1. Field of the Invention
The present invention relates generally to scanning probe microscopy and, more particularly, to the system comprising control software that is used for operating the SPM. In accordance with one embodiment of the present invention, control software is disclosed that automates many of the steps required for obtaining a scanning probe microscopy image, thus substantially reducing the level of expertise required to operate a scanning probe microscope (SPM).
2. Description of the Prior Art
In an SPM, a sharp probe is scanned over a surface of a sample in a raster scan motion while the probe is maintained in a predetermined relationship to the surface. A sensing system, together with a feedback circuit and electromechanical transducer, is used to maintain the predetermined relationship between the probe and surface. A three-dimensional image of the surface may then be created by displaying the motion of the probe on a display such as a computer screen.
The most commonly used type of SPM is the atomic force microscope (AFM). In an AFM, the relationship between the probe and surface of the sample is established using a force sensor comprising the sensing system. The probe is raster scanned in the XY plane, and the Z position of the probe is controlled by the sensing system together with a feedback circuit and an electromechanical transducer. The force sensor in an AFM can be a light lever design, or may be a quartz crystal sensor.
The stages of an SPM typically include a series of coarse translation mechanisms for moving the sample large distances, several millimeters, along the X, Y, and Z axes. Fine translation devices, typically piezoelectric elements, are also included for moving the probe along the X, Y, and Z axes during the imaging operation. Additionally, the SPM includes an optical microscope to facilitate locating features for scanning and for assisting in the motion of the probe as it is moved towards a sample's surface.
Practical operation of an SPM requires the control of all of the stage functions. The parameters that must be controlled include:
x raster—Size, Rate, Frequency
y raster—Size, Rate, Frequency
z feedback—Setpoint, PID parameters, bandwidth
Z Motion Control—Rate, Resolution
XY Motion Control—Rate, Resolution
Video Optic—Zoom, Focus
The first SPM, such as the scanning tunneling microscope (STM), used analog electronics to control all of the microscope functions. The human interface to the microscope was a series of knobs and buttons. Although this first approach was functional, it required an expert with an in-depth understanding of the microscope's design to operate.
With the advent of tabletop, affordable, personal computers, the control of scanning probe microscopes was converted to computer control. In such systems, a computer interface electronic unit comprised of analog-to-digital converters, digital-to-analog converters, and TTL logic were used in conjunction with “control software” for the microscope's control, as shown in
The “control software” is used for controlling all of the scanning and stage functions described above. Initially, the “control software” simply replaced the analog control of the SPM. Over the past five to ten years, two software designs were created for SPM control.
In the first design, the control parameters can be accessed through a series of display screens. At any point, one of the display screens can be opened and a parameter changed. This type of control software is very powerful, but requires the operator to have a detailed knowledge of the microscope's operation.
In the second design, a menu is used that presents the steps required for obtaining a topographic image.
It is the general object of this invention to provide SPM control software that greatly simplifies the operation of the microscope.
One embodiment of the present invention comprises control software with the following attributes:
A sample designator file is used for establishing the scan parameters and the best positioning for stage automation functions such as a video microscope. Also, the sample designator file establishes the features in the display screens.
For operating steps that require detailed interaction with the microscope stage, a video screen displays the procedure.
Key operations that traditionally require operator input are automated with software algorithms.
Sample designator files as well as supporting videos for the software may be downloaded using the world wide web (www) or a modem.
The various embodiments of the present invention will be described in conjunction with the accompanying figures of the drawing to facilitate an understanding of the present invention. In the figures, like reference numerals refer to like elements. In the drawing:
A preferred embodiment for controlling a scanning probe microscope (SPM) in accordance with the present invention is shown in the flow diagram illustrated in
While the foregoing description has been with reference to particular embodiments of the present invention, it will be appreciated by those skilled in the art that changes in these embodiments may be made without departing from the principles and spirit of the invention, the scope of which is defined by the appended claims.
| Number | Name | Date | Kind |
|---|---|---|---|
| 4924091 | Hansma et al. | May 1990 | A |
| 5229606 | Elings et al. | Jul 1993 | A |
| 5253516 | Elings et al. | Oct 1993 | A |
| 5266801 | Elings et al. | Nov 1993 | A |
| RE34708 | Hansma et al. | Aug 1994 | E |
| 5336887 | Yagi et al. | Aug 1994 | A |
| 5415027 | Elings et al. | May 1995 | A |
| 5575660 | Hooks | Nov 1996 | A |
| 5652428 | Nishioka et al. | Jul 1997 | A |
| 5672816 | Park et al. | Sep 1997 | A |
| 5898176 | Mori et al. | Apr 1999 | A |
| 6255127 | Fujino et al. | Jul 2001 | B1 |
| RE37560 | Elings | Feb 2002 | E |
| 6781125 | Tokuda et al. | Aug 2004 | B2 |
| 6881954 | Morimoto et al. | Apr 2005 | B1 |
| 6912893 | Minne et al. | Jul 2005 | B2 |
| 6927391 | Tokuda et al. | Aug 2005 | B2 |
| 7041963 | El Rifai et al. | May 2006 | B2 |
| 20020050565 | Tokuda et al. | May 2002 | A1 |
| 20050001164 | Tokuda et al. | Jan 2005 | A1 |
| 20050199828 | Tokuda et al. | Sep 2005 | A1 |
| 20080017809 | Hattori et al. | Jan 2008 | A1 |
| Number | Date | Country | |
|---|---|---|---|
| 20070023649 A1 | Feb 2007 | US |