Many trees do not grow straight so that the logs cut from the trees are swept or curved in shape. Special procedures and equipment must be used to maximize the board feet of lumber cut from these imperfect logs.
Center cant 12 has opposite, parallel, cut surfaces 14, 15 which correspond to surfaces 9 of boards 4 made at cutting lines 7. The end 16 of center cant 12 in
For example, U.S. Pat. No. 4,239,072 discloses a method and apparatus for edge trimming a side board. A number of overhead pressure rolls engage the side board as the side board passes along a chain conveyor. The side board is centered by sets of centering rolls. A number of scanning gates are positioned above the conveyor to provide a computer with appropriate information on the profile of the side board. The edging assembly includes a pair of adjustable cutting heads designed to chip the unwanted edges from the side board. The cutting heads are slewed in a direction perpendicular to the direction of movement of the board by hydraulic cylinders so that one or more pieces of side board lumber can be cut from a single side board.
U.S. Pat. No. 4,449,557, assigned to the same assignee as U.S. Pat. No. 4,239,072, uses substantially the same system for delivering partially cut logs to an edging assembly as the '072 patent. However, instead of using angled edge chippers, as in the '072 patent, the '557 patent uses sawing disks or saw blades to make the edge cuts. The entire edger saw system moves as a unit so that the sawing disks can skew, that is change the angle between the axis of rotation of the sawing disks and the direction of feed of the work piece and can slew, that is move laterally along a line generally perpendicular to the direction of feed of the work piece.
Some conventional edger optimizer systems measure the boards transversely and then position the board onto a feeding mechanism and move the board longitudinally into the edger. This conventional method requires a considerable amount of expensive scanning, positioning and transporting equipment to carry out the process. Conventional systems also commonly create cumulative scanning, positioning and transport errors that make the systems somewhat less than optimal. With regard to the '557 patent, complex board centering mechanisms, multiple scanner heads, complex and high maintenance feeding and tracking devices, and complex high inertia edger rotation devices are all characteristic of the system described in the patent.
U.S. Pat. No. 5,761,979 and U.S. Pat. No. 5,870,939 describe a saw assembly that includes a rotatable arbor on which two or more saw blades are mounted. The driving interface between the saw blades and the arbor permits the axis of rotation of the saw blades to be collinear with the arbor axis or skewed a few degrees in either direction. A saw blade positioning assembly includes pairs of guide arms which engage the sides of the saw blades to position each saw blade at the proper location along the arbor and at the proper skew angle. The guide arms are moved in unison so that the axial position and the skew angle of each of the saw blades can be changed in unison before and during sawing operations.
In these designs, the guide arms that engage the sides of the rotating saw blades require constant maintenance and can often lead to problems. These saw guide arms require the use of saw blade lubricants and cooling water that reduce the fuel value of the saw dust and cause environmental and waste water concerns.
A first aspect of the invention is directed to a saw assembly usable as part of a wood product sawing apparatus. A drive shaft is supported by a frame and is rotatable about a drive shaft axis, the drive shaft comprising a first drive feature, such as an axially extending spline surface in some examples. A cutter assembly includes a cutter rotatably mounted to a cutter spindle. The cutter assembly defines an open region through which the drive shaft passes. The cutter assembly comprises a second drive feature engaging the first drive feature so that rotation of the drive shaft rotates the cutter assembly while permitting the cutter assembly to slide along the drive shaft in the direction of the drive shaft axis. The open region, in some examples a tapered open region, is configured to permit the cutter to be oriented on the drive shaft over a range of skew angles relative to the drive shaft axis. The cutter spindle is rotatably mounted to and supported by a pivoting spindle housing for rotation of the cutter about the drive shaft axis. The pivoting spindle housing is rotatably mounted to a saw positioner body for rotation of the pivoting spindle housing and cutter assembly therewith about a pivot axis. The pivot axis passes through the drive shaft in a direction transverse to the drive shaft axis. A skewing driver is mounted to the saw positioner body and is drivingly connected to the pivoting spindle housing to move the pivoting spindle housing about the pivot axis thereby skewing the cutter relative to the drive shaft axis over at least part of the range of skew angles. A slewing positioner, supported by the frame and connected to the saw positioner body, is operable to move the saw positioner body and the pivotal spindle housing and cutter assembly therewith along the drive shaft axis. In some examples the cutter assembly, pivoting spindle housing and saw positioner body constitute a cutting unit and the saw assembly further comprises a plurality of the cutting units with the drive shaft passing through the open regions of the cutter assemblies of the saw positioners.
A second aspect of the invention is directed to a wood cutter assembly, usable as part of a wood product sawing apparatus, including a saw assembly, a slewing assembly and a skewing assembly. The saw assembly comprises a cutter assembly having an open region, a drive shaft passing through the open region, a cutter spindle and a cutter mounted to the cutter spindle for rotation about the open region. The cutter assembly is mounted to a spindle housing. A saw positioner is supported by the frame. The spindle housing is pivotally mounted to the saw positioner for movement about a pivot axis. The pivot axis passes through the drive shaft transversely to the axis of the drive shaft. The slewing assembly, used to move the cutter along the drive shaft, comprises a saw positioner driver assembly engaging the saw positioner to move the saw positioner in a direction parallel to the drive shaft axis so the spindle housing and cutter assembly therewith move along the drive shaft. The skewing assembly, for moving the cutter relative to the drive shaft axis over a range of skew angles, comprises a spindle housing rotator assembly pivotally driving the spindle housing and the cutter assembly therewith about the pivot axis. The cutter assembly, spindle housing and saw positioner may be considered to constitute a cutting unit. Some examples comprise plurality of the cutting units with the drive shaft passing through the open regions of the cutter assemblies. In some examples separate saw positioner driver assemblies engage the saw positioner for each of the cutting units. In some examples one spindle housing rotator assembly pivotally drives the spindle housings and the cutter assemblies therewith about respective pivot axes for all of the cutting units.
A third aspect of the invention is directed to a method for slewing and skewing a wood cutter of a saw assembly, the saw assembly usable as part of a wood product sawing apparatus. A cutter assembly is rotated about a drive shaft axis by a drive shaft passing through an open region in the cutter assembly. The cutter assembly includes a cutter spindle and a cutter mounted to the cutter spindle for rotation about the open region. The cutter assembly is mounted to a spindle housing. The spindle housing is pivotally mounted to a saw positioner for movement about a pivot axis. The pivot axis passes through the drive shaft transversely to the drive shaft axis. The cutter is slewed along the drive shaft axis so to move the saw positioner, and the spindle housing and cutter assembly therewith, along the drive shaft. The cutter is skewed relative to the drive shaft axis over a range of skew angles by selectively rotating the spindle housing, and the cutter assembly therewith, about the pivot axis. In some examples a plurality of the cutter assemblies are rotated about the drive shaft axis. In some examples the slewing step is carried out by independently selectively moving the saw positioners. In some examples the skewing step is carried out by selectively rotating all of the spindle housings in unison.
Other features, aspects and advantages of the present invention can be seen on review the figures the detailed description, and the claims which follow.
The following description will typically be with reference to specific structural embodiments and methods. It is to be understood that there is no intention to limit the invention to the specifically disclosed embodiments and methods but that the invention may be practiced using other features, elements, methods and embodiments. Preferred embodiments are described to illustrate the present invention, not to limit its scope, which is defined by the claims. Those of ordinary skill in the art will recognize a variety of equivalent variations on the description that follows. Like elements in various embodiments are commonly referred to with like reference numerals.
The present invention is directed to a wood product assembly, such as an improved saw assembly for an edge trimming and board ripping apparatus, and method which provides a greatly simplified approach to, for example, optimally edging and ripping boards.
The edge trimming and board ripping apparatus includes an improved saw assembly used as a part of a sawing apparatus. The sawing apparatus, in one example, includes an in-feed assembly which delivers side boards or center cants one at a time to a scanning assembly. The side boards and center cants both have two parallel cut surfaces and are referred to generically as partially cut logs, cut logs or just logs. The scanning assembly preferably includes a scanner adjacent to a scanning conveyor. The scanner scans the cut log and provides a profile of the log to a computer which controls the operation of the improved saw assembly. The saw assembly is preferably part of a cutting assembly. The cutting assembly typically includes a press roll assembly which maintains the cut log in the same orientation, passing through the saw assembly, as the cut log had when it passed the scanner.
A saw assembly 56, see
Each saw positioner body 82 supports a pivoting spindle housing 84 through steering arm 130 while allowing the spindle housing to turn at a slight angle about vertical pivot axis 92 to facilitate saw skewing (typically approximately ±5 degrees) through the use of two pivot bearings 119 as shown in
Each saw spindle 74 is coupled to and rotatable driven by a splined spindle drive plate 89 engaging a spline drive shaft 93 as shown in
The spindle drive plate 89 transmits torque to the saw spindle 74 while allowing both: (1) the axis of rotation of the saw spindle to turn at an angle relative to the axis of rotation of the spline drive shaft 93, that is skew, and (2) the saw spindle to move closer to or further away from drive source 131, that is slew.
In this embodiment, a skewing drive shaft 116, see
With the present invention, side board lumber can be cut from side boards by edge trimming the side board and, optionally, rip sawing the side board to create one or more pieces of side board lumber. Also, center cants can be simultaneously edge trimmed and rip sawed to create center cant lumber from the center cant using the saw assembly made according to the invention.
One of the primary advantages of the invention is its simplicity. The partially cut log 36 need not be centered on the scanning conveyor 44 or the feed chain 58 of the press roll assembly 54 but rather simply placed somewhere on the scanning conveyor. Therefore, no centering rolls, as are used with conventional edger systems, are needed. Also, the present invention is designed to be used with only a single scanner, as opposed to the multiple scanners used with conventional systems, thus reducing cost. In addition, the present invention is adapted for use for both edge trimming and board ripping of both side boards and center cants making it very flexible.
An additional advantage is that the saw blade slewing assembly 80, which includes linear positioners 136, shift shafts 166 and linear bearings 126, is used to both initially position the saw positioners 76 and saw blades 75 therewith at the desired locations as well as slew, in unison, the saw blades while sawing the log. Also, the same structure, that is saw positioner 76, used to laterally position the saw blades is used to keep the saw blades at the proper skewing angle. Thus, of the actual sawing components (motor 131, arbor 93, saw blades 75, support frame 128), the only components which must move during sawing operations are the saw blade positioner assemblies 76; the electric motor 131, or other drive source, which drives the saw spindles 74 as well as the support frame 128 which supports the motor and spindle assemblies, can remain stationary. The complicated slewing and skewing schemes used with conventional edger systems are eliminated.
Another advantage of the invention is that the saw blades 75 require no guide arms to provide the positioning and stabilization. The use of saw guide arms adds complexity to the sawing system along with requiring constant maintenance. The sawing accuracy of the invention is higher than with a system using saw guide arms because of the rigid mounting of the saw assembly. The guide arms require a complex lubricating and cooling system to properly guide, position and stabilize the saw blades. The use of this saw blade lubricating and cooling system increases operating cost and causes the saw dust to be wet reducing its value as a fuel. Excess saw blade cooling water can find its way into storm drains, streams and rivers and cause environmental damage and well as contaminate ground water.
The above descriptions may have used terms such as above, below, top, bottom, over, under, et cetera. These terms are used to aid understanding of the invention are not used in a limiting sense.
While the present invention is disclosed by reference to the preferred embodiments and examples detailed above, it is to be understood that these examples are intended in an illustrative rather than in a limiting sense. It is contemplated that modifications and combinations will occur to those skilled in the art, which modifications and combinations will be within the spirit of the invention and the scope of the following claims. For example, the proportions and numbers of center cant 12, center cant lumber 20, side boards 4, and side board lumber 24 illustrated in
Any and all patents, patent applications and printed publications referred to above are incorporated by reference.
This application claims the benefit of provisional patent application number 61/087,416, filed 8 Aug. 2008, attorney docket number MGDC 1006-1, the disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61087416 | Aug 2008 | US |