To solve the aforementioned problem faced by the scanners of the related art, embodiments of the present invention utilize a Light Emitting Diode (LED) to assist a CCFL to provide light that is required when a scanning task is performed by a scanner.
In this embodiment, the light source apparatus 110 is made up of a CCFL 115, an LED module 120, a light detector 125, a servo control module 130, a LED-driving module 135, and a CCFL driving module 140. The light detector 125 detects the light generated by the CCFL 115 and the LED module 120 to generate a detection signal DS. The servo control module 130 generates a first control signal CS1, a second control signal CS2, and a gain control signal GCS according to the detection signal DS. The LED-driving module 135 drives the LED module 135 according to the first control signal CS1. The CCFL driving module 140 comprises a Pulse Width Modulation (PWM) unit 141 and an inverter 142. The PWM unit 141 generates a PWM signal PWMS according to the second control signal CS2; and the inverter 142 drives the CCFL 115 according to the PWM signal PWMS.
The light source apparatus 110 of this embodiment utilizes the CCFL 115 and the LED module 120 as a primary light source and an auxiliary light source respectively. When the scanner 100 starts a scanning task, the servo control module 130 utilizes the first control signal CS1 to control the LED-driving module 135 to drive the LED module 120. The servo control module 130 also utilizes the second control signal CS2 to control the CCFL driving module 140 to drive the CCFL 115. As mentioned, the CCFL 115 cannot instantly provide light having enough intensity for scanning. However, the LED module can be swiftly turned on and hence can provide light that compensates for the insufficient light provided by the CCFL 115. Therefore, the light instantly provided by the light source apparatus 110 will be intense enough for the scanner 100 to carry on a scanning task. In other words, the light source apparatus 110 of this embodiment can provide enough light required by the scanning task instantly. Furthermore, since the LED module 120 merely serves as an auxiliary light source, it does not have to include too many LEDs. For example, the LED module 120 may include eight LEDs or less. Compared with an LED array that can provide enough light required by a scanning task on its own, the LED module 120 of this embodiment includes fewer LEDs, where a conventional LED array normally includes sixteen LEDs or more. The cost of the LED module 120 of this embodiment is lower than that of the LED array utilized in the prior art.
After the CCFL 115 is turned on, its temperature will increase gradually, as does the intensity of the light generated by the CCFL 115. The light detector 125 will detect that the light generated by the CCFL 115 and the LED 120 is gradually strengthened. The light detector 125 then informs the servo control module 130 of its detection result; and the servo control module 130 utilizes the first control signal CS1 to control the LED-driving module 135 to lower a driving power provided to the LED module 120. In other words, while the light generated by the CCFL 115 is increasing, the servo control module 130 gradually adjusts down the light of the LED module 120. After the CCFL 115 is fully started up, the servo control module 130 can even turn the LED module 120 off completely. The light required by the scanner 100 is then provided by the CCFL 115 alone.
Aside from generating the first control signal CS1 and the second control signal CS2 according to the detection signal DS, the servo control module 130 of this embodiment further generates a gain control signal GCS according to the detection signal DS. When the detection signal DS reveals that the light intensity detected by the light detector 125 is low, the servo control module 130 utilizes a gain control signal GCS to control the gain amplifier 160 to amplify the detection output signal DOS with a larger gain value. On the other hand, when the detection signal DS reveals that the light intensity detected by the light detector 125 is high, the servo control module 130 utilizes the gain control signal GCS to control the gain amplifier 160 to amplify the detection output signal DOS with a smaller gain value. Therefore, with the servo control module 130, the scanning quality of the scanner 100 will not be affected by the light intensity changes of the light source apparatus 110.
Certainly, the light source apparatus 110 of this embodiment can be applied not only in scanners, but also in other electronic devices requiring integrated light sources. The electronic devices include liquid crystal displays (LCD), multi-function printers, etc.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
095124759 | Jul 2006 | TW | national |