This application claims the benefit of U.S. Provisional Application No. 61/368,984, filed on Jul. 29, 2010. The entire disclosure of the above application is incorporated herein by reference.
The present disclosure relates to refuse vehicles and a load limiting mechanism for the same.
This section provides background information related to the present disclosure which is not necessarily prior art.
Refuse vehicles play a key role in dispensing of refuse by traversing an area, stopping at a location where the user, resident, commercial business, or the like has deposited refuse for collection, depositing the refuse in the refuse vehicle, and transporting the refuse to a processing center, such as a recycling center, landfill, or incineration center. With a continuing need to reduce energy and emissions, there has been a trend towards designing and building lighter refuse vehicles. Lighter refuse vehicles are typically more limited in the payload that they can carry, but are more fuel efficient. This trend towards designing and building more economically operated vehicles has resulted in refuse vehicles having lighter components, and, consequently, lighter payload capacities. It is thus easier to overload contemporary refuse vehicles than their traditional counterparts.
In typical refuse collection operations, it is often difficult to estimate the weight of the refuse collected because of the many variables that determine the weight of the refuse. For example, the nature of the refuse itself can vary from collection to collection. Some refuse may be more dense resulting in more weight for a given volume when such refuse is added to the vehicle. Other refuse might be less dense resulting in less weight for a given volume when such refuse is added to the vehicle. Environmental conditions can cause the weight of a particular load to vary significantly. For example, if a load of refuse includes material which may absorb liquid, the weight of that load will vary depending on whether it is collected on a rainy or a dry day. Thus, vehicle operators cannot determine with certainty that a predetermined number of collections will result in maximizing the payload of the vehicle, without overloading the vehicle, prior to returning to the processing center to dump the collected refuse. It is generally desirable to not return to the processing center before the vehicle payload has been maximized. Because of this variability in load-to-load and to overall payload weights, vehicle operators presently have limited knowledge of the payload of the vehicle.
Further, operators are sometimes prone to push the limits of payload capacity. While pushing the payload capacity may have had less impact when utilizing traditional refuse vehicles, newer, more efficiently designed refuse vehicles are less tolerant of overload conditions and could damage the vehicle. Present refuse vehicles have no way of limiting further intake of refuse based upon weight. While in certain instances, the volume of the container portion of the refuse vehicle imposes limits, when moving particularly dense materials, it may be necessary to return to the processing center prior to the container becoming full.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
A refuse vehicle including a hopper supported by the refuse vehicle. A lift mechanism for attaching to a container containing refuse to be added to the hopper via a lift operation. A sensor senses a weight that varies in accordance with the refuse contained in the hopper. A controller receives a weight signal from the sensor. A lift lockout inhibits operation of the lift mechanism if the weight sensed by the sensor exceeds a predetermined value.
A refuse vehicle includes a hopper supported by the refuse vehicle. A gripper mechanism takes hold of a container containing refuse to be added to the hopper. A sensor for senses a weight that in accordance with the refuse contained in the hopper. A controller receives a weight signal from the sensor. A lockout inhibits operation of the gripper mechanism if the weight sensed by the sensor exceeds a predetermined value.
A refuse vehicle includes a hopper supported by the refuse vehicle. A load door enables adding refuse to the hopper. A sensor senses a weight, the weight varies in accordance with the refuse contained in the hopper. A packer compacting refuse in the hopper, wherein the engine of the vehicle operates at a predetermined power level during a packing operation. A control circuit, the control circuit receiving a signal that varies in accordance with the weight sensed by the sensor. The control circuit limits the power output of the engine to an amount less than the predetermined power level when the weight sensed by the sensor exceeds a predetermined weight.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
Example embodiments will now be described more fully with reference to the accompanying drawings.
Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
When an element or layer is referred to as being “on,” “engaged to,” “connected to,” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
Spatially relative terms, such as “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
In various embodiments, interlock module 40 includes an interlock solenoid. The interlock solenoid may operate with lift arm assembly 12 of refuse vehicle 10 of
In various embodiments, controller 32 generates a second signal 42 to an alarm 44, such as an audible and/or visual alarm. Signal 42 can operate an alarm 44 in response to a near overload or actual overload condition, so that the operator can be advised to avoid attempting to add further payload to refuse vehicle 10. In various other embodiments, alarm signal 42 may indicate that a predetermined percentage of gross vehicle weight has been exceeded so that the operator can plan additional stops prior to nearing the gross vehicle weight capacity.
In various embodiments, lift control system 26 includes an alarm 46 which receives signal 38 from controller 32. Alarm 46 may be an audible or visual alarm and may indicate an overload condition. Alarm 46 may work independently of or in conjunction with alarm 44 to provide the same or additional information to the vehicle operator about the present state of the loading of the vehicle 10.
Weight determination system 24, according to various embodiments, can determine a running tare weight for an empty container, a gross vehicle weight (which is typically the tare weight and the payload weight), or individual axle weights. Of particular relevance is that the weight or weights monitored are monitored to prevent the payload carried by the refuse vehicle 10 from exceeding a predetermined payload.
Weight determination system 60 operates similarly as described above with respect to
With reference to
When payload conditions do not indicate inhibiting operation of lift mechanism 108, lift mechanism pneumatic control signal 106 is passed through interlock module 104 to cause a lift operation of lift mechanism 108. When the vehicle weight approaches or exceeds a maximum vehicle weight, as determined by various design considerations, interlock module 104 inhibits lift mechanism pneumatic control signal 106 from operating lift mechanism 108. This inhibits a lifting operation so that the lift mechanism 108 cannot raise the container in order to empty the contents of the container into hopper of container 52 of side-loading vehicle 50.
Lift control system 120 includes a switch module 136 that receives the signal 138 from controller 126 and a throttle advance signal 140. Throttle advance signal 140 is typically generated during a pack cycle. In a typical configuration, throttle advance signal 140 is applied directly to engine control module 122. During the pack cycle, the engine of the rear loading refuse vehicle 110 operates at a speed approximately twice the idle speed.
Throttle advance signal 140 is applied to switch module 136 so that if signal 138 indicates a vehicle weight at or exceeding capacity, switch module 136 inhibits passing throttle advance signal 140 to engine control module 122. Thus, during a pack cycle if switch module 136 inhibits passing throttle advance signal 140 to engine control module 122, the pack cycle will be significantly slower, thereby encouraging the operator to empty the vehicle and avoid slow packing cycles. Lift control system 120 also includes alarms 128 and 142 which operates similarly as described above in connection with
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
Number | Name | Date | Kind |
---|---|---|---|
4042049 | Reichow et al. | Aug 1977 | A |
4102262 | Liberman et al. | Jul 1978 | A |
4771837 | Appleton et al. | Sep 1988 | A |
4839835 | Hagenbuch | Jun 1989 | A |
4854406 | Appleton et al. | Aug 1989 | A |
5004392 | Naab | Apr 1991 | A |
5065829 | Smith | Nov 1991 | A |
5209312 | Jensen | May 1993 | A |
5230393 | Mezey | Jul 1993 | A |
5304744 | Jensen | Apr 1994 | A |
5644489 | Hagenbuch | Jul 1997 | A |
5822224 | Nakanishi et al. | Oct 1998 | A |
5844474 | Saling et al. | Dec 1998 | A |
5995888 | Hagenbuch | Nov 1999 | A |
6123497 | Duell et al. | Sep 2000 | A |
6332745 | Duell et al. | Dec 2001 | B1 |
6422800 | Reichow et al. | Jul 2002 | B1 |
6601013 | Lueschow et al. | Jul 2003 | B2 |
6703569 | Moore et al. | Mar 2004 | B2 |
6858809 | Bender | Feb 2005 | B2 |
7276669 | Dahl et al. | Oct 2007 | B2 |
7330128 | Lombardo et al. | Feb 2008 | B1 |
7370904 | Wood, Jr. et al. | May 2008 | B2 |
7495185 | Takeda et al. | Feb 2009 | B2 |
7831352 | Laumer et al. | Nov 2010 | B2 |
20040084226 | Wright | May 2004 | A1 |
20060045700 | Siebers et al. | Mar 2006 | A1 |
20070273493 | Reichow et al. | Nov 2007 | A1 |
20080109131 | Pillar et al. | May 2008 | A1 |
20100206642 | Curotto | Aug 2010 | A1 |
20110116899 | Dickens | May 2011 | A1 |
20140010630 | Curotto | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
2 448 739 | Oct 2008 | GB |
07-206104 | Aug 1995 | JP |
Entry |
---|
Press Release entitled “Air-Weigh Makes On-Board Scales Smarter Than Ever”, Oct. 23, 2007, 2 pages. |
Press Release entitled “Air-Weigh Makes Scales for Refuse Trucks”, May 6, 2008, 1 page. |
Powerpoint Presentation entitled “LoadMaxx”, undated, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20120027548 A1 | Feb 2012 | US |
Number | Date | Country | |
---|---|---|---|
61368984 | Jul 2010 | US |