiment, the sample is delivered to the sensor when it is determined the conversion is sufficiently complete. In an alternative embodiment, the exhaled air need not pass through the converter and may be directly sent to the sensor. In yet another embodiment, the exhaled air may be sent to a scrubber, such as scrubber 160 of
It will be clear that the described device and method are well adapted to attain the ends and advantages mentioned as well as those inherent therein. Those skilled in the art will recognize that the method and device described within this specification may be implemented in many different manners and as such is not to be limited by the foregoing exemplified embodiments and examples. In other words, functional elements being performed by a single or multiple components, in various combinations of hardware and software, and individual functions can be distributed among software applications and even different hardware platforms. In this regard, any number of the features of the different embodiments described herein may be combined into one single embodiment and alternate embodiments having fewer than or more than all of the features herein described are possible.
While various embodiments have been described for purposes of this disclosure, various changes and modifications may be made which are well within the scope of the described technology. Numerous other changes may be made which will readily suggest themselves to those skilled in the art and which are encompassed in the spirit of the disclosure and as defined in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4267827 | Rauscher et al. | May 1981 | A |
4752089 | Carter | Jun 1988 | A |
4770168 | Rusz et al. | Sep 1988 | A |
4921642 | LaTorraca | May 1990 | A |
4954799 | Kumar | Sep 1990 | A |
5057822 | Hoffman | Oct 1991 | A |
5072737 | Goulding | Dec 1991 | A |
5150291 | Cummings et al. | Sep 1992 | A |
5161525 | Kimm et al. | Nov 1992 | A |
5228434 | Fishman | Jul 1993 | A |
5237987 | Anderson et al. | Aug 1993 | A |
5271389 | Isaza et al. | Dec 1993 | A |
5279549 | Ranford | Jan 1994 | A |
5293875 | Stone | Mar 1994 | A |
5299568 | Forare et al. | Apr 1994 | A |
5301921 | Kumar | Apr 1994 | A |
5307795 | Whitwam et al. | May 1994 | A |
5319540 | Isaza et al. | Jun 1994 | A |
5325861 | Goulding | Jul 1994 | A |
5333606 | Schneider et al. | Aug 1994 | A |
5339807 | Carter | Aug 1994 | A |
5343857 | Schneider et al. | Sep 1994 | A |
5351522 | Lura | Oct 1994 | A |
5355893 | Mick et al. | Oct 1994 | A |
5357946 | Kee et al. | Oct 1994 | A |
5368019 | LaTorraca | Nov 1994 | A |
5383449 | Forare et al. | Jan 1995 | A |
5385142 | Brady et al. | Jan 1995 | A |
5390666 | Kimm et al. | Feb 1995 | A |
5401135 | Stoen et al. | Mar 1995 | A |
5402796 | Packer et al. | Apr 1995 | A |
5407174 | Kumar | Apr 1995 | A |
5413110 | Cummings et al. | May 1995 | A |
5438980 | Phillips | Aug 1995 | A |
5443075 | Holscher | Aug 1995 | A |
5485835 | Vande Streek et al. | Jan 1996 | A |
5513631 | McWilliams | May 1996 | A |
5517983 | Deighan et al. | May 1996 | A |
5520071 | Jones | May 1996 | A |
5524615 | Power | Jun 1996 | A |
5531218 | Kreb | Jul 1996 | A |
5531221 | Power | Jul 1996 | A |
5533512 | Novotny et al. | Jul 1996 | A |
5542415 | Brady | Aug 1996 | A |
5544674 | Kelly | Aug 1996 | A |
5549106 | Gruenke et al. | Aug 1996 | A |
5558083 | Bathe et al. | Sep 1996 | A |
5579774 | Miller et al. | Dec 1996 | A |
5596984 | O'Mahoney et al. | Jan 1997 | A |
5630411 | Holscher | May 1997 | A |
5632270 | O'Mahoney et al. | May 1997 | A |
5645048 | Brodsky et al. | Jul 1997 | A |
5651358 | Briend et al. | Jul 1997 | A |
5660171 | Kimm et al. | Aug 1997 | A |
5664560 | Merrick et al. | Sep 1997 | A |
5664562 | Bourdon | Sep 1997 | A |
5671767 | Kelly | Sep 1997 | A |
5672041 | Ringdahl et al. | Sep 1997 | A |
5673689 | Power | Oct 1997 | A |
5697364 | Chua et al. | Dec 1997 | A |
5715812 | Deighan et al. | Feb 1998 | A |
5720277 | Olsson et al. | Feb 1998 | A |
5732693 | Bathe et al. | Mar 1998 | A |
5752509 | Lachmann et al. | May 1998 | A |
5762480 | Adahan | Jun 1998 | A |
5771884 | Yarnall et al. | Jun 1998 | A |
5791339 | Winter | Aug 1998 | A |
5794986 | Gansel et al. | Aug 1998 | A |
5813399 | Isaza et al. | Sep 1998 | A |
5826575 | Lall | Oct 1998 | A |
5829441 | Kidd et al. | Nov 1998 | A |
5836300 | Mault | Nov 1998 | A |
5839433 | Higenbottam | Nov 1998 | A |
5857460 | Popitz | Jan 1999 | A |
5864938 | Gansel et al. | Feb 1999 | A |
5865168 | Isaza | Feb 1999 | A |
5871009 | Rydgren et al. | Feb 1999 | A |
5881717 | Isaza | Mar 1999 | A |
5881723 | Wallace et al. | Mar 1999 | A |
5884623 | Winter | Mar 1999 | A |
5909731 | O'Mahony et al. | Jun 1999 | A |
5915379 | Wallace et al. | Jun 1999 | A |
5915380 | Wallace et al. | Jun 1999 | A |
5915382 | Power | Jun 1999 | A |
5918597 | Jones et al. | Jul 1999 | A |
5921238 | Bourdon | Jul 1999 | A |
5934274 | Merrick et al. | Aug 1999 | A |
6024089 | Wallace et al. | Feb 2000 | A |
6041780 | Richard et al. | Mar 2000 | A |
6047860 | Sanders | Apr 2000 | A |
6076523 | Jones et al. | Jun 2000 | A |
6089229 | Bathe et al. | Jul 2000 | A |
6099481 | Daniels et al. | Aug 2000 | A |
6109260 | Bathe | Aug 2000 | A |
6116240 | Merrick et al. | Sep 2000 | A |
6116464 | Sanders | Sep 2000 | A |
6123072 | Downs | Sep 2000 | A |
6123073 | Schlawin et al. | Sep 2000 | A |
6125846 | Bathe et al. | Oct 2000 | A |
6131571 | Lampotang et al. | Oct 2000 | A |
6135105 | Lampotang et al. | Oct 2000 | A |
6135106 | Dirks et al. | Oct 2000 | A |
6135107 | Mault | Oct 2000 | A |
6142147 | Head et al. | Nov 2000 | A |
6142150 | O'Mahoney et al. | Nov 2000 | A |
6161539 | Winter | Dec 2000 | A |
6164276 | Bathe et al. | Dec 2000 | A |
6179784 | Daniels et al. | Jan 2001 | B1 |
6200271 | Kück et al. | Mar 2001 | B1 |
6210342 | Kück et al. | Apr 2001 | B1 |
6220245 | Takabayashi et al. | Apr 2001 | B1 |
6236041 | Donnerhack et al. | May 2001 | B1 |
6238351 | Orr et al. | May 2001 | B1 |
6258038 | Haryadi et al. | Jul 2001 | B1 |
6269812 | Wallace et al. | Aug 2001 | B1 |
6273444 | Power | Aug 2001 | B1 |
6283119 | Bourdon | Sep 2001 | B1 |
6305373 | Wallace et al. | Oct 2001 | B1 |
6321748 | O'Mahoney | Nov 2001 | B1 |
6325785 | Babkes et al. | Dec 2001 | B1 |
6357438 | Hansen | Mar 2002 | B1 |
6360745 | Wallace et al. | Mar 2002 | B1 |
6369838 | Wallace et al. | Apr 2002 | B1 |
6412483 | Jones et al. | Jul 2002 | B1 |
6439229 | Du et al. | Aug 2002 | B1 |
6439234 | Curti et al. | Aug 2002 | B1 |
6467478 | Merrick et al. | Oct 2002 | B1 |
6471658 | Daniels et al. | Oct 2002 | B1 |
6536429 | Pavlov et al. | Mar 2003 | B1 |
6546930 | Emerson et al. | Apr 2003 | B1 |
6553991 | Isaza | Apr 2003 | B1 |
6557553 | Borrello | May 2003 | B1 |
6571795 | Bourdon | Jun 2003 | B2 |
6581592 | Bathe et al. | Jun 2003 | B1 |
6581599 | Stenzler | Jun 2003 | B1 |
6616615 | Mault et al. | Sep 2003 | B2 |
6622726 | Du | Sep 2003 | B1 |
6629934 | Mault et al. | Oct 2003 | B2 |
6644310 | Delache et al. | Nov 2003 | B1 |
6648831 | Orr et al. | Nov 2003 | B2 |
6648832 | Orr et al. | Nov 2003 | B2 |
6655385 | Curti et al. | Dec 2003 | B1 |
6668824 | Isaza et al. | Dec 2003 | B1 |
6675801 | Wallace et al. | Jan 2004 | B2 |
6718974 | Moberg | Apr 2004 | B1 |
6725447 | Gilman et al. | Apr 2004 | B1 |
6739337 | Isaza | May 2004 | B2 |
6758214 | Fine et al. | Jul 2004 | B2 |
6761167 | Nadjafizadeh et al. | Jul 2004 | B1 |
6761168 | Nadjafizadeh et al. | Jul 2004 | B1 |
6786217 | Stenzler | Sep 2004 | B2 |
6814074 | Nadjafizadeh et al. | Nov 2004 | B1 |
6860266 | Blike | Mar 2005 | B2 |
6866040 | Bourdon | Mar 2005 | B1 |
6871645 | Wartman et al. | Mar 2005 | B2 |
6884222 | Braig | Apr 2005 | B1 |
6935336 | Lurie et al. | Aug 2005 | B2 |
6938618 | Lurie et al. | Sep 2005 | B2 |
6955651 | Kück et al. | Oct 2005 | B2 |
6960854 | Nadjafizadeh et al. | Nov 2005 | B2 |
6997880 | Carlebach et al. | Feb 2006 | B2 |
7018340 | Jaffe et al. | Mar 2006 | B2 |
7024235 | Melker et al. | Apr 2006 | B2 |
7025869 | Fine et al. | Apr 2006 | B2 |
7036504 | Wallace et al. | May 2006 | B2 |
7040313 | Fine et al. | May 2006 | B2 |
7070566 | Medero et al. | Jul 2006 | B2 |
7070569 | Heinonen et al. | Jul 2006 | B2 |
7070570 | Sanderson et al. | Jul 2006 | B2 |
7077131 | Hansen | Jul 2006 | B2 |
RE39225 | Isaza et al. | Aug 2006 | E |
7108666 | Stenzler | Sep 2006 | B2 |
7117438 | Wallace et al. | Oct 2006 | B2 |
7152604 | Hickle et al. | Dec 2006 | B2 |
7185649 | Lurie | Mar 2007 | B2 |
7195012 | Lurie | Mar 2007 | B2 |
7207947 | Koh et al. | Apr 2007 | B2 |
7210480 | Lurie et al. | May 2007 | B2 |
7225022 | Anderson et al. | May 2007 | B2 |
7270126 | Wallace et al. | Sep 2007 | B2 |
7273050 | Wei | Sep 2007 | B2 |
7275542 | Lurie et al. | Oct 2007 | B2 |
7335181 | Miller et al. | Feb 2008 | B2 |
7369757 | Farbarik | May 2008 | B2 |
7370650 | Nadjafizadeh et al. | May 2008 | B2 |
7387123 | DeSilva et al. | Jun 2008 | B2 |
7425201 | Euliano et al. | Sep 2008 | B2 |
7428902 | Du et al. | Sep 2008 | B2 |
7438072 | Izuchukwu | Oct 2008 | B2 |
7460959 | Jafari | Dec 2008 | B2 |
7487773 | Li | Feb 2009 | B2 |
7588543 | Euliano et al. | Sep 2009 | B2 |
7654802 | Crawford, Jr. et al. | Feb 2010 | B2 |
7694677 | Tang | Apr 2010 | B2 |
7717113 | Andrieux | May 2010 | B2 |
7784461 | Figueiredo et al. | Aug 2010 | B2 |
7823588 | Hansen | Nov 2010 | B2 |
7846739 | von Bahr et al. | Dec 2010 | B2 |
7855716 | McCreary et al. | Dec 2010 | B2 |
7891354 | Farbarik | Feb 2011 | B2 |
7893560 | Carter | Feb 2011 | B2 |
7984714 | Hausmann et al. | Jul 2011 | B2 |
7992557 | Nadjafizadeh et al. | Aug 2011 | B2 |
8001967 | Wallace et al. | Aug 2011 | B2 |
8021310 | Sanborn et al. | Sep 2011 | B2 |
8181648 | Perine et al. | May 2012 | B2 |
8210173 | Vandine | Jul 2012 | B2 |
8210174 | Farbarik | Jul 2012 | B2 |
8272379 | Jafari et al. | Sep 2012 | B2 |
8272380 | Jafari et al. | Sep 2012 | B2 |
8302600 | Andrieux et al. | Nov 2012 | B2 |
8302602 | Andrieux et al. | Nov 2012 | B2 |
20020029003 | Mace et al. | Mar 2002 | A1 |
20020069877 | Villareal et al. | Jun 2002 | A1 |
20020087057 | Lovejoy et al. | Jul 2002 | A1 |
20030045807 | Daniels, II et al. | Mar 2003 | A1 |
20030062040 | Lurie et al. | Apr 2003 | A1 |
20030070678 | Wartman et al. | Apr 2003 | A1 |
20030106553 | Vanderveen | Jun 2003 | A1 |
20030106554 | De Silva et al. | Jun 2003 | A1 |
20030225339 | Orr et al. | Dec 2003 | A1 |
20040040560 | Euliano et al. | Mar 2004 | A1 |
20040045552 | Curti et al. | Mar 2004 | A1 |
20040082872 | von Bahr et al. | Apr 2004 | A1 |
20040116784 | Gavish | Jun 2004 | A1 |
20040133116 | Abraham-Fuchs et al. | Jul 2004 | A1 |
20040144383 | Thomas et al. | Jul 2004 | A1 |
20040254482 | Anderson et al. | Dec 2004 | A1 |
20050039748 | Andrieux | Feb 2005 | A1 |
20050109340 | Tehrani | May 2005 | A1 |
20050112325 | Hickle | May 2005 | A1 |
20050137645 | Voipio et al. | Jun 2005 | A1 |
20050139212 | Bourdon | Jun 2005 | A1 |
20050139213 | Blike | Jun 2005 | A1 |
20050215844 | Ten Eyck et al. | Sep 2005 | A1 |
20050217671 | Fisher et al. | Oct 2005 | A1 |
20050247311 | Vacchiano et al. | Nov 2005 | A1 |
20050251214 | Parascandola et al. | Nov 2005 | A1 |
20050284476 | Blanch et al. | Dec 2005 | A1 |
20050284484 | Curti et al. | Dec 2005 | A1 |
20060129054 | Orr et al. | Jun 2006 | A1 |
20060189880 | Lynn et al. | Aug 2006 | A1 |
20060225737 | Iobbi | Oct 2006 | A1 |
20060231098 | Downie et al. | Oct 2006 | A1 |
20060249151 | Gambone | Nov 2006 | A1 |
20060253038 | Kuck et al. | Nov 2006 | A1 |
20070017515 | Wallace et al. | Jan 2007 | A1 |
20070034208 | Roehl et al. | Feb 2007 | A1 |
20070044799 | Hete et al. | Mar 2007 | A1 |
20070053992 | Abraini et al. | Mar 2007 | A1 |
20070062531 | Fisher et al. | Mar 2007 | A1 |
20070068518 | Urias et al. | Mar 2007 | A1 |
20070073170 | Danehorn et al. | Mar 2007 | A1 |
20070077200 | Baker | Apr 2007 | A1 |
20070107728 | Ricciardelli et al. | May 2007 | A1 |
20070129666 | Barton et al. | Jun 2007 | A1 |
20070149891 | George et al. | Jun 2007 | A1 |
20070151561 | Laurila | Jul 2007 | A1 |
20070157931 | Parker et al. | Jul 2007 | A1 |
20070181126 | Tolmie et al. | Aug 2007 | A1 |
20070221222 | Lurie | Sep 2007 | A1 |
20070225612 | Mace et al. | Sep 2007 | A1 |
20070227537 | Bemister et al. | Oct 2007 | A1 |
20070232951 | Euliano et al. | Oct 2007 | A1 |
20070255160 | Daly | Nov 2007 | A1 |
20070272243 | Sherman et al. | Nov 2007 | A1 |
20070277823 | Ai-Ali et al. | Dec 2007 | A1 |
20070284361 | Nadjafizadeh et al. | Dec 2007 | A1 |
20080029091 | Mullner | Feb 2008 | A1 |
20080039735 | Hickerson | Feb 2008 | A1 |
20080053441 | Gottlib et al. | Mar 2008 | A1 |
20080072896 | Setzer et al. | Mar 2008 | A1 |
20080072902 | Setzer et al. | Mar 2008 | A1 |
20080078390 | Milne et al. | Apr 2008 | A1 |
20080083644 | Janbakhsh et al. | Apr 2008 | A1 |
20080087284 | Krueger et al. | Apr 2008 | A1 |
20080092894 | Nicolazzi et al. | Apr 2008 | A1 |
20080097234 | Nicolazzi et al. | Apr 2008 | A1 |
20080194980 | Gisolf et al. | Aug 2008 | A1 |
20080202526 | Heinonen | Aug 2008 | A1 |
20080230065 | Heinonen | Sep 2008 | A1 |
20080236581 | Rantala et al. | Oct 2008 | A1 |
20080236582 | Tehrani | Oct 2008 | A1 |
20080275340 | Beach et al. | Nov 2008 | A1 |
20080295839 | Habashi | Dec 2008 | A1 |
20100011307 | Desfossez et al. | Jan 2010 | A1 |
20100024820 | Bourdon | Feb 2010 | A1 |
20100071689 | Thiessen | Mar 2010 | A1 |
20100071695 | Thiessen | Mar 2010 | A1 |
20100071696 | Jafari | Mar 2010 | A1 |
20100078017 | Andrieux et al. | Apr 2010 | A1 |
20100078026 | Andrieux et al. | Apr 2010 | A1 |
20100081119 | Jafari et al. | Apr 2010 | A1 |
20100081955 | Wood, Jr. et al. | Apr 2010 | A1 |
Number | Date | Country |
---|---|---|
3416291 | Mar 1984 | EP |
4312431 | Apr 1993 | EP |
19701617 | Jan 1997 | EP |
2850874 | Aug 2004 | FR |
WO9710869 | Mar 1997 | WO |
WO9831282 | Jul 1998 | WO |
WO2008012350 | Jan 2008 | WO |
Entry |
---|
7200 Series Ventilator, Options, and Accessories: Operators Manual. Nellcor Puritan Bennett, Part No. 22300 A, Sep. 1990, pp. 1-196. |
7200 Ventilatory System: Addendum/Errata. Nellcor Puritan Bennett, Part No. 4-023576-00, Rev. A, Apr. 1998, pp. 1-32. |
800 Operator's and Technical Reference Manual. Series Ventilator System, Nellcor Puritan Bennett, Part No. 4-070088-00, Rev. L, Aug. 2010, pp. 1-476. |
840 Operators and Technical Reference Manual. Ventilator System, Nellcor Puritan Bennett, Part No. 4-075609-00, Rev. G, Oct. 2006, pp. 1-424. |
Number | Date | Country | |
---|---|---|---|
20100081955 A1 | Apr 2010 | US |