Scanning method and scanning apparatus

Information

  • Patent Application
  • 20070252078
  • Publication Number
    20070252078
  • Date Filed
    April 24, 2007
    17 years ago
  • Date Published
    November 01, 2007
    17 years ago
Abstract
A scanning method for optical scanning of a body includes illuminating the body by a lighting unit and a light receiver unit receives light transmitted from the lighting unit to the body and reflected by the body so that a scanning zone of a scanning unit is defined by the lighting unit and the light receiver unit. Two scanning units each having a scanning region are used, which overlap at least in part in an overlap zone, and at least when the surface of the body is in an overlap zone, the scanning sensitivity of at least one of the scanning units is reduced at least for the overlap zone. At least one scanning unit is used which is configured and/or arranged such that it can scan a part of the body which is as large as possible. A scanning apparatus is also provided for carrying out the scanning method.
Description

DRAWINGS

The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.



FIG. 1 illustrates a first aspect of a method in accordance with the invention in a perspective representation;



FIG. 2 is a plan view of an apparatus in the carrying out of this method in accordance with the invention;



FIG. 3 illustrates a second aspect of a method in accordance with the invention in a perspective representation;



FIG. 4 is a plan view of an apparatus in the carrying out of the second aspect of the method in accordance with the invention;



FIG. 5 is a plan view to explain a method in accordance with the invention;



FIG. 6 illustrates a third aspect of a method in accordance with the invention in a perspective representation;



FIG. 7 illustrates the third aspect in a different geometry of use;



FIG. 8 illustrates different stages of a fourth aspect of a method in accordance with the invention in a perspective representation;



FIG. 9 illustrates different states in the carrying out of a fifth embodiment of a method in accordance with the invention in a perspective representation;



FIG. 10 illustrates a modified aspect of the fifth aspect of this method in accordance with the invention;



FIG. 11 illustrates a scanning method of the prior art in a perspective representation; and



FIG. 12 illustrates the scanning method of the prior art in a plan view.





DETAILED DESCRIPTION

The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.


A first aspect of a method in accordance with the invention is shown in FIGS. 1 and 2. A body 10 is moving on the conveyor belt 12 through the scanning regions 28, 32 of the scanning units 26, 30.


The zone is indicated in each case schematically in the form of a bar through which light of the associated scanning unit 14, 18, 26, 30, 36, 46, 50 passes in FIGS. 1 and 2 and all following Figures for the scanning zones 16, 20, 28, 32, 38, 48, 52, 72. In other words, the respective scanning zone corresponds to that zone in which a body to be scanned can be illuminated by light of the respective scanning unit.


Further scanning units are provided per se in the embodiment of FIGS. 1 and 2 which can detect those sides of the body 10 which cannot be detected by the two scanning units 26, 30. In total, six scanning units are e.g. provided such is also the case in the prior art which is shown in FIGS. 11 and 12. The two scanning units 26 and 30 have been singled out by way of example in FIGS. 1 and 2 for the explanation of the invention for reasons of clarity.


A scanning unit 26, 30 includes in a manner known per se in each case an array of light emitting diodes which are arranged vertically in the example shown. Adjacent thereto or alternately to the light emitting diodes, light receiver sensors, e.g. an array of CCD sensors or CMOS sensors, are arranged in the scanning unit 26, 30.


Light which is e.g. transmitted by a scanning unit 26 in the direction of the body 10 passes through the scanning zone 28 and is possibly reflected by the body 10. The reflected light is detected by the sensors in the scanning unit 26. The scanning unit 30 with the scanning zone 32 works in a similar manner. For example, a barcode which is located on the body 10 on the surface facing the scanning units 26 and 30 can be read in this manner.


The embodiment of FIGS. 1 and 2 utilize the knowledge of the position, the alignment and/or the geometry of the body 10 on the conveyor belt 12 to avoid over-exposure. The scanning zones 28, 32 of the scanning units 26, overlap, as can be recognized in FIGS. 1 and 2. Unlike in the prior art, which is shown in FIGS. 11 and 12, the scanning units and the corresponding scanning zones 28, 32 are aligned such that the body 10 also runs through the overlap zone.


The scanning units 26, 30 are connected in a manner not shown to a control unit which individual zones of the scanning units can influence, e.g. reduce the intensity or switch off individual LEDs. In other aspects, the sensitivity of individual receiver sensors can be reduced.


Other scanning units which are e.g. arranged on the opposite side of the conveyor belt 12 or above and beneath the conveyor belt 12 have a similar structure or arrangement. These scanning units in particular also have overlapping scanning zones.


A determination device, which is not shown in the Figures, is provided upstream of the scanning units. It serves the determination of the position, the alignment and/or the geometry of the body 10 before it reaches the scanning zones 28, 32. The determination can, for example, use a method known per se such as is described in DE 102 26 663 A1.


The scanning units shown in FIGS. 1 and 2 can include mirrors which direct the light from lighting units into the scanning zones and back.


An aspect of FIGS. 1 and 2 works as follows:


Before the body 10 moves from the conveyor belt 12 to the scanning zones 28, 32, the position, alignment and/or geometry of the body on the conveyor belt 12 is determined by the determination device arranged upstream. The control device, likewise not shown, can determine the point at which the body 10 moves into the overlap zone of the scanning zones 28, 32 from the signal of the determination unit. At this moment, a double exposure is impending at this surface zone since light is incident onto a surface zone simultaneously from both scanning units 26, 30. Since it is known from the determination of the determination device when this is the case, the control device can influence the scanning units 26 and/or 30 at the corresponding moment. For instance, it can e.g. completely switch off the lighting unit of a scanning unit so that the overlap zone is only illuminated by one lighting unit of a scanning device at one moment in time.


Alternatively, the intensities of illumination of the scanning units 26, 30 can be reduced equally, e.g. halved, so that overexposure is precluded. The intensities of the individual scanning units can naturally also be reduced to different degrees in dependence on the application in order to avoid overexposure in the overlap zone.


Equally, the sensitivities of the light receiver units of the scanning units 26, 30 can be reduced accordingly so that the double exposure in the overlap zone remains without negative influence on the image quality.


Unlike in the prior art shown, for example, in FIGS. 11 and 12, the scanning units arranged obliquely to one another can move closer together by the overlap of the scanning zones 28, 32 which is not critical in the solution in accordance with the invention so that only a reading field 34 very much smaller than the reading field 134 required in the known solutions is necessary.


As is explained above for the example of the two scanning units 26, 30 with overlapping scanning zones 28, 32 singled out by way of example, further scanning units with overlap zones act, which are not shown in FIGS. 1 and 2, to also avoid overexposure.


Depending on the necessity, more than two scanning units with overlapping scanning zones can also be provided and treated accordingly.


A further development of the aspect of FIGS. 1 and 2 is shown in FIGS. 3 and 4.


Depending on the geometry of the body to be scanned and on the arrangement of the scanning units, it is possible that only sections or individual parts of the body within an image situation are over-exposed. It is then not necessary for the complete lighting unit or receiver unit of a scanning unit to be switched off or have its sensitivity reduced, but only the part of the lighting unit causing the over-exposure, e.g. a first third of a light emitting diode array, and/or that part of the light receiver unit affected by the over-exposure (e.g. the first third of a CCD sensor array).


A corresponding critical zone is designated by A in FIGS. 3 and 4. With the geometry shown, illumination takes place at this moment in particular in the zone with the reference numeral 40 both by the scanning unit 26 with its scanning zone 28 and by the scanning unit 36 with the scanning zone 38.


The position, the alignment and the geometry of the body 10 on the conveyor belt 12 were determined with the aid of the determination device, not shown, upstream of the scanning units. A control unit, not shown, which cooperates with the scanning units 26, 36, controls the scanning unit 26 in the example shown such that a zone 42 is blocked out of the scanning zone 28, e.g. in that the corresponding light emitting diodes of the light emitting diode array in the scanning unit 26 are switched off. The same applies to the spared region 44 in the scanning zone 38 of the scanning unit 36. The part 40 which is double exposed on an uninfluenced use of the scanning units 26, 36 is accordingly not illuminated at all so that no over-exposure or glare can occur here. Alternatively, the intensity of the light emitting diodes of the light emitting diode arrays of the scanning units 26, 36 responsible for the spared regions 42, 44 can be reduced.


Finally, it is also possible in this aspect for the sensitivity of the CCD sensors in the scanning units 26, 36 responsible for the registration of light from the critical zone 40 to be correspondingly reduced so that a double exposure of the part 40 remains without negative influence.



FIG. 5 shows a plan view in which at least the scanning units 26, 30, 46, 50 responsible for the side surfaces of a body to be scanned and the associated scanning zones 28, 32, 48, 52 are shown. It is fixed, as described, by the position, alignment and/or geometry of a body to be scanned determined using the determination unit arranged upstream and not shown in FIG. 5 when a control reduces the scanning sensitivity of individual parts of the scanning units 26, 30, 46, 50, e.g. in that individual parts of the LED arrays of the lighting units are switched off or the sensitivity of individual parts of the CCD arrays of the receiver units is reduced. It can clearly be recognized that the reading zone 34, which is necessary to detect all the side surfaces of a body to be scanned, is a great deal shorter than the reading zone 134 which is necessary in standard configurations, see FIG. 12.


The scanning unit 36 is additionally shown in FIG. 5 which can serve for the scanning of the upwardly facing surface of the body 10. For reasons of clarity, however, the scanning zone of the scanning unit 36 is not shown. A scanning unit which serves for the scanning of the lower side of the body and whose scanning zone optionally leads through an interruption of the conveyor belt (as e.g. the interruption 130 in the conveyor belt 12 which is shown in FIG. 1) is likewise not shown in FIG. 5. Optionally overlapping scanning zones of such scanning units are treated in the same way as the overlapping zones of the scanning zones 28, 32, 48, 52 shown in FIG. 5.


In addition, a sensor can be provided in the aspects described, for example, with respect to FIGS. 1 to 5 which detects the conveying speed of the conveyor belt 12 if this is, for example, not anyway known. The control can additionally determine when one of the surfaces of the body enters into the overlap zone of two scanning units from the time at which the body passes the determination unit, for example. With this knowledge, the control unit can control the scanning sensitivity such that a corresponding regulating down of the scanning sensitivities is only carried out when one of the surfaces of the body is also in the overlap zone.



FIGS. 6 and 7 show a third aspect of a method in accordance with the invention in which scanning units 14, 18 are used which can be pivoted. The scanning unit 14 can be pivoted around the axis 22, whereas the scanning unit 18 can be pivoted around the axis 24. The scanning units 14, 18 themselves have the same structure as the scanning units 26, 30 of FIGS. 1 and 2.



FIG. 6 shows an arrangement which is advantageously selected when the main surfaces of the body 10 are aligned parallel or perpendicular to the conveying direction of the transport belt 12.



FIG. 7 shows the arrangement such as is advantageously selected when the surfaces of the body 10 are aligned obliquely to the conveying direction of the conveyor belt 12.


The scanning units 14 and 18 are connected to a control, not shown, which provides the alignment of the scanning zones 16, 20 in that the scanning units 14, 18 are pivoted around their axes 22, 24.


It is also possible that one or more mirrors are provided which direct the light from light sources into the corresponding scanning zones. With such an embodiment having corresponding mirrors, it is sufficient for the mirrors to be arranged pivotably in order to direct the light into the scanning zones or out of the scanning zones to light receiver units.


A determination device is provided upstream of the scanning units which is not shown separately and which detects the position or alignment of the body in a manner known per se.


This aspect of FIGS. 6 and 7 is used as follows. The body 10 moves on the conveyor belt 12 in the direction of the scanning units 14, 18. The position and alignment of the body is determined by the determination device not shown in the Figures. The control unit determines an optimum alignment of the scanning units 14, 18 from the signal of the determination device such that a respective part of the surface of the body 10 which is as large as possible is covered by a scanning zone 16, 20. The control unit in the method management of FIG. 6 has thus set the scanning unit 18 such that the scanning zone 20 covers both the surface 82 and the surface 80. The scanning zone 16 of the scanning unit 14 covers the surface 84 and the non-visible surface 86. All four side surfaces of the body 10 can be covered using only two scanning units.


In the method management of FIG. 7, the determination device upstream of the conveyor belt 12 has found that the body 10 is differently aligned. The control unit has determined that an optimum position of the scanning units 14, 18 is not oblique to the conveying direction as in FIG. 6, but transverse to the conveying direction. As can be recognized in FIG. 7, it is possible in this manner that the scanning unit 14 covers the surfaces 84, 86 of the body 10, whereas the scanning unit 18 covers the two side surfaces not visible in FIG. 7.


All the side surfaces of the body 10 can accordingly be covered with only two scanning units since the control device determines an optimum position of the scanning units 14, 18 from the signal of the determination device which is not shown. With respect to a solution of the prior art, not four scanning units (see FIGS. 11 and 12), but only two scanning units 14, 18 are required to cover the side surfaces.


The embodiments which take account of the influence of the overlap of scanning zones (as e.g. in the embodiments of FIGS. 1 to 5) can naturally e.g. advantageously be combined with the embodiments of FIG. 6 or 7 which describe a reduction in the number of the scanning units by an optimum arrangement of the scanning directions or the position of the scanning units.



FIG. 8 shows an aspect of a method in accordance with the invention with a scanning unit 14 pivotable around the axis 22. A body 60 is moved along by the conveyor belt 12. A barcode to be read is located e.g. on its surface. The structure of the scanning unit 14 corresponds to the scanning unit 26 such as was explained e.g. with respect to FIGS. 1 and 2.


As soon as the body 60 enters into the scanning zone 60 of the scanning unit 14, the light receiver unit of the scanning unit 14 registers reflected light. A control unit matches the movement of the scanning unit 14 around the pivot axis 22 to the movement of the body 60 on the conveyor belt 12. The scanning unit is positioned in dependence on the object position during the scanning procedure. This can e.g. be effected with knowledge of the position and/or alignment and/or geometry of the body on the conveyor belt 12 and of the speed of the conveyor belt 12 by a control unit not shown in FIG. 8. Alternatively, the control unit can evaluate the light received at the light receiver unit of the scanning unit 14 to determine whether the body has moved out of the scanning zone 16 in order thus to control the tracking movement of the scanning unit 14.


In every case, the scanning zone 16 follows the movement of the body 60 on the conveyor belt 12. As can be recognized in the part Figures a to c of FIG. 8, the body 60 provides different zones of its surface for scanning to the scanning zone 16 over the course of time. Only one scanning unit 14 is required in this aspect to detect a complete half of the body 60 to be scanned. A scanning unit can be provided on the other side of the conveyor belt 12 for the scanning of a rear side of the body 60 which is not visible.


In FIG. 8, the cylindrical shape of the body 60 has only been selected to be able to show the scanning of the side better. In reality, mostly parallelepiped bodies are scanned, with the function of the embodiment of FIG. 8 not changing thereby.


If it is not clear in advance whether the barcode to be read is located at the side surface or on one of the top surfaces, additional scanning units are also provided here.


Alternatively to the embodiment shown in FIG. 8, the light of a lighting unit can also be directed into the scanning zone 16 or out of the scanning zone 16 to a light receiver unit with the aid of a redirector, for example a mirror. It is then sufficient for the redirector to be configured pivotable itself.



FIG. 9 shows an aspect using a mirror 70 to save a scanning unit.


The arrangement includes a scanning unit 26 with a scanning zone 28 such as is e.g. explained with respect to FIGS. 1 and 2. A body 10 having the side surfaces 80, 82, 84 and 86 is guided through the scanning zone 28 on a conveyor belt 12. In part FIG. 9a, the side surface 80 is just being scanned, whereas the surface 86 is being scanned in part FIG. 9b. After the body 10 has left the scanning zone 28, the light of the scanning unit 26 is incident onto the mirror 70 which it was previously unable to reach. The light is directed by the mirror 70 onto the surface 84 of the body 10. It is reflected there and transmitted by the mirror 70 back to the scanning unit 26 by whose light receiver unit it can be detected. The arrangement therefore makes possible the scanning of three side surfaces of the body 10 using only one scanning unit 26 by the skilful arrangement of the mirror 70.


With a corresponding arrangement of the redirector or if e.g. a plurality of redirectors are provided, even more sides of a body can be scanned using one scanning unit.


In addition, a determination device can be provided upstream of the scanning unit 26 which determines the position, the alignment and/or the geometry of the body 10 on the conveyor belt 12. If the scanning unit 26 and the mirror 70 are selected to be movable, e.g. in that the scanning units 26 is pivotable and the mirror 70 can be moved in a linear fashion accordingly along the conveyor belt 12, the optimum scanning direction of the scanning unit 26 can be determined in advance and the scanning unit 26 and the mirror 70 can be positioned accordingly with the aid of a control unit.



FIG. 10 shows another arrangement for the carrying out of a corresponding aspect of the method in which the scanning unit 26 is not aligned obliquely to the conveying direction of the conveyor belt 12, but transversely thereto. As long as the body 10 is directly in the scanning zone 28 of the scanning unit 26 (part FIG. 10a), the surface 80 is scanned. After the body 10 has left the scanning zone 28, the light reaches the mirror 70 and initially the surface 84 is scanned, with the reflected light being directed by the scanning zone 72 back to the mirror 70 and to the scanning unit 26 (part FIG. 10b). In the state of the part FIG. 10c, the surface 86 is scanned which is now located in the scanning zone 72.


In the same way as with FIG. 9, only a scanning unit 26 is necessary to scan three or more side surfaces. A determination device can also be provided upstream of the scanning unit in the embodiment of FIG. 10 in order to determine the position, alignment and/or geometry of the body on the conveyor belt 10 in advance and to be used for the optimum alignment of the scanning zone 28 and/or of the mirror 70.


An aspect, not shown, of a method in accordance with the invention is based on the fact that over-exposure is determined and the lighting unit and/or the receiver unit of a scanning unit is/are regulated correspondingly so that over-exposure either does not take place (for example, as described when regulating down or switching off at least the affected parts of the lighting unit) or remains without influence on the quality of the image (for example, as described by lowering the sensitivity of at least the affected parts of the light receiver unit). The properties of the surfaces of the body, e.g. the remission, reflection or similar are thus inherently taken into account.


Such an aspect can particularly advantageously be combined with an aspect using scanning units with overlapping scanning zones which prevents a multiple exposure of the overlap zones of two scanning units or reduces their influence on the image quality by switching off or reducing the intensity of parts of a lighting unit, on the one hand, or by reducing the reception sensitivity of parts of a light receiver unit of a scanning unit, on the other hand.


The individually described aspects can be combined with one another such that the described advantages of the individual aspects can be realized in an accumulative fashion.


The invention makes possible a reduction in the construction structure e.g. by reducing the necessary reading field and/or reducing the number of the scanning units. In addition, the image quality can be improved by taking account of over-exposure in individual zones.


The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.


REFERENCE NUMBER LIST















10
body


12
conveying device


14
scanning unit, pivotable


16
scanning zone


18
scanning unit, pivotable


20
scanning zone


22, 24
pivot axis


26, 30
scanning unit


28, 32
scanning zone


34
reading field


36
scanning unit


38
scanning zone


40
over-exposure zone


42, 44
deactivated zone


46, 50
scanning unit


48, 52
scanning zone


60
body


70
mirror


72
scanning zone


80, 82, 84, 86
side surfaces of the body


88
upper surface of the body


104, 108, 112, 116, 120, 124
scanning unit


106, 110, 114, 118, 122, 126
scanning zone


130 
slot in the conveying device


134 
reading field


A
critical over-exposure zone








Claims
  • 1. A scanning method for an optical scanning of at least a part surface of a body (10, 60), comprising: illuminating the body by at least one lighting unit;receiving light transmitted from the lighting unit onto the body and reflected by the body using at least one light receiver unit so that a scanning zone (16, 20, 28, 32, 38, 48, 52, 72) of a scanning unit (14, 18, 26, 30, 36, 46, 50) including the lighting unit and the light receiver unit is defined by the lighting unit and the light receiver unit;providing at least two scanning units (26, 30, 36, 46, 50) having one scanning zone (28, 32, 38, 48, 52) each, and which overlap at least partly in an overlap zone (40); andreducing the scanning sensitivity of at least one of the scanning units (26, 30, 36, 46, 50) for the overlap zone (40), when the surface of the body (10) is in the overlap zone, in which the scanning zones of the at least two scanning units (26, 30, 36, 46, 50) overlap.
  • 2. A scanning method in accordance with claim 1, wherein at least one of a position, an alignment and a geometry of the body (10), with respect to the at least one scanning unit, is determined and a determination is made from the at least one of the position, the alignment and the geometry when the surface of the body (10) is located in the overlap zone of the at least two scanning units (26, 30, 36, 46, 50).
  • 3. A scanning method in accordance with claim 1, wherein the body (10) and the at least one scanning unit (26, 30, 36, 46, 50) are moved relative to one another, preferably wherein the body (10) is led past the lighting unit and the light receiver unit.
  • 4. A scanning method in accordance with claim 2, wherein the at least one of the position, the alignment and the geometry of the body is determined before the body (10) is located in the overlap zone of at least two scanning units (26, 30, 36, 46, 50).
  • 5. A scanning method in accordance with claim 1, further comprising: checking whether a zone with over-exposure is present at a light receiver unit of a scanning unit (14, 18, 26, 30, 36, 46, 50) while the body (10) is scanned; andif over-exposure is present, one of the intensity of at least one part of a lighting unit of at least one scanning unit (14, 18, 26, 30, 36, 46, 50), which illuminates the over-exposed zone, and the reception sensitivity of at least one part of a light receiver unit of at least one scanning unit which receives light from this zone is reduced.
  • 6. A scanning method in accordance with claim 5, wherein, at least when over-exposure is found at a light receiver unit which receives light from the overlap zone, the scanning sensitivity of at least one of the scanning units is reduced at least for the overlap zone.
  • 7. A scanning method in accordance with claim 1, wherein the scanning sensitivity of all scanning units with at least a partly overlapping scanning zone is reduced by an equal amount for a part of the overlap zone.
  • 8. A scanning method in accordance with claim 1, wherein the reduction of the scanning sensitivity of at least one of the scanning units is achieved by reducing the intensity of at least that part of the lighting unit, which illuminates the overlap zone.
  • 9. A scanning method in accordance with claim 1, wherein the reduction of the scanning sensitivity of at least one of the scanning units is achieved by reduction of the reception sensitivity of at least that part of the light receiver unit onto, which reflected light from the overlap zone is incident.
  • 10. A scanning method in accordance with claim 1, wherein the reduction of the scanning sensitivity of at least one of the scanning units is achieved by deactivation of at least a part of the lighting unit, which illuminates the overlap zone.
  • 11. A scanning method in accordance with claim 1, wherein the body (10, 60) is moved relative to the at least one scanning zone, preferably wherein the body is led past the lighting unit and the light receiver unit.
  • 12. A scanning method in accordance with claim 1, wherein at least one scanning unit is used which includes a redirector (70), preferably a mirror.
  • 13. A scanning method in accordance with claim 12, wherein the at least one redirector is used to align the scanning zone of the at least one scanning unit such that it is passed through by a body to be scanned and led past.
  • 14. A scanning method in accordance with claim 1, wherein a plurality of scanning units are used, of which at least two share a lighting unit whose light is spread over the scanning units by one or more beam splitters.
  • 15. A scanning method in accordance with claim 1, wherein the light receiver unit and the lighting unit of a scanning unit (14, 18, 26, 30, 36, 46, 50) are arranged adjacent to one another such that the light reflected by the body (10, 60) to the light receiver unit substantially takes the opposite path to light transmitted by the lighting unit through the scanning zone (16, 20, 28, 32, 38, 48, 52, 72) to the body (10, 60).
  • 16. A scanning method for an optical scanning of at least a part surface of a body (10, 60), comprising: illuminating the body by at least one lighting unit;receiving light transmitted from the lighting unit onto the body and reflected by the body using at least one light receiver unit so that a scanning zone (16, 20, 28, 32, 38, 48, 52, 72) of a scanning unit (14, 18, 26, 30, 36, 46, 50) including the lighting unit and the light receiver unit is defined by the lighting unit and the light receiver unit,wherein at least one scanning unit (14, 18, 26) is used, which is configured such that a part of the surface of the body (10, 60), which is as large as possible, can be scanned by a scanning unit.
  • 17. A scanning method in accordance with claim 16, wherein at least one scanning unit (14, 18) having a movable scanning zone (16, 20), preferably a pivotable scanning zone, is used.
  • 18. A scanning method in accordance with claim 16, wherein at least one of a scanning direction and position of at least one scanning unit (14, 18) is determined from at least one of a position, an alignment and a geometry of the body (10) such that a part of the surface of the body (10), which is as large as possible, can be scanned by it, preferably at least two sides.
  • 19. A scanning method in accordance with claim 16, wherein the body (10, 60) is moved relative to the at least one scanning zone, preferably wherein the body is led past the lighting unit and the light receiver unit.
  • 20. A scanning method in accordance with claim 17, wherein the scanning zone (16, 20) of the scanning unit (14, 18) is set such that the scanning unit has at least one of a fixed scanning direction and position before the body (10) enters into the scanning zone (16, 20).
  • 21. A scanning method in accordance with claim 17, wherein the scanning zone of at least one scanning unit (14) with a moving scanning zone (16) is moved, preferably pivoted, during the relative movement of the body (60) and of the scanning unit (14) such that the scanning zone (16) follows the body (60).
  • 22. A scanning method in accordance with claim 16, further comprising: bringing the body (10) into a first scanning zone (28) of a first scanning unit (26) and, after exiting the first scanning zone (28), into a second scanning zone (72) of a second scanning unit, said second scanning zone permitting a scanning of a surface zone (82, 84) of the body, which was not completely detected by the first scanning zone (28), with the second scanning unit including the lighting unit and the light receiver unit of the first scanning unit (26) and at least one redirector, preferably a mirror 70, which is only illuminated by the lighting unit when the body (10) is not in the first scanning zone.
  • 23. A scanning method in accordance with claim 16, wherein at least one scanning unit is used which includes a redirector (70), preferably a mirror.
  • 24. A scanning method in accordance with claim 23, wherein the at least one redirector is used to align the scanning zone of the at least one scanning unit such that it is passed through by a body to be scanned and led past.
  • 25. A scanning method in accordance with claim 16, wherein a plurality of scanning units are used, of which at least two share a lighting unit whose light is spread over the scanning units by one or more beam splitters.
  • 26. A scanning method in accordance with claim 16, wherein the light receiver unit and the lighting unit of a scanning unit (14, 18, 26, 30, 36, 46, 50) are arranged adjacent to one another such that the light reflected by the body (10, 60) to the light receiver unit substantially takes the opposite path to light transmitted by the lighting unit through the scanning zone (16, 20, 28, 32, 38, 48, 52, 72) to the body (10, 60).
  • 27. A scanning apparatus for the optical scanning of at least a part surface of a body (10, 60), comprising: at least one lighting unit for the illumination of at least a part of a reading field (34);at least one light receiver unit for the reception of light possibly reflected from the reading field (34) and for the generation of a received signal, wherein a scanning zone (16, 20, 28, 32, 38, 48, 52, 72) of a scanning unit (14, 18, 26, 30, 36, 46, 50) is defined by the light path of the lighting unit to the light receiver unit;an evaluation unit for the evaluation of the received signal;at least two scanning units (26, 30, 36, 46, 50) having at least partly overlapping scanning zones (28, 32, 38, 48, 52); anda control unit for the control of the scanning sensitivity such that at least when a surface of a body (10) is located in the overlap zone in which the scan zones (28, 32, 38, 48, 52) of at least two scanning units (26, 30, 36, 46, 50) overlap, the scanning sensitivity of at least one of the scanning units (26, 30, 36, 46, 50) is reduced at least for the overlap zone (40).
  • 28. A scanning apparatus in accordance with claim 27, further comprising a determination device for determining as least one of a position, an alignment and a geometry of a body (10) to be scanned with respect to the at least one lighting unit and the at least one light receiver unit.
  • 29. A scanning apparatus in accordance with claim 27, further comprising a transport device (12) for the transport of the body (10, 60) through the reading field (34).
  • 30. A scanning apparatus in accordance with claim 28, wherein the determination device is arranged upstream of the reading field (34).
  • 31. A scanning apparatus in accordance with claim 27, further comprising a device for determining an intensity of illumination at least one part of at least one light receiver unit and one control unit which is configured to carry out the scanning.
  • 32. A scanning apparatus in accordance with claim 27, wherein at least one scanning unit includes at least one redirector (70), preferably a mirror.
  • 33. A scanning apparatus in accordance with claim 27, further comprising at least one beam splitter for the splitting of the light of a lighting unit over a plurality of scanning units.
  • 34. A scanning apparatus in accordance with claim 27, wherein the light receiver unit and the lighting unit of a scanning unit (14, 18, 26, 30, 36, 46, 50) are arranged adjacent to one another such that the light reflected by the body (10, 60) to the light receiver unit substantially takes the opposite path to light transmitted by the lighting unit through the scanning zone (16, 20, 28, 32, 38, 48, 52, 72) to the body (10, 60).
  • 35. A scanning apparatus in accordance with claim 27, wherein the lighting unit of the at least one scanning unit (14, 18, 26, 30, 36, 46, 50) includes a plurality of light emitting diodes preferably arranged in a row.
  • 36. A scanning apparatus in accordance with claim 27, wherein the light receiver unit of the at least one scanning unit (14, 18, 26, 30, 46, 50) includes a plurality of CMOS sensors or CCD sensors preferably arranged in a row.
  • 37. A scanning apparatus for the optical scanning of at least a part surface of a body (10, 60), comprising: at least one lighting unit for the illumination of at least a part of a reading field (34);at least one light receiver unit for the reception of light possibly reflected from the reading field (34) and for the generation of a received signal, wherein a scanning zone (16, 20, 28, 32, 38, 48, 52, 72) of a scanning unit (14, 18, 26, 30, 36, 46, 50) is defined by the light path of the lighting unit to the light receiver unit; andan evaluation unit for the evaluation of the received signal,wherein at least one scanning unit (14, 18, 26) is arranged such that a part of the surface of the body (10, 60), which is as large as possible, can be scanned with it.
  • 38. A scanning apparatus in accordance with claim 37, further comprising at least one scanning unit (14, 18) having a movable scanning region (16, 20), preferably a pivotable scanning region.
  • 39. A scanning apparatus in accordance with claim 38, further comprising a control device which moves, preferably pivots, the scanning zone of at least one scanning unit (14) having a movable scanning zone (16) during the relative movement of the body (60) and of the scanning unit (40) such that the scanning zone (16) follows the body (60).
  • 40. A scanning apparatus in accordance with claim 37, further comprising a determination device for determining at least one of a position, an alignment and a geometry of a body (10, 60) to be scanned with respect to the at least one lighting unit and/or the at least one light receiver unit.
  • 41. A scanning apparatus in accordance with claim 37, further comprising a transport device (12) for the transport of the body (10, 60) through the reading field.
  • 42. A scanning apparatus in accordance with claim 40, wherein the determination device is arranged upstream of the reading field.
  • 43. A scanning apparatus in accordance with claim 37, wherein at least one first and one second scanning unit share a lighting unit and a light receiver unit, with the scanning zone (72) of the second scanning unit additionally including a redirector, preferably a mirror (70), which is arranged such that it is illuminated by the lighting unit only when no body (10) is in the scanning zone (28) of the first scanning unit (26).
  • 44. A scanning apparatus in accordance with claim 37, wherein at least one scanning unit includes at least one redirector (70), preferably a mirror.
  • 45. A scanning apparatus in accordance with claim 37, further comprising at least one beam splitter for the splitting of the light of a lighting unit over a plurality of scanning units.
  • 46. A scanning apparatus in accordance with claim 37, wherein the light receiver unit and the lighting unit of a scanning unit (14, 18, 26, 30, 36, 46, 50) are arranged adjacent to one another such that the light reflected by the body (10, 60) to the light receiver unit substantially takes the opposite path to light transmitted by the lighting unit through the scanning zone (16, 20, 28, 32, 38, 48, 52, 72) to the body (10, 60).
  • 47. A scanning apparatus in accordance with claim 37, wherein the lighting unit of the at least one scanning unit (14, 18, 26, 30, 36, 46, 50) includes a plurality of light emitting diodes preferably arranged in a row.
  • 48. A scanning apparatus in accordance with claim 37, wherein the light receiver unit of the at least one scanning unit (14, 18, 26, 30, 46, 50) includes a plurality of CMOS sensors or CCD sensors preferably arranged in a row.
Priority Claims (1)
Number Date Country Kind
06 008 795.4 Apr 2006 EP regional