The present invention relates generally to the field of window construction. Some window designs include an outer sash that houses the glass of the window and an inner sash that couples to the outer sash to enclose the glass and provide decorative features. When the window is installed in a building, the outer sash faces the exterior of the building while the inner sash faces the interior of the building. The inner and outer sashes are conventionally adhered together using glue or other adhesive material. Such adhesion makes servicing of the window difficult. For example, removal of the glass for repair or replacement can be quite difficult because the inner and outer sashes are permanently glued together. Removal of the glue or separation of the inner and outer sashes can cause damage to the window.
One exemplary embodiment of the invention relates to a removeably engageable window binder. The binder is configured to extend along a perimeter of a surface of an outer sash and inner sash. The binder is configured to engage the outer sash and the inner sash and to mechanically couple the outer sash and the inner sash together. The binder includes a plurality of protrusions. Each protrusion is configured to mate with one of a groove in the inner sash and a groove in the outer sash. Each protrusion includes a plurality of flexible barbs that are compressed when the protrusion mates with one of the grooves. The flexible barbs provide a force on interior edges of the groove to couple the inner sash and outer sash together.
The flexible barbs may also provide a force on interior edges of the groove to seal the inner sash and outer sash together.
Another exemplary embodiment relates to a sash assembly. The sash assembly includes an outer sash having at least one groove, an inner sash having at least one groove, and a removable binder extending along a perimeter of a surface of the outer sash and inner sash. The binder is configured to engage the outer sash and the inner sash and to mechanically couple the outer sash and the inner sash together. The binder includes a plurality of protrusions. Each protrusion is configured to mate with one of the groove in the inner sash and the groove in the outer sash. Each protrusion includes a plurality of flexible barbs that are compressed when the protrusion mates with one of the grooves. The flexible barbs provide a force on interior edges of the groove to couple the inner sash and outer sash together. The binder is configured for removal for service of the sash assembly.
Another exemplary embodiment relates to a sash assembly. The sash assembly includes an outer sash having at least one groove, an inner sash having at least one groove, and a binder extending along a perimeter of a surface of the outer sash and inner sash. The binder is configured to removably engage the outer sash and the inner sash and to mechanically couple the outer sash and the inner sash together. The binder includes a plurality of protrusions. Each protrusion is configured to mate with one of the groove in the inner sash and the groove in the outer sash. Each protrusion includes a plurality of flexible barbs that are compressed when the protrusion mates with one of the grooves. The flexible barbs provide a force on interior edges of the groove to couple the inner sash and outer sash together.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only, and are not restrictive of the invention as claimed.
These and other features, aspects, and advantages of the present invention will become apparent from the following description, appended claims, and the accompanying exemplary embodiments shown in the drawings, which are briefly described below.
Referring to
Inner sash 12 and outer sash 14 may be similar to conventional sashes in structure and design Inner sash 12 and outer sash 14 may be made of wood, a vinyl material, a composite material, a plastic material, an aluminum material, a steel material, an combination thereof, or any other material suitable for a window.
According to various exemplary embodiments, glazing 18 may include a single pane of glass, double panes of glass, triple panes of glass or any other number of panes. Any space between multiple panes of glass 18 may be filled with air, argon, krypton, a vacuum, or any other substance. Glass 18 may be made of any type of glass material (e.g., soda lime glass, alkali silicate glass, etc.) of any thickness and may include any features of past, present, or future design (e.g., a low-E coating, lamination, tinting, impact resistance, shatter resistance, etc.) Glazing 18 may also be formed of any other type of window material such as plastic.
Referring now to
Referring to
According to various exemplary embodiments, barbs 28 may be made of flexible polyvinyl chloride (PVC), thermoplastic elastomer (TPE), flexible urethane, a rubber based material, or a similar flexible extruded material. According to various exemplary embodiments, protrusions 24, 26 and bases 30, 32 may be made of PVC, polypropylene, acrylonitrile butadiene styrene (ABS), or any other rigid extrudable material.
Referring to
While the barbs 28 may provide sufficient force for typical usage of sash assembly 10, binder 16 may be easily removed by a person for maintenance or servicing of sash assembly 10. As described above, binder 16 may be removed to facilitate repair or replacement of inner sash 12, outer sash 14, and/or glass 18. In one embodiment, no tools are needed to install or remove the binder 16 to inner sash 12 and outer sash 14. That is a person may be able to remove binder 16 by hand without the need to remove any additional mechanical fasteners. Once binder 16 is removed, it may be possible to reinstall binder 16 to inner sash 12 and outer sash 14 after the sash assembly has been repaired or glazing 18 replaced. The installation, removal, and reinstallation of binder 16 in one embodiment may be completed by a person without the need to use any additional tools.
Binder 16 may also be used to facilitate attachment of window hardware, for aesthetics, for retention of screws (e.g., screws in the window frame), as a weather strip carrier, etc. For example, base 30 or 32 may include a groove 38 and/or a groove 40. Groove 38 or 40 may be configured to receive a section of weather stripping to improve the seal of the window to isolate the interior space from the exterior environment. Groove 38 or 40 may be configured to receive window hardware for actuation or locking of the window. Groove 38 or 40 may be configured to conceal or retain screws or other fasteners in the window frame, inner sash 12, or outer sash 14.
While protrusion 24 is generally shown as extending further from base 30 than protrusion 26, in other exemplary embodiments where the configuration of inner sash 12 and outer sash 14 is different, protrusions 24 and 26 may extend a similar distance or protrusion 26 may extend further than protrusion 24. Further, while two protrusions 24 and 26 are shown, according to other exemplary embodiments, more than two protrusions may be used for additional coupling. Alternatively, binder 16 may include only one protrusion. For example, the binder 16 may be integrally formed or otherwise attached to the inner sash 12 or outer sash 14 and only removably couple to the other of inner sash 12 and outer sash 14.
While each protrusion 24 and 26 are shown to include four barbs 28 with two barbs 28 on each side of each protrusion 24 and 26, according to other exemplary embodiments, each protrusion 24 and 26 may include more than or fewer than four barbs 28 and two barbs 28 on each side. Further, one side of protrusions 24 and 26 may have more or fewer barbs than the opposite side of the protrusion. Further still, protrusion 24 may have a different number and/or distribution of barbs 28 than protrusion 26.
While sash assembly 10 is illustrated as being rectangular, according to other exemplary embodiments, sash assembly 10 may be round, triangular, a pentagon, a hexagon, or any other shape. With such alternate shapes, the configuration and shape of binding members of binder 16 may be adjusted accordingly. For example, for a round window, binder 16 may include a plurality of semicircular or quarter circle corner binding members, for a triangular window, binder 16 may include three edge binding members 20 and three corner binding members 22, etc.
For purposes of this disclosure, the term “coupled” means the joining of two components directly or indirectly to one another. Such joining may be stationary in nature or movable in nature. Such joining may be achieved with the two components (electrical or mechanical) and any additional intermediate members being integrally defined as a single unitary body with one another or with the two components or the two components and any additional member being attached to one another. Such joining may be permanent in nature or alternatively may be removable or releasable in nature.
The present disclosure has been described with reference to exemplary embodiments, however, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the disclosure. For example, although different example embodiments may have been described as including one or more features providing one or more benefits, it is contemplated that the described features may be interchanged with one another or alternatively be combined with one another in the described example embodiments or in other alternative embodiments. Because the technology of the present disclosure is relatively complex, not all changes in the technology are foreseeable. The present disclosure described with reference to the example is manifestly intended to be as broad as possible. For example, unless specifically otherwise noted a single particular element may also encompass a plurality of such particular elements.
It is also important to note that the construction and arrangement of the elements of the system as shown in the exemplary embodiments is illustrative only. Although only a certain number of embodiments have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited.
Further, elements shown as integrally formed may be constructed of multiple parts or elements shown as multiple parts may be integrally formed, the operation of the assemblies may be reversed or otherwise varied, the length or width of the structures and/or members or connectors or other elements of the system may be varied, the nature or number of adjustment or attachment positions provided between the elements may be varied. It should be noted that the elements and/or assemblies of the system may be constructed from any of a wide variety of materials that provide sufficient strength or durability. Accordingly, all such modifications are intended to be included within the scope of the present disclosure. Other substitutions, modifications, changes and omissions may be made in the design, operating conditions and arrangement of the exemplary embodiments without departing from the spirit of the present subject matter.
Number | Date | Country | |
---|---|---|---|
Parent | 12794648 | Jun 2010 | US |
Child | 14064086 | US |